This study develops a fractal-fractional epidemiological model to investigate the transmission dynamics of monkeypox. The existence, uniqueness, and stability of the model are established using fixed-point and Ulam-Hyers frameworks. A fractional Adams-Bashforth scheme is implemented for a numerical approximation, and simulations illustrate the role of memory and fractal effects in the disease spread. To enhance the predictive capability, the model is integrated with an Artificial Neural Network (ANN) and evaluated using publicly available datasets of outbreaks. Benchmarking against Caputo-derivative-based models demonstrates that the proposed approach achieves a superior goodness-of-fit, parameter identifiability, and short-term forecasting accuracy. These results highlight the potential of fractal-fractional modeling combined with machine learning to improve forecasting and inform control strategies for emerging epidemics.
Citation: Saeed M. Alamry. Intelligent forecasting of monkeypox spread using fractional epidemiological models and machine learning[J]. AIMS Mathematics, 2025, 10(9): 22598-22621. doi: 10.3934/math.20251006
This study develops a fractal-fractional epidemiological model to investigate the transmission dynamics of monkeypox. The existence, uniqueness, and stability of the model are established using fixed-point and Ulam-Hyers frameworks. A fractional Adams-Bashforth scheme is implemented for a numerical approximation, and simulations illustrate the role of memory and fractal effects in the disease spread. To enhance the predictive capability, the model is integrated with an Artificial Neural Network (ANN) and evaluated using publicly available datasets of outbreaks. Benchmarking against Caputo-derivative-based models demonstrates that the proposed approach achieves a superior goodness-of-fit, parameter identifiability, and short-term forecasting accuracy. These results highlight the potential of fractal-fractional modeling combined with machine learning to improve forecasting and inform control strategies for emerging epidemics.
| [1] |
F. Özköse, S. Yılmaz, M. Yavuz, İ. Öztürk, M. T. Şenel, B. Ş. Bağcı, et al., A fractional modeling of tumor–immune system interaction related to lung cancer with real data, Eur. Phys. J. Plus, 137 (2022), 40. https://doi.org/10.1140/epjp/s13360-021-02254-6 doi: 10.1140/epjp/s13360-021-02254-6
|
| [2] |
J. P. Thornhill, S. Barkati, S. Walmsley, J. Rockstroh, A. Antinori, L. B. Harrison, et al., Monkeypox virus infection in humans across 16 countries—April–June 2022, N. Engl. J. Med., 387 (2022), 679–691. https://doi.org/10.1056/NEJMoa2207323 doi: 10.1056/NEJMoa2207323
|
| [3] |
N. Sklenovská, M. V. Ranst, Emergence of monkeypox as the most important orthopoxvirus infection in humans, Front. Public Health, 6 (2018), 383729. https://doi.org/10.3389/fpubh.2018.00241 doi: 10.3389/fpubh.2018.00241
|
| [4] |
H. Hatami, P. Jamshidi, M. Arbabi, S. A. A. Safavi-Naini, P. Farokh, G. Izadi-Jorshari, et al., Demographic, epidemiologic, and clinical characteristics of human monkeypox disease pre-and post-2022 outbreaks: a systematic review and meta-analysis, Biomedicines, 11 (2023), 957. https://doi.org/10.3390/biomedicines11030957 doi: 10.3390/biomedicines11030957
|
| [5] | Monkeypox outbreak 2022-Global, WHO. Available from: https://www.who.int/emergencies/situations/monkeypox-oubreak-2022. |
| [6] |
S. Usman, I. I. Adamu, Modeling the transmission dynamics of the monkeypox virus infection with treatment and vaccination interventions, Journal of Applied Mathematics and Physics, 5 (2017), 2335–2353. https://doi.org/10.4236/jamp.2017.512191 doi: 10.4236/jamp.2017.512191
