This paper introduced an efficient method to obtain the solution of linear and nonlinear weakly singular kernel fractional integro-differential equations (WSKFIDEs). It used Riemann-Liouville fractional integration (R-LFI) to remove singularities and approximated the regularized problem with a combined approach using the generalized fractional step-Mittag-Leffler function (GFSMLF) and operational integral fractional Mittag matrix (OIFMM) method. The resulting algebraic equations were turned into an optimization problem. We also proved the method's accuracy in approximating any function, as well as its fractional differentiation and integration within WSKFIDEs. The proposed method was performed on some attractive examples in order to show how their solutions behave at various values of the fractional order ϝ. The paper provided a valuable contribution to the field of fractional calculus (FC) by presenting a novel method for solving WSKFIDEs. Additionally, the accuracy of this method was verified by comparing its results with those obtained using other methods.
Citation: Ismail Gad Ameen, Dumitru Baleanu, Hussien Shafei Hussien. Efficient method for solving nonlinear weakly singular kernel fractional integro-differential equations[J]. AIMS Mathematics, 2024, 9(6): 15819-15836. doi: 10.3934/math.2024764
[1] | Gauhar Rahman, Kottakkaran Sooppy Nisar, Feng Qi . Some new inequalities of the Grüss type for conformable fractional integrals. AIMS Mathematics, 2018, 3(4): 575-583. doi: 10.3934/Math.2018.4.575 |
[2] | Muhammad Tariq, Sotiris K. Ntouyas, Hijaz Ahmad, Asif Ali Shaikh, Bandar Almohsen, Evren Hincal . A comprehensive review of Grüss-type fractional integral inequality. AIMS Mathematics, 2024, 9(1): 2244-2281. doi: 10.3934/math.2024112 |
[3] | Da Shi, Ghulam Farid, Abd Elmotaleb A. M. A. Elamin, Wajida Akram, Abdullah A. Alahmari, B. A. Younis . Generalizations of some q-integral inequalities of Hölder, Ostrowski and Grüss type. AIMS Mathematics, 2023, 8(10): 23459-23471. doi: 10.3934/math.20231192 |
[4] | Marwa M. Tharwat, Marwa M. Ahmed, Ammara Nosheen, Khuram Ali Khan, Iram Shahzadi, Dumitru Baleanu, Ahmed A. El-Deeb . Dynamic inequalities of Grüss, Ostrowski and Trapezoid type via diamond-α integrals and Montgomery identity. AIMS Mathematics, 2024, 9(5): 12778-12799. doi: 10.3934/math.2024624 |
[5] | Mustafa Gürbüz, Yakup Taşdan, Erhan Set . Ostrowski type inequalities via the Katugampola fractional integrals. AIMS Mathematics, 2020, 5(1): 42-53. doi: 10.3934/math.2020004 |
[6] | Shuang-Shuang Zhou, Saima Rashid, Asia Rauf, Fahd Jarad, Y. S. Hamed, Khadijah M. Abualnaja . Efficient computations for weighted generalized proportional fractional operators with respect to a monotone function. AIMS Mathematics, 2021, 6(8): 8001-8029. doi: 10.3934/math.2021465 |
[7] | J. Vanterler da C. Sousa, E. Capelas de Oliveira . The Minkowski’s inequality by means of a generalized fractional integral. AIMS Mathematics, 2018, 3(1): 131-147. doi: 10.3934/Math.2018.1.131 |
[8] | Sajid Iqbal, Muhammad Samraiz, Gauhar Rahman, Kottakkaran Sooppy Nisar, Thabet Abdeljawad . Some new Grüss inequalities associated with generalized fractional derivative. AIMS Mathematics, 2023, 8(1): 213-227. doi: 10.3934/math.2023010 |
[9] | Thanin Sitthiwirattham, Muhammad Aamir Ali, Hüseyin Budak, Sotiris K. Ntouyas, Chanon Promsakon . Fractional Ostrowski type inequalities for differentiable harmonically convex functions. AIMS Mathematics, 2022, 7(3): 3939-3958. doi: 10.3934/math.2022217 |
[10] | Ghulam Farid, Hafsa Yasmeen, Hijaz Ahmad, Chahn Yong Jung . Riemann-Liouville Fractional integral operators with respect to increasing functions and strongly (α,m)-convex functions. AIMS Mathematics, 2021, 6(10): 11403-11424. doi: 10.3934/math.2021661 |
This paper introduced an efficient method to obtain the solution of linear and nonlinear weakly singular kernel fractional integro-differential equations (WSKFIDEs). It used Riemann-Liouville fractional integration (R-LFI) to remove singularities and approximated the regularized problem with a combined approach using the generalized fractional step-Mittag-Leffler function (GFSMLF) and operational integral fractional Mittag matrix (OIFMM) method. The resulting algebraic equations were turned into an optimization problem. We also proved the method's accuracy in approximating any function, as well as its fractional differentiation and integration within WSKFIDEs. The proposed method was performed on some attractive examples in order to show how their solutions behave at various values of the fractional order ϝ. The paper provided a valuable contribution to the field of fractional calculus (FC) by presenting a novel method for solving WSKFIDEs. Additionally, the accuracy of this method was verified by comparing its results with those obtained using other methods.
