
The Riemann waves in two spatial dimensions are described by the fractional Calogero-Bogoyavlenskii-Schiff equation, which has been used to explain numerous physical phenomena including magneto-sound waves in plasmas, tsunamis, and flows in rivers and internal oceans. This work concerned itself with obtaining new analytic soliton solutions for the fractional Calogero-Bogoyavlenskii-Schiff model based on the fractional conformable. By solving the model equation with the Riccati-Bernoulli sub-ODE technique in association with the Bäcklund transformation, the solution was found in terms of trigonometric, hyperbolic, and rational functions. To analyze the detailed features of the wave structures as well as the pattern of dynamics of these solutions, 3D and contour diagrams were plotted by using Wolfram Mathematica. A great advantage of these types of visualizations is that they demonstrate amplitude, shape, and propagation characteristics of the selected soliton solutions. The results reveal that the proposed approach is accurate, universal, and fast for the investigation of the different aspects of the Riemann problem and the related phenomena concerning the propagation of waves.
Citation: Hussain Gissy, Abdullah Ali H. Ahmadini, Ali H. Hakami. The solitary wave phenomena of the fractional Calogero-Bogoyavlenskii-Schiff equation[J]. AIMS Mathematics, 2025, 10(1): 420-437. doi: 10.3934/math.2025020
[1] | Chenggang Huo, Humera Bashir, Zohaib Zahid, Yu Ming Chu . On the 2-metric resolvability of graphs. AIMS Mathematics, 2020, 5(6): 6609-6619. doi: 10.3934/math.2020425 |
[2] | Zahid Iqbal, Muhammad Ishaq . Depth and Stanley depth of edge ideals associated to some line graphs. AIMS Mathematics, 2019, 4(3): 686-698. doi: 10.3934/math.2019.3.686 |
[3] | Tongzhu Li, Ruiyang Lin . Classification of Möbius homogeneous curves in R4. AIMS Mathematics, 2024, 9(8): 23027-23046. doi: 10.3934/math.20241119 |
[4] | Bangchao Yin, Shujie Zhai . Classification of Möbius minimal and Möbius isotropic hypersurfaces in S5. AIMS Mathematics, 2021, 6(8): 8426-8452. doi: 10.3934/math.2021489 |
[5] | Hongzhe Cao . Two meromorphic functions on annuli sharing some pairs of small functions or values. AIMS Mathematics, 2021, 6(12): 13311-13326. doi: 10.3934/math.2021770 |
[6] | Yajun Xie, Changfeng Ma, Qingqing Zheng . On the nonlinear matrix equation Xs+AHF(X)A=Q. AIMS Mathematics, 2023, 8(8): 18392-18407. doi: 10.3934/math.2023935 |
[7] | Dalal Awadh Alrowaili, Uzma Ahmad, Saira Hameeed, Muhammad Javaid . Graphs with mixed metric dimension three and related algorithms. AIMS Mathematics, 2023, 8(7): 16708-16723. doi: 10.3934/math.2023854 |
[8] | Ian Marquette . Representations of quadratic Heisenberg-Weyl algebras and polynomials in the fourth Painlevé transcendent. AIMS Mathematics, 2024, 9(10): 26836-26853. doi: 10.3934/math.20241306 |
[9] | Ahmed Alamer, Hassan Zafar, Muhammad Javaid . Study of modified prism networks via fractional metric dimension. AIMS Mathematics, 2023, 8(5): 10864-10886. doi: 10.3934/math.2023551 |
[10] | Muhammad Ahmad, Muhammad Faheem, Sanaa A. Bajri, Zohaib Zahid, Muhammad Javaid, Hamiden Abd El-Wahed Khalifa . Optimizing SNARK networks via double metric dimension. AIMS Mathematics, 2024, 9(8): 22091-22111. doi: 10.3934/math.20241074 |
The Riemann waves in two spatial dimensions are described by the fractional Calogero-Bogoyavlenskii-Schiff equation, which has been used to explain numerous physical phenomena including magneto-sound waves in plasmas, tsunamis, and flows in rivers and internal oceans. This work concerned itself with obtaining new analytic soliton solutions for the fractional Calogero-Bogoyavlenskii-Schiff model based on the fractional conformable. By solving the model equation with the Riccati-Bernoulli sub-ODE technique in association with the Bäcklund transformation, the solution was found in terms of trigonometric, hyperbolic, and rational functions. To analyze the detailed features of the wave structures as well as the pattern of dynamics of these solutions, 3D and contour diagrams were plotted by using Wolfram Mathematica. A great advantage of these types of visualizations is that they demonstrate amplitude, shape, and propagation characteristics of the selected soliton solutions. The results reveal that the proposed approach is accurate, universal, and fast for the investigation of the different aspects of the Riemann problem and the related phenomena concerning the propagation of waves.
Let G=(V,E) be a simple, connected graph. For x1,x2∈V, the distance d(x1,x2) between vertices x1 and x2 is the count of edges between x1 and x2. A vertex v∈V is said to distinguish two vertices x1 and x2, if d(v,x1)≠d(v,x2). A set Q⊂V is called a metric generator for G, if any pair of distinct vertices of G is distinguished by some element of Q. A metric generator of minimum cardinality is named as metric basis, and its cardinality is the metric dimension of G, denoted by dim(G). For a vertex v from the vertex set and an edge e=x1x2 from its corresponding edge set, the distance betwixt v and e is measured as d(e,v)=min{d(x1,v),d(x2,v)}. A vertex x∈V categorizes two edges e1,e2∈E, if d(x,e1)≠d(x,e2). A subset Qe having minimum vertices from a graph G is an edge metric generator for G, if each pair of two distinct edges of G are distinguished by some vertex of Qe. The minimum cardinality of an edge metric generator for a graph G is called the edge metric dimension and is denoted by dime(G). A vertex x of a graph G distinguishes two elements (vertices or edges) u,v of G, if d(u,x)≠d(v,x). A subset Qm is a mixed metric generator, if there exist any two distinct elements (vertices or edges) of G are distinguished by some vertex of Qm. The minimum numbers of elements in a mixed metric generator for a graph, is called the mixed metric dimension and is denoted by dimm(G). Moreover, mixed metric dimension is a blended version of metric and edge metric dimension.
The authors in [1] introduced the concept of metric dimension, where the metric generators were referred to as locating sets due to some connections with the problem of uniquely identifying the position of intruders in networks. Furthermore, it was studied separately in [2], where metric generators were named resolving sets. Aligning with the same pattern of recognizing the vertices of a graph by subset (resolving set) of vertex set, in [3] introduced the edge metric dimension and later analogous to this definition [4] proposed mixed metric dimension in which both concepts are together (recognizing vertices and edges), adding one more condition that no two elements (vertices and edges) have identical representation with respect to the chosen subset.
The standard metric generator is based on the concept of uniquely recognizing the entire vertex set of a graph, such as how to represent different vertices of a graph with respect to the metric generator. This concept might fail when an unknown problem arises in edges instead of vertices, then edge metric generator parameter take attention of entire working, but still, a question can arise, what happened if both of the behaviors came across with an issue? Then recognizing vertices and edges simultaneously to overcome the failure and both elements (vertices and edges) can be correctly recognized the entire structure of graphs with respect to some chosen vertices, which is named mixed metric generator.
The idea of metric dimension has numerous applications in different fields of science, regarding chemical structure [5] robot navigation [6], connections of a metric dimension of Hamming graphs with understanding and analysis of the mastermind of games [7] and variety of coin weighing problems linked with this concept in [8,9]. Resolving sets have proven worthwhile in a variety of other applications, and they also served as a motivation for the theoretical study of metric dimension.
The metric dimension of different classes of graphs has been extensively studied for the last few decades. It is proved that the metric and one of its generalization named as edge metric, of ladder network is two [10,11], metric dimension of Möbius ladder network is three [12], while edge metric is increased by one and proved four in [11], it is proved that both parameters of dimension for the hexagonal Möbius ladder network is three [11,13], similarly, metric dimension of triangular ladder network is three and edge metric dimension increased by one proved in [11,14]. In [15], discussed vertex metric-based dimension of generalized perimantanes diamondoid structure, some extended topics of metric dimension are discussed in [16,17,18]. In [19], measured the metric-based resolvability of polycyclic aromatic hydrocarbons.
