
In this paper, we consider the following periodic discrete nonlinear Schrödinger equation
Lun−ωun=gn(un),n=(n1,n2,...,nm)∈Zm,
where ω∉σ(L)(the spectrum of L) and gn(s) is super or asymptotically linear as |s|→∞. Under weaker conditions on gn, the existence of ground state solitons is proved via the generalized linking theorem developed by Li and Szulkin and concentration-compactness principle. Our result sharply extends and improves some existing ones in the literature.
Citation: Xionghui Xu, Jijiang Sun. Ground state solutions for periodic Discrete nonlinear Schrödinger equations[J]. AIMS Mathematics, 2021, 6(12): 13057-13071. doi: 10.3934/math.2021755
[1] | Jun Zhou . Initial boundary value problem for a inhomogeneous pseudo-parabolic equation. Electronic Research Archive, 2020, 28(1): 67-90. doi: 10.3934/era.2020005 |
[2] | Yang Cao, Qiuting Zhao . Initial boundary value problem of a class of mixed pseudo-parabolic Kirchhoff equations. Electronic Research Archive, 2021, 29(6): 3833-3851. doi: 10.3934/era.2021064 |
[3] | Qianqian Zhu, Yaojun Ye, Shuting Chang . Blow-up upper and lower bounds for solutions of a class of higher order nonlinear pseudo-parabolic equations. Electronic Research Archive, 2024, 32(2): 945-961. doi: 10.3934/era.2024046 |
[4] | Xu Liu, Jun Zhou . Initial-boundary value problem for a fourth-order plate equation with Hardy-Hénon potential and polynomial nonlinearity. Electronic Research Archive, 2020, 28(2): 599-625. doi: 10.3934/era.2020032 |
[5] | Hui Jian, Min Gong, Meixia Cai . Global existence, blow-up and mass concentration for the inhomogeneous nonlinear Schrödinger equation with inverse-square potential. Electronic Research Archive, 2023, 31(12): 7427-7451. doi: 10.3934/era.2023375 |
[6] | Shuting Chang, Yaojun Ye . Upper and lower bounds for the blow-up time of a fourth-order parabolic equation with exponential nonlinearity. Electronic Research Archive, 2024, 32(11): 6225-6234. doi: 10.3934/era.2024289 |
[7] | Yitian Wang, Xiaoping Liu, Yuxuan Chen . Semilinear pseudo-parabolic equations on manifolds with conical singularities. Electronic Research Archive, 2021, 29(6): 3687-3720. doi: 10.3934/era.2021057 |
[8] | Yaning Li, Yuting Yang . The critical exponents for a semilinear fractional pseudo-parabolic equation with nonlinear memory in a bounded domain. Electronic Research Archive, 2023, 31(5): 2555-2567. doi: 10.3934/era.2023129 |
[9] | Mingyou Zhang, Qingsong Zhao, Yu Liu, Wenke Li . Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition. Electronic Research Archive, 2020, 28(1): 369-381. doi: 10.3934/era.2020021 |
[10] | Lianbing She, Nan Liu, Xin Li, Renhai Wang . Three types of weak pullback attractors for lattice pseudo-parabolic equations driven by locally Lipschitz noise. Electronic Research Archive, 2021, 29(5): 3097-3119. doi: 10.3934/era.2021028 |
In this paper, we consider the following periodic discrete nonlinear Schrödinger equation
Lun−ωun=gn(un),n=(n1,n2,...,nm)∈Zm,
where ω∉σ(L)(the spectrum of L) and gn(s) is super or asymptotically linear as |s|→∞. Under weaker conditions on gn, the existence of ground state solitons is proved via the generalized linking theorem developed by Li and Szulkin and concentration-compactness principle. Our result sharply extends and improves some existing ones in the literature.
In this paper, we consider the following initial-boundary value problem
{ut−Δut−Δu=|x|σ|u|p−1u,x∈Ω,t>0,u(x,t)=0,x∈∂Ω,t>0,u(x,0)=u0(x),x∈Ω | (1) |
and its corresponding steady-state problem
{−Δu=|x|σ|u|p−1u,x∈Ω,u=0,x∈∂Ω, | (2) |
where
1<p<{∞,n=1,2;n+2n−2,n≥3,σ>{−n,n=1,2;(p+1)(n−2)2−n,n≥3. | (3) |
(1) was called homogeneous (inhomogeneous) pseudo-parabolic equation when
The homogeneous problem, i.e.
Li and Du [12] studied the Cauchy problem of equation in (1) with
(1) If
(2) If
Φα:={ξ(x)∈BC(Rn):ξ(x)≥0,lim inf|x|↑∞|x|αξ(x)>0}, |
and
Φα:={ξ(x)∈BC(Rn):ξ(x)≥0,lim sup|x|↑∞|x|αξ(x)<∞}. |
Here
In view of the above introductions, we find that
(1) for Cauchy problem in
(2) for zero Dirichlet problem in a bounded domain
The difficulty of allowing
σ>(p+1)(n−2)2−n⏟<0 if n≥3 |
for
The main results of this paper can be summarized as follows: Let
(1) (the case
(2) (the case
(3) (arbitrary initial energy level) For any
(4) Moreover, under suitable assumptions, we show the exponential decay of global solutions and lifespan (i.e. the upper bound of blow-up time) of the blowing-up solutions.
The organizations of the remain part of this paper are as follows. In Section 2, we introduce the notations used in this paper and the main results of this paper; in Section 3, we give some preliminaries which will be used in the proofs; in Section 4, we give the proofs of the main results.
Throughout this paper we denote the norm of
‖ϕ‖Lγ={(∫Ω|ϕ(x)|γdx)1γ, if 1≤γ<∞;esssupx∈Ω|ϕ(x)|, if γ=∞. |
We denote the
Lp+1σ(Ω):={ϕ:ϕ is measurable on Ω and ‖u‖Lp+1σ<∞}, | (4) |
where
‖ϕ‖Lp+1σ:=(∫Ω|x|σ|ϕ(x)|p+1dx)1p+1,ϕ∈Lp+1σ(Ω). | (5) |
By standard arguments as the space
We denote the inner product of
(ϕ,φ)H10:=∫Ω(∇ϕ(x)⋅∇φ(x)+ϕ(x)φ(x))dx,ϕ,φ∈H10(Ω). | (6) |
The norm of
‖ϕ‖H10:=√(ϕ,ϕ)H10=√‖∇ϕ‖2L2+‖ϕ‖2L2,ϕ∈H10(Ω). | (7) |
An equivalent norm of
‖∇ϕ‖L2≤‖ϕ‖H10≤√λ1+1λ1‖∇ϕ‖L2,ϕ∈H10(Ω), | (8) |
where
λ1=infϕ∈H10(Ω)‖∇ϕ‖2L2‖ϕ‖2L2. | (9) |
Moreover, by Theorem 3.2, we have
for p and σ satisfying (4), H10(Ω)↪Lp+1σ(Ω) continuously and compactly. | (10) |
Then we let
Cpσ=supu∈H10(Ω)∖{0}‖ϕ‖Lp+1σ‖∇ϕ‖L2. | (11) |
We define two functionals
J(ϕ):=12‖∇ϕ‖2L2−1p+1‖ϕ‖p+1Lp+1σ | (12) |
and
I(ϕ):=‖∇ϕ‖2L2−‖ϕ‖p+1Lp+1σ. | (13) |
By (3) and (10), we know that
We denote the mountain-pass level
d:=infϕ∈NJ(ϕ), | (14) |
where
N:={ϕ∈H10(Ω)∖{0}:I(ϕ)=0}. | (15) |
By Theorem 3.3, we have
d=p−12(p+1)C−2(p+1)p−1pσ, | (16) |
where
For
Jρ={ϕ∈H10(Ω):J(ϕ)<ρ}. | (17) |
Then, we define the set
Nρ={ϕ∈N:‖∇ϕ‖2L2<2(p+1)ρp−1},ρ>d. | (18) |
For
λρ:=infϕ∈Nρ‖ϕ‖H10,Λρ:=supϕ∈Nρ‖ϕ‖H10 | (19) |
and two sets
Sρ:={ϕ∈H10(Ω):‖ϕ‖H10≤λρ,I(ϕ)>0},Sρ:={ϕ∈H10(Ω):‖ϕ‖H10≥Λρ,I(ϕ)<0}. | (20) |
Remark 1. There are two remarks on the above definitions.