Hermite and Hadamard's inequality [1,2] is one of the most well-known inequalities in convex function theory, with a geometrical interpretation and numerous applications. The H·H inequality is defined as follows for the convex function Ψ:K→R on an interval K=[u,ν]:
Ψ(u+ν2)≤1ν−u∫νuΨ(x)dx≤Ψ(u)+Ψ(ν)2, | (1) |
for all u,ν∈K.
If f is concave, the inequalities in (1) hold in the reversed direction. We should point out that Hermite-Hadamard inequality is a refinement of the concept of convexity, and it follows naturally from Jensen's inequality. In recent years, the Hermite-Hadamard inequality for convex functions has gotten a lot of attention, and a lot of improvements and generalizations have been examined; see [3,4,5,6,7,8,9,10,11,12] and the references therein.
Interval analysis, on the other hand, is a subset of set-valued analysis, which is the study of sets in the context of mathematical analysis and topology. It was created as a way to deal with interval uncertainty, which can be found in many mathematical or computer models of deterministic real-world phenomena. Archimedes' method, which is used to calculate the circumference of a circle, is a historical example of an interval enclosure. Moore, who is credited with being the first user of intervals in computer mathematics, published the first book on interval analysis in 1966, see [13]. Following the publication of his book, a number of scientists began to research the theory and applications of interval arithmetic. Interval analysis is now a useful technique in a variety of fields that are interested in ambiguous data because of its applications. Computer graphics, experimental and computational physics, error analysis, robotics, and many other fields have applications.
In recent years, several major inequalities (Hermite-Hadamard, Ostrowski, etc.) for interval-valued functions have been studied. Chalco-Cano et al. used the Hukuhara derivative for interval-valued functions to construct Ostrowski type inequalities for interval-valued functions in [14,15]. For interval-valued functions, Román-Flores et al. established Minkowski and Beckenbach's inequalities in [18]. For the rest, see [16,17,18,19,20]. Inequalities, on the other hand, were investigated for the more generic set-valued maps. Sadowska, for example, presented the Hermite-Hadamard inequality in [21]. Other investigations can be found at [22,23].
Recently, Khan et al. [24] introduced the new class of convex fuzzy mappings is known as (h1,h2)-convex F-I-V-Fs by means of FOR such that:
Let h1,h2:[0,1]⊆K=[u,υ]→R+ such that h1,h2≢0. Then F-I-V-F ˜Ψ:K=[u,υ]→FC(R) is said to be (h1,h2)-convex on [u,υ] if
˜Ψ(ξw+(1−ξ)y)≼h1(ξ)h2(1−ξ)˜Ψ(w)˜+h1(1−ξ)h2(ξ)˜Ψ(y), | (2) |
for all w,y∈[u,υ],ξ∈[0,1].
And they also presented the following new version of H·H type inequality for (h1,h2)-convex F-I-V-F involving fuzzy-interval Riemann integrals:
Let ˜Ψ:[u,υ]→F0 be a (h1,h2)-convex F-I-V-F with h1,h2:[0,1]→R+ and h1(12)h2(12)≠0. Then, from θ-levels, we get the collection of I-V-Fs Ψθ:[u,υ]⊂R→K+C are given by Ψθ(ω)=[Ψ∗(ω,θ),Ψ∗(ω,θ)] for all ω∈[u,υ] and for all θ∈[0,1]. If ˜Ψ is fuzzy-interval Riemann integrable (in short, FR-integrable), then
12h1(12)h2(12)˜Ψ(u+υ2)≼1υ−u(FR)∫υu˜Ψ(ω)dω≼[˜Ψ(u)˜+˜Ψ(υ)]∫10h1(ξ)h2(1−ξ)dξ. | (3) |
If h1(ξ)=ξ and h2(ξ)≡1, then from (3), we get following the result for convex F-I-V-F:
˜Ψ(u+υ2)≼1υ−u(FR)∫υu˜Ψ(ω)dω≼˜Ψ(u)˜+˜Ψ(υ)2 |
A one step forward, Khan et al. introduced new classes of convex and generalized convex F-I-V-F, and derived new fractional H·H type and H·H type inequalities for convex F-I-V-F [25], h-convex F-I-V-F [26], (h1,h2)-preinvex F-I-V-F [27], log-s-convex F-I-V-Fs in the second sense [28], LR-log-h-convex I-V-Fs [29], harmonically convex F-I-V-Fs [30], coordinated convex F-I-V-Fs [31] and the references therein. We refer to the readers for further analysis of literature on the applications and properties of fuzzy-interval, and inequalities and generalized convex fuzzy mappings, see [32,33,34,35,36,37,38,39,40,41,42,43,44,45] and the references therein.