Moreover, metric dimension of some cycle related graphs studied in [20], detailed analysis of the exact metric dimension of newly designed hexagonal Möbius ladder network can be seen in [13]. The local edge metric dimension is discussed for some graphs, including the ladder network in [21]. Convex polytopes graph discussed in [22] with the concept of edge metric dimension. Mixed metric dimension of generalized Peterson graph discussed in [23], some families of rotationally symmetric graph discussed in [24] with the concept of mixed metric dimension, some lower and upper bounds are discussed in [4] with respect to the girth of graph. Limited to the topic, one can find interesting research on metric dimension [25,26,27], on edge metric dimension [28,29].
Theorem 1.1. [4] Let G be a simple connected graph G. Then dimm(G)≥max{dim(G),dime(G)}.
Definition 1.1. A size h-gap between two vertices x1 and x2 is a path of length h between them.
In [4], researcher proved that the mixed metric dimension of a graph is an NP-hard problem. Our emphasis is to provide the exact mixed metric dimension of some families of ladder networks. We investigate the mixed metric dimension of hexagonal Möbius ladder, triangular ladder, triangular Möbius ladder and simple ladder network. We prove that these ladder network families lie in the constant mixed metric dimension category. A comparative analysis between metric, edge metric, and mixed metric dimension is provided in the end to decide which parameter is better to choose.
As we discuss earlier, edge metric dimension of Möbius ladder network is three. The mixed metric dimension can be three or more. In this part of section we will prove that the mixed metric dimension of Möbius ladder network is four.
Theorem 2.1. Let MLm be a Möbius ladder network with m≥3. Then
dimm(MLm)=4. |
Proof. Let the mixed metric generator Qm={v1,v2,vm+42,v3m+22}, when m is even and Qm={v1,v2,vm+32,vm+1}, when m is odd. The labeling of vertices are defined in Figure 1.
To prove that dimm(MLm)=4, we use the method of double inequality, for dimm(MLm)≤4, given below are the shortest distance between all edges and the mixed metric generator's vertices:
d(vϵvm+ϵ,v1)={ϵ−1 if ϵ=1,2,…,⌊m+22⌋;⌊m+32⌋−ϵ+⌊m−12⌋ if ϵ=⌊m+32⌋,…,m. |
d(vϵvϵ+1,v1)={ϵ−1 if ϵ=1,2,…,⌊m+22⌋;⌊m+42⌋−ϵ+⌊m−12⌋ if ϵ=⌊m+42⌋,…,m. |
d(vm+ϵvm+ϵ+1,v1)={ϵ if ϵ=1,2,…,⌊m2⌋;⌊m−12⌋−ϵ+⌊m+22⌋ if ϵ=⌊m+22⌋,…,m−1. |
d(v2mv1,v1)=0. |
d(vϵvm+ϵ,v2)={1 if ϵ=1;ϵ−2 if ϵ=2,3,…,⌊m+52⌋;⌊m2⌋−ϵ+⌊m+72⌋ if ϵ=⌊m+72⌋,…,m. |
d(vϵvϵ+1,v2)={0 if ϵ=1;ϵ−2 if ϵ=2,…,⌊m+42⌋;⌊m+62⌋−ϵ+⌊m−12⌋ if ϵ=⌊m+62⌋,…,m. |
d(vm+ϵvm+ϵ+1,v2)={1 if ϵ=1;ϵ−1 if ϵ=2,…,⌊m+32⌋;⌊m+52⌋−ϵ+⌊m−12⌋ if ϵ=⌊m+52⌋,…,m−1. |
d(v2mv1,v2)=2. |
d(vϵvm+ϵ,vm+1)={ϵ−1 if ϵ=1,2,…,⌊m+22⌋;⌊m+42⌋−ϵ+⌊m−12⌋ if ϵ=⌊m+42⌋,…,m. |
d(vϵvϵ+1,vm+1)={ϵ if ϵ=1,2,…,⌊m2⌋;⌊m−12⌋−ϵ+⌊m+22⌋ if ϵ=⌊m+22⌋,…,m. |
d(vm+ϵvm+ϵ+1,vm+1)={ϵ−1 if ϵ=1,2,…,⌊m+22⌋;⌊m−12⌋−ϵ+⌊m+42⌋ if ϵ=⌊m+42⌋,…,m−1. |
d(v2mv1,vm+1)=1. |
d(vϵvm+ϵ,vb)={⌊m−12⌋ if ϵ=1;|2−ϵ+⌊m2⌋| if ϵ=2,3,…,m. |
where b=⌊m+42⌋=m+42 (m=even)=m+32 (m=odd),
d(vϵvϵ+1,vb)={⌊m2⌋−ϵ+1 if ϵ=1,2,…,⌊m+22⌋;ϵ−⌊m+42⌋ if ϵ=⌊m+42⌋,…,m. |
d(vm+ϵvm+ϵ+1,vb)={⌊m+12⌋ if ϵ=1;2−ϵ+⌊m−12⌋ if ϵ=2,…,⌊m+22⌋;ϵ−⌊m+42⌋+1 if ϵ=⌊m+42⌋,…,m−1. |
d(v2mv1,vb)=⌊m−12⌋. |
d(vϵvm+ϵ,vc)=|m2−ϵ+1|, |
where c=3m+22,
d(vϵvϵ+1,vc)={m2−ϵ+1 if ϵ=1,2,…,m2;ϵ−m+22+1 if ϵ=m+22,…,m. |
d(vm+ϵvm+ϵ+1,vc)={m−22−ϵ+1 if ϵ=1,2,…,m2;ϵ−m+22 if ϵ=m+22,…,m. |
d(v2mv1,vc)=m−22. |
It is easy to see the distances between all edges in relation to the chosen mixed metric generator Qm. Now, the vertices distances according to Qm are given as follows:
Distance of all vertices with respect to v1;
d(vϵ,v1)={ϵ−1, if ϵ=1,2…,⌊m+22⌋;m−ϵ+2, if ϵ=⌊m+22⌋+1,…,m+1;ϵ−m, if ϵ=m+2,…,⌈m+22⌉;2m−ϵ+1, if ϵ=⌈m+22⌉+1,…,2m. |
Distance of all vertices with respect to v2;
d(vϵ,v2)={|ϵ−2|, if ϵ=1,2…,⌈m+42⌉;m−ϵ+3, if ϵ=⌈m+22⌉+1,…,m+1;ϵ−m−1, if ϵ=m+2,…,⌊3m2⌋+1;2m−ϵ+2, if ϵ=⌊3m2⌋+2,…,2m. |
Distance of all vertices with respect to vm+42;
d(vϵ,vm+42)={m2, if ϵ=1;m+42−ϵ, if ϵ=2,3,…,m+42;ϵ−m+42, if ϵ=m+62,…,m+1;m2, if ϵ=m+2;3m+62−ϵ, if ϵ=m+3,…,3m+42;2+ϵ−3m+62, if ϵ=3m+62+2,…,2m. |
Distance of all vertices with respect to v3m+22;
d(vϵ,v3m+22)={m2, if ϵ=1;m+42−ϵ, if ϵ=2,3,…,m+22;ϵ−m2, if ϵ=m+42,…,m;m2, if ϵ=m+1;|3m+22−ϵ|, if ϵ=m+2,…,2m. |
Distance of all vertices with respect to vm+32;
d(vϵ,vm+32)={m+32−ϵ, if ϵ=1,2,3,…,m+32;ϵ−m+32, if ϵ=m+52,…,m+1;3m+52−ϵ, if ϵ=m+2,…,3m+32;2+ϵ−3m+52, if ϵ=3m+52+2,…,2m. |
Distance of all vertices with respect to vm+1;
d(vϵ,vm+1)={ϵ, if ϵ=1,2,…,m+12;m−ϵ+1, if ϵ=m+32,…,m+1;ϵ−m−1, if ϵ=m+2,…,3m+22;2m−ϵ+2, if ϵ=3m+42,…,2m. |
It is clear to see the representations in term of distances of all edges and vertices with respect to mixed metric generator Qm are different, it proved that dimm(MLm)≤4. Now, the converse is directly deduced from Theorem 1.1, which implies that
dimm(MLm)=4. |
We know that edge metric dimension of hexagonal Möbius ladder network is three. By the relation in Theorem 1.1, mixed metric dimension can be three or more. In the following, we proved that the mixed metric dimension of the hexagonal Möbius ladder network is four.