(1) By the definitions of
(2) By Theorem 3.4, we have
√2(p+1)dp−1≤λρ≤Λρ≤√2(p+1)(λ1+1)ρλ1(p−1). | (21) |
Then the sets
‖sϕ‖H10≤√2(p+1)dp−1⇔s≤δ1:=√2(p+1)dp−1‖ϕ‖−1H10,I(sϕ)=s2‖∇ϕ‖2L2−sp+1‖ϕ‖p−1Lp+1σ>0⇔s<δ2:=(‖∇ϕ‖2L2‖ϕ‖p+1Lp+1σ)1p−1,‖sϕ‖H10≥√2(p+1)(λ1+1)ρλ1(p−1)⇔s≥δ3:=√2(p+1)(λ1+1)ρλ1(p−1)‖ϕ‖−1H10,I(sϕ)=s2‖∇ϕ‖2L2−sp+1‖ϕ‖p−1Lp+1σ<0⇔s>δ2. |
So,
{sϕ:0<s<min{δ1,δ2}}⊂Sρ,{sϕ:s>max{δ2,δ3}}⊂Sρ. |
In this paper we consider weak solutions to problem (1), local existence of which can be obtained by Galerkin's method (see for example [22,Chapter II,Sections 3 and 4]) and a standard limit process and the details are omitted.
Definition 2.1. Assume
∫Ω(utv+∇ut⋅∇v+∇u⋅∇v−|x|σ|u|p−1uv)dx=0 | (22) |
holds for any
u(⋅,0)=u0(⋅) in H10(Ω). | (23) |
Remark 2. There are some remarks on the above definition.
(1) Since
(2) Denote by
(3) Taking
‖u(⋅,t)‖2H10=‖u0‖2H10−2∫t0I(u(⋅,s))ds,0≤t≤T, | (24) |
where
(4) Taking
J(u(⋅,t))=J(u0)−∫t0‖us(⋅,s)‖2H10ds,0≤t≤T, | (25) |
where
Definition 2.2. Assume (3) holds. A function
∫Ω(∇u⋅∇v−|x|σ|u|p−1uv)dx=0 | (26) |
holds for any
Remark 3. There are some remarks to the above definition.
(1) By (10), we know all the terms in (26) are well-defined.
(2) If we denote by
Φ={ϕ∈H10(Ω):J′(ϕ)=0 in H−1(Ω)}⊂(N∪{0}), | (27) |
where
With the set
Definition 2.3. Assume (3) holds. A function
J(u)=infϕ∈Φ∖{0}J(ϕ). |
With the above preparations, now we can state the main results of this paper. Firstly, we consider the case
(1)
(2)
(3)
Theorem 2.4. Assume (3) holds and
‖∇u(⋅,t)‖L2≤√2(p+1)J(u0)p−1,0≤t<∞, | (28) |
where
V:={ϕ∈H10(Ω):J(ϕ)≤d,I(ϕ)>0}. | (29) |
In, in addition,
‖u(⋅,t)‖H10≤‖u0‖H10exp[−λ1λ1+1(1−(J(u0)d)p−12)t]. | (30) |
Remark 4. Since
J(u0)>p−12(p+1)‖∇u0‖2L2>0. |
So the equality (28) makes sense.
Theorem 2.5. Assume (3) holds and
limt↑Tmax∫t0‖u(⋅,s)‖2H10ds=∞, |
where
W:={ϕ∈H10(Ω):J(ϕ)≤d,I(ϕ)<0} | (31) |
and
Tmax≤4p‖u0‖2H10(p−1)2(p+1)(d−J(u0)). | (32) |
Remark 5. There are two remarks.
(1) If
(2) The sets
f(s)=J(sϕ)=s22‖∇ϕ‖2L2−sp+1p+1‖ϕ‖p+1Lp+1σ,g(s)=I(sϕ)=s2‖∇ϕ‖2L2−sp+1‖ϕ‖p+1Lp+1σ. |
Then (see Fig. 2)
(a)
maxs∈[0,∞)f(s)=f(s∗3)=p−12(p+1)(‖∇ϕ‖L2‖ϕ‖Lp+1σ)2(p+1)p−1≤d⏟By (14) since s∗3ϕ∈N, | (33) |
(b)
maxs∈[0,∞)g(s)=g(s∗1)=p−1p+1(2p+1)2p−1(‖∇ϕ‖L2‖ϕ‖Lp+1σ)2(p+1)p−1, |
(c)
f(s∗2)=g(s∗2)=p−12p(p+12p)2p−1(‖∇ϕ‖L2‖ϕ‖Lp+1σ)2(p+1)p−1, |
where
s∗1:=(2‖∇ϕ‖2L2(p+1)‖ϕ‖p+1Lp+1σ)1p−1<s∗2:=((p+1)‖∇ϕ‖2L22p‖ϕ‖p+1Lp+1σ)1p−1<s∗3:=(‖∇ϕ‖2L2‖ϕ‖p+1Lp+1σ)1p−1<s∗4:=((p+1)‖∇ϕ‖2L22‖ϕ‖p+1Lp+1σ)1p−1. |
So,
Theorem 2.6. Assume (3) holds and
G:={ϕ∈H10(Ω):J(ϕ)=d,I(ϕ)=0}. | (34) |
Remark 6. There are two remarks on the above theorem.
(1) Unlike Remark 5, it is not easy to show
(2) To prove the above Theorem, we only need to show
Theorem 2.7. Assume (3) holds and let
Secondly, we consider the case
Theorem 2.8. Assume (3) holds and the initial value
(i): If
(ii): If
Here
Next, we show the solution of the problem (1) can blow up at arbitrary initial energy level (Theorem 2.10). To this end, we firstly introduce the following theorem.
Theorem 2.9. Assume (3) holds and
Tmax≤8p‖u0‖2H10(p−1)2(λ1(p−1)λ1+1‖u0‖2H10−2(p+1)J(u0)) | (35) |
and
limt↑Tmax∫t0‖u(⋅,s)‖2H10ds=∞, |
where
ˆW:={ϕ∈H10(Ω):J(ϕ)<λ1(p−1)2(λ1+1)(p+1)‖ϕ‖2H10}. | (36) |
and
By using the above theorem, we get the following theorem.
Theorem 2.10. For any
The following lemma can be found in [11].
