Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article

Common fixed points for (κGm)-contractions with applications

  • Received: 06 January 2024 Revised: 04 April 2024 Accepted: 26 April 2024 Published: 06 May 2024
  • MSC : 46S40, 47H10, 54H25

  • In this publication, our objective was to introduce and establish the concepts of κGm-contraction and generalized (α,κGm)-contraction in complete Gm-metric spaces, which led to the discovery of novel fixed points, coincidence points, and common fixed points. Additionally, we demonstrated the usefulness of our main results by applying it to the investigation of the integral equation. Also, we presenting a noteworthy example demonstrating the practicality of our primary hypothesis.

    Citation: Jamshaid Ahmad, Abdullah Shoaib, Irshad Ayoob, Nabil Mlaiki. Common fixed points for (κGm)-contractions with applications[J]. AIMS Mathematics, 2024, 9(6): 15949-15965. doi: 10.3934/math.2024772

    Related Papers:

    [1] Mohamed Gamal, Tahair Rasham, Watcharaporn Cholamjiak, Fu-Gui Shi, Choonkil Park . New iterative scheme for fixed point results of weakly compatible maps in multiplicative GMmetric space via various contractions with application. AIMS Mathematics, 2022, 7(8): 13681-13703. doi: 10.3934/math.2022754
    [2] Tatjana Došenović, Dušan Rakić, Stojan Radenović, Biljana Carić . Ćirić type nonunique fixed point theorems in the frame of fuzzy metric spaces. AIMS Mathematics, 2023, 8(1): 2154-2167. doi: 10.3934/math.2023111
    [3] Yunpeng Zhao, Fei He, Shumin Lu . Several fixed-point theorems for generalized Ćirić-type contraction in Gb-metric spaces. AIMS Mathematics, 2024, 9(8): 22393-22413. doi: 10.3934/math.20241089
    [4] Huaping Huang, Bessem Samet . Two fixed point theorems in complete metric spaces. AIMS Mathematics, 2024, 9(11): 30612-30637. doi: 10.3934/math.20241478
    [5] Muhammad Tariq, Mujahid Abbas, Aftab Hussain, Muhammad Arshad, Amjad Ali, Hamid Al-Sulami . Fixed points of non-linear set-valued (α,ϕM)-contraction mappings and related applications. AIMS Mathematics, 2022, 7(5): 8861-8878. doi: 10.3934/math.2022494
    [6] Xionghui Xu, Jijiang Sun . Ground state solutions for periodic Discrete nonlinear Schrödinger equations. AIMS Mathematics, 2021, 6(12): 13057-13071. doi: 10.3934/math.2021755
    [7] Muhammad Waseem Asghar, Mujahid Abbas, Cyril Dennis Enyi, McSylvester Ejighikeme Omaba . Iterative approximation of fixed points of generalized αm-nonexpansive mappings in modular spaces. AIMS Mathematics, 2023, 8(11): 26922-26944. doi: 10.3934/math.20231378
    [8] Muhammad Nazam, Aftab Hussain, Asim Asiri . On a common fixed point theorem in vector-valued b-metric spaces: Its consequences and application. AIMS Mathematics, 2023, 8(11): 26021-26044. doi: 10.3934/math.20231326
    [9] Muhammad Tariq, Muhammad Arshad, Mujahid Abbas, Eskandar Ameer, Saber Mansour, Hassen Aydi . A relation theoretic m-metric fixed point algorithm and related applications. AIMS Mathematics, 2023, 8(8): 19504-19525. doi: 10.3934/math.2023995
    [10] Amjad Ali, Muhammad Arshad, Eskandar Ameer, Asim Asiri . Certain new iteration of hybrid operators with contractive M -dynamic relations. AIMS Mathematics, 2023, 8(9): 20576-20596. doi: 10.3934/math.20231049
  • In this publication, our objective was to introduce and establish the concepts of κGm-contraction and generalized (α,κGm)-contraction in complete Gm-metric spaces, which led to the discovery of novel fixed points, coincidence points, and common fixed points. Additionally, we demonstrated the usefulness of our main results by applying it to the investigation of the integral equation. Also, we presenting a noteworthy example demonstrating the practicality of our primary hypothesis.



    Fixed point theory, a cornerstone of mathematical analysis, investigates the existence and uniqueness of solutions represented by "fixed points" of a function. This theory plays a crucial role in various scientific disciplines [1,2,3]. In this particular theory, the foundational breakthrough emerges with the Banach contraction principle [4], notable for its application within the realm of complete metric spaces. The concept of the metric space itself was introduced by M. Frechet [5] in 1906. Inspired by the impact of this seminal work on fixed point theory, numerous researchers have undertaken endeavors to extend these concepts in recent years (see. [6,7,8]). The concept of Gm-metric space was first introduced in 2006 by Mustafa et al. [9]. They established some outcomes in fixed point theory for contractive functions in this space. Thereafter, Mustafa et al. [10] obtained coincidence point theorems for generalized-weakly contractive mappings. Kaewchareon et al.[11] introduced the concept of Housdorff distance function in the setting of Gm-metric spaces and established fixed point theorems for multivalued mappings. Afterward, Tahat et al. [12] utilized the idea of foregoing the Housdorff distance function to establish coincidence point and common fixed point results. Following the pioneer article of Mustafa et al. [9], a number of authors have established various results (see [13,14,15,16,17,18]). Subsequently, Samet et al. [19,20] observed that several previously published theorems in the context of a quasimetric spaces may be used to deduce some results in the setting of Gm-metric space. According to Samet et al., one may construct an analogous result in the configuration of a quasimetric space if the contractive condition employed in the result constructed in the framework of Gm-metric space can be reduced to two variables from three variables. More specifically, they noted that the Gm-metric produces a quasimetric d, defined by d(h,ω)=Gm(h,ω,ω).

    On the other hand, Samet et al. [21] introduced the notions of α-admissble mapping and (α,ψ)-contraction in the framework of complete metric spaces and the generalized Banach contraction principle. Subsequently, Alghamdi et al. [22] extended the concept of α -admissible mapping to G-metric spaces. Later on, Mustafa et al. [23] gave the idea of multivalued α-admissible mapping in the context of G-metric spaces.

    Recently, Jleli et al. [24] introduced a new type of contraction named the κ-contraction and established some fixed point results. Li et al. [25] used this new contraction and proved some generalized fixed point theorems. Al-Rawashdeh et al. [26] established common fixed point results for κ-contraction and extended some well-known results of literature.

    In this research article, we introduce new concepts such as (κGm)-contractions and generalized (α,κGm) -contraction to establish new fixed point, coincidence point and common fixed point theorems. These findings extend and generalize several results found in existing literature.

    We present a few needed definitions and outcomes in this part.

    Definition 1. ([9]) A nonempty set M with the Gm:M×M×MR+ is a mapping with the following characteristics.

    (Gm1) 0<Gm(h,h,ω), for all h,ωM with hω,

    (Gm2) Gm(h,ω,Φ)=0 if h=ω=Φ,

    (Gm3) Gm(h,ω,Φ)=Gm(h,Φ,ω)=Gm(ω,Φ,h)= (symmetry in all three variables),

    (Gm4) Gm(h,h,ω)Gm(h,ω,Φ), for all h,ω,ΦM with ωΦ,

    (Gm5) Gm(h,ω,Φ)Gm(h,a1,a1)+Gm(a1,ω,Φ), for all h,ω,Φ,a1 M (rectangle inequality).

    The pair (M,Gm) is referred to a generalized metric space, and the mapping is known as a generalized metric or Gm metric on M.

    Definition 2. ([9]) Considering (M,Gm) to be a generalized-metric space and (hg) to be a sequence of M points, we may say that (hn) is Gm -convergent to hM. if lim that is, considering \epsilon > 0, there exists s\in \mathbb{N} such that G_{m}\left(h, h_{n}, h_{p}\right) < \epsilon, for all n, p\geq s. A point of the series is named h so h_{n}\rightarrow h or lim_{n\rightarrow \infty }h_{n} = h .

    Proposition 1. ([9]) A generalized metric space would be \left(\mathcal{M}, G_{m}\right) . The following claims are equivalent.

    \left(1\right) \left(h_{n}\right) is G_{m} -convergent to h,

    \left(2\right) G_{m}\left(h_{n}, h_{n}, h\right) \rightarrow 0 as n\rightarrow \infty,

    \left(3\right) G_{m}\left(h_{n}, h, h\right) \rightarrow 0 as n\rightarrow \infty,

    \left(4\right) G_{m}\left(h_{n}, h_{p}, h\right) \rightarrow 0 as n, p\rightarrow \infty.

    Definition 3. ([9]) In a generalized metric space \left(\mathcal{M}, G_{m}\right) , if for each \epsilon > 0 , there is s\in \mathbb{N} such that G_{m}\left(h_{n}, h_{p}, h_{q}\right) < \epsilon, for all n, p, q \geq s, then the sequence \left(h_{t}\right) is said to be G_{m} -Cauchy sequence that is G_{m}\left(h_{n}, h_{p}, h_{q}\right) \rightarrow 0 as n, p, q\rightarrow +\infty.

    Definition 4. ([9]) Every G_{m} -Cauchy sequence must be G_{m} -convergent in a G_{m} -metric space \left(\mathcal{M}, G_{m}\right) which is G_{m} -complete.

    The metric d_{G_{m}} on \mathcal{M} defined by any generalized metric on \mathcal{M} is given below

    \begin{equation} d_{G_{m}}\left( h, \omega \right) = G_{m}\left( h, \omega , \omega \right) +G_{m}\left( \omega , h, h\right) , \end{equation} (2.1)

    for all h, \omega \in \mathcal{M}.