Theorem 2.2. Let HMLm be a hexagonal Möbius ladder network with m≥2. Then
dimm(HMLm)=4. |
Proof. Suppose that the mixed metric generator is Qm={v1,v2,vm+2,v3m+2}. The labeling defined in Figure 2.
To prove that dimm(HMLm)=4, we will use the method of double inequality, for dimm(HMLm)≤4, given below are the distances of all edges with respect to mixed metric generator:
d(vϵvm+ϵ,v1)={ϵ−1 if ϵ=1,3,…,m+1 and m even;2m+1−ϵ if ϵ=m+3,m+5,…,2m−1 and m even;ϵ−1 if ϵ=1,3,…,m and m odd;2m+1−ϵ if ϵ=m+2,m+4…,2m−1 and m odd. |
d(vϵvϵ+1,v1)={ϵ−1 if ϵ=1,2,…,m+1;2m+1−ϵ if ϵ=m+2,…,2m. |
d(v2m+ϵv2m+ϵ+1,v1)={ϵ if ϵ=1,2,…,m;2m−ϵ if ϵ=m+1,…,2m−1. |
d(v4mv1,v1)=0. |
d(vϵvm+ϵ,v2)={1 if ϵ=1;ϵ−2 if ϵ=3,5,…,m+1 and m even;2m+3−ϵ if ϵ=m+3,m+5,…,2m−1 and m even;ϵ−2 if ϵ=3,5,…,m+2 and m odd;2m+3−ϵ if ϵ=m+4,m+6,…,2m−1 and m odd. |
d(vϵvϵ+1,v2)={0 if ϵ=1;ϵ−2 if ϵ=2,…,m+2;2m+2−ϵ if ϵ=m+3,…,2m. |
d(v2m+ϵv2m+ϵ+1,v2)={2 if ϵ=1,2;ϵ−1 if ϵ=3,…,m+1;2m+2−ϵ if ϵ=m+2,…,2m−1. |
d(v4mv1,v2)=2. |
d(vϵvm+ϵ,vm+2)={m−1 if ϵ=1;m+2−ϵ if ϵ=3,5,…,m+1 and m even;ϵ−m−2 if ϵ=m+3,m+5,…,2m−1 and m even;m+2−ϵ if ϵ=3,5,…,m+2 and m odd;ϵ−m−2 if ϵ=m+4,m+6…,2m−1 and m odd. |
d(vϵvϵ+1,vm+2)={m−ϵ+1 if ϵ=1,2,…,m+1;ϵ−m−2 if ϵ=m+2,…,2m. |
d(v2m+ϵv2m+ϵ+1,vm+2)={m if ϵ=1;m+2−ϵ if ϵ=2,…,m and m even;2 if ϵ=m+1,m+2 and m even;ϵ−m−1 if ϵ=m+3,…,2m−1 and m even;m+2−ϵ if ϵ=2,…,m+1 and m odd;ϵ−m−1 if ϵ=m+2,…,2m−1 and m odd. |
d(v4mv1,vm+2)={m when m=2;m−1 when m≥3. |
d(vϵvm+ϵ,v3m+2)={m−1 if ϵ=1;m+2−ϵ if ϵ=3,5,…,m+1 and m even;2 if ϵ=m+1,m+2, and m even;ϵ−m−2 if ϵ=m+3,m+5,…,2m−1 and m even;m+2−ϵ if ϵ=3,5,…,m+2 and m odd;ϵ−m−2 if ϵ=m+4,m+6,…,2m−1 and m odd. |
d(vϵvϵ+1,v3m+2)={m if ϵ=1;m+2−ϵ if ϵ=2,…,m and m even;2 if ϵ=m+1,m+2 and m even;ϵ−m−1 if ϵ=m+3,…,2m and m even;m+2−ϵ if ϵ=2,…,m+1 and m odd;ϵ−m−1 if ϵ=m+2,…,2m and m odd. |
d(v2m+ϵv2m+ϵ+1,v3m+2)={m+1−ϵ if ϵ=1,…,m+1;ϵ−m−2 if ϵ=m+2,…,2m−1. |
d(v4mv1,v3m+2)=m−2. |
It is easy to verify that no two edges have the same representation with respect to the mixed metric generator. In order to complete the definition of mixed metric, we will check the vertices distance as well.
Distance of all vertices with respect to v1;
d(vϵ,v1)={ϵ−1, if ϵ=1,2…,m+1;2m−ϵ+2, if ϵ=m+2,…,2m+1;ϵ−2m, if ϵ=2m+2,…,3m;4m−ϵ+1, if ϵ=3m+1,…,4m. |
Distance of all vertices with respect to v2;
d(vϵ,v2)={|ϵ−2|, if ϵ=1,2…,m+2;2m−ϵ+3, if ϵ=m+3,…,2m+1;ϵ−2m−1, if ϵ=2m+3,…,3m+1;ϵ−2m+1, if ϵ=2m+2;4m−ϵ+2, if ϵ=3m+2,…,4m. |
Distance of all vertices with respect to vm+2;
d(vϵ,vm+2)={m, if ϵ=1;m−ϵ+2, if ϵ=2,3,…,m+2;ϵ−m−2, if ϵ=m+3,…,2m+1;3, if ϵ=2m+2 and m=2;m, if ϵ=2m+2 and m≥3;3m+3−ϵ, if ϵ=2m+3,…,3m+1. |
d(vϵ,vm+2)={3m+2−ϵ+⌊m+64⌋, if ϵ=3m+2,…,3m+2+⌊m+64⌋, and m even;ϵ−3m−1−⌊m−14⌋, if ϵ=3m+3+⌊m−14⌋,…,4m and m even;ϵ−3m−1, if ϵ=3m+2,…,4m and m odd. |
Distance of all vertices with respect to v3m+2;
d(vϵ,vm+2)={m−2+ϵ, if ϵ=1,2;m−ϵ+3, if ϵ=3,4,…,m+1 and m even;5−ϵ+m, if ϵ=m+2,m+3 and m even;ϵ−m−1, if ϵ=m+4,…,2m+1 and m even;3m+2−ϵ, if ϵ=2m+2,…,3m+2 and m even;ϵ−3m−2, if ϵ=3m+3,…,4m and m even;m−ϵ+3, if ϵ=3,4,…,m+2 and m odd;ϵ−m−1, if ϵ=m+3,…,2m+1 and m odd;3m+2−ϵ, if ϵ=2m+2,…,3m+2 and m odd;ϵ−3m−2, if ϵ=3m+3,…,4m and m odd. |
All the edges and vertices with respect to the selected mixed metric generator Qm have different representation, it is proved that dimm(HMLm)≤4. Now, assume on the contrary that dimm(HMLm)=3, which makes the minimum members in a mixed metric generator Q′m are three, given below are few deliberation on the behalf of argument.
If all three vertices have a disparity of every arbitrary length, Q′m={vi,vj,vk} with 1≤ i,j,k≤2m−1, then it denotes the same representation in the edges that are d(v1v2m+1|Q′m)=d(v1v4m|Q′m) and including i,j,k=2m,2m+1 then the same representation in a vertex and an edge, d(v1|Q′m)=d(v1v4m|Q′m). When 2m+2≤i,j,k≤4m−1, then it implies that the same representation in the edges which are d(v1v2m+1|Q′m)=d(v2mv2m+1|Q′m). To generalize this concept, we choose the vertices vi,vj,vk∈V(HMLm), then it follows that the same representations in the edges which are either d(vpvp+1|Q′m)=d(v2m+pv2m+p+1|Q′m) where 1≤p≤2m or d(v1|Q′m)=d(v1v2m+1|Q′m) or d(v2|Q′m)=d(v2v3|Q′m) or d(v3|Q′m)=d(v3v4|Q′m) or d(vi|Q′m)=d(vivm+i|Q′m) where 1≤i (odd)≤2m−1. Thus, it is concluded that we can not take vertices in a mixed metric generator with cardinality three. Therefore, dimm(HMLm)=4.
In [11], it is discussed that the edge metric dimension of triangular ladder network is four. By the relation minimum mixed metric dimension can be four and it is proved in this part.