Lemma 3.1. Suppose that
F″(t)F(t)−(1+γ)(F′(t))2≥0 |
for some constant
T≤F(0)γF′(0)<∞ |
and
Theorem 3.2. Assume
Proof. Since
We divide the proof into three cases. We will use the notation
Case 1.
\begin{equation} \hbox{$H_0^1( \Omega)\hookrightarrow L^{p+1}( \Omega)$ continuously and compactly.} \end{equation} | (37) |
Then we have, for any
\begin{equation*} \|u\|_{L^{p+1}_{\sigma}}^{p+1} = \int_ \Omega|x|^\sigma|u|^{p+1}dx\leq R^\sigma\|u\|_{L^{p+1}}^{p+1}\lesssim\|u\|_{H_0^1}^{p+1}, \end{equation*} |
which, together with (37), implies
Case 2.
\begin{equation} \hbox{$H_0^1( \Omega)\hookrightarrow L^{\frac{(p+1)r}{r-1}}( \Omega)$ continuously and compactly,} \end{equation} | (38) |
for any
\begin{align*} \|u\|_{L^{p+1}_{\sigma}}^{p+1}& = \int_ \Omega|x|^\sigma|u|^{p+1}dx\\&\leq \left(\int_{B(0,R)}|x|^{\sigma r}dx\right)^{\frac1r}\left(\int_ \Omega|u|^{\frac{(p+1)r}{r-1}}dx\right)^{\frac{r-1}{r}}\\ &\leq\left\{ \begin{array}{ll} \left(\frac{2}{\sigma r+1}R^{\sigma r+1}\right)^{\frac 1r}\|u\|_{L^{\frac{(p+1)r}{r-1}}}^{p+1}\lesssim\|u\|_{H_0^1}^{p+1}, & n = 1;\\ \left(\frac{2\pi}{\sigma r+2}R^{\sigma r+2}\right)^{\frac 1r}\|u\|_{L^{\frac{(p+1)r}{r-1}}}^{p+1}\lesssim\|u\|_{H_0^1}^{p+1}, & n = 2, \end{array} \right. \end{align*} |
which, together with (38), implies
Case 3.
\begin{equation*} -\frac{\sigma}{n} < \frac1r < 1-\frac{(p+1)(n-2)}{2n}. \end{equation*} |
By the second inequality of the above inequalities, we have
\begin{equation*} \frac{(p+1)r}{r-1} = \frac{p+1}{1-\frac1r} < \frac{p+1}{\frac{(p+1)(n-2)}{2n}} = \frac{2n}{n-2}. \end{equation*} |
So,
\begin{equation} \hbox{$H_0^1( \Omega)\hookrightarrow L^{\frac{(p+1)r}{r-1}}( \Omega)$ continuously and compactly.} \end{equation} | (39) |
Then by Hölder's inequality, for any
\begin{align*} \|u\|_{L^{p+1}_{\sigma}}^{p+1}& = \int_ \Omega|x|^\sigma|u|^{p+1}dx\\&\leq \left(\int_{B(0,R)}|x|^{\sigma r}dx\right)^{\frac1r}\left(\int_ \Omega|u|^{\frac{(p+1)r}{r-1}}dx\right)^{\frac{r-1}{r}}\\ &\leq\left(\frac{\omega_{n-1}}{\sigma r+n}R^{\sigma r+n}\right)^{\frac1r}\|u\|_{L^{\frac{(p+1)r}{r-1}}}^{p+1}\lesssim\|u\|_{H_0^1}^{p+1}, \end{align*} |
which, together with (39), implies
Theorem 3.3. Assume
\begin{equation*} d = \frac{p-1}{2(p+1)}C_{p\sigma}^{\frac{2(p+1)}{p-1}}, \end{equation*} |
where
Proof. Firstly, we show
\begin{equation} \inf\limits_{\phi\in N}J(\phi) = \min\limits_{\phi\in H_0^1( \Omega)\setminus\{0\}}J(s_\phi^*\phi), \end{equation} | (40) |
where
\begin{equation} s_\phi^*: = \left(\frac{\|\nabla \phi\|_{L^2}^2}{\|\phi\|_{L_\sigma^{p+1}}^{p+1}}\right)^{\frac{1}{p-1}}. \end{equation} | (41) |
By the definition of
On one hand, since
\begin{equation*} \min\limits_{\phi\in H_0^1( \Omega)\setminus\{0\}}J(s_\phi^*\phi)\leq\min\limits_{\phi\in N}J(s_\phi^*\phi) = \min\limits_{\phi\in N}J(\phi). \end{equation*} |
On the other hand, since
\begin{equation*} \inf\limits_{\phi\in N}J(\phi)\leq \inf\limits_{\phi\in H_0^1( \Omega)\setminus\{0\}}J(s_\phi^*\phi). \end{equation*} |
Then (40) follows from the above two inequalities.
By (40), the definition of
\begin{align*} d& = \min\limits_{\phi\in H_0^1( \Omega)\setminus\{0\}}J(s_\phi^*\phi)\\ = &\frac{p-1}{2(p+1)}\min\limits_{\phi\in H_0^1( \Omega)\setminus\{0\}}\left(\frac{\|\nabla \phi\|_{L^2}}{\|\phi\|_{L_\sigma^{p+1}}}\right)^{\frac{2(p+1)}{p-1}}\\ = &\frac{p-1}{2(p+1)}C_{p\sigma}^{-\frac{2(p+1)}{p-1}}. \end{align*} |
Theorem 3.4. Assume (3) holds. Let
\begin{equation} \sqrt{\frac{2(p+1)d}{p-1}}\leq \lambda_\rho\leq \Lambda_\rho\leq \sqrt{\frac{2(p+1)( \lambda_1+1)\rho}{ \lambda_1(p-1)}}. \end{equation} | (42) |
Proof. Let
\begin{equation} \lambda_\rho\leq\Lambda_\rho. \end{equation} | (43) |
Since
\begin{align*} d& = \inf\limits_{\phi\in N}J(\phi)\\ & = \frac{p-1}{2(p+1)}\inf\limits_{\phi\in N}\|\nabla\phi\|_{L^2}^2\\ &\leq\frac{p-1}{2(p+1)}\inf\limits_{\phi\in N^\rho}\|\phi\|_{H_0^1}^2\\ & = \frac{p-1}{2(p+1)} \lambda_\rho^2, \end{align*} |
which implies
\begin{equation*} \lambda_\rho\geq\sqrt{\frac{2(p+1)d}{p-1}} \end{equation*} |
On the other hand, by (8) and (18), we have
\begin{equation*} \begin{split} \Lambda_\rho& = \sup\limits_{\phi\in N^\rho}\|\phi\|_{H_0^1}\\&\leq\sqrt{\frac{ \lambda_1+1}{ \lambda_1}}\sup\limits_{\phi\in N^\rho}\|\nabla\phi\|_{L^2}\\&\leq\sqrt{\frac{ \lambda_1+1}{ \lambda_1}}\sqrt{\frac{2(p+1)\rho}{p-1}}. \end{split} \end{equation*} |
Combining the above two inequalities with (43), we get (42), the proof is complete.
Theorem 3.5. Assume (3) holds and
Proof. We only prove the invariance of
For any
\begin{equation*} \|\nabla\phi\|_{L^2}^2 < \|\phi\|_{L_\sigma^{p+1}}^{p+1}\leq C_{p\sigma}^{p+1}\|\nabla \phi\|_{L^2}^{p+1}, \end{equation*} |
which implies
\begin{equation} \|\nabla\phi\|_{L^2} > C_{p\sigma}^{-\frac{p+1}{p-1}}. \end{equation} | (44) |
Let
\begin{equation} I(u(\cdot,t)) < 0,\; \; \; t\in[0, \varepsilon]. \end{equation} | (45) |
Then by (24),
\begin{equation} J(u(\cdot,t)) < d\hbox{ for }t\in(0, \varepsilon]. \end{equation} | (46) |
We argument by contradiction. Since
\begin{equation} J(u(\cdot,t_0)) < d \end{equation} | (47) |
(note (25) and (46),
\begin{equation*} \|\nabla u(\cdot,t_0)\|_{L^2}\geq C_{p\sigma}^{-\frac{p+1}{p-1}} > 0, \end{equation*} |
which, together with
\begin{equation*} J(u(\cdot,t_0))\geq d, \end{equation*} |
which contradicts (47). So the conclusion holds.