    Example 1. ([9]) Let (\mathcal{M}, d) be a metric space. The mapping G_{m}: \mathcal{M}\times \mathcal{M}\times \mathcal{M}\rightarrow \lbrack 0, +\infty) , defined by

    \begin{equation*} G_{m}(h, \omega , \Phi ) = \max \{d(h, \omega ), d(\omega , \Phi ), d(\Phi , h)\}, \end{equation*}
    \begin{equation*} G_{m}(h, \omega , \Phi ) = d(h, \omega )+d(\omega , \Phi )+d(\Phi , h), \end{equation*}

    for all h, \omega, \Phi \in \mathcal{M} , is a generalized metric on \mathcal{M} .

    Theorem 1. ([9]) Considering (\mathcal{M}, d) to be a metric space, (\mathcal{M}, d) is a complete metric space if and only if, (\mathcal{M}, G_{m}) is a complete generalized metric space.

    The following ideas were recently suggested by Kaewchareon et al.[11]. We will refer to the family of all closed, bounded subsets of \mathcal{M} that are not empty as CB\left(\mathcal{M}\right) . The Hausdorff G_{m} -distance on CB\left(\mathcal{M}\right) is denoted by H\left(A_{1}, B_{2}, C_{3}\right) and defined as:

    \begin{equation*} H_{G_{m}}\left( A_{1}, B_{2}, C_{3}\right) = \max \left \{ \sup\limits_{h\in A_{1}}G_{m}\left( h, B_{2}, C_{3}\right) , \sup\limits_{h\in B_{2}}G_{m}\left( h, C_{3}, A_{1}\right) , \sup\limits_{h\in C_{3}}G_{m}\left( h, A_{1}, B_{2}\right) \right \} , \end{equation*}

    where

    \begin{equation*} G_{m}\left( h, B_{2}, C_{3}\right) = d_{G_{m}}\left( h, B_{2}\right) +d_{G_{m}}\left( B_{2}, C_{3}\right) +d_{G_{m}}\left( h, C_{3}\right) , \end{equation*}
    \begin{equation*} d_{G_{m}}\left( A_{1}, B_{2}\right) = \inf \left \{ d_{G_{m}}\left( a_{1}, b_{2}\right) , \text{ }a_{1}\in A_{1}, \text{ }b_{2}\in B_{2}\right \} , \end{equation*}
    \begin{equation*} d_{G_{m}}\left( h, B_{2}\right) = \inf \left \{ d_{G_{m}}\left( h, \omega \right) , \text{ }\omega \in B_{2}\right \} . \end{equation*}

    Remember that G_{m}\left(h, \omega, C_{3}\right) = \inf \left \{ G_{m}\left(h, \omega, \Phi \right), \text{ }\Phi \in C_{3}\right \}. A function \hat{w }:\mathcal{M}\longrightarrow 2^{\mathcal{M}} is named as a multivalued function. If h\in \hat{w}h , then the point h\in \mathcal{M} is referred to as a fixed point of \hat{w}.

    Lemma 1. If A_{1}, B_{2}\in CB(\mathcal{M}) and a_{1}\in A_{1}, at the point \forall \varepsilon > 0, there remains b_{2}\in B_{2} such that

    \begin{equation*} G_{m}\left( a_{1}, b_{2}, b_{2}\right) \leq H_{G_{m}}\left( A_{1}, B_{2}, B_{2}\right) +\epsilon . \end{equation*}

    Definition 5. ([11,12]) Let \mathcal{M} be a given set containing at least one element. Suppose that j:\mathcal{M}\longrightarrow \mathcal{M} and \hat{w}:\mathcal{M}\longrightarrow 2^{\mathcal{M}}. If f = j(h)\in \hat{w} (h) for some h\in \mathcal{M}, then h is named a coincidence point of mapping \hat{w} and j . Also, f is said to be a point of coincidence of j and \hat{w}. If f = h , then f is said to be a common fixed point of j and \hat{w}. Functions j and \hat{w} are named as weakly compatible if j(h)\in \hat{w}(h) for some h\in \mathcal{M} implies j \hat{w}\left(h\right) \subseteq \hat{w}j\left(h\right).

    Proposition 2. ([11,12]) Let \mathcal{M} be a given set containing at least one element. Suppose two weakly compatible functions j and \hat{w }, where j:\mathcal{M}\longrightarrow \mathcal{M} and \hat{w}:\mathcal{M }\longrightarrow 2^{\mathcal{M}} . If the point of coincidence ' f ' of \ j and \hat{w} is unique, then f will be the unique common fixed point of j and \hat{w}.

    A new contraction and a related fixed point theorem was established by Jleli et al. [24], which is given below.

    Definition 6. Consider a mapping \kappa :(0, \infty)\rightarrow (1, \infty) fulfilling:

    ( \kappa _{1} ) \kappa is a nondecreasing function,

    ( \kappa _{2} ) for every sequence \{ \alpha _{n}\} \subseteq \mathbb{R} ^{+} , \lim_{n\rightarrow \infty }\kappa (\alpha _{n}) = 1 if, and only if, \lim_{n\rightarrow \infty }(\alpha _{n}) = 0,

    ( \kappa _{3} ) there exist z\in (0, \infty] and 0 < r < 1 such that \lim_{\alpha \rightarrow 0^{+}}\frac{\kappa (\alpha)-1}{\alpha ^{r}} = z;

    A mapping \mathcal{L}:\mathcal{M}\rightarrow \mathcal{M} is said to be a \kappa -contraction if there exist any constant \lambda \in (0, 1) and a function \kappa satisfying ( \kappa _{1}) -( \kappa _{3}) and

    \begin{equation} d(\mathcal{L}h, \mathcal{L}\omega )\not = 0\Longrightarrow \kappa (d(\mathcal{L} h, \mathcal{L}\omega ))\leq \lbrack \kappa (d(h, \omega ))]^{\lambda }, \end{equation} (2.2)

    for all h, \omega \in \mathcal{M} .

    Theorem 2. ([24]) Let (\mathcal{M}, d) be a complete metric space and \mathcal{L} :\mathcal{M}\rightarrow \mathcal{M} be a \kappa -contraction, then \mathcal{L} has a unique fixed point.

    Subsequently, Hancer et al. [27] added a general condition ( \kappa _{4} ) to the aforementioned Definition 6, which is stated as follows:

    ( \kappa _{4} ) If A_{1}\subset (0, \infty) with \inf A_{1} > 0, then \inf \kappa (A_{1}) = \kappa (\inf A_{1}).

    We represent the set of all continuous functions \kappa :(0, \infty)\rightarrow (1, \infty) satisfying the conditions (\kappa _{1}) - (\kappa _{4}) by \Omega , in accordance with Hancer et al. [27].

    We introduce the notion of (\kappa _{G_{m}}) -contraction in this section and present our main result with corollaries and examples.

    Definition 7. Consider the generalized metric space \left(\mathcal{M}, G_{m}\right) , the multivalued function \mathcal{L}:\mathcal{M}\longrightarrow CB\left(\mathcal{M}\right), and the self function j:\mathcal{M}\longrightarrow \mathcal{M}. The functions \mathcal{L} and j satisfy (\kappa _{G_{m}}) -contraction if there exist \kappa \in \Omega and \lambda \in (0, 1) such that

    \begin{equation} H_{G_{m}}\left( \mathcal{L}h, \mathcal{L}\omega , \mathcal{L}\Phi \right) > 0 \ { implies }\ \kappa \left( H_{G_{m}}\left( \mathcal{L}h, \mathcal{L}\omega , \mathcal{L}\Phi \right) \right) \leq \left[ \kappa \left( G_{m}\left( jh, j\omega , j\Phi \right) \right) \right] ^{\lambda }, \end{equation} (3.1)

    for all h, \omega, \Phi \in \mathcal{M}.

    Theorem 3. Let \left(\mathcal{M}, G_{m}\right) be a generalized metric space, \mathcal{L}:\mathcal{M}\longrightarrow CB\left(\mathcal{M}\right) be a multivalued function, and j:\mathcal{M}\longrightarrow \mathcal{M} is a self-mapping. Suppose that there exist \kappa \in \Omega and \lambda \in (0, 1) such that the functions \mathcal{L} and j satisfy (\kappa _{G_{m}}) -contraction. Then, j and \mathcal{L} have a point of coincidence in \mathcal{M} , if for any h\in \mathcal{M}, \mathcal{L} h\subseteq j\left(\mathcal{M}\right) and j\left(\mathcal{M}\right) is a G_{m} -complete subspace of \mathcal{M} . Moreover, if we suppose that ju\in \mathcal{L}u and jv\in \mathcal{L}v implies G_{m}\left(jv, ju, ju\right) \leq H_{G_{m}}\left(\mathcal{L}v, \mathcal{L}u, \mathcal{L} u\right) , then

    (i) j and \mathcal{L} have a unique point of coincidence.

    (ii) Furthermore, if j and \mathcal{L} are weakly compatible, then j and \mathcal{L} have a unique common fixed point.

    Proof. Let h_{0} represent any chosen point in \mathcal{M} . Since \mathcal{L} h_{0}\subseteq j\left(\mathcal{M}\right), choose h_{1} in the set \mathcal{M} such that jh_{1}\in \mathcal{L}h_{0}. If jh_{1} = jh_{0}, then j and \mathcal{L} have a point of coincidence. So, we suppose that jh_{0}\neq jh_{1} . Now, \mathcal{L}h_{1}\not = \emptyset, and if \mathcal{L} h_{0} = \mathcal{L}h_{1}, then, again, j and \mathcal{L} have a point of coincidence by the fact that jh_{1}\in \mathcal{L}h_{0} = \mathcal{L}h_{1} . So, we assume that \mathcal{L}h_{0}\not = \mathcal{L}h_{1}. Then, H_{G_{m}}\left(\mathcal{L}h_{0}, \mathcal{L}h_{1}, \mathcal{L}h_{1}\right) > 0.