Theorem 2.3. Let TLm be a triangular ladder network with m≥3. Then
dimm(TLm)=4. |
Proof. Suppose that the mixed metric generator Qm={v1,v2,v2m−1,v2m}. In Figure 3 labeling is defined.
To prove that dimm(TLm)=4, we first prove that dimm(TLm)≤4. The shortest distances of all the edges of our network according to the chosen mixed metric generator are given as follows:
d(vϵvϵ+1,v1)={ϵ−12, if 1≤ϵ (odd)≤2m−1;ϵ+22, if 2≤ϵ (even)≤2m−2. |
d(vϵvϵ+1,v1)={ϵ−12, if 1≤ϵ (odd)≤2m−3;ϵ2, if 2≤ϵ (even)≤2m−2. |
d(vϵvϵ+1,v2)={ϵ−12, if 1≤ϵ (odd)≤2m−1;ϵ−22, if 2≤ϵ (even)≤2m−2. |
d(vϵvϵ+2,v2)={1, if ϵ=1;ϵ−12, if 1≤ϵ (odd)≤2m−3;ϵ−22, if 2≤ϵ (even)≤2m−2. |
d(vϵvϵ+1,v2m−1)={2m−ϵ−12, if 1≤ϵ (odd)≤2m−1;2m−ϵ−22, if 2≤ϵ (even)≤2m−2. |
d(vϵvϵ+2,v2m−1)={2m−ϵ−12, if 1≤ϵ (odd)≤2m−3;2m−ϵ2, if 2≤ϵ (even)≤2m−2. |
d(vϵvϵ+1,v2m)={2m−ϵ−12, if 1≤ϵ (odd)≤2m−1;2m−ϵ+12, if 2≤ϵ (even)≤2m−2. |
d(vϵvϵ+2,v2m)={2m−ϵ+12, if 1≤ϵ (odd)≤2m−3;2m−ϵ−22, if 2≤ϵ (even)≤2m−2. |
The representations of edges is unique with respect to the mixed metric generator. To complete the proof, we need to check the distances of vertices with respect to chosen mixed metric generator:
d(vϵ,v1)=⌊ϵ2⌋, |
d(vϵ,v2)={⌊1ϵ⌋, if ϵ=1,2;⌊ϵ−12⌋, if ϵ=3,4,…,2m. |
d(vϵ,v2m−1)={m−1−⌊ϵ−12⌋, if ϵ=1,2,…,2m−1;1, if ϵ=2m. |
d(vϵ,v2m)=m−⌊ϵ2⌋. |
The representations of all edges and vertices with respect to the mixed metric generator Qm are easily visible, it is proved that dimm(TLm)≤4. Now, for dimm(TLm)≥4, the proof can proceed similar to the proof of Theorem 2.1, as a result, we omit it.
Theorem 2.4. Let TMLm be a triangular Möbius ladder network with m≥5. Then
dimm(TMLm)=5. |
Proof. Consider the mixed metric generator Qm={v1,v2,v4,v5,v6}, when m=5, Qm={v1,v3,v4,vm+1,vm+2}, when m≥6 (even) and Qm={v1,v4,v5,vm+3,vm+4}, when m≥7 (odd). The labeling of vertices is shown in Figure 4.
To prove that dimm(TMLm)=5, we prove that dimm(TMLm)≤5. The distances of all edges according to mixed metric generator are given below:
When m=5, the distance of the three vertices v1,v4,v5 to all edges will be explained in later parts of proof.
d(vϵvϵ+1,v2)={ϵ−12; if ϵ=1,3,51; if ϵ=4,6,70; if ϵ=2. |
d(v2m−2v2,v2)=d(v2m−3v2,v2)=0. |
d(vϵvϵ+2,v2)={1; if ϵ=1,52; if ϵ=3ϵ−22, if ϵ=2,4,6. |
d(v2m−1v1,v2)=d(v2m−2v2,v6)=d(v2m−1v1,v6)=1 |
d(vϵvϵ+1,v6)={|5−ϵ2|, if 1≤ϵ (odd)≤2m−3;|6−ϵ2|, if 2≤ϵ (even)≤2m−4. |
d(vϵvϵ+2,v6)={2; if ϵ=1;1; if ϵ=2,3,5;0; if ϵ=4,6. |
d(v2m−3v2,v6)=2. |
When m≥6 (even), we obtain the following:
d(vϵvϵ+1,v1)={ϵ−22; if ϵ=1,3,…,m−12m−ϵ−32; if ϵ=m+1,m+3,…,2m−3ϵ2; if ϵ=2,4,…,m2m−ϵ2; if ϵ=m+2,m+4,…,2m−4. |
d(v2m−2v2,v1)=d(v2m−3v2,v1)=1. |
d(vϵvϵ+2,v1)={ϵ−22; if ϵ=1,3,…,m−12m−ϵ−12; if ϵ=m+1,m+3,…,2m−5ϵ2; if ϵ=2,4,…,m−22m−ϵ−22; if ϵ=m,m+2,…,2m−4. |
d(v2m−1v1,v1)=0. |
d(vϵvϵ+1,v3)={1; if ϵ=1ϵ−32; if ϵ=3,5,…,m+32m+3−ϵ2; if ϵ=m+5,m+7,…,2m−3ϵ−22; if ϵ=2,4,…,m+22m+2−ϵ2; if ϵ=m+4,m+6,…,2m−4. |
d(v2m−2v2,v3)=d(v2m−3v2,v3)=d(v2m−1v1,v3)=2. |
d(vϵvϵ+2,v3)={ϵ−1; if ϵ=1,2ϵ−32; if ϵ=3,5,…,m+12m+1−ϵ2; if ϵ=m+3,m+5,…,2m−5ϵ−22; if ϵ=4,6,…,m+22m+2−ϵ2; if ϵ=m+4,m+6,…,2m−4. |
d(vϵvϵ+1,v4)={1; if ϵ=1,2ϵ−32; if ϵ=3,5,…,m+32m−ϵ+32; if ϵ=m+5,m+7…,2m−3ϵ−42; if ϵ=4,6,…,m+22m−ϵ+22; if ϵ=m+4,m+6,…,2m−4. |
d(v2m−2v2,v4)=d(v2m−3v2,v4)=d(v2m−1v1,v4)=2. |
d(vϵvϵ+2,v4)={2−ϵ; if ϵ=1,2ϵ−12; if ϵ=3,5,…,m+12m−ϵ+12; if ϵ=m+3,m+5,…,2m−5ϵ−42; if ϵ=4,6,…,m+22m−ϵ+22; if ϵ=m+4,m+6…,2m−4. |
d(vϵvϵ+1,vm+1)={m−22; if ϵ=1|m−ϵ+12|; if ϵ=3,5,…,2m−3|m−ϵ2|; if ϵ=2,4,…,2m−4. |
d(v2m−2v2,vm+1)=d(v2m−1v1,vm+1)=m−22, d(v2m−3v2,vm+1)=m−42. |
d(vϵvϵ+2,vm+1)={m−ϵ−12; if ϵ=1,3,…,m−1ϵ−m−12; if ϵ=m+1,m+3,…,2m−5m−ϵ−12; if ϵ=2,4,…,m−21; if ϵ=mϵ−m2; if ϵ=m+2,m+4,…,2m−4. |
d(vϵvϵ+1,vm+2)={m−22; if ϵ=1|m−ϵ+12|; if ϵ=3,5,…,2m−3|m−ϵ−22|; if ϵ=2,4,…,2m−4. |
d(v2m−2v2,vm+2)=d(v2m−3v2,vm+2)=d(v2m−1v1,vm+2)=m−42. |
d(vϵvϵ+2,vm+2)={m−ϵ+12; if ϵ=1,3,…,m−1m−ϵ+32; if ϵ=m+1,m+3,…,2m−5m−ϵ2; if ϵ=2,4,…,mϵ−m−22; if ϵ=m+2,m+4,…,2m−4. |
When m≥7 (odd), we have
d(vϵvϵ+1,v1)={ϵ−12; if ϵ=1,3,…,m2m−ϵ−12; if ϵ=m+2,m+4,…,2m−3ϵ2; if ϵ=2,4,…,m−12m−ϵ2; if ϵ=m+1,m+3,…,2m−4. |
d(v2m−2v2,v1)=d(v2m−3v2,v1)=1, d(v2m−1v1,v1)=0. |
d(vϵvϵ+2,v1)={ϵ−12; if ϵ=1,3,…,m2m−ϵ−12; if ϵ=m+2,m+4,…,2m−5ϵ2; if ϵ=2,4,…,m−12m−ϵ−22; if ϵ=m+1,m+3,…,2m−4. |