Theorem 3.6. Assume (3) holds and
\begin{equation} \|\nabla u(\cdot,t)\|_{L^2}^2\geq\frac{2(p+1)}{p-1}d,\; \; \; 0\leq t < {T_{\max}}, \end{equation} | (48) |
where
Proof. Let
By the proof in Theorem 3.3,
\begin{align*} d& = \min\limits_{\phi \in H_0^1( \Omega)\setminus\{0\}}J(s^*_\phi\phi)\\ &\leq\min\limits_{\phi\in N^-}J(s_\phi^*\phi)\\ &\leq J(s_u^*u(\cdot,t))\\ & = \frac{(s_u^*)^2}{2}\|\nabla u(\cdot,t)\|_{L^2}^2-\frac{(s_u^*)^{p+1}}{p+1}\|u(\cdot,t)\|_{L_\sigma^{p+1}}^{p+1}\\ &\leq\left(\frac{(s_u^*)^2}{2}-\frac{(s_u^*)^{p+1}}{p+1}\right)\|\nabla u(\cdot,t)\|_{L^2}^2, \end{align*} |
where we have used
\begin{align*} d& = \min\limits_{\phi \in H_0^1( \Omega)\setminus\{0\}}J(s^*_\phi\phi)\\ &\leq\min\limits_{\phi\in N^-}J(s_\phi^*\phi)\\ &\leq J(s_u^*u(\cdot,t))\\ & = \frac{(s_u^*)^2}{2}\|\nabla u(\cdot,t)\|_{L^2}^2-\frac{(s_u^*)^{p+1}}{p+1}\|u(\cdot,t)\|_{L_\sigma^{p+1}}^{p+1}\\ &\leq\left(\frac{(s_u^*)^2}{2}-\frac{(s_u^*)^{p+1}}{p+1}\right)\|\nabla u(\cdot,t)\|_{L^2}^2, \end{align*} |
Then
\begin{equation*} \begin{split} d&\leq\max\limits_{0\leq s\leq 1}\left(\frac{s^2}{2}-\frac{s^{p+1}}{p+1}\right)\|\nabla u(\cdot,t)\|_{L^2}^2\\ & = \left(\frac{s^2}{2}-\frac{s^{p+1}}{p+1}\right)_{s = 1}\|\nabla u(\cdot,t)\|_{L^2}^2\\ & = \frac{p-1}{2(p+1)}\|\nabla u(\cdot,t)\|_{L^2}^2, \end{split} \end{equation*} |
and (48) follows from the above inequality.
Theorem 3.7. Assume (3) holds and
Proof. Firstly, we show
\begin{align*} \frac12\|\nabla u_0\|_{L^2}^2-\frac{1}{p+1}\|u_0\|_{L_\sigma^{p+1}}^{p+1}& = J(u_0)\\ & < \frac{ \lambda_1(p-1)}{2( \lambda_1+1)(p+1)}\|u_0\|_{H_0^1}^2\\ &\leq\frac{p-1}{2(p+1)}\|\nabla u_0\|_{L^2}^2, \end{align*} |
which implies
\begin{equation*} I(u_0) = \|\nabla u_0\|_{L^2}^2-\|u_0\|_{L_\sigma^{p+1}}^{p+1} < 0. \end{equation*} |
Secondly, we prove
\begin{equation} \begin{split} J(u_0)& < \frac{ \lambda_1(p-1)}{2( \lambda_1+1)(p+1)}\|u_0\|_{H_0^1}^2\\ & < \frac{ \lambda_1(p-1)}{2( \lambda_1+1)(p+1)}\|u(\cdot,t_0)\|_{H_0^1}^2\\ &\leq \frac{p-1}{2(p+1)}\|\nabla u(\cdot,t_0)\|_{L^2}^2. \end{split} \end{equation} | (49) |
On the other hand, by (24), (12), (13) and
\begin{equation*} J(u_0)\geq J(u(\cdot,t_0)) = \frac{p-1}{2(p+1)}\|\nabla u(\cdot,t_0)\|_{L^2}^2, \end{equation*} |
which contradicts (49). The proof is complete.
Proof of Theorem 2.4. Let
\begin{align*} J(u_0)&\geq J(u(\cdot,t))\geq\frac{p-1}{2(p+1)}\|\nabla u(\cdot,t)\|_{L^2}^2,\; \; \; 0\leq t < {T_{\max}}, \end{align*} |
which implies
\begin{equation} \|\nabla u(\cdot,t)\|_{L^2}\leq \sqrt{\frac{2(p+1)J(u_0)}{p-1}},\; \; \; 0\leq t < \infty. \end{equation} | (50) |
Next, we prove
\begin{align*} \frac{d}{dt}\left(\|u(\cdot,t)\|_{H_0^1}^2\right) = &-2I(u(\cdot,t)) = -2\left(\|\nabla u(\cdot,t)\|_{L^2}^2-\|u(\cdot,t)\|_{L_\sigma^{p+1}}^{p+1}\right)\\ \leq &-2\left(1-C_{p\sigma}^{p+1}\|\nabla u(\cdot,t)\|_{L^2}^{p-1}\right)\|\nabla u(\cdot,t)\|_{L^2}^2\\ \leq &-2\left(1-C_{p\sigma}^{p+1}\left(\sqrt{\frac{2(p+1)J(u_0)}{p-1}}\right)^{p-1}\right)\|\nabla u(\cdot,t)\|_{L^2}^2\\ = &-2\left(1-\left(\frac{J(u_0)}{d}\right)^{\frac{p-1}{2}}\right)\|\nabla u(\cdot,t)\|_{L^2}^2\\ \leq&-\frac{2 \lambda_1}{ \lambda_1+1}\left(1-\left(\frac{J(u_0)}{d}\right)^{\frac{p-1}{2}}\right)\|u(\cdot,t)\|_{H_0^1}^2, \end{align*} |
which leads to
\begin{equation*} \|u(\cdot,t)\|_{H_0^1}^2\leq\|u_0\|_{H_0^1}^2\exp\left[-\frac{2 \lambda_1}{ \lambda_1+1}\left(1-\left(\frac{J(u_0)}{d}\right)^{\frac{p-1}{2}}\right)t\right]. \end{equation*} |
The proof is complete.