    Now, by the inequality (3.1), we have

    \begin{equation} \kappa \left( G_{m}\left( jh_{1}, \mathcal{L}h_{1}, \mathcal{L}h_{1}\right) \right) \leq \kappa \left( H_{G_{m}}\left( \mathcal{L}h_{0}, \mathcal{L}h_{1}, \mathcal{L}h_{1}\right) \right) \leq \left[ \kappa \left( G_{m}\left( jh_{0}, jh_{1}, jh_{1}\right) \right) \right] ^{\lambda }. \end{equation} (3.2)

    From ( \kappa _{4} ), we know that

    \begin{equation*} \kappa \left( G_{m}\left( jh_{1}, \mathcal{L}h_{1}, \mathcal{L}h_{1}\right) \right) = \inf\limits_{\omega \in \mathcal{L}h_{1}}\kappa (G_{m}\left( jh_{1}, \omega , \omega \right) ). \end{equation*}

    Thus from (3.2), we get

    \begin{equation} \inf\limits_{\omega \in \mathcal{L}h_{1}}\kappa (G_{m}\left( jh_{1}, \omega , \omega \right) )\leq \left[ \kappa \left( G_{m}\left( jh_{0}, jh_{1}, jh_{1}\right) \right) \right] ^{\lambda }. \end{equation} (3.3)

    Since \mathcal{L}h_{1}\subseteq j\left(\mathcal{M}\right) , we deduce that there exists h_{2}\in \mathcal{M} and \omega = jh_{2}\in \mathcal{L}h_{1} such that

    \begin{equation} \kappa (G_{m}\left( jh_{1}, jh_{2}, jh_{2}\right) )\leq \left[ \kappa \left( G_{m}\left( jh_{0}, jh_{1}, jh_{1}\right) \right) \right] ^{\lambda }. \end{equation} (3.4)

    Similarly, as jh_{2}\in \mathcal{L}h_{1}, if jh_{2} = jh_{1}, then w = jh_{1} is a point of coincidence of mapping j and \mathcal{L} and we obtain the required result. Suppose that jh_{1}\neq jh_{2} . Now, if \mathcal{L}h_{1} = \mathcal{L}h_{2}, then, again, by jh_{2}\in \mathcal{L} h_{1} = \mathcal{L}h_{2}, j and \mathcal{L} have point of coincidence. So, we assume that \mathcal{L}h_{1}\not = \mathcal{L}h_{2}. Then, H_{G_{m}}\left(\mathcal{L}h_{1}, \mathcal{L}h_{2}, \mathcal{L}h_{2}\right) > 0 . Now, by (3.1), we have

    \begin{equation} \kappa \left( G_{m}\left( jh_{2}, \mathcal{L}h_{2}, \mathcal{L}h_{2}\right) \right) \leq \kappa \left( H_{G_{m}}\left( \mathcal{L}h_{1}, \mathcal{L}h_{2}, \mathcal{L}h_{2}\right) \right) \leq \left[ \kappa \left( G_{m}\left( jh_{1}, jh_{2}, jh_{2}\right) \right) \right] ^{\lambda }. \end{equation} (3.5)

    From the condition ( \kappa _{4} ), we know that

    \begin{equation*} \kappa \left( G_{m}\left( jh_{2}, \mathcal{L}h_{2}, \mathcal{L}h_{2}\right) \right) = \inf\limits_{\omega \in \mathcal{L}h_{2}}\kappa (G_{m}\left( jh_{2}, \omega , \omega \right) ). \end{equation*}

    Thus from (3.5), we get

    \begin{equation} \inf\limits_{\omega \in \mathcal{L}h_{2}}\kappa (G_{m}\left( jh_{2}, \omega , \omega \right) )\leq \left[ \kappa \left( G_{m}\left( jh_{1}, jh_{2}, jh_{2}\right) \right) \right] ^{\lambda }. \end{equation} (3.6)

    Since \mathcal{L}h_{2}\subseteq j\left(\mathcal{M}\right) , we deduce that there exists h_{3}\in \mathcal{M} and \omega = jh_{3}\in \mathcal{L}h_{2} such that

    \begin{equation} \kappa (G_{m}\left( jh_{2}, jh_{3}, jh_{3}\right) )\leq \left[ \kappa \left( G_{m}\left( jh_{1}, jh_{2}, jh_{2}\right) \right) \right] ^{\lambda }. \end{equation} (3.7)

    In the same way, we will define a sequence \{jh_{n}\} \subset \mathcal{M} such that jh_{n}\notin \mathcal{L}h_{n} , jh_{n+1}\in \mathcal{L}h_{n} and

    \begin{equation} \kappa (G_{m}\left( jh_{n}, jh_{n+1}, jh_{n+1}\right) )\leq \left[ \kappa (G_{m}\left( jh_{n-1}, jh_{n}, jh_{n}\right) )\right] ^{\lambda }, \end{equation} (3.8)

    for all n\in \mathbb{N}. Therefore

    \begin{eqnarray} 1 & < &\kappa (G_{m}\left( jh_{n}, jh_{n+1}, jh_{n+1}\right) )\leq \left[ \kappa (G_{m}\left( jh_{n-1}, jh_{n}, jh_{n}\right) )\right] ^{\lambda } \\ &\leq &\left[ \kappa (G_{m}\left( jh_{n-2}, jh_{n-1}, jh_{n-1}\right) )\right] ^{\lambda ^{2}} \\ &\leq &\cdot \cdot \cdot \\ &\leq &\left[ \kappa (G_{m}\left( jh_{0}, jh_{1}, jh_{1}\right) )\right] ^{\lambda ^{n}}, \end{eqnarray} (3.9)

    for all n\in \mathbb{N}. Since \kappa \in {\Omega } , by taking the limit as n\longrightarrow \infty in (3.9), we have

    \begin{equation} \lim\limits_{n\longrightarrow \infty }\kappa (G_{m}\left( jh_{n}, jh_{n+1}, jh_{n+1}\right) ) = 1. \end{equation} (3.10)

    From the condition ( \kappa _{2} ), we have

    \begin{equation*} \lim\limits_{n\longrightarrow \infty }G_{m}\left( jh_{n}, jh_{n+1}, jh_{n+1}\right) = 0. \end{equation*}

    From the condition ( \kappa _{3} ), there exist z\in (0, \infty] and 0 < r < 1 such that

    \begin{equation} \lim\limits_{n\rightarrow \infty }\frac{\kappa (G_{m}\left( jh_{n}, jh_{n+1}, jh_{n+1}\right) )-1}{G_{m}\left( jh_{n}, jh_{n+1}, jh_{n+1}\right) ^{r}} = z. \end{equation} (3.11)

    Let us consider z < \infty. For the above condition, take B_{2} = \frac{z}{2} > 0. Using the condition of the limit of a sequence, there exists n_{0}\in \mathbb{N}, and we have

    \begin{equation*} |\frac{\kappa (G_{m}\left( jh_{n}, jh_{n+1}, jh_{n+1}\right) )-1}{G_{m}\left( jh_{n}, jh_{n+1}, jh_{n+1}\right) ^{r}}-z|\leq B_{2} \end{equation*}

    for all n > n_{0}. This implies that

    \begin{equation*} \frac{\kappa (G_{m}\left( jh_{n}, jh_{n+1}, jh_{n+1}\right) )-1}{G_{m}\left( jh_{n}, jh_{n+1}, jh_{n+1}\right) ^{r}}\geq z-B_{2} = \frac{z}{2} = B_{2} \end{equation*}

    for all n > n_{0}. We get

    \begin{equation} nG_{m}\left( jh_{n}, jh_{n+1}, jh_{n+1}\right) ^{r}\leq A_{1}n[\kappa (G_{m}\left( jh_{n}, jh_{n+1}, jh_{n+1}\right) )-1] \end{equation} (3.12)

    for all n > n_{0}, where A_{1} = \frac{1}{B_{2}}. Let us take z = \infty. We take B_{2} > 0 any random positively number. Using condition of limit,

    \begin{equation*} B_{2}\leq \frac{\kappa (G_{m}\left( jh_{n}, jh_{n+1}, jh_{n+1}\right) )-1}{ G_{m}\left( jh_{n}, jh_{n+1}, jh_{n+1}\right) ^{r}}, \end{equation*}

    for all n > n_{0}. This implies that

    \begin{equation*} nG_{m}\left( jh_{n}, jh_{n+1}, jh_{n+1}\right) ^{r}\leq A_{1}n[\kappa (G_{m}\left( jh_{n}, jh_{n+1}, jh_{n+1}\right) ^{r}-1], \end{equation*}

    for all n > n_{0}, where A_{1} = \frac{1}{B_{2}}. For every case, there exist A_{1} > 0 and n_{0}\in \mathbb{N} ,

    \begin{equation} nG_{m}\left( jh_{n}, jh_{n+1}, jh_{n+1}\right) ^{r}\leq A_{1}n[\kappa (G_{m}\left( jh_{n}, jh_{n+1}, jh_{n+1}\right) ^{r})-1], \end{equation} (3.13)

    for all n > n_{0}. Thus, by (3.9) and (3.13), we get

    \begin{equation} nG_{m}\left( jh_{n}, jh_{n+1}, jh_{n+1}\right) ^{r}\leq A_{1}n(\left[ \kappa (G_{m}\left( jh_{0}, jh_{1}, jh_{1}\right) )\right] ^{r^{n}}-1). \end{equation} (3.14)

    Letting n\rightarrow \infty in the above inequality, we obtain

    \begin{equation*} \lim\limits_{n\rightarrow +\infty }nG_{m}\left( jh_{n}, jh_{n+1}, jh_{n+1}\right) ^{r} = 0. \end{equation*}

    Hence, there is n_{1}\in \mathbb{N} such that

    \begin{equation} G_{m}\left( jh_{n}, jh_{n+1}, jh_{n+1}\right) \leq \frac{1}{n^{1/r}}, \end{equation} (3.15)

    for all n > n_{1}. We are now going to prove that \{jh_{n}\} is a G_{m} -Cauchy sequence.