d(vϵvϵ+1,v4)={1; if ϵ=1,2ϵ−32; if ϵ=3,5,…,m+22m−ϵ+32; if ϵ=m+4,m+6,…,2m−3ϵ−42; if ϵ=4,6,…,m+32m−ϵ+42; if ϵ=m+5,m+6,…,2m−5. |
d(v2m−2v2,v4)=d(v2m−3v2,v4)=d(v2m−1v1,v4)=2. |
d(vϵvϵ+2,v4)={2−ϵ; if ϵ=1,2ϵ−12; if ϵ=3,5,…,m2m−ϵ+12; if ϵ=m+2,m+4,…,2m−5ϵ−42; if ϵ=4,6,…,m+32m−ϵ+22; if ϵ=m+5,m+7,…,2m−4. |
d(vϵvϵ+1,v5)={|5−ϵ2|; if ϵ=1,3,…,m+42m−ϵ+52; if ϵ=m+6,m+8,…,2m−34−ϵ2; if ϵ=2,4ϵ−42; if ϵ=6,8,…,m+52m−ϵ+32; if ϵ=m+7,m+9,…,2m−4. |
d(v2m−2v2,v5)=d(v2m−3v2,v5)=d(v2m−1v1,v5)=3. |
d(vϵvϵ+2,v5)={3−ϵ2; if ϵ=1,3ϵ−52; if ϵ=5,7,…,m+42m−ϵ+32; if ϵ=m+6,m+8,…,2m−51; if ϵ=2,46−ϵ2; if ϵ=6,8,…,m+22m−ϵ+32; if ϵ=m+4,m+6,…,2m−4. |
d(vϵvϵ+1,vm+3)={m−32; if ϵ=1|m−ϵ+22|; if ϵ=3,5,…,2m−3m−12; if ϵ=2|m−ϵ+32|; if ϵ=4,6…,2m−4. |
d(v2m−2v2,vm+3)=d(v2m−1v1,vm+3)=m−52, d(v2m−3v2,vm+3)=m−32. |
d(vϵvϵ+2,vm+3)={m−12; if ϵ=1m−ϵ+22; if ϵ=3,5,…,m1; if ϵ=m+2ϵ−m−22; if ϵ=m+4,m+6,…,2m−5m−ϵ+12; if ϵ=2,4,…,m+1ϵ−m−32; if ϵ=m+3,m+5,…,2m−4. |
d(vϵvϵ+1,vm+4)={m−52; if ϵ=1m−12; if ϵ=3|m−ϵ+42|; if ϵ=5,7,…,2m−3m−32; if ϵ=2|m−ϵ+32|; if ϵ=4,6,…,2m−4. |
d(v2m−2v2,vm+4)=d(v2m−1v1,vm+4)=m−52, d(v2m−3v2,vm+4)=m−72. |
d(vϵvϵ+2,vm+4)={m−ϵ−22; if ϵ=1,3m−ϵ+42; if ϵ=5,7,…,m+2ϵ−m−42; if ϵ=m+4,m+6,…,2m−5m−32; if ϵ=2m−ϵ+32; if ϵ=4,6,…,m+11; if ϵ=m+3ϵ−m−32; if ϵ=m+5,m+7,…,2m−4. |
Now, the distances of vertices according to mixed metric generator are classified as follows:
When m=5, the distance of the vertices v1,v4,v5 to all other vertices will be given in later parts of proof.
d(vϵ,v2)={1; if ϵ=1,3,4,7,82; if ϵ=5,60; if ϵ=2. |
d(vϵ,v6)={2; if ϵ=1,2,31; if ϵ=4,5,7,80; if ϵ=6. |
When m≥6 (even), then
d(vϵ,v1)={ϵ−12; if ϵ=1,3,…,m+12m−ϵ+12; if ϵ=m+3,m+5,…,2m−3ϵ2; if ϵ=2,4,…,m2m−ϵ2; if ϵ=m+2,m+4,…,2m−2. |
d(vϵ,v3)={1; if ϵ=1,2ϵ−32; if ϵ=3,5,…,m+32m−ϵ+32; if ϵ=m+5,m+7,…,2m−3ϵ−22; if ϵ=4,6,…,m+22m−ϵ+22; if ϵ=m+4,m+6,…,2m−2. |
d(vϵ,v4)={5−ϵ2; if ϵ=1,3ϵ−32; if ϵ=5,7,…,m+12m−ϵ+12; if ϵ=m+3,m+5,…,2m−3|4−ϵ2|; if ϵ=2,4,…,m+42m−ϵ+42; if ϵ=m+6,m+8,…,2m−2. |
d(vϵ,vm+1)={|m−ϵ+12|; if ϵ=1,3,…,2m−3m−ϵ+22; if ϵ=2,4,…,mϵ−m2; if ϵ=m+2,m+4,…,2m−2. |
d(vϵ,vm+2)={m−22; if ϵ=1m−ϵ+32; if ϵ=3,5,…,m+1ϵ−m2; if ϵ=m+2,m+4,…,2m−3m2; if ϵ=2|m−ϵ+22|; if ϵ=4,6,…,2m−2. |
When m≥7 (odd)
d(vϵ,v1)={ϵ−12; if ϵ=1,3,…,m2m−ϵ+12; if ϵ=m+2,m+4,…,2m−3ϵ2; if ϵ=2,4,…,m−12m−ϵ2; if ϵ=m+1,m+3,…,2m−2. |
d(vϵ,v4)={5−ϵ2; if ϵ=1,3ϵ−32; if ϵ=5,7,…,m+22m−ϵ+12; if ϵ=m+4,m+6,…,2m−3|4−ϵ2|; if ϵ=2,4,…,m+32m−ϵ+62; if ϵ=m+5,m+7,…,2m−2. |
d(vϵ,v5)={|5−ϵ2|; if ϵ=1,3,…,m+42m−ϵ+72; if ϵ=m+6,m+8,…,2m−36−ϵ2; if ϵ=2,4ϵ−42; if ϵ=6,8,…,m+32m−ϵ+42; if ϵ=m+5,m+7,…,2m−2. |
d(vϵ,vm+3)={m+ϵ−42; if ϵ=1,3m−ϵ+42; if ϵ=5,7,…,m+2ϵ−m−22; if ϵ=m+4,m+6,…,2m−3m−32; if ϵ=2|m−ϵ+32|; if ϵ=4,6,…,2m−2. |
d(vϵ,vm+4)={m−32; if ϵ=1,3|m−ϵ+42|; if ϵ=5,7,…,2m−3ϵ+m−72; if ϵ=2,4m−ϵ+52; if ϵ=6,8,…,m+3ϵ−m−32; if ϵ=m+5,m+7,…,2m−2. |
In the previously described distances, there are no two elements (vertices and edges) have same representations under the mixed metric generator Qm. It is shown that dimm(TMLm)≤5. Now, a brief discussion for dimm(TMLm)=4, which makes the minimum number of elements of the chosen mixed metric generator Q′m equal to four.
If all four nodes have a gap of every arbitrary length, we can choose like, Q′m={vi,vj,vk,vl} with 1≤i,j,k,l≤2m−2. Then it concludes to the identical representation in the edges which are d(v1v2|Q′m)=d(v1v2m−1|Q′m) where indices are odd and if indices are even then the identical representation in edge either d(v1v2|Q′m)=d(v2v3|Q′m)or d(vpvp+1|Q′m)=d(vqvq+1|Q′m) where 1≤p (odd)≤2m−3 and 1≤q (even)≤2m−4, to generalize this concept and taking vertices vi,vj,vk,vl∈V(TMLm) then it implies to the identical representations in the edges which are either d(vpvp+1|Q′m)=d(vqvq+1|Q′m) where 1≤p (odd)≤2m−3 and 1≤q (even)≤2m−4 or d(vi|Q′m)=d(vpvp+2|Q′m), where i=even and 2≤p (even)≤2m−4 or d(vi|Q′m)=d(vpvp+2|Q′m) where i=odd and 1≤p (odd)≤2m−5, then it is concluded that we can not take vertices in mixed metric generator with cardinality four. Thus,
dimm(TMLm)=5. |
The edge metric dimension of a ladder network is two. By the relation mixed metric dimension can be two or more. In the following result, we show that the mixed metric dimension of ladder network is indeed three.