|
| [7] |
J. G. Breman, D. A. Henderson, Diagnosis and management of smallpox, N. Engl. J. Med., 346 (2002), 1300–1308. https://doi.org/10.1056/NEJMra020025 doi: 10.1056/NEJMra020025
|
| [8] |
H. Meyer, R. Ehmann, G. L. Smith, Smallpox in the post-eradication era, Viruses, 12 (2020), 138. https://doi.org/10.3390/v12020138 doi: 10.3390/v12020138
|
| [9] |
A. W. Rimoin, P. M. Mulembakani, S. C. Johnston, J. O. L. Smith, N. K. Kisalu, T. L. Kinkela, et al., Major increase in human monkeypox incidence 30 years after smallpox vaccination campaigns cease in the Democratic Republic of Congo, Proc. Natl. Acad. Sci. U S A, 107 (2010), 16262–16267. https://doi.org/10.1073/pnas.1005769107 doi: 10.1073/pnas.1005769107
|
| [10] |
J. C. Riopelle, V. J. Munster, J. R. Port, Atypical and unique transmission of monkeypox virus during the 2022 outbreak: An overview of the current state of knowledge, Viruses, 14 (2022), 2012. https://doi.org/10.3390/v14092012 doi: 10.3390/v14092012
|
| [11] |
N. Kumar, A. Acharya, H. E. Gendelman, S. N. Byrareddy, The 2022 outbreak and the pathobiology of the monkeypox virus, J. Autoimmun., 131 (2022), 102855. https://doi.org/10.1016/j.jaut.2022.102855 doi: 10.1016/j.jaut.2022.102855
|
| [12] |
U. Y. Madaki, H. A. Manu, A. A. Gwani, E. E. Edeghagba, Application of mathematical modelling on the spread of chicken pox disease (A case study of Nayinawa clinic Damaturu, Yobe state), Sch. J. Phys. Math. Stat., 7 (2020), 260–271. https://doi.org/10.36347/sjpms.2020.v07i10.004 doi: 10.36347/sjpms.2020.v07i10.004
|
| [13] |
S. Qureshi, A. Yusuf, Modeling chickenpox disease with fractional derivatives: From caputo to atangana-baleanu, Chaos Soliton. Fract., 122 (2019), 111–118. https://doi.org/10.1016/j.chaos.2019.03.020 doi: 10.1016/j.chaos.2019.03.020
|
| [14] |
H. Najafi, S. Etemad, N. Patanarapeelert, J. K. K. Asamoah, S. Rezapour, T. Sitthiwirattham, A study on dynamics of CD4+ T-cells under the effect of HIV-1 infection based on a mathematical fractal-fractional model via the Adams-Bashforth scheme and Newton polynomials, Mathematics, 10 (2022), 1366. https://doi.org/10.3390/math10091366 doi: 10.3390/math10091366
|
| [15] | A. Atangana, S. İ. Araz, New numerical scheme with Newton polynomial: theory, methods, and applications, New York: Academic Press, 2021. https://doi.org/10.1016/C2020-0-02711-8 |
| [16] |
V. S. Erturk, P. Kumar, Solution of a COVID-19 model via new generalized Caputo-type fractional derivatives, Chaos Soliton. Fract., 139 (2020), 110280. https://doi.org/10.1016/j.chaos.2020.110280 doi: 10.1016/j.chaos.2020.110280
|
| [17] |
P. Giudici, Safe machine learning, Statistics, 58 (2024), 473–477. https://doi.org/10.1080/02331888.2024.2361481 doi: 10.1080/02331888.2024.2361481
|
| [18] |
R. Jan, N. N. A. Razak, S. Qureshi, I. Ahmad, S. Bahramand, Modeling Rift Valley fever transmission: insights from fractal-fractional dynamics with the Caputo derivative, Math. Model. Control, 4 (2024), 163–177. https://doi.org/10.3934/mmc.2024015 doi: 10.3934/mmc.2024015
|
| [19] |
E. M. D. Moya, D. S. Rodrigues, Fractional order modeling for injectable and oral HIV pre-exposure prophylaxis, Math. Model. Control, 3 (2023), 139–151. https://doi.org/10.3934/mmc.2023013 doi: 10.3934/mmc.2023013
|
| [20] |
R. Shafqat, A. Alsaadi, Artificial neural networks for stability analysis and simulation of delayed rabies spread models, AIMS Mathematics, 9 (2024), 33495–33531. https://doi.org/10.3934/math.20241599 doi: 10.3934/math.20241599
|
| [21] |