    For p > n > n_{1}, we have

    \begin{eqnarray} G_{m}\left( jh_{n}, jh_{p}, jh_{p}\right) &\leq &\sum \limits_{i = n}^{p-1}G_{m}\left( jh_{i}, jh_{i+1}, jh_{i+1}\right) \\ &\leq &\sum \limits_{i = n}^{p-1}\frac{1}{i^{\frac{1}{r}}}\leq \sum \limits_{i = 1}^{\infty }\frac{1}{i^{\frac{1}{r}}}. \end{eqnarray} (3.16)

    Since r\in (0, 1) , the series \sum \limits_{i = 1}^{\infty }\frac{1}{i^{ \frac{1}{r}}} converges. As a result, G_{m}\left(jh_{n}, jh_{p}, jh_{p}\right) \longrightarrow 0 as p, n\longrightarrow \infty. Hence, \{jh_{n}\} is a G_{m} -Cauchy sequence in complete subspace j\left(\mathcal{M}\right), and this confirms the existence of v\in j\left(\mathcal{M}\right) such that

    \begin{equation} \lim\limits_{n\longrightarrow \infty }G_{m}\left( jh_{n}, jh_{n}, v\right) = \lim\limits_{n\longrightarrow \infty }G_{m}\left( jh_{n}, v, v\right) = 0. \end{equation} (3.17)

    Since v\in j\left(\mathcal{M}\right) , there exists u\in \mathcal{M} such that v = ju. Thus from (3.17), we have

    \begin{equation*} \lim\limits_{n\longrightarrow \infty }G_{m}\left( jh_{n}, jh_{n}, ju\right) = \lim\limits_{n\longrightarrow \infty }G_{m}\left( jh_{n}, ju, ju\right) = 0. \end{equation*}

    We are going to prove that ju\in \mathcal{L}u . If there exists a sequence \{n_{\mu }\} such that jh_{n_{\mu }}\in \mathcal{L}u, for all \mu \in \mathbb{N}, as jh_{n_{\mu }}\rightarrow ju , the proof is successfully finished, since we have obtained ju\in \mathcal{L}u because \mathcal{L}u is closed. Suppose that there is n_{0}\in \mathbb{N} such that jh_{n+1}\notin \mathcal{L}u, for all n\in \mathbb{N} and n\geq n_{0}, then \mathcal{L}h_{n}\neq \mathcal{L}u ,

    therefore,

    \begin{equation} G_{m}\left( jh_{n+1}, \mathcal{L}u, \mathcal{L}u\right) \leq H_{G_{m}}( \mathcal{L}h_{n}, \mathcal{L}u, \mathcal{L}u). \end{equation} (3.18)

    So, by (3.1), we get

    \begin{eqnarray*} \kappa (G_{m}\left( jh_{n+1}, \mathcal{L}u, \mathcal{L}u\right) ) &\leq &\kappa (H_{G_{m}}(\mathcal{L}h_{n}, \mathcal{L}u, \mathcal{L}u)) \\ &\leq &\left[ \kappa (G_{m}(jh_{n}, ju, ju))\right] ^{\lambda }\leq \kappa (G_{m}(jh_{n}, ju, ju)). \end{eqnarray*}

    From the condition ( \kappa _{1} ), we have

    \begin{equation} G_{m}\left( jh_{n+1}, \mathcal{L}u, \mathcal{L}u\right) \leq G_{m}(jh_{n}, ju, ju). \end{equation} (3.19)

    Using the assumption that the function G_{m} is continuous on its three variables and allowing n\rightarrow \infty in the preceding inequality, we obtain G_{m}(ju, \mathcal{L}u, \mathcal{L}u) = 0 . As \mathcal{L}u is closed, we obtained ju\in \mathcal{L}u. It follows that there exists a point of coincidence v of \mathcal{L} and j . We shall demonstrate the uniqueness of the point of coincidence of \mathcal{L} and j. Assume that there exists another point of coincidence \sigma of \mathcal{L} and j such that \sigma = j\varpi \in \mathcal{L}\varpi and ju\not = j\varpi. Thus, we have

    \begin{equation*} G_{m}\left( j\varpi , ju, ju\right) \leq H_{G_{m}}\left( \mathcal{L}\varpi , \mathcal{L}u, \mathcal{L}u\right) . \end{equation*}

    We get by (3.1):

    \begin{equation*} \kappa (G_{m}\left( j\varpi , ju, ju\right) \leq \kappa (H_{G_{m}}\left( \mathcal{L}\varpi , \mathcal{L}u, \mathcal{L}u\right) \leq \left[ \kappa (G_{m}\left( j\varpi , ju, ju\right) \right] ^{\lambda }. \end{equation*}

    Additionally, we get

    \begin{equation} 1 < \kappa (G_{m}\left( j\varpi , ju, ju\right) )\leq \left[ \kappa (G_{m}\left( j\varpi , ju, ju\right) \right] ^{\lambda }. \end{equation} (3.20)

    Letting n\rightarrow \infty in (3.20), we have

    \begin{equation*} \lim\limits_{n\rightarrow +\infty }\kappa (G_{m}\left( j\varpi , ju, ju\right) ) = 1. \end{equation*}

    By the condition ( \kappa _{2} ), we get

    \begin{equation*} G_{m}\left( j\varpi , ju, ju\right) = \lim\limits_{n\rightarrow +\infty }G_{m}\left( j\varpi , ju, ju\right) = 0. \end{equation*}

    That is, j\varpi = ju. Hence, the point of coincidence for j and \mathcal{L} is unique. Assume that j and \mathcal{L} are weakly compatible. By using the proposition 2, we can easily obtain the common fixed point of j and \mathcal{L} which will be unique.

    Example 2. Let \mathcal{M} = \left[0, 1\right] . Define function \mathcal{L}:\mathcal{M }\longrightarrow CB\left(\mathcal{M}\right) by \mathcal{L}h = \left[0, \text{ }\frac{h}{25}\right] and define j:\mathcal{M}\longrightarrow \mathcal{M} by j\left(h\right) = \frac{3h}{4}. Define a generalized metric on \mathcal{M} \ by G_{m}\left(h, \omega, \Phi \right) = \left \vert h-\omega \right \vert +\text{ }\left \vert \omega -\Phi \right \vert +\text{ } \left \vert h-\Phi \right \vert. We get

    \left(1\right) the mappings \mathcal{L} and j are weakly compatible;

    \left(2\right) j\left(\mathcal{M}\right) is G_{m} -complete;

    \left(3\right) \mathcal{L}h\subseteq j\left(\mathcal{M}\right) ;

    \left(4\right) the functions \mathcal{L} and j satisfy (\kappa _{G_{m}}) -contraction, where \kappa (\alpha) = \exp \sqrt{\alpha } and \lambda = \sqrt{\frac{32}{75}}\in \left(0, \text{ }1\right).

    Solution: First three conditions are satisfied easily. We need to prove the condition \left(4\right).

    We have d_{G_{m}}\left(h, \omega \right) = G_{m}\left(h, \omega, \omega \right) +G_{m}\left(\omega, h, h\right) = 4\left \vert h-\omega \right \vert, for all h, \omega \in \mathcal{M}. To prove the condition \left(4\right), let h, \omega, \Phi \in \mathcal{M}. If at least one of h, \omega, and \Phi being 0, then \mathcal{L}h = \mathcal{L} \omega = \mathcal{L}\Phi = 0, and H_{G_{m}}\left(\mathcal{L}h, \mathcal{L} \omega, \mathcal{L}\Phi \right) = 0, thus we may suppose that h, \omega, and \Phi are nonzero. Without changing in conception, let us suppose h < \omega < \Phi. We get

    \begin{eqnarray} H_{G_{m}}\left( \mathcal{L}h, \mathcal{L}\omega , \mathcal{L}\Phi \right) & = &H_{G_{m}}\left( \left[ 0, \frac{h}{25}\right] , \left[ 0, \frac{\omega }{25} \right] , \left[ 0, \frac{\Phi }{25}\right] \right) \\ & = &\max \left \{ \begin{array}{c} \sup\nolimits_{0\leq a_{1}\leq \frac{h}{25}}G_{m}\left( a_{1}, \left[ 0, \frac{\omega }{ 25}\right] , \left[ 0, \frac{\Phi }{25}\right] \right) , \\ \sup\nolimits_{0\leq b_{2}\leq \frac{\omega }{25}}G_{m}\left( b_{2}, \left[ 0, \frac{h}{ 25}\right] , \left[ 0, \frac{\Phi }{25}\right] \right) , \\ \sup\nolimits_{0\leq c_{3}\leq \frac{\Phi }{25}}G_{m}\left( c_{3}, \left[ 0, \frac{h}{25 }\right] , \left[ 0, \frac{\omega }{25}\right] \right) \end{array} \right \} . \end{eqnarray} (3.21)