Proof of Theorem 2.5. Let
Firstly, we consider the case
\begin{equation} \xi(t): = \left(\int_0^t\|u(\cdot,s)\|_{H_0^1}^2ds\right)^{\frac 12},\; \; \; \eta(t): = \left(\int_0^t\|u_s(\cdot,s)\|_{H_0^1}^2ds\right)^{\frac 12},\; \; \; \; 0\leq t < {T_{\max}}. \end{equation} | (51) |
For any
\begin{equation} F(t): = \xi^2(t)+(T^*-t)\|u_0\|_{H_0^1}^2+ \beta(t+ \alpha)^2,\; \; \; 0\leq t\leq T^*. \end{equation} | (52) |
Then
\begin{equation} F(0) = T^*\|u_0\|_{H_0^1}^2+ \beta \alpha^2 > 0, \end{equation} | (53) |
\begin{equation} \begin{split} F'(t)& = \|u(\cdot,t)\|_{H_0^1}^2-\|u_0\|_{H_0^1}^2+2 \beta(t+ \alpha)\\ & = 2\left(\frac12\int_0^t\frac{d}{ds}\|u(\cdot,s)\|_{H_0^1}^2ds+ \beta(t+ \alpha)\right),\; \; \; 0\leq t\leq T^*, \end{split} \end{equation} | (54) |
and (by (24), (12), (13), (48), (25))
\begin{equation} \begin{split} F''(t) = &-2I(u(\cdot,t))+2 \beta\\ = &(p-1)\|\nabla u(\cdot,t)\|_{L^2}^2-2(p+1)J(u(\cdot,t))+2 \beta\\ \geq&2(p+1)(d-J(u_0))+2(p+1)\eta^2(t)+2 \beta,\; \; \; 0\leq t\leq T^*. \end{split} \end{equation} | (55) |
Since
\begin{equation*} F'(t)\geq2 \beta(t+ \alpha). \end{equation*} |
Then
\begin{equation} F(t) = F(0)+\int_0^tF'(s)ds\geq T^*\|u_0\|_{H_0^1}^2+ \beta \alpha^2+2 \alpha \beta t+ \beta t^2,\; \; \; 0\leq t\leq T^*. \end{equation} | (56) |
By (6), Schwartz's inequality and Hölder's inequality, we have
\begin{align*} \frac12\int_0^t\frac{d}{ds}\|u(\cdot,s)\|_{H_0^1}^2ds& = \int_0^t(u(\cdot,s),u_s(\cdot,s))_{H_0^1}ds\\ &\leq\int_0^t\|u(\cdot,s)\|_{H_0^1}\|u_s(\cdot,s)\|_{H_0^1}ds\leq \xi(t)\eta(t),\; \; \; 0\leq t\leq T^*, \end{align*} |
which, together with the definition of
\begin{align*} &\ \ \ \left(F(t)-(T^*-t)\|u_0\|_{H_0^1}^2\right)\left(\eta^2(t)+ \beta\right)\\ & = \left(\xi^2(t)+ \beta(t+ \alpha)^2\right)\left(\eta^2(t)+ \beta\right)\\ & = \xi^2(t)\eta^2(t)+ \beta\xi^2(t)+ \beta(t+ \alpha)^2\eta^2(t)+ \beta^2(t+ \alpha)^2\\ &\geq\xi^2(t)\eta^2(t)+2\xi(t)\eta(t) \beta(t+ \alpha)+ \beta^2(t+ \alpha)^2\\ &\geq\left(\xi(t)\eta(t)+ \beta(t+ \alpha)\right)^2\\ &\geq\left(\frac12\int_0^t\frac{d}{ds}\|u(\cdot,s)\|_{H_0^1}^2ds+ \beta(t+ \alpha)\right)^2,\; \; \; 0\leq t\leq T^*. \end{align*} |
Then it follows from (54) and the above inequality that
\begin{equation} \begin{split} \left(F'(t)\right)^2& = 4\left(\frac12 \int\limits_0^t\frac{d}{ds}\|u(s)\|_{H_0^1}^2ds+ \beta(t+ \alpha)\right)^2\\ &\leq 4F(t)\left(\eta^2(t)+ \beta\right),\; \; \; \; \; \; 0\leq t\leq T^*. \end{split} \end{equation} | (57) |
In view of (55), (56), and (57), we have
\begin{align*} F(t)F''(t)-\frac{p+1}{2}(F'(t))^2\geq F(t)\left(2(p+1)(d-J(u_0))-2p \beta\right),\; \; \; 0\leq t\leq T^*. \end{align*} |
If we take
\begin{equation} 0 < \beta\leq\frac{p+1}{p}(d-J(u_0)), \end{equation} | (58) |
then
\begin{equation*} T^*\leq\frac{F(0)}{\left(\frac{p+1}{2}-1\right) F'(0)} = \frac{T^*\|u_0\|_{H_0^1}^2+ \beta \alpha^2}{(p-1) \alpha \beta}. \end{equation*} |
Then for
\begin{equation} \alpha\in\left(\frac{\|u_0\|_{H_0^1}^2}{(p-1) \beta},\infty\right), \end{equation} | (59) |
we get
\begin{equation*} T^*\leq \frac{ \beta \alpha^2}{(p-1) \alpha \beta-\|u_0\|_{H_0^1}^2}. \end{equation*} |
Minimizing the above inequality for
\begin{equation*} T^*\leq\left.\frac{ \beta \alpha^2}{(p-1) \alpha \beta-\|u_0\|_{H_0^1}^2}\right|_{ \alpha = \frac{2\|u_0\|_{H_0^1}^2}{(p-1) \beta}} = \frac{4\|u_0\|_{H_0^1}^2}{(p-1)^2 \beta}. \end{equation*} |
Minimizing the above inequality for
\begin{equation*} T^*\leq\frac{4p\|u_0\|_{H_0^1}^2}{(p-1)^2(p+1)(d-J(u_0))}. \end{equation*} |
By the arbitrariness of
\begin{equation*} {T_{\max}}\leq\frac{4p\|u_0\|_{H_0^1}^2}{(p-1)^2(p+1)(d-J(u_0))}. \end{equation*} |
Secondly, we consider the case
Proof of Theorems 2.6 and 2.7. Since Theorem 2.6 follows from Theorem 2.7 directly, we only need to prove Theorem 2.7.
Firstly, we show
\begin{equation*} d = \inf\limits_{\phi\in N}J(\phi) = \frac{p-1}{2(p+1)}\inf\limits_{\phi\in N}\|\nabla\phi\|_{L^2}^2. \end{equation*} |
Then a minimizing sequence
\begin{equation} \lim\limits_{k\uparrow\infty}J(\phi_k) = \frac{p-1}{2(p+1)}\lim\limits_{k\uparrow\infty}\|\nabla\phi_k\|_{L^2}^2 = d, \end{equation} | (60) |
which implies
(1)
(2)
Now, in view of
\begin{equation} \lim\limits_{k\uparrow\infty}J(\phi_k) = \frac{p-1}{2(p+1)}\lim\limits_{k\uparrow\infty}\|\nabla\phi_k\|_{L^2}^2 = d, \end{equation} | (60) |
We claim
\begin{equation} \|\nabla\varphi\|_{L^2}^2 = \|\varphi\|_{L_\sigma^{p+1}}^{p+1}\hbox{ i.e. }I(\varphi) = 0. \end{equation} | (62) |
In fact, if the claim is not true, then by (61),
\begin{equation*} \|\nabla\varphi\|_{L^2}^2 < \|\varphi\|_{L_\sigma^{p+1}}^{p+1}. \end{equation*} |
By the proof of Theorem 3.3, we know that
\begin{equation} J(s^*_\varphi\varphi)\geq d, \end{equation} | (63) |
where
\begin{equation} J(s^*_\varphi\varphi)\geq d, \end{equation} | (63) |
On the other hand, since
\begin{equation*} \begin{split} J(s^*_\varphi\varphi)& = \frac{p-1}{2(p+1)}(s^*_\varphi)^2\|\nabla \varphi\|_{L^2}^2\\ & < \frac{p-1}{2(p+1)}\|\nabla \varphi\|_{L^2}^2\\ &\leq\frac{p-1}{2(p+1)}\liminf\limits_{k\uparrow\infty}\|\nabla \phi_k\|_{L^2}^2\\& = d, \end{split} \end{equation*} |
which contradicts to (63). So the claim is true, i.e.