Theorem 2.5. Let Lm be a ladder network with m≥2. Then
dimm(Lm)=3. |
Proof. Suppose that the mixed metric generator is Qm={v1,v2,v2m−1}. The labeling of vertices is shown in Figure 5.
To prove that dimm(Lm)=3, we use the method of the double inequality. First, we verify that dimm(Lm)≤3 by moving towards to show the distances of all edges according to mixed metric generator:
d(vϵvϵ+1|Qm)=(ϵ−12,ϵ−12,m−1−ϵ−12); 1≤ϵ (odd)≤2m−1 |
d(vϵvϵ+2|Qm)=(ϵ−12,ϵ+12,m−2−ϵ−12); 1≤ϵ (odd)≤2m−3 |
d(vϵvϵ+1|Qm)=(ϵ2,ϵ−22,m−ϵ2); 2≤ϵ (even)≤2m−2 |
Vertices representations according to selected mixed metric generator;
d(vϵ|Qm)={(ϵ−12,ϵ+12,m−ϵ+12) if ϵ=1,3,…,2m−1;(ϵ2,ϵ−22,m−ϵ−22) if ϵ=2,4,…,2m. |
It is easy to see that the distances between all edges and vertices based on the chosen mixed metric generator Qm are fulfilling the requirement of definition which means that dimm(Lm)≤3. On the contrary, we choose the cardinality of mixed metric generator Q′m to be two. Then the following discussion verifies the contradiction.
Now, it is possible that by taking Q′m with cardinality 2, then either in two vertices or two edges have the same representations and it is also possible that an edge have the same distance according to Q′m with a particular vertex. For example, if we take Q′m={v1,v2}, then d(v1|Q′m)=d(v1v3|Q′m).
Case 2.1. If we fix the first vertex v1 and choose another vertex vi with 3≤i (odd)≤2m−3 which means that Q′m={v1,vi}, then the edges vivi+1 & vivi+2 have the same representation with respect to Q′m. If i=2m−1, then the vertex v1 and the edge v1v2 have the same representation with respect to Q′m. Therefore, it is verified that the cardinality of mixed metric generator set cannot be equal to two.
Case 2.2. If two of vertices with moving indices with any kind of arbitrarily chosen gap size, we can choose Q′m={vi,vj} with 1≤i (odd)≤2m−1, then it follows that the identical representation in the edges which are d(v1v2|Q′m)=d(v2v4|Q′m). it is verified that we can not take vertices in mixed metric generator with cardinality two.
Case 2.3. Now, taking even index vertices with fixed vertex v2 can choose like, Q′m={v2,vj} with 2≤i (even)≤2m−4 then it implies to the identical representation in the edges which are d(vi−1vi+1|Q′m)=d(vi+1vi+2|Q′m) and when j=2m−2,2m then the identical representation in a vertex with and edge, d(v2|Q′m)=d(v1v3|Q′m), it is verified that we can not take vertices in mixed metric generator with cardinality two.
Case 2.4. If both of two vertices from even and moving indices with any kind of arbitrarily chosen gap size can choose like, Q′m={vi,vj} with 2≤i,j≤2m then it implies to the identical representation in the edges which are d(v1v2|Q′m)=d(v1v3|Q′m) and it is verified that we can not take vertices in mixed metric generator with cardinality two.
Case 2.5. Take the vertices vi,vj∈V(Lm) without choosing the size of gap, then there exist either two edges with distances or an edge with vertex i.e; d(v1v2|Q′m)=d(v1v3|Q′m) or d(v1v3|Q′m)=d(v3v4|Q′m) or d(v3v4|Q′m)=d(v4|Q′m) or d(v1v2|Q′m)=d(v2v4|Q′m) or d(v3v5|Q′m)=d(v5v6|Q′m) or d(v2|Q′m)=d(v1v3|Q′m) and finally verified that we can not take any type of vertices with any gap-size in the mixed metric generator with cardinality two, which implies to the contradiction that dimm(Lm)≠2. Therefore, this proves the double inequality which is
dimm(Lm)=3. |
Metric dimension or metric basis is a concept in which the whole vertex set of a structure is uniquely identified with a chosen subset named as locating set. Edge Metric dimension or edge metric basis is a concept in which the whole edge set of a structure is uniquely identified with a chosen subset from vertex set and it is named as edge locating set. Mixed-metric basis or mixed-metric dimension is a generalized version, in which the whole vertex and edge set of a structure is uniquely identified with a chosen subset from vertex set and it is named as edge mixed-metric locating set. In this comparative study, we discuss the relationships between metric, edge metric, and mixed metric dimension for different families of graphs. Precisely, the obtained results demonstrate the mixed metric dimension of some interesting graphs including Möbius ladder, hexagonal Möbius ladder, triangular Möbius ladder networks, in the given Table 1.
G | dim | dime | dimm |
Lm | 2 | 2 | 3 |
MLm | 3 | 4 | 4 |
HMLm | 3 | 3 | 4 |
TLm | 3 | 4 | 4 |
TMLm | 3 | 4 | 5 |
M. Zayed extends thanks and appreciation to the Deanship of Scientific Research at King Khalid University, Saudi Arabia, for funding this work through research groups program under grant R.G.P.2/207/43.
The authors have no conflicts of interest to declare.
[1] |
W. Gao, H. Rezazadeh, Z. Pinar, H. M. Baskonus, S. Sarwar, G. Yel, Novel explicit solutions for the nonlinear Zoomeron equation by using newly extended direct algebraic technique, Opt. Quant. Electron., 52 (2020), 52. https://doi.org/10.1007/s11082-019-2162-8 doi: 10.1007/s11082-019-2162-8
![]() |
[2] |
C. Zhu, M. Al-Dossari, S. Rezapour, B. Gunay, On the exact soliton solutions and different wave structures to the (2+1)-dimensional Chaffee-Infante equation, Results Phys., 57 (2024), 107431. https://doi.org/10.1016/j.rinp.2024.107431 doi: 10.1016/j.rinp.2024.107431
![]() |
[3] |
M. Ghasemi, High order approximations using spline-based differential quadrature method: implementation to the multi-dimensional PDEs, Appl. Math. Model., 46 (2017), 63–80. https://doi.org/10.1016/j.apm.2017.01.052 doi: 10.1016/j.apm.2017.01.052
![]() |
[4] |
N. Perrone, R. Kao, A general finite difference method for arbitrary meshes, Comput. Struct., 5 (1975), 45–57. https://doi.org/10.1016/0045-7949(75)90018-8 doi: 10.1016/0045-7949(75)90018-8
![]() |
[5] |
S. Mahmood, R. Shah, H. Khan, M. Arif, Laplace Adomian decomposition method for multi-dimensional time fractional model of Navier-Stokes equation, Symmetry, 11 (2019), 149. https://doi.org/10.3390/sym11020149 doi: 10.3390/sym11020149
![]() |
[6] |
M. A. Abdou, A. A. Soliman, New applications of variational iteration method, Phys. D, 211 (2005), 1–8. https://doi.org/10.1016/j.physd.2005.08.002 doi: 10.1016/j.physd.2005.08.002
![]() |
[7] |
E. Yusufoglu, A. Bekir, Solitons and periodic solutions of coupled nonlinear evolution equations by using the sine-cosine method, Int. J. Comput. Math., 83 (2006), 915–924. https://doi.org/10.1080/00207160601138756 doi: 10.1080/00207160601138756
![]() |
[8] | M. Kaplan, A. Bekir, A. Akbulut, E. Aksoy, The modified simple equation method for nonlinear fractional differential equations, Rom. J. Phys., 60 (2015), 1374–1383. |
[9] |