    Since h < \omega < \Phi, then \left[0, \frac{h}{25}\right] \subseteq \left[0, \frac{\omega }{25}\right] \subseteq \left[0, \frac{\Phi }{25}\right], which implies that

    \begin{equation*} d_{G_{m}}\left( \left[ 0, \frac{h}{25}\right] , \left[ 0, \frac{\omega }{25} \right] \right) = d_{G_{m}}\left( \left[ 0, \frac{\omega }{25}\right] , \left[ 0, \frac{\Phi }{25}\right] \right) = d_{G_{m}}\left( \left[ 0, \frac{h}{25} \right] , \left[ 0, \frac{\Phi }{25}\right] \right) = 0. \end{equation*}

    Now, for each 0\leq a_{1}\leq \frac{h}{25}, we have

    \begin{equation*} G_{m}\left( a_{1}, \left[ 0, \frac{\omega }{25}\right] , \left[ 0, \frac{\Phi }{ 25}\right] \right) = d_{G_{m}}\left( a_{1}, \left[ 0, \frac{\omega }{25}\right] \right) +d_{G_{m}}\left( \left[ 0, \frac{\omega }{25}\right] , \left[ 0, \frac{ \Phi }{25}\right] \right) +d_{G_{m}}\left( a_{1}, \left[ 0, \frac{\Phi }{25} \right] \right) = 0.\text{ } \end{equation*}

    Also, for each 0\leq b_{2}\leq \frac{\omega }{25}, we have

    \begin{eqnarray*} G_{m}\left( b_{2}, \left[ 0, \frac{h}{25}\right] , \left[ 0, \frac{\Phi }{25} \right] \right) & = &d_{G_{m}}\left( b_{2}, \left[ 0, \frac{h}{25}\right] \right) +d_{G_{m}}\left( \left[ 0, \frac{h}{25}\right] , \left[ 0, \frac{\Phi }{ 25}\right] \right) +d_{G_{m}}\left( b_{2}, \left[ 0, \frac{\Phi }{25}\right] \right) \\ & = &\left \{ \begin{array}{c} 0, \text{ if }0\leq b_{2}\leq \frac{h}{25}; \\ 4b_{2}-\frac{4h}{25}, \ \text{ if }b_{2}\geq \frac{h}{25} \end{array} \right. \text{ } \end{eqnarray*}

    which implies that

    \begin{equation*} \sup\limits_{0\leq b_{2}\leq \frac{\omega }{25}}G_{m}\left( b_{2}, \left[ 0, \frac{h}{ 25}\right] , \left[ 0, \frac{\Phi }{25}\right] \right) = \frac{4\omega -4h}{25}. \end{equation*}

    Furthermore, for every 0\leq c_{3}\leq \frac{\Phi }{25},

    \begin{eqnarray*} G_{m}\left( c_{3}, \left[ 0, \frac{h}{25}\right] , \left[ 0, \frac{\omega }{25} \right] \right) & = &d_{G_{m}}\left( c_{3}, \left[ 0, \frac{h}{25}\right] \right) +d_{G_{m}}\left( \left[ 0, \frac{h}{25}\right] , \left[ 0, \frac{\omega }{25}\right] \right) +d_{G_{m}}\left( c_{3}, \left[ 0, \frac{\omega }{25} \right] \right) \\ & = &\left \{ \begin{array}{c} 0, \text{ if }0\leq c_{3}\leq \frac{h}{25}; \\ 4c_{3}-\frac{4h}{25}, \ \text{ if }\frac{h}{25}\leq c_{3}\leq \frac{\omega }{ 25}; \\ 8c_{3}-\frac{4\omega }{25}-\frac{4h}{25}, \text{ if }\frac{\omega }{25}\leq c_{3}\leq \frac{\Phi }{25} \end{array} \right. \end{eqnarray*}

    which implies that

    \begin{equation*} \sup\limits_{0\leq c_{3}\leq \frac{\omega }{25}}G_{m}\left( c_{3}, \left[ 0, \frac{h}{ 25}\right] , \left[ 0, \frac{\omega }{25}\right] \right) = \frac{8\Phi -4\omega -4h}{25}. \end{equation*}

    Thus, we deduce that

    \begin{eqnarray*} e^{\sqrt{H_{G_{m}}\left( \mathcal{L}h, \mathcal{L}\omega , \mathcal{L}\Phi \right) }} & = &e^{\sqrt{\max \left \{ 0, \frac{4\omega -4h}{25}, \frac{8\Phi -4\omega -4h}{25}\right \} }} \\ & = &e^{\sqrt{\frac{8\Phi -4\omega -4h}{25}}} \\ &\leq &e^{\sqrt{\frac{8\Phi -8h}{25}}} \\ & = &e^{\sqrt{\frac{8}{25}\left \vert \Phi -h\right \vert }} \\ & = &e^{\sqrt{\frac{32}{75}\left \vert \frac{3\Phi }{4}-\frac{3h}{4}\right \vert }} \\ & = &e^{\sqrt{\frac{32}{75}\left \vert j\Phi -jh\right \vert }} \\ &\leq &e^{\sqrt{\frac{32}{75}\left( \left \vert jh-j\omega \right \vert +\left \vert j\omega -j\Phi \right \vert +\left \vert jh-j\Phi \right \vert \right) }} \\ & = &e^{\sqrt{\frac{32}{75}G_{m}\left( jh, j\omega , j\Phi \right) }} \\ & = &e^{\sqrt{\frac{32}{75}}\sqrt{G_{m}\left( jh, j\omega , j\Phi \right) }} \end{eqnarray*}

    By using \kappa (\alpha) = e^{\sqrt{\alpha }} , we get

    \begin{equation*} \kappa \left( H_{G_{m}}\left( \mathcal{L}h, \mathcal{L}\omega , \mathcal{L} \Phi \right) \right) \leq \left[ \kappa \left( G_{m}\left( jh, j\omega , j\Phi \right) \right) \right] ^{\lambda } \end{equation*}

    where \lambda = \sqrt{\frac{32}{75}}\in (0, 1).

    Hence, the functions \mathcal{L} and j satisfy the (\kappa _{G_{m}}) -contraction. Now, all conditions of 3 are satisfied. Hence the functions \mathcal{L} and j have a unique coincidence point and common fixed point, which is 0.

    Corollary 1. Let \left(\mathcal{M}, G_{m}\right) be a complete generalized metric space and \mathcal{L}:\mathcal{M}\longrightarrow CB\left(\mathcal{M}\right) be a multivalued mapping. Suppose that there exist \kappa \in \Omega and \lambda \in (0, 1) such that

    \begin{equation*} H_{G_{m}}\left( \mathcal{L}h, \mathcal{L}\omega , \mathcal{L}\Phi \right) > 0\Longrightarrow \kappa \left( H_{G_{m}}\left( \mathcal{L}h, \mathcal{L} \omega , \mathcal{L}\Phi \right) \right) \leq \left[ \kappa \left( G_{m}\left( h, \omega , \Phi \right) \right) \right] ^{\lambda }, \end{equation*}

    for all h, \omega, \Phi \in \mathcal{M}, then \mathcal{L} has a fixed point.

    Proof. By assuming that j is the identity function in 3, we can obtain the desired outcome.

    Corollary 2. Let \left(\mathcal{M}, G_{m}\right) be a complete generalized metric space and \mathcal{L}:\mathcal{M}\longrightarrow \mathcal{M} be a self mapping. If there exist \kappa \in {\Omega } and \lambda \in (0, 1) such that

    \begin{equation*} G_{m}\left( \mathcal{L}h, \mathcal{L}\omega , \mathcal{L}\Phi \right) > 0\Longrightarrow \kappa \left( G_{m}\left( \mathcal{L}h, \mathcal{L}\omega , \mathcal{L}\Phi \right) \right) \leq \left[ \kappa \left( G_{m}\left( h, \omega , \Phi \right) \right) \right] ^{\lambda }, \end{equation*}

    for all h, \omega, \Phi \in \mathcal{M}, then \mathcal{L} has a fixed point.

    Proof. By assuming that j is the identity function and \mathcal{L} is a single-valued function in 3, we can obtain the desired outcome.

    Alghamdi et al. [22] defined the concept of \alpha -admissible mapping within the framework of G -metric space, providing the following definition:

    Definition 8. ([22]) Let \alpha: \mathcal{M} \times \mathcal{M} \times \mathcal{M} \rightarrow[0, +\infty). A mapping \mathcal{L}:\mathcal{M}\longrightarrow \mathcal{M} is designated as \alpha -admissible if for all h, \omega, \Phi \in \mathcal{M} , we have

    \begin{equation*} \alpha \left( h, \omega , \Phi \right) \geq 1\ { implies }\ \alpha \left( \mathcal{L}h, \mathcal{L}\omega , \mathcal{L}\Phi \right) \geq 1. \end{equation*}

    Mustafa et al. [23] extended the above notion to multivalued mapping as follows:

    Definition 9. Let \alpha :{\cal M} \times {\cal M} \times {\cal M} \to [\mathit{0, } + \infty). A mapping \mathcal{L}: \mathcal{M} \longrightarrow C l(\mathcal{M}) is designated as multivalued \alpha -admissible if for all h, \omega, \Phi \in \mathcal{M} , we have

    \begin{equation*} \alpha \left( h, \omega , \Phi \right) \geq 1\ { implies }\ \alpha \left( \varrho , \varkappa , \rho \right) \geq 1 \end{equation*}

    for \varrho \in \mathcal{L}h, \varkappa \in \mathcal{L}\omega and \rho \in \mathcal{L}\Phi.