\begin{equation*} \lim\limits_{k\uparrow\infty}\|\nabla\phi_k\|_{L^2}^2 = \|\varphi\|_{L_\sigma^{p+1}}^{p+1}, \end{equation*} |
which, together with
Second, we prove
\begin{equation*} \lim\limits_{k\uparrow\infty}\|\nabla\phi_k\|_{L^2}^2 = \|\varphi\|_{L_\sigma^{p+1}}^{p+1}, \end{equation*} |
Then
\begin{equation*} A: = \{\tau(s)(\varphi+sv):s\in(- \varepsilon, \varepsilon)\} \end{equation*} |
is a curve on
\begin{equation*} A: = \{\tau(s)(\varphi+sv):s\in(- \varepsilon, \varepsilon)\} \end{equation*} |
where
\begin{align*} \xi&: = 2\int_ \Omega\nabla(\varphi+sv)\cdot\nabla vdx\|\varphi+sv\|_{L_\sigma^{p+1}}^{p+1},\\ \eta&: = (p+1)\int_ \Omega|x|^\sigma|\varphi+sv|^{p-1}(\varphi+sv)vdx\|\nabla(\varphi+sv)\|_{L^2}^2. \end{align*} |
Since (62), we get
\begin{equation} \tau'(0) = \frac{1}{(p-1)\|\varphi\|_{L_\sigma^{p+1}}^{p+1}}\left(2\int_ \Omega\nabla\varphi\nabla vdx-(p+1)\int_ \Omega|x|^\sigma|\varphi|^{p-1}\varphi vdx\right). \end{equation} | (65) |
Let
\begin{equation*} \varrho(s): = J(\tau(s)(\varphi+sv)) = \frac{\tau^2(s)}{2}\|\nabla(\varphi+sv)\|_{L^2}^2-\frac{\tau^{p+1}(s)}{p+1}\|\varphi+sv\|_{L^{p+1}_{\sigma}}^{p+1},\; \; \; s\in(- \varepsilon, \varepsilon). \end{equation*} |
Since
\begin{align*} 0 = &\varrho'(0) = \left.\tau(s)\tau'(s)\|\nabla(\varphi+sv)\|_{L^2}^2+\tau^2(s)\int_ \Omega\nabla(\varphi+sv)\cdot\nabla vdx\right|_{s = 0}\\ &\left.-\tau^p(s)\tau'(s)\|\varphi+sv\|_{L_\sigma^{p+1}}^{p+1}-\tau^{p+1}(s)\int_ \Omega|x|^\sigma|\varphi+sv|^{p-1}(\varphi+sv)vdx\right|_{s = 0}\\ = &\int_ \Omega\nabla\varphi\cdot\nabla vdx-\int_ \Omega|x|^\sigma|\varphi|^{p-1}\varphi vdx. \end{align*} |
So,
Finally, in view of Definition 2.3 and
\begin{equation} d = \inf\limits_{\phi\in\Phi\setminus\{0\}}J(\phi). \end{equation} | (66) |
In fact, by the above proof and (27), we have
\begin{equation*} d = \inf\limits_{\phi\in N}J(\phi) \end{equation*} |
and
Proof of Theorem 2.8. Let
\begin{equation*} \omega(u_0) = \cap_{t\geq0} \overline{\{u(\cdot,s):s\geq t\}}^{H_0^1( \Omega)} \end{equation*} |
the
(i) Assume
\begin{equation*} v(x,t) = \left\{ \begin{array}{ll} u(x,t), & \hbox{ if }0\leq t\leq t_0; \\ 0, & \hbox{ if }t > t_0 \end{array} \right. \end{equation*} |
is a global weak solution of problem (1), and the proof is complete.
We claim that
\begin{equation} I(u(\cdot,t)) > 0,\; \; \; 0\leq t < {T_{\max}}. \end{equation} | (67) |
Since
\begin{equation} I(u(\cdot,t)) > 0,\; \; \; 0\leq t < t_0 \end{equation} | (68) |
and
\begin{equation} I(u(\cdot,t_0)) = 0, \end{equation} | (69) |
which together with the definition of
\begin{equation} \|u(\cdot,t_0)\|_{H_0^1}\geq \lambda_{\rho}. \end{equation} | (70) |
On the other hand, it follows from (24), (68) and
\begin{equation*} \|u(\cdot,t)\|_{H_0^1} < \|u_0\|_{H_0^1}\leq \lambda_\rho, \end{equation*} |
which contradicts (70). So (67) is true. Then by (24) again, we get
\begin{equation*} \|u(\cdot,t)\|_{H_0^1}\leq\|u_0\|_{H_0^1},\; \; \; 0\leq t < {T_{\max}}, \end{equation*} |
which implies
By (24) and (67),
\begin{equation*} \lim\limits_{t\uparrow\infty}\|u(\cdot,t)\|_{H_0^1} = c. \end{equation*} |
Taking
\begin{equation*} \int_0^\infty I(u(\cdot,s))ds\leq\frac12\left(\|u_0\|_{H_0^1}^2-c\right) < \infty. \end{equation*} |
Note that
\begin{equation} \lim\limits_{n\uparrow\infty}I(u(\cdot,t_n)) = 0. \end{equation} | (71) |
Let
\begin{equation} u(\cdot,t_n)\rightarrow\omega \hbox{ in }H_0^1( \Omega)\hbox{ as }n\uparrow\infty. \end{equation} | (72) |
Then by (71), we get
\begin{equation} I(\omega) = \lim\limits_{n\uparrow\infty}I(u(\cdot,t_n)) = 0. \end{equation} | (73) |
As the above, one can easily see
\begin{equation*} \|\omega\|_{H_0^1} < \lambda_\rho\leq \lambda_{J(u_0)}, \; \; \; \underbrace{J(\omega) < J(u_0)}_{\Rightarrow\omega\in J^{J(u_0)}}, \end{equation*} |
which implies
\begin{equation*} \lim\limits_{t\uparrow\infty}\|u(\cdot,t)\|_{H_0^1} = \lim\limits_{n\uparrow\infty}\|u(\cdot,t_n)\|_{H_0^1} = \|\omega\|_{H_0^1} = 0. \end{equation*} |
(ⅱ) Assume
\begin{equation} I(u(\cdot,t)) < 0,\; \; \; 0\leq t < {T_{\max}}. \end{equation} | (74) |
Since
\begin{equation} I(u(\cdot,t)) < 0,\; \; \; 0\leq t < t_0 \end{equation} | (75) |
and
\begin{equation} I(u(\cdot,t_0)) = 0. \end{equation} | (76) |
Since (75), by (44) and
\begin{equation*} \|\nabla u(\cdot,t_0)\|_{L^2}\geq C_{p\sigma}^{-\frac{p+1}{p-1}}, \end{equation*} |
which, together with the definition of
\begin{equation} \|u(\cdot,t_0)\|_{H_0^1}\leq \Lambda_{\rho}. \end{equation} | (77) |
On the other hand, it follows from (24), (75) and
\begin{equation*} \|u(\cdot,t)\|_{H_0^1} > \|u_0\|_{H_0^1}\geq\Lambda_\rho, \end{equation*} |
which contradicts (77). So (74) is true.