S. Meng, F. Meng, F. Zhang, Q. Li, Y. Zhang, A. Zemouche, Observer design method for nonlinear generalized systems with nonlinear algebraic constraints with applications, Automatica, 162 (2024), 111512. https://doi.org/10.1016/j.automatica.2024.111512 doi: 10.1016/j.automatica.2024.111512
![]() |
[10] |
I. Ahmad, H. Seno, An epidemic dynamics model with limited isolation capacity, Theory Biosci., 142 (2023), 259–273. https://doi.org/10.1007/s12064-023-00399-9 doi: 10.1007/s12064-023-00399-9
![]() |
[11] |
S. Mukhtar, M. Sohaib, I. Ahmad, A numerical approach to solve volume-based batch crystallization model with fines dissolution unit, Processes, 7 (2019), 453. https://doi.org/10.3390/pr7070453 doi: 10.3390/pr7070453
![]() |
[12] |
A. A. Alderremy, N. Iqbal, S. Aly, K. Nonlaopon, Fractional series solution construction for nonlinear fractional reaction-diffusion Brusselator model utilizing Laplace residual power series, Symmetry, 14 (2022), 1944. https://doi.org/10.3390/sym14091944 doi: 10.3390/sym14091944
![]() |
[13] |
H. Yasmin, A. S. Alshehry, A. H. Ganie, A. M. Mahnashi, Perturbed Gerdjikov-Ivanov equation: soliton solutions via Backlund transformation, Optik, 298 (2024), 171576. https://doi.org/10.1016/j.ijleo.2023.171576 doi: 10.1016/j.ijleo.2023.171576
![]() |
[14] |
M. M. Al-Sawalha, A. Khan, O. Y. Ababneh, T. Botmart, Fractional view analysis of Kersten-Krasil'shchik coupled KdV-mKdV systems with non-singular kernel derivatives, AIMS Math., 7 (2022), 18334–18359. https://doi.org/10.3934/math.20221010 doi: 10.3934/math.20221010
![]() |
[15] |
E. M. Elsayed, R. Shah, K. Nonlaopon, The analysis of the fractional-order Navier-Stokes equations by a novel approach, J. Funct. Spaces, 2022 (2022), 8979447. https://doi.org/10.1155/2022/8979447 doi: 10.1155/2022/8979447
![]() |
[16] |
M. Naeem, H. Rezazadeh, A. A. Khammash, R. Shah, S. Zaland, Analysis of the fuzzy fractional-order solitary wave solutions for the KdV equation in the sense of Caputo-Fabrizio derivative, J. Math., 2022 (2022), 3688916. https://doi.org/10.1155/2022/3688916 doi: 10.1155/2022/3688916
![]() |
[17] |
Y. Xie, I. Ahmad, T. I. Ikpe, E. F. Sofia, H. Seno, What influence could the acceptance of visitors cause on the epidemic dynamics of a Reinfectious disease?: a mathematical model, Acta Biotheor., 72 (2024), 3. https://doi.org/10.1007/s10441-024-09478-w doi: 10.1007/s10441-024-09478-w
![]() |
[18] |
K. Hosseini, M. Mirzazadeh, J. F. Gomez-Aguilar, Soliton solutions of the Sasa-Satsuma equation in the monomode optical fibers including the beta-derivatives, Optik, 224 (2020), 165425. https://doi.org/10.1016/j.ijleo.2020.165425 doi: 10.1016/j.ijleo.2020.165425
![]() |
[19] |
R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
![]() |
[20] |
K. A. Abro, A. Atangana, J. F. Gomez-Aguilar, Role of bi-order Atangana-Aguilar fractional differentiation on Drude model: an analytic study for distinct sources, Opt. Quantum Electron., 53 (2021), 177. https://doi.org/10.1007/s11082-021-02804-3 doi: 10.1007/s11082-021-02804-3
![]() |
[21] |
J. F. Gomez-Aguilar, D. Baleanu, Schrödinger equation involving fractional operators with non-singular kernel, J. Electromagn. Waves Appl., 31 (2017), 752–761. https://doi.org/10.1080/09205071.2017.1312556 doi: 10.1080/09205071.2017.1312556
![]() |
[22] |
B. Ghanbari, M. S. Osman, D. Baleanu, Generalized exponential rational function method for extended Zakharov-Kuzetsov equation with conformable derivative, Mod. Phys. Lett. A, 34 (2019), 1950155. https://doi.org/10.1142/S0217732319501554 doi: 10.1142/S0217732319501554
![]() |
[23] |
A. Akbulut, F. Tascan, E. Ozel, Trivial conservation laws and solitary wave solution of the fifth-order Lax equation, Partial Differ. Equ. Appl. Math., 4 (2021), 100101. https://doi.org/10.1016/j.padiff.2021.100101 doi: 10.1016/j.padiff.2021.100101
![]() |
[24] |
H. Khatri, M. S. Gautam, A. Malik, Localized and complex soliton solutions to the integrable (4+1)-dimensional Fokas equation, SN Appl. Sci., 1 (2019), 1070. https://doi.org/10.1007/s42452-019-1094-z doi: 10.1007/s42452-019-1094-z
![]() |
[25] |
M. N. Alam, O. A. Ilhan, M. S. Uddin, M. A. Rahim, Regarding on the results for the fractional Clannish Random Walker's parabolic equation and the nonlinear fractional Cahn-Allen equation, Adv. Math. Phys., 2022 (2022), 5635514. https://doi.org/10.1155/2022/5635514 doi: 10.1155/2022/5635514
![]() |
[26] |
M. N. Alam, S. Islam, O. A. Ilhan, H. Bulut, Some new results of nonlinear model arising in incompressible visco-elastic Kelvin-Voigt fluid, Math. Methods Appl. Sci., 45 (2022), 10347–10362. https://doi.org/10.1002/mma.8372 doi: 10.1002/mma.8372
![]() |
[27] |
U. Younas, A. R. Seadawy, M. Younis, S. T. R. Rizvi, Optical solitons and closed-form solutions to the (3+1)-dimensional resonant Schrödinger dynamical wave equation, Int. J. Mod. Phys. B, 34 (2020), 2050291. https://doi.org/10.1142/S0217979220502914 doi: 10.1142/S0217979220502914
![]() |
[28] |
M. Arshad, A. Seadawy, D. Lu, J. Wang, Travelling wave solutions of generalized coupled Zakharov-Kuznetsov and dispersive long wave equations, Results Phys., 6 (2016), 1136–1145. https://doi.org/10.1016/j.rinp.2016.11.043 doi: 10.1016/j.rinp.2016.11.043
![]() |
[29] |
S. Kumar, K. S. Nisar, M. Niwas, On the dynamics of exact solutions to a (3+1)-dimensional YTSF equation emerging in shallow sea waves: Lie symmetry analysis and generalized Kudryashov method, Results Phys., 48 (2023), 106432. https://doi.org/10.1016/j.rinp.2023.106432 doi: 10.1016/j.rinp.2023.106432
![]() |
[30] |
A. Irshad, N. Ahmed, A. Nazir, U. Khan, S. T. Mohyud-Din, Novel exact double periodic soliton solutions to strain wave equation in micro structured solids, Phys. A, 550 (2020), 124077. https://doi.org/10.1016/j.physa.2019.124077 doi: 10.1016/j.physa.2019.124077
![]() |
[31] |
S. Bibi, S. T. Mohyud-Din, U. Khan, N. Ahmed, Khater method for nonlinear Sharma-Tasso-Olever (STO) equation of fractional order, Results Phys., 7 (2017), 4440–4450. https://doi.org/10.1016/j.rinp.2017.11.008 doi: 10.1016/j.rinp.2017.11.008
![]() |
[32] |
M. N. Alam, An analytical method for finding exact solutions of a nonlinear partial differential equation arising in electrical engineering, Open J. Math. Sci., 7 (2023), 10–18. https://doi.org/10.30538/oms2023.0195 doi: 10.30538/oms2023.0195
![]() |
[33] |
M. Alqhtani, K. M. Saad, R. Shah, W. M. Hamanah, Discovering novel soliton solutions for (3+1)-modified fractional Zakharov-Kuznetsov equation in electrical engineering through an analytical approach, Opt. Quant. Electron., 55 (2023), 1149. https://doi.org/10.1007/s11082-023-05407-2 doi: 10.1007/s11082-023-05407-2
![]() |
[34] |