    Definition 10. Let \left(\mathcal{M}, G_{m}\right) be a generalized metric space and \Xi be a closed subset of \mathcal{M} . A multivalued mapping \mathcal{L} :\Xi \longrightarrow CB\left(\mathcal{M}\right) is said to be a generalized (\alpha, \kappa _{G_{m}}) -contraction if there exist \kappa \in \Omega, \alpha :\Xi \times \Xi \times \Xi \rightarrow \mathcal{[}0, +\infty \mathcal{)}, and \lambda \in (0, 1) satisfying the following conditions (i) \mathcal{L}h\cap \Xi \not = \emptyset, for all h\in \Xi,

    (ii) for all h, \omega, \Phi \in \Xi , we have H_{G_{m}}\left(\mathcal{L} h\cap \Xi, \mathcal{L}\omega \cap \Xi, \mathcal{L}\Phi \cap \Xi \right) > 0 implying

    \begin{equation} \text{ }\alpha \left( h, \omega , \Phi \right) \kappa \left( H_{G_{m}}\left( \mathcal{L}h\cap \Xi , \mathcal{L}\omega \cap \Xi , \mathcal{L}\Phi \cap \Xi \right) \right) \leq \left[ \kappa \left( G_{m}\left( h, \omega , \Phi \right) \right) \right] ^{\lambda }. \end{equation} (3.22)

    Theorem 4. Let \left(\mathcal{M}, G_{m}\right) be a complete generalized metric space, \Xi be a closed subset of \mathcal{M}, and \mathcal{L} :\Xi \longrightarrow CB\left(\mathcal{M}\right) is a generalized (\alpha, \kappa _{G_{m}}) -contraction. Let us consider the fulfillment of the following conditions:

    (i) \mathcal{L} is a multivalued \alpha -admissible mapping,

    (ii) there exist h_{0}\in \Xi and h_{1}\in \mathcal{L}h_{0}\cap \Xi such that \alpha \left(h_{0}, h_{1}, h_{1}\right) \geq 1,

    (iii) \mathcal{L} is continuous,

    then \mathcal{L} has a fixed point.

    Proof. By the supposition (ⅱ), \exists h_{0}\in \Xi and h_{1}\in \mathcal{L} h_{0}\cap \Xi such that \alpha \left(h_{0}, h_{1}, h_{1}\right) \geq 1. If h_{0} = h_{1}, then h_{0} is the required fixed point and we have nothing to prove. So, we suppose that h_{0}\not = h_{1}. If h_{1}\in \mathcal{L}h_{1}\cap \Xi, then h_{1} is a fixed point. Let h_{1}\not \in \mathcal{L}h_{1}\cap \Xi . Then, H_{G_{m}}\left(\mathcal{L}h_{0}\cap \Xi, \mathcal{L}h_{1}\cap \Xi, \mathcal{L}h_{1}\cap \Xi \right) > 0 . Now, by the inequality (3.22), we have

    \begin{eqnarray} \kappa \left( G_{m}\left( h_{1}, \mathcal{L}h_{1}\cap \Xi , \mathcal{L} h_{1}\cap \Xi \right) \right) &\leq &\kappa \left( H_{G_{m}}\left( \mathcal{ L}h_{0}\cap \Xi , \mathcal{L}h_{1}\cap \Xi , \mathcal{L}h_{1}\cap \Xi \right) \right) \\ &\leq &\alpha \left( h_{0}, h_{1}, h_{1}\right) \kappa \left( H_{G_{m}}\left( \mathcal{L}h_{0}\cap \Xi , \mathcal{L}h_{1}\cap \Xi , \mathcal{L}h_{1}\cap \Xi \right) \right) \\ &\leq &\left[ \kappa \left( G_{m}\left( h_{0}, h_{1}, h_{1}\right) \right) \right] ^{\lambda }. \end{eqnarray} (3.23)

    From ( \kappa _{4} ), we know that

    \begin{equation*} \kappa \left( G_{m}\left( h_{1}, \mathcal{L}h_{1}\cap \Xi , \mathcal{L} h_{1}\cap \Xi \right) \right) = \inf\limits_{\omega \in \mathcal{L}h_{1}\cap \Xi }\kappa (G_{m}\left( h_{1}, \omega , \omega \right) ). \end{equation*}

    Thus from (3.23), we get

    \begin{equation} \inf\limits_{\omega \in \mathcal{L}h_{1}\cap \Xi }\kappa (G_{m}\left( h_{1}, \omega , \omega \right) )\leq \left[ \kappa \left( G_{m}\left( h_{0}, h_{1}, h_{1}\right) \right) \right] ^{\lambda }. \end{equation} (3.24)

    Since \mathcal{L}h_{1}\not = \emptyset , we deduce that there exists h_{2}\in \Xi such that h_{2}\in \mathcal{L}h_{1}. Now since \omega = h_{2}\in \mathcal{L}h_{1}\cap \Xi, so by the inequality (3.24), we have

    \begin{equation} \kappa (G_{m}\left( h_{1}, h_{2}, h_{2}\right) )\leq \left[ \kappa \left( G_{m}\left( h_{0}, h_{1}, h_{1}\right) \right) \right] ^{\lambda }. \end{equation} (3.25)

    Now since \alpha \left(h_{0}, h_{1}, h_{1}\right) \geq 1 and \mathcal{L} is a multivalued \alpha -admissible mapping, so \alpha \left(h_{1}, h_{2}, h_{2}\right) \geq 1 for h_{1}\in \mathcal{L}h_{0}\cap \Xi and h_{2}\in \mathcal{L}h_{1}\cap \Xi. If h_{1} = h_{2}, then h_{1} is the required fixed point and we have nothing to prove. So, we suppose that h_{1}\not = h_{2}. Also, if h_{2}\in \mathcal{L}h_{2}\cap \Xi, then h_{2} is a fixed point. Let h_{2}\not \in \mathcal{L}h_{2}\cap \Xi . Then, H_{G_{m}}\left(\mathcal{L}h_{1}\cap \Xi, \mathcal{L}h_{2}\cap \Xi, \mathcal{L}h_{2}\cap \Xi \right) > 0 . Now, by the inequality (3.22), we have

    \begin{eqnarray} \kappa \left( G_{m}\left( h_{2}, \mathcal{L}h_{2}\cap \Xi , \mathcal{L} h_{2}\cap \Xi \right) \right) &\leq &\kappa \left( H_{G_{m}}\left( \mathcal{ L}h_{1}\cap \Xi , \mathcal{L}h_{2}\cap \Xi , \mathcal{L}h_{2}\cap \Xi \right) \right) \\ &\leq &\alpha \left( h_{1}, h_{2}, h_{2}\right) \kappa \left( H_{G_{m}}\left( \mathcal{L}h_{1}\cap \Xi , \mathcal{L}h_{2}\cap \Xi , \mathcal{L}h_{2}\cap \Xi \right) \right) \\ &\leq &\left[ \kappa \left( G_{m}\left( h_{1}, h_{2}, h_{2}\right) \right) \right] ^{\lambda }. \end{eqnarray} (3.26)

    From ( \kappa _{4} ), we know that

    \begin{equation} \kappa \left( G_{m}\left( h_{2}, \mathcal{L}h_{2}\cap \Xi , \mathcal{L} h_{2}\cap \Xi \right) \right) = \inf\limits_{\omega \in \mathcal{L}h_{2}\cap \Xi }\kappa (G_{m}\left( h_{2}, \omega , \omega \right) ). \end{equation} (3.27)

    Thus from (3.26), we get

    \begin{equation} \inf\limits_{\omega \in \mathcal{L}h_{2}\cap \Xi }\kappa (G_{m}\left( h_{1}, \omega , \omega \right) )\leq \left[ \kappa \left( G_{m}\left( h_{1}, h_{2}, h_{2}\right) \right) \right] ^{\lambda } \end{equation} (3.28)

    Since \mathcal{L}h_{2}\not = \emptyset , we deduce that there exists h_{3}\in \Xi such that h_{3}\in \mathcal{L}h_{2}. Now, since \omega = h_{3}\in \mathcal{L}h_{2}\cap \Xi, by the inequality (3.26), we have

    \begin{equation*} \kappa (G_{m}\left( h_{2}, h_{3}, h_{3}\right) )\leq \left[ \kappa \left( G_{m}\left( h_{1}, h_{2}, h_{2}\right) \right) \right] ^{\lambda }. \end{equation*}

    Continuing in this way, we can find a sequence of points \{h_{n}\} \subset \Xi such that h_{n+1}\in \mathcal{L}h_{n}\cap \Xi and

    \begin{equation} \kappa (G_{m}\left( h_{n}, h_{n+1}, h_{n+1}\right) )\leq \left[ \kappa (G_{m}\left( h_{n-1}, h_{n}, h_{n}\right) )\right] ^{\lambda }, \end{equation} (3.29)

    for all n\in \mathbb{N}.