The goal of this study is to complete the fuzzy Riemann integrals for interval-valued functions and use these integrals to get the Hermite-Hadamard inequality. These integrals are also used to derive Hermite-Hadamard type inequalities for harmonically convex F-I-V-Fs.
In this section, we recall some basic preliminary notions, definitions and results. With the help of these results, some new basic definitions and results are also discussed.
We begin by recalling the basic notations and definitions. We define interval as,
[ω∗,ω∗]={w∈R:ω∗≤w≤ω∗andω∗,ω∗∈R},whereω∗≤ω∗. |
We write len [ω∗,ω∗]=ω∗−ω∗, If len [ω∗,ω∗]=0 then, [ω∗,ω∗] is called degenerate. In this article, all intervals will be non-degenerate intervals. The collection of all closed and bounded intervals of R is denoted and defined as KC={[ω∗,ω∗]:ω∗,ω∗∈Randω∗≤ω∗}. If ω∗≥0 then, [ω∗,ω∗] is called positive interval. The set of all positive interval is denoted by KC+ and defined as KC+={[ω∗,ω∗]:[ω∗,ω∗]∈KCandω∗≥0}.
We'll now look at some of the properties of intervals using arithmetic operations. Let [ϱ∗,ϱ∗],[s∗,s∗]∈KC and ρ∈R, then we have
[ϱ∗,ϱ∗]+[s∗,s∗]=[ϱ∗+s∗,ϱ∗+s∗], |
[ϱ∗,ϱ∗]×[s∗,s∗]=[min{ϱ∗s∗,ϱ∗s∗,ϱ∗s∗,ϱ∗s∗},max{ϱ∗s∗,ϱ∗s∗,ϱ∗s∗,ϱ∗s∗}], |
ρ.[ϱ∗,ϱ∗]={[ρϱ∗,ρϱ∗]ifρ>0{0}ifρ=0[ρϱ∗,ρϱ∗]ifρ<0. |
For [ϱ∗,ϱ∗],[s∗,s∗]∈KC, the inclusion "⊆" is defined by [ϱ∗,ϱ∗]⊆[s∗,s∗], if and only if s∗≤ϱ∗, ϱ∗≤s∗.
Remark 2.1. The relation "≤I" defined on KC by
[ϱ∗,ϱ∗]≤I[s∗,s∗]if and only ifϱ∗≤s∗,ϱ∗≤s∗, | (4) |
for all [ϱ∗,ϱ∗],[s∗,s∗]∈KC, it is an order relation, see [41]. For given [ϱ∗,ϱ∗],[s∗,s∗]∈KC, we say that [ϱ∗,ϱ∗]≤I[s∗,s∗] if and only if ϱ∗≤s∗,ϱ∗≤s∗ or ϱ∗≤s∗,ϱ∗<s∗.
Moore [13] initially proposed the concept of Riemann integral for I-V-F, which is defined as follows:
Theorem 2.2. [13] If Ψ:[u,ν]⊂R→KC is an I-V-F on such that Ψ(w)=[Ψ∗(w),Ψ∗(w)]. Then Ψ is Riemann integrable over [u,ν] if and only if, Ψ∗ and Ψ∗ both are Riemann integrable over [u,ν] such that
(IR)∫νuΨ(w)dw=[(R)∫νuΨ∗(w)dw,(R)∫νuΨ∗(w)dw]. | (5) |
Let R be the set of real numbers. A mapping ˜ζ:R→[0,1] called the membership function distinguishes a fuzzy subset set A of R. This representation is found to be acceptable in this study. F(R) also stand for the collection of all fuzzy subsets of R.
A real fuzzy interval ˜ζ is a fuzzy set in R with the following properties:
(1) ˜ζ is normal i.e. there exists w∈R such that ˜ζ(w)=1;
(2) ˜ζ is upper semi continuous i.e., for given w∈R, for every w∈R there exist ϵ>0 there exist δ>0 such that ˜ζ(w)−˜ζ(y)<ϵ for all y∈R with |w−y|<δ;
(3) ˜ζ is fuzzy convex i.e., ˜ζ((1−ξ)w+ξy)≥min(˜ζ(w),˜ζ(y)),∀w,y∈R and ξ∈[0,1];
(4) ˜ζ is compactly supported i.e., cl{w∈R|˜ζ(w)>0} is compact.
The collection of all real fuzzy intervals is denoted by F0.
Let ˜ζ∈F0 be real fuzzy interval, if and only if, θ-levels [˜ζ]θ is a nonempty compact convex set of R. This is represented by
[˜ζ]θ={w∈R|˜ζ(w)≥θ}, |
from these definitions, we have
[˜ζ]