A. Turab, R. Shafqat, S. Muhammad, M. Shuaib, M. F. Khan, M. Kamal, Predictive modeling of hepatitis B viral dynamics: a caputo derivative-based approach using artificial neural networks, Sci. Rep., 14 (2024), 21853. https://doi.org/10.1038/s41598-024-70788-7 doi: 10.1038/s41598-024-70788-7
|
| [22] |
R. Shafqat, A. Alsaadi, A. Alubaidi, A fractional‐order alcoholism model incorporating hypothetical social influence: A theoretical and numerical study, J. Math., 2025 (2025), 6773909. https://doi.org/10.1155/jom/6773909 doi: 10.1155/jom/6773909
|
| [23] |
R. Shafqat, A. Alsaadi, Mathematical and numerical analysis of a fractional SIQR epidemic model with normalized Caputo-Fabrizio operator and machine learning approaches, AIMS Mathematics, 10 (2025), 20235–20261. https://doi.org/10.3934/math.2025904 doi: 10.3934/math.2025904
|
| [24] |
A. Al-Quran, R. Shafqat, A. Alsaadi, A. M. Djaouti, Poliomyelitis dynamics with fractional order derivatives and deep neural networks, Sci. Rep., 15 (2025), 32023. https://doi.org/10.1038/s41598-025-15195-2 doi: 10.1038/s41598-025-15195-2
|
| [25] |
O. J. Peter, S. Kumar, N. Kumari, F. A. Oguntolu, K. Oshinubi, R. Musa, Transmission dynamics of Monkeypox virus: a mathematical modelling approach, Model. Earth Syst. Environ., 8 (2022), 3423–3434. https://doi.org/10.1007/s40808-021-01313-2 doi: 10.1007/s40808-021-01313-2
|
| [26] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progress in Fractional Differentiation and Applications, 1 (2015), 73–85. |
| [27] | A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, (2016), arXiv: 1602.03408. https://doi.org/10.48550/arXiv.1602.03408 |
| [28] |
M. Toufik, A. Atangana, New numerical approximation of fractional derivative with non-local and non-singular kernel: application to chaotic models, Eur. Phys. J. Plus, 132 (2017), 444. https://doi.org/10.1140/epjp/i2017-11717-0 doi: 10.1140/epjp/i2017-11717-0
|
| [29] |
A. Atangana, J. F. Gómez-Aguilar, Fractional derivatives with no-index law property: application to chaos and statistics, Chaos Soliton. Fract., 114 (2018), 516–535. https://doi.org/10.1016/j.chaos.2018.07.033 doi: 10.1016/j.chaos.2018.07.033
|
| [30] |
A. Atangana, Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system, Chaos Soliton. Fract., 102 (2017), 396–406. https://doi.org/10.1016/j.chaos.2017.04.027 doi: 10.1016/j.chaos.2017.04.027
|
| [31] | A. Granas, J. Dugundji, Fixed point theory, New York: Springer, 2003. https://doi.org/10.1007/978-0-387-21593-8 |
| [32] | S. Okyere, J. Ackora-Prah. A mathematical model of transmission dynamics of SARS‐CoV‐2 (COVID‐19) with an underlying condition of diabetes, International Journal of Mathematics and Mathematical Sciences, 2022 (2022), 7984818. https://doi.org/10.1155/2022/7984818 |
| [33] | N. Mjwana, T. Imalingat, I. Kpodo, T. Pham, Digital health and rights: context in three countries: Ghana, Vietnam, Kenya, Geneva, The Graduate Institute of International and Development Studies, Global Health Centre, 2021. https://doi.org/10.71609/iheid-yy03-8d94 |
| [34] |
N. H. Sweilam, S. M. Al-Mekhlafi, S. M. Hassan, N. R. Alsenaideh, A. E. Radwan, A novel hybrid crossover dynamics of monkeypox disease mathematical model with time delay: numerical treatments, Fractal Fract., 8 (2024), 185. https://doi.org/10.3390/fractalfract8040185 doi: 10.3390/fractalfract8040185
|
| [35] |
İ. Avcı, H. Lort, B. E. Tatlıcıoğlu, Numerical investigation and deep learning approach for fractal-fractional order dynamics of Hopfield neural network model, Chaos Soliton. Fract., 177 (2023), 114302. https://doi.org/10.1016/j.chaos.2023.114302 doi: 10.1016/j.chaos.2023.114302
|