Suppose by contradiction that
\begin{equation*} \lim\limits_{t\uparrow\infty}\|u(\cdot,t)\|_{H_0^1} = \tilde c, \end{equation*} |
Taking
\begin{equation*} -\int_0^\infty I(u(\cdot,s))ds\leq\frac12\left( \tilde c-\|u_0\|_{H_0^1}^2\right) < \infty. \end{equation*} |
Note
\begin{equation} \lim\limits_{n\uparrow\infty}I(u(\cdot,t_n)) = 0. \end{equation} | (78) |
Let
\begin{equation} u(\cdot,t_n)\rightarrow\omega \hbox{ in }H_0^1( \Omega)\hbox{ as }n\uparrow\infty. \end{equation} | (79) |
Since
\begin{equation*} \lim\limits_{t\uparrow\infty}\|u(\cdot,t)\|_{H_0^1} = \lim\limits_{n\uparrow\infty}\|u(\cdot,t_n)\|_{H_0^1} = \|\omega\|_{H_0^1}. \end{equation*} |
Then by (78), we get
\begin{equation} I(\omega) = \lim\limits_{n\uparrow\infty}I(u(\cdot,t_n)) = 0. \end{equation} | (80) |
By (24), (25) and (74), one can easily see
\begin{equation*} \|\omega\|_{H_0^1} > \|u_0\|_{H_0^1}\geq\Lambda_\rho\geq\Lambda_{J(u_0)},\; \; \; \underbrace{J(\omega) < J(u_0)}_{\Rightarrow\omega\in J^{J(u_0)}}, \end{equation*} |
which implies
Proof of Theorem 2.9. Let
\begin{equation} \|\nabla u(\cdot,t)\|_{L^2}^2\geq \frac{ \lambda_1}{ \lambda_1+1}\|u(\cdot,t)\|_{H_0^1}^2\geq\frac{ \lambda_1}{ \lambda_1+1}\|u_0\|_{H_0^1}^2,\; \; \; 0\leq t < {T_{\max}}. \end{equation} | (81) |
The remain proofs are similar to the proof of Theorem 2.9. For any
\begin{equation} \begin{split} F''(t) = &-2I(u(\cdot,t))+2 \beta\\ = &(p-1)\|\nabla u(\cdot,t)\|_{L^2}^2-2(p+1)J(u(\cdot,t))+2 \beta\\ \geq&\frac{ \lambda_1(p-1)}{ \lambda_1+1}\|u_0\|_{H_0^1}^2-2(p+1)J(u_0)+2(p+1)\eta^2(t)+2 \beta,\; \; \; 0\leq t\leq T^*. \end{split} \end{equation} | (82) |
We also have (56) and (57). Then it follows from (56), (57) and (82) that
\begin{align*} &F(t)F''(t)-\frac{p+1}{2}(F'(t))^2\\ \geq& F(t)\left(\frac{ \lambda_1(p-1)}{ \lambda_1+1}\|u_0\|_{H_0^1}^2-2(p+1)J(u_0)-2p \beta\right),\; \; \; 0\leq t\leq T^*. \end{align*} |
If we take
\begin{equation} 0 < \beta\leq\frac{1}{2p}\left(\frac{ \lambda_1(p-1)}{ \lambda_1+1}\|u_0\|_{H_0^1}^2-2(p+1)J(u_0)\right), \end{equation} | (83) |
then
\begin{equation*} T^*\leq\frac{F(0)}{\left(\frac{p+1}{2}-1\right) F'(0)} = \frac{T^*\|u_0\|_{H_0^1}^2+ \beta \alpha^2}{(p-1) \alpha \beta}. \end{equation*} |
Then for
\begin{equation} \alpha\in\left(\frac{\|u_0\|_{H_0^1}^2}{(p-1) \beta},\infty\right), \end{equation} | (84) |
we get
\begin{equation*} T^*\leq \frac{ \beta \alpha^2}{(p-1) \alpha \beta-\|u_0\|_{H_0^1}^2}. \end{equation*} |
Minimizing the above inequality for
\begin{equation*} T^*\leq\left.\frac{ \beta \alpha^2}{(p-1) \alpha \beta-\|u_0\|_{H_0^1}^2}\right|_{ \alpha = \frac{2\|u_0\|_{H_0^1}^2}{(p-1) \beta}} = \frac{4\|u_0\|_{H_0^1}^2}{(p-1)^2 \beta}. \end{equation*} |
Minimizing the above inequality for
\begin{equation*} T^*\leq\frac{8p\|u_0\|_{H_0^1}^2}{(p-1)^2\left(\frac{ \lambda_1(p-1)}{ \lambda_1+1}\|u_0\|_{H_0^1}^2-2(p+1)J(u_0)\right)}. \end{equation*} |
By the arbitrariness of
\begin{equation*} {T_{\max}}\leq\frac{8p\|u_0\|_{H_0^1}^2}{(p-1)^2\left(\frac{ \lambda_1(p-1)}{ \lambda_1+1}\|u_0\|_{H_0^1}^2-2(p+1)J(u_0)\right)}. \end{equation*} |
Proof of Theorem 2.10. For any
\begin{equation} \| \alpha\psi\|_{H_0^1}^2 > \frac{2( \lambda_1+1)(p+1)}{ \lambda_1(p-1)}M. \end{equation} | (85) |
For such
\begin{equation} J(s_3^*\phi)\geq M-J( \alpha \psi), \end{equation} | (86) |
where (see Remark 5)
\begin{equation} J(s_3^*\phi)\geq M-J( \alpha \psi), \end{equation} | (86) |
which can be done since
\begin{equation*} J(s_3^*\phi) = \frac{p-1}{2(p+1)}\left(\frac{\|\nabla \phi\|_{L^2}}{\|\phi\|_{L_\sigma^{p+1}}}\right)^{\frac{2(p+1)}{p-1}} \end{equation*} |
and
By Remark 5 again,
\begin{equation} J(\{s\phi:0\leq s < \infty\}) = (-\infty, J(s_3^*\phi)]. \end{equation} | (87) |
By (87) and (86), we can choose
\begin{equation*} J(u_0) = J(v)+J( \alpha\psi) = M \end{equation*} |
and (note (85))
\begin{align*} J(u_0)& = M < \frac{ \lambda_1(p-1)}{2( \lambda_1+1)(p+1)}\| \alpha\psi\|_{H_0^1}^2\\ &\leq\frac{ \lambda_1(p-1)}{2( \lambda_1+1)(p+1)}\left(\| \alpha\psi\|_{H_0^1}^2+\|v\|_{H_0^1}^2\right)\\ & = \frac{ \lambda_1(p-1)}{2( \lambda_1+1)(p+1)}\|u_0\|_{H_0^1}^2. \end{align*} |
Let
[1] |
S. Aubry, Breathers in nonlinear lattices: existence, linear stability and quantization, Phys. D, 103 (1997), 201–250. doi: 10.1016/S0167-2789(96)00261-8
![]() |
[2] | S. Aubry, G. André, Analyticity breaking and Anderson localization in incommensurate lattices, Ann. Israel Phys. Soc., 3 (1980), 133–164. |
[3] |
S. Aubry, G. Kopidakis, V. Kadelburg, Variational proof for hard discrete breathers in some classes of Hamiltonian dynamical systems, Discrete Contin. Dyn. Syst. B, 1 (2001), 271–298. doi: 10.3934/dcdsb.2001.1.271
![]() |
[4] | M.Ya. Azbel, Energy spectrum of a conduction electron in a magnetic field, Sov. Phys. JETP, 19 (1964), 634–645. |
[5] | G. W. Chen, S. W. Ma, Discrete nonlinear Schrödinger equations with superlinear nonlinearities, Appl. Math. Comput., 218 (2012), 5496–5507. |
[6] |
G. W. Chen, S. W. Ma, Ground state and geometrically distinct solitons of discrete nonlinear Schrödinger equations with saturable nonlinearities, Stud. Appl. Math., 131 (2013), 389–413. doi: 10.1111/sapm.12016
![]() |
[7] |
G. W. Chen, S. W. Ma, Z. Q. Wang, Standing waves for discrete Schrödinger equations in infinite lattices with saturable nonlinearities, J. Differ. Equ., 261 (2016), 3493–3518. doi: 10.1016/j.jde.2016.05.030
![]() |
[8] |
D. N. Christodoulides, F. Lederer, Y. Silberberg, Discretizing light behaviour in linear and nonlinear waveguide lattices, Nature, 424 (2003), 817–823. doi: 10.1038/nature01936
![]() |
[9] |
J. Cuevas, P. G. Kevrekidis, D. J. Frantzeskakis, B. A. Malomed, Discrete solitons in nonlinear Schrodinger lattices with a power-law nonlinearity, Phys. D, 238 (2009), 67–76. doi: 10.1016/j.physd.2008.08.013
![]() |
[10] |
S. Flach, C. R. Willis, Discrete breathers, Phys Rep., 295 (1998), 181–264. doi: 10.1016/S0370-1573(97)00068-9
![]() |
[11] | S. Flach, K. Kladko, Moving discrete breathers Phys. D, 127 (1999), 61–72. |
[12] |
S. Flach, A. V. Gorbach, Discrete breathers-advances in theory and applications, Phys Rep., 467 (2008), 1–116. doi: 10.1016/j.physrep.2008.05.002
![]() |
[13] |
J. W. Fleischer, T. Carmon, M. Segev, N. K. Efremidis, D. N. Christodoulides, Observation of discrete solitons in optically induced real time waveguide arrays, Phys. Rev. Lett., 90 (2003), 023902. doi: 10.1103/PhysRevLett.90.023902
![]() |
[14] |