M. Alqhtani, K. M. Saad, R. Shah, W. Weera, W. M. Hamanah, Analysis of the fractional-order local Poisson equation in fractal porous media, Symmetry, 14 (2022), 1323. https://doi.org/10.3390/sym14071323 doi: 10.3390/sym14071323
![]() |
[35] |
S. A. El-Tantawy, R. T. Matoog, R. Shah, A. W. Alrowaily, S. M. E. Ismaeel, On the shock wave approximation to fractional generalized Burger-Fisher equations using the residual power series transform method, Phys. Fluids, 36 (2024), 023105. https://doi.org/10.1063/5.0187127 doi: 10.1063/5.0187127
![]() |
[36] |
H. Yasmin, A. S. Alshehry, A. H. Ganie, A. Shafee, R. Shah, Noise effect on soliton phenomena in fractional stochastic Kraenkel-Manna-Merle system arising in ferromagnetic materials, Sci. Rep., 14 (2024), 1810. https://doi.org/10.1038/s41598-024-52211-3 doi: 10.1038/s41598-024-52211-3
![]() |
[37] |
S. Noor, W. Albalawi, R. Shah, M. M. Al-Sawalha, S. M. Ismaeel, S. A. El-Tantawy, On the approximations to fractional nonlinear damped Burger's-type equations that arise in fluids and plasmas using Aboodh residual power series and Aboodh transform iteration methods, Front. Phys., 12 (2024), 1374481. https://doi.org/10.3389/fphy.2024.1374481 doi: 10.3389/fphy.2024.1374481
![]() |
[38] |
H. Tian, M. Zhao, J. Liu, Q. Wang, X. Yu, Z. Wang, Dynamic analysis and sliding mode synchronization control of chaotic systems with conditional symmetric fractional-order memristors, Fractal Fract., 8 (2024), 307. https://doi.org/10.3390/fractalfract8060307 doi: 10.3390/fractalfract8060307
![]() |
[39] |
L. Liu, S. Zhang, L. Zhang, G. Pan, J. Yu, Multi-UUV maneuvering counter-game for dynamic target scenario based on fractional-order recurrent neural network, IEEE Trans. Cybernetics, 53 (2023), 4015–4028. https://doi.org/10.1109/TCYB.2022.3225106 doi: 10.1109/TCYB.2022.3225106
![]() |
[40] |
M. Li, T. Wang, F. Chu, Q. Han, Z. Qin, M. J. Zuo, Scaling-basis chirplet transform, IEEE Trans. Ind. Electron., 68 (2021), 8777–8788. https://doi.org/10.1109/TIE.2020.3013537 doi: 10.1109/TIE.2020.3013537
![]() |
[41] | A. Iftikhar, A. Ghafoor, T. Zubair, S. Firdous, S. T. Mohyud-Din, Solutions of (2+1)-dimensional generalized KdV, Sin-Gordon, and Landau-Ginzburg-Higgs equations, Sci. Res. Essays, 8 (2013), 1349–1359. |
[42] |
J. H. He, X. H. Wu, Exp-function method for nonlinear wave equations, Chaos Soliton. Fract., 30 (2006), 700–708. https://doi.org/10.1016/j.chaos.2006.03.020 doi: 10.1016/j.chaos.2006.03.020
![]() |
[43] |
M. Cinar, A. Secer, M. Ozisik, M. Bayram, Derivation of optical solitons of dimensionless Fokas-Lenells equation with perturbation term using Sardar sub-equation method, Opt. Quant. Electron., 54 (2022), 402. https://doi.org/10.1007/s11082-022-03819-0 doi: 10.1007/s11082-022-03819-0
![]() |
[44] |
M. M. Al-Sawalha, H. Yasmin, R. Shah, A. H. Ganie, K. Moaddy, Unraveling the dynamics of singular stochastic solitons in stochastic fractional Kuramoto-Sivashinsky equation, Fractal Fract., 7 (2023), 753. https://doi.org/10.3390/fractalfract7100753 doi: 10.3390/fractalfract7100753
![]() |
[45] |
K. J. Wang, F. Shi, Multi-soliton solutions and soliton molecules of the (2+1)-dimensional Boiti-Leon-Manna-Pempinelli equation for incompressible fluid, Europhys. Lett., 145 (2024), 42001. https://doi.org/10.1209/0295-5075/ad219d doi: 10.1209/0295-5075/ad219d
![]() |
[46] |
P. F. Han, Y. Zhang, Investigation of shallow water waves near the coast or in lake environments via the KdV-Calogero-Bogoyavlenskii-Schiff equation, Chaos Soliton. Fract., 184 (2024), 115008. https://doi.org/10.1016/j.chaos.2024.115008 doi: 10.1016/j.chaos.2024.115008
![]() |
[47] |
X. F. Yang, Z. C. Deng, Y. Wei, A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application, Adv. Differ. Equ., 2015 (2015), 117. https://doi.org/10.1186/s13662-015-0452-4 doi: 10.1186/s13662-015-0452-4
![]() |
[48] |
P. F. Han, T. Bao, Bilinear auto-Bäcklund transformations and higher-order breather solutions for the (3+1)-dimensional generalized KdV-type equation, Nonlinear Dyn., 110 (2022), 1709–1721. https://doi.org/10.1007/s11071-022-07658-2 doi: 10.1007/s11071-022-07658-2
![]() |
[49] |
P. F. Han, T. Bao, Dynamical behavior of multiwave interaction solutions for the (3+1)-dimensional Kadomtsev-Petviashvili-Bogoyavlensky-Konopelchenko equation, Nonlinear Dyn., 111 (2023), 4753–4768. https://doi.org/10.1007/s11071-022-08097-9 doi: 10.1007/s11071-022-08097-9
![]() |
[50] | D. Lu, Q. Shi, New Jacobi elliptic functions solutions for the combined KdV-mKdV equation, Int. J. Nonlinear Sci., 10 (2010), 320–325. |
[51] | S. M. Mabrouk, Traveling wave solutions of the extended Calogero-Bogoyavlenskii-Schiff equation, Int. J. Eng. Res. Technol., 2019. |
[52] |
D. Baldwin, W. Hereman, A symbolic algorithm for computing recursion operators of nonlinear partial differential equations, Int. J. Comput. Math., 87 (2010), 1094–1119. https://doi.org/10.1080/00207160903111592 doi: 10.1080/00207160903111592
![]() |
[53] |
H. Rezazadeh, A. Korkmaz, M. Eslami, J. Vahidi, R. Asghari, Traveling wave solution of conformable fractional generalized reaction Duffing model by generalized projective Riccati equation method, Opt. Quant. Electron., 50 (2018), 150. https://doi.org/10.1007/s11082-018-1416-1 doi: 10.1007/s11082-018-1416-1
![]() |
[54] |
L. M. B. Alam, X. Jiang, A. A. Mamun, Exact and explicit traveling wave solution to the time-fractional phi-four and (2+1)-dimensional CBS equations using the modified extended tanh-function method in mathematical physics, Partial Differ. Equ. Appl. Math., 2021 (2021), 100039. https://doi.org/10.1016/j.padiff.2021.100039 doi: 10.1016/j.padiff.2021.100039
![]() |
1. | Basma Mohamed, Linda Mohaisen, Mohamed Amin, Computing Connected Resolvability of Graphs Using Binary Enhanced Harris Hawks Optimization, 2023, 36, 1079-8587, 2349, 10.32604/iasc.2023.032930 | |
2. | Muhammad Imran, Ricai Luo, Muhammad Kamran Jamil, Muhammad Azeem, Khawaja Muhammad Fahd, Geometric perspective to Degree–Based topological indices of supramolecular chain, 2022, 16, 25901230, 100716, 10.1016/j.rineng.2022.100716 | |
3. | Shahid Zaman, Mahnoor Mushtaq, Muhammad Danish, Parvez Ali, Sadaf Rasheed, Topological Characterization of Some New Anti-Viral Drugs for Cancer Treatment, 2024, 2191-1630, 10.1007/s12668-024-01500-2 | |
4. | Wenjing Xiong, Xingchao Deng, A note on nonlocal metric dimension of some networks, 2024, 1744-5760, 1, 10.1080/17445760.2024.2429106 | |
5. | Manonmani R., Selvarani P., Multilinear regression analysis of antiviral medications with topological indices, 2025, 10933263, 109104, 10.1016/j.jmgm.2025.109104 |
G | dim | dime | dimm |
Lm | 2 | 2 | 3 |
MLm | 3 | 4 | 4 |
HMLm | 3 | 3 | 4 |
TLm | 3 | 4 | 4 |
TMLm | 3 | 4 | 5 |