    Therefore

    \begin{eqnarray} 1 & < &\kappa (G_{m}\left( h_{n}, h_{n+1}, h_{n+1}\right) )\leq \left[ \kappa (G_{m}\left( h_{n-1}, h_{n}, h_{n}\right) )\right] ^{\lambda } \\ &\leq &\left[ \kappa (G_{m}\left( h_{n-2}, h_{n-1}, h_{n-1}\right) )\right] ^{\lambda ^{2}} \\ &\leq &\cdot \cdot \cdot \\ &\leq &\left[ \kappa (G_{m}\left( h_{0}, h_{1}, h_{1}\right) )\right] ^{\lambda ^{n}} \end{eqnarray} (3.30)

    for all n\in \mathbb{N}. Since \kappa \in {\Omega } , by taking the limit as n\longrightarrow \infty in (3.30), we have

    \begin{equation} \lim\limits_{n\longrightarrow \infty }\kappa (G_{m}\left( h_{n}, h_{n+1}, h_{n+1}\right) ) = 1. \end{equation} (3.31)

    From the condition ( \kappa _{2} ), we have

    \begin{equation*} \lim\limits_{n\longrightarrow \infty }G_{m}\left( h_{n}, h_{n+1}, h_{n+1}\right) = 0. \end{equation*}

    By replicating the methodology employed in establishing the validity of Theorem 3, it can be demonstrated that \{ h_{n} \} conforms to the criteria of being a G_{m} -Cauchy sequence in \Xi. Since \Xi is a closed subset of complete generalized metric space \left(\mathcal{M}, G_{m}\right), ( \Xi, G_{m} ) is also complete. Thus, there exists a point h^{\ast }\in \Xi such that \lim_{n\rightarrow \infty }h_{n} = h^{\ast }. Now, since h_{n+1}\in \mathcal{L}h_{n}\cap \Xi and the mapping is continuous, taking the limit as n\rightarrow \infty, we have

    \begin{equation*} h^{\ast } = \lim\limits_{n\rightarrow \infty }h_{n+1}\in \mathcal{L(} \lim\limits_{n\rightarrow \infty }h_{n})\cap \Xi = \mathcal{L(}h^{\ast })\cap \Xi . \end{equation*}

    Hence, h^{\ast } is a fixed point of \mathcal{L} .

    Theorem 5. Let \left(\mathcal{M}, G_{m}\right) be a complete generalized metric space, \Xi be a closed subset of \mathcal{M}, and \mathcal{L} :\Xi \longrightarrow CB\left(\mathcal{M}\right) is a generalized (\alpha, \kappa _{G_{m}}) -contraction. Let us consider the fulfillment of the following conditions:

    (i) \mathcal{L} is a multivalued \alpha -admissible mapping,

    (ii) there exist h_{0}\in \Xi and h_{1}\in \mathcal{L}h_{0}\cap \Xi such that \alpha \left(h_{0}, h_{1}, h_{1}\right) \geq 1,

    (iii) for any sequence \left \{ h_{n}\right \} in \Xi such that h_{n}\rightarrow x as n\rightarrow \infty and \alpha \left(h_{n}, h_{n+1}, h_{n+1}\right) \geq 1, implying \alpha \left(h_{n}, h, h\right) \geq 1 for each n\in \mathbb{N} \cup \{0\},

    then \mathcal{L} has a fixed point.

    Proof. Following the proof of Theorem 4, there exists a G_{m} -Cauchy sequence \left \{ h_{n}\right \} in \Xi with h_{n+1}\in \mathcal{L} h_{n}\cap \Xi and h_{n}\rightarrow h^{\ast } as n\rightarrow \infty and \alpha \left(h_{n}, h_{n+1}, h_{n+1}\right) \geq 1 for each n\in \mathbb{N} \cup \{0\}. Then by the assumption (ⅲ), we have \alpha \left(h_{n}, h^{\ast }, h^{\ast }\right) \geq 1 for each n\in \mathbb{N} \cup \{0\}. Now by (3.22), we have

    \begin{eqnarray} \kappa \left( G_{m}\left( h_{n+1}, \mathcal{L}h^{\ast }\cap \Xi , \mathcal{L} h^{\ast }\cap \Xi \right) \right) &\leq &\kappa \left( H_{G_{m}}\left( \mathcal{L}h_{n}\cap \Xi , \mathcal{L}h^{\ast }\cap \Xi , \mathcal{L}h^{\ast }\cap \Xi \right) \right) \\ &\leq &\alpha \left( h_{n}, h^{\ast }, h^{\ast }\right) \kappa \left( H_{G_{m}}\left( \mathcal{L}h_{n}\cap \Xi , \mathcal{L}h^{\ast }\cap \Xi , \mathcal{L}h^{\ast }\cap \Xi \right) \right) \\ &\leq &\left[ \kappa \left( G_{m}\left( h_{n}, h^{\ast }, h^{\ast }\right) \right) \right] ^{\lambda } < \kappa \left( G_{m}\left( h_{n}, h^{\ast }, h^{\ast }\right) \right) . \end{eqnarray} (3.32)

    By ( \kappa _{1} ), we have

    \begin{equation*} G_{m}\left( h_{n+1}, \mathcal{L}h^{\ast }\cap \Xi , \mathcal{L}h^{\ast }\cap \Xi \right) < G_{m}\left( h_{n}, h^{\ast }, h^{\ast }\right) \end{equation*}

    for all n\in \mathbb{N} \cup \{0\}. Taking the limit as n\rightarrow \infty, we get G_{m}\left(h^{\ast }, \mathcal{L}h^{\ast }\cap \Xi, \mathcal{L}h^{\ast }\cap \Xi \right) \leq 0. Since \mathcal{L}h^{\ast }\cap \Xi is closed, h^{\ast }\in \mathcal{L}h^{\ast }\cap \Xi. Hence, \mathcal{L} has a fixed point.

    Corollary 3. Let \left(\mathcal{M}, G_{m}\right) be a complete generalized metric space, \Xi be a closed subset of \mathcal{M} and \mathcal{L}:\Xi \longrightarrow CB\left(\mathcal{M}\right) is continuous. If there exist \kappa \in \Omega and \lambda \in (0, 1) such that

    (i) \mathcal{L}h\cap \Xi \not = \emptyset, for all h\in \Xi,

    (ii) for all h, \omega, \Phi \in \Xi , we have H_{G_{m}}\left(\mathcal{L} h\cap \Xi, \mathcal{L}\omega \cap \Xi, \mathcal{L}\Phi \cap \Xi \right) > 0 implies

    \begin{equation*} \mathit{\text{}}\kappa \left( H_{G_{m}}\left( \mathcal{L}h\cap \Xi , \mathcal{L} \omega \cap \Xi , \mathcal{L}\Phi \cap \Xi \right) \right) \leq \left[ \kappa \left( G_{m}\left( h, \omega , \Phi \right) \right) \right] ^{\lambda }, \end{equation*}

    then \mathcal{L} has a fixed point.

    Proof. Define \alpha :\Xi \times \Xi \times \Xi \rightarrow \mathcal{[}0, +\infty \mathcal{)} by \alpha \left(h, \omega, \Phi \right) = 1, for all h, \omega, \Phi \in \Xi in Theorem 4.

    We utilize Corollary 2 to demonstrate that the following integral equation has a solution:

    \begin{equation} h(t) = \int_{a}^{b}W(t, s)T(s, h(s))ds. \end{equation} (4.1)

    Here, h(t) belongs to the set \mathcal{M} of all continuous functions from [a, b] to \mathbb{R} . The mappings W:[a, b]\times \lbrack a, b]\rightarrow \lbrack 0, \infty) and T:[a, b]\times \mathbb{R} \rightarrow \mathbb{R} are continuous.

    Establish a function \mathcal{L}:\mathcal{M}\rightarrow \mathcal{M} by

    \begin{equation} \mathcal{L}h(t) = \int_{a}^{b}W(t, s)T(s, h(s))ds \end{equation} (4.2)

    for all \, t\in \lbrack a, b].

    Theorem 6. Analyze calculation 4.1 to assume the following:

    1. \max_{t\in \lbrack a, b]}\int_{a}^{b}W(t, s)ds < \lambda ^{2},\ \mathit{\mbox{for some}}\ \lambda \in (0, 1) ,

    2. for all h(s), \omega (s)\in \mathcal{M} ; s\in \lbrack a, b], we have

    \begin{equation} |T(s, h(s))-T(s, \omega (s))|\leq |h(s)-\omega (s)|. \end{equation} (4.3)

    Then equation (4.1) has a solution.

    Proof. For h, \omega, \Phi \in \mathcal{M} , define the generalized metric on \mathcal{M} by

    \begin{equation} G_{m}(h, \omega , \Phi ) = d(\omega , \Phi )+d(h, \omega )+d(h, \Phi ) \end{equation} (4.4)

    where

    \begin{equation*} d(h, \omega ) = \sup\limits_{t\in \lbrack a, b]}|h(t)-\omega (t)|. \end{equation*}

    Now, let h(t), \omega (t)\in \mathcal{M} , then we have

    \begin{eqnarray*} |\mathcal{L}h(t)-\mathcal{L}\omega (t)| & = &\Big|\int_{a}^{b}W(t, s)\big[ T(s, h(s))-T(s, \omega (s))\big]ds\Big| \\ &\leq &\int_{a}^{b}W(t, s)|T(s, h(s))-T(s, \omega (s)|ds \\ &\leq &\int_{a}^{b}W(t, s)|h(s)-\omega (s)|ds \\ &\leq &\int_{a}^{b}W(t, s)\sup\limits_{s\in \lbrack a, b]}|h(s)-\omega (s)|ds \\ & = &\sup\limits_{t\in \lbrack a, b]}|h(t)-\omega (t)|\int_{a}^{b}W(t, s)ds \\ &\leq &\lambda ^{2}\sup\limits_{t\in \lbrack a, b]}|h(t)-\omega (t)|. \end{eqnarray*}

    Hence,

    \begin{equation} \sup\limits_{t\in \lbrack a, b]}|\mathcal{L}h(t)-\mathcal{L}\omega (t)|\leq \lambda ^{2}\sup\limits_{t\in \lbrack a, b]}|h(t)-\omega (t)|. \end{equation} (4.5)