J. W. Fleischer, M. Segev, N. K. Efremidis, D. N. Christodoulides, Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices, Nature, 422 (2003), 147–150. doi: 10.1038/nature01452
![]() |
[15] |
P. G. Harper, Single Band Motion of Conduction Electrons in a Uniform Magnetic Field, Proc. Phys. Soc. Sect. A, 68 (1955), 874–878. doi: 10.1088/0370-1298/68/10/304
![]() |
[16] |
D. Hennig, G. P. Tsironis, Wave transmission in nonlinear lattices, Physics Reports, 307 (1999), 333–432. doi: 10.1016/S0370-1573(98)00025-8
![]() |
[17] |
S. Iubini, A. Politi, Chaos and localization in the discrete nonlinear Schrödinger equation, Chaos, Solitons and Fractals, 147 (2021), 110954. doi: 10.1016/j.chaos.2021.110954
![]() |
[18] |
L. Jeanjean, K. Tanaka, A positive solution for an asymptotically linear elliptic problem on \mathbb{R}^N autonomous at infinity, ESAIM Control Optim. Calc. Var., 7 (2002), 597–614. doi: 10.1051/cocv:2002068
![]() |
[19] | P. G. Kevrekidis, K. Rasmussen, A. R. Bishop, The discrete nonlinear Schrödinger equation: a survey of recent results, Int. J. Mod. Phys. B, 15 (2001), 2883–2900. |
[20] |
G. Kopidakis, S. Aubry, G. P. Tsironis, Targeted energy transfer through discrete breathers in nonlinear systems, Phys. Rev. Lett., 87 (2001), 165501. doi: 10.1103/PhysRevLett.87.165501
![]() |
[21] |
G. Li, A. Szulkin, An asymptotically periodic Schrödinger equation with indefinite linear part, Commun. Contemp. Math., 4 (2002), 763–776. doi: 10.1142/S0219199702000853
![]() |
[22] |
S. Liu, On superlinear Schrdinger equations with periodic potential, Calc. Var. Partial Differential Equations, 45 (2012), 1–9. doi: 10.1007/s00526-011-0447-2
![]() |
[23] |
R. Livi, R. Franzosi, G. L. Oppo, Self-localization of Bose Einstein condensates in optical lattices via boundary dissipation, Phys. Rev. Lett., 97 (2006), 060401. doi: 10.1103/PhysRevLett.97.060401
![]() |
[24] | D. Ma, Z. Zhou, Existence and multiplicity results of homoclinic solutions for the DNLS equations with unbounded potentials, Abstr. Appl. Anal., 2012 (2012), 703596. |
[25] | A. Mai, Z. Zhou, Ground state solutions for the periodic discrete nonlinear Schrödinger equations with superlinear nonlinearities, Abstr. Appl. Anal., 2013 (2013), 317139. |
[26] | A. Mai, Z. Zhou, Discrete solitons for periodic discrete nonlinear Schrödinger equations, Appl. Math. Comput., 222 (2013), 34–41. |
[27] |
D. V. Makarov, M. Yu. Uleysky, Chaos-assisted formation of immiscible matter-wave solitons and self-stabilization in the binary discrete nonlinear Schrödinger equation, Commun. Nonlinear Sci. Numer. Simul., 43 (2017), 227–238. doi: 10.1016/j.cnsns.2016.07.006
![]() |
[28] |
A. Pankov, Gap solitons in periodic discrete nonlinear Schrödinger equations, Nonlinearity, 19 (2006), 27–40. doi: 10.1088/0951-7715/19/1/002
![]() |
[29] |
A. Pankov, Gap solitons in periodic discrete nonlinear Schrödinger equations. II. A generalized Nehari manifold approach, Discrete Contin. Dyn. Syst. Ser. A, 19 (2007), 419–430. doi: 10.3934/dcds.2007.19.419
![]() |
[30] |
H. Shi, Gap solitons in periodic discrete nonlinear Schrödinger equations with nonlinearity, Acta Appl. Math., 109 (2010), 1065–1075. doi: 10.1007/s10440-008-9360-x
![]() |
[31] | J. J. Sun, S. W. Ma, Multiple solutions for discrete periodic nonlinear Schrödinger equations, J. Math. Phys., 56 (2015), 1413–1442. |
[32] |
A. Szulkin, T. Weth, Ground state solutions for some indefinite variational problems, J. Func. Anal., 257 (2009), 3802–3822. doi: 10.1016/j.jfa.2009.09.013
![]() |
[33] |
X. Tang, New super-quadratic conditions on ground state solutions for superlinear Schrödinger equation, Adv. Nonlinear Stud., 14 (2014), 361–373. doi: 10.1515/ans-2014-0208
![]() |
[34] | X. Tang, Non-nehari-manifold method for asymptotically linear schrodinger equation, J. Math. Phys., 56 (2015), 1413–1442. |
[35] | A. Trombettoni, A. Smerzi, Discrete Solitons and Breathers with Dilute Bose-Einstein Condensates, Phys. Rev. Lett., 16 (2001), 2353–2356. |
[36] |
Z. Yang, W. Chen, Y. Ding, Solutions for discrete periodic Schrödinger equations with spectrum 0, Acta Appl. Math., 110 (2010), 1475–1488. doi: 10.1007/s10440-009-9521-6
![]() |
[37] |
L. Zhang, S. Ma, Ground state solutions for periodic discrete nonlinear Schrödinger equations with saturable nonlinearities, Adv. Difference Equ., 2018 (2018), 1–13. doi: 10.1186/s13662-017-1452-3
![]() |
[38] |
Z. Zhou, J. Yu, Y. Chen, On the existence of gap solitons in a periodic discrete nonlinear Schrödinger equation with saturable nonlinearity, Nonlinearity, 23 (2010), 1727–1740. doi: 10.1088/0951-7715/23/7/011
![]() |
1. | Yuxuan Chen, Jiangbo Han, Global existence and nonexistence for a class of finitely degenerate coupled parabolic systems with high initial energy level, 2021, 14, 1937-1632, 4179, 10.3934/dcdss.2021109 | |
2. | Quang-Minh Tran, Hong-Danh Pham, Global existence and blow-up results for a nonlinear model for a dynamic suspension bridge, 2021, 14, 1937-1632, 4521, 10.3934/dcdss.2021135 | |
3. | Jun Zhou, Guangyu Xu, Chunlai Mu, Analysis of a pseudo-parabolic equation by potential wells, 2021, 200, 0373-3114, 2741, 10.1007/s10231-021-01099-1 | |
4. | Le Thi Phuong Ngoc, Khong Thi Thao Uyen, Nguyen Huu Nhan, Nguyen Thanh Long, On a system of nonlinear pseudoparabolic equations with Robin-Dirichlet boundary conditions, 2022, 21, 1534-0392, 585, 10.3934/cpaa.2021190 | |
5. | Jinxing Liu, Xiongrui Wang, Jun Zhou, Huan Zhang, Blow-up phenomena for the sixth-order Boussinesq equation with fourth-order dispersion term and nonlinear source, 2021, 14, 1937-1632, 4321, 10.3934/dcdss.2021108 | |
6. | Peiqun Lin, Chenxing He, Lingshu Zhong, Mingyang Pei, Chuhao Zhou, Yang Liu, Bus timetable optimization model in response to the diverse and uncertain requirements of passengers for travel comfort, 2023, 31, 2688-1594, 2315, 10.3934/era.2023118 | |
7. | Hang Ding, Renhai Wang, Jun Zhou, Infinite time blow‐up of solutions to a class of wave equations with weak and strong damping terms and logarithmic nonlinearity, 2021, 147, 0022-2526, 914, 10.1111/sapm.12405 | |
8. | Le Thi Phuong Ngoc, Nguyen Anh Triet, Phan Thi My Duyen, Nguyen Thanh Long, General Decay and Blow-up Results of a Robin-Dirichlet Problem for a Pseudoparabolic Nonlinear Equation of Kirchhoff-Carrier Type with Viscoelastic Term, 2023, 0251-4184, 10.1007/s40306-023-00496-3 | |
9. | Gang Cheng, Yijie He, Enhancing passenger comfort and operator efficiency through multi-objective bus timetable optimization, 2024, 32, 2688-1594, 565, 10.3934/era.2024028 |