    Similarly, we have

    \begin{equation} \sup\limits_{t\in \lbrack a, b]}|\mathcal{L}\omega (t)-\mathcal{L}w(t)|\leq \lambda ^{2}\sup\limits_{t\in \lbrack a, b]}|\omega (t)-w(t)| \end{equation} (4.6)

    and

    \begin{equation} \sup\limits_{t\in \lbrack a, b]}|\mathcal{L}h(t)-\mathcal{L}\Phi (t)|\leq \lambda ^{2}\sup\limits_{t\in \lbrack a, b]}|h(t)-\Phi (t)|. \end{equation} (4.7)

    Therefore, from 4.5, 4.6, and 4.7, we have

    \begin{eqnarray*} &&\sup\limits_{t\in \lbrack a, b]}|\mathcal{L}h(t)-\mathcal{L}\omega (t)|+\sup\limits_{t\in \lbrack a, b]}|\mathcal{L}\omega (t)-\mathcal{L}\Phi (t)|+\sup\limits_{t\in \lbrack a, b]}|\mathcal{L}h(t)-\mathcal{L}\Phi (t)| \\ &&\, \, \, \, \leq \lambda ^{2}\, \, \big[\sup\limits_{t\in \lbrack a, b]}|h(t)-\omega (t)|+\sup\limits_{t\in \lbrack a, b]}|\omega (t)-\Phi (t)|+\sup\limits_{t\in \lbrack a, b]}|h(t)-\Phi (t)|\big] \end{eqnarray*}

    which implies

    \begin{equation} G_{m}(\mathcal{L}h, \mathcal{L}\omega , \mathcal{L}\Phi )\leq \lambda ^{2}G_{m}(h, \omega , \Phi ). \end{equation} (4.8)

    Taking exponential, we have

    \begin{equation*} e^{(G_{m}(\mathcal{L}h, \mathcal{L}\omega , \mathcal{L}\Phi ))}\leq e^{\lambda ^{2}(G_{m}(h, \omega , \Phi ))}. \end{equation*}

    Now, we consider the mapping \kappa :(0, \infty)\rightarrow (1, \infty) defined by \kappa (\alpha) = e^{\sqrt{\alpha }}. Thus we have

    \begin{equation*} \kappa (G_{m}(\mathcal{L}h, \mathcal{L}\omega , \mathcal{L}\Phi ))\leq \left[ \kappa (G_{m}(h, \omega , \Phi ))\right] ^{\lambda }. \end{equation*}

    Hence, all requirements of Corollary 2 are obtained. As an outcome of 2, \mathcal{M} will contain a fixed point of the function \mathcal{L}, which will be the solution of 4.1.

    In this research article, we introduced the notion of \kappa _{G_{m}} -contraction and generalized (\alpha, \kappa _{G_{m}}) -contraction in complete G_{m} -metric spaces and worked to prove some fixed point, coincidence point, and common fixed point theorems. Additionally, we demonstrated the usefulness of our obtained result by applying it to the investigation of the integral equation. Also, we presented a nontrivial example demonstrating the practicality of our primary hypothesis.

    J.A., A.S., I.A. and N.M. wrote the main manuscript text. All authors of this manuscript contributed equally.

    The authors declare no conflicts of interest.

    The authors I. Ayoob and N. Mlaiki would like to thank the Prince Sultan University for paying the publication fees for this work through TAS LAB.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.



    [1] W. Shatanawi, T. A. M. Shatnawi, New fixed point results in controlled metric type spaces based on new contractive conditions, AIMS Math., 8 (2023), 9314–9330. https://doi.org/10.3934/math.2023468 doi: 10.3934/math.2023468
    [2] A. Rezazgui, A. A. Tallafha, W. Shatanawi, Common fixed point results via A\nu-\alpha-contractions with a pair and two pairs of self-mappings in the frame of an extended quasi b-metric space, AIMS Math., 8 (2023), 7225–7241. https://doi.org/10.3934/math.2023363 doi: 10.3934/math.2023363
    [3] M. Joshi, A. Tomar, T. Abdeljawad, On fixed points, their geometry and application to satellite web coupling problem in S-metric spaces, AIMS Math., 8 (2023), 4407–4441. https://doi.org/10.3934/math.2023220 doi: 10.3934/math.2023220
    [4] S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fundam. Math., 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181 doi: 10.4064/fm-3-1-133-181
    [5] M. Frechet, Sur quelques points du calcul fonctionnel, Rendiconti del Circolo Matematico di Palermo, 22 (1906), 1–72.
    [6] I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal., 30 (1989), 26–37.
    [7] T. Kamran, M. Samreen, Q. U. Ain, A generalization of b -metric space and some fixed point theorems, Mathematics, 5 (2017), 19.
    [8] A. Azam, B. Fisher, M. Khan, Common fixed point theorems in complex valued metric spaces, Num. Funct. Anal. Optimiz., 32 (2011), 243–253.
    [9] Z. Mustafa, B. Sims, A new approach to generalized metric space, J. Nonlinear Convex Anal., 7 (2006), 289–297.
    [10] Z. Mustafa, V. Parvaneh, M. Abbas, J. R. Roshan, Some coincidence point results for generalized-weakly contractive mappings in ordered G-metric spaces, Fixed Point Theory Appl., 1 (2013), 1–23.
    [11] A. Kaewcharoen, A. Kaewkhao, Common fixed points for single-valued and multi-valued mappings in G-metric spaces, Int J. Math. Anal., 5 (2011), 1775–1790.
    [12] N. Tahat, H. Aydi, E. Karapinar, W. Shatanawi, Common fixed points for single-valued and multi-valued maps satisfying a generalized contraction in G-metric spaces, Fixed Point Theory Appl., 48 (2012).
    [13] Z. Mustafa, T. Van An, N. Van Dung, Two fixed point theorems for maps on incomplete G-metric spaces, Appl. Math. Sci., 7 (46), 2271–2281.
    [14] A. E. Al-Mazrooei, A. Shoaib, J. Ahmad, Unique fixed point results for \beta -admissible mapping under (\beta -\check{\psi })-contraction in complete dislocated G_{d}-metric space, Mathematics, 8 (2020), 1584.
    [15] A. Shoaib, M. Arshad, T. Rasham, Some fixed point results in ordered complete dislocated quasi G metric space, J. Comput. Anal. Appl., 29 (2021), 1036–1046. https://doi.org/10.1080/09273948.2021.1956235 doi: 10.1080/09273948.2021.1956235
    [16] A. Shoaib, M. Arshad, T. Rasham, M. Abbas, Unique fixed points results on closed ball for dislocated quasi G-metric spaces, T. A. Razmadze Math. In., 30 (2017), 1–10.
    [17] A. Shoaib, Fahimuddin, M. Arshad, M. U. Ali, Common Fixed Point results for \alpha -\Phi -locally contractive type mappings in right complete dislocated quasi G-metric spaces, Thai J. Math., 17 (2017), 627–638.
    [18] Z. Mustafa, S. U. Khan, M. Arshad, J. Ahmad, M. M. M. Jaradat, Some fixed point results on G-metric and G_{b}-metric spaces, Demonstr. Math., 5 (2017), 190–207.
    [19] B. Samet, C. Vetro, F. Vetro, Remarks on G-metric spaces, Int. J. Anal., 2013 (2013), Article ID 917158.
    [20] M. Jleli, B. Samet, Remarks on G-metric spaces and fixed point theorems, Fixed Point Theory Appl., 2012 (2012), Article ID 210.
    [21] B. Samet, C. Vetro, P. Vetro, Fixed point theorem for \alpha -\psi contractive type mappings, Nonlinear Anal., 75 (2012), 2154–2165. https://doi.org/10.1080/09273948.2021.1956235 doi: 10.1080/09273948.2021.1956235
    [22] M. A. Alghamdi, E. Karapınar, G-\beta -\psi -contractive type mappings in G-metric spaces, Fixed Point Theory Appl., 123 (2013), 2013.
    [23] Z. Mustafa, M. Arshad, S. U. Khan, J. Ahmad, M. M. M. Jaradat, Common fixed points for multivalued mappings in G-metric spaces with applications, J. Nonlinear Sci. Appl., 10 (2017), 2550–2564. https://doi.org/10.1080/09273948.2021.1956235 doi: 10.1080/09273948.2021.1956235
    [24] M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl., 38 (2014), article number 38.
    [25] Z. Li, S. Jiang, Fixed point theorems of JS-quasi-contractions, Fixed Point Theory and Applications, 2016, 40.
    [26] A. Al-Rawashdeh, J. Ahmad, Common fixed point theorems for JS- contractions, Bull. Math. Anal. Appl., 8 (2016), 12–22.
    [27] H. A. Hancer, G. Minak, I. Altun, On a broad category of multivalued weakly Picard operators, Fixed Point Theory, 18 (2017), 229–236.
  • This article has been cited by:

    1. Tayyab Kamran, Umar Ishtiaq, Khaleel Ahmad, Ghulam Murtaza, Ioannis Argyros, Certain Fixed Point Results via Contraction Mappings in Neutrosophic Semi-Metric Spaces, 2024, 11, 2409-5761, 30, 10.15377/2409-5761.2024.11.3
    2. Sadia Farooq, Naeem Saleem, Maggie Aphane, Ali Althobaiti, Common φ-Fixed Point Results for S-Operator Pair in Symmetric M-Metric Spaces, 2025, 17, 2073-8994, 254, 10.3390/sym17020254
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(889) PDF downloads(46) Cited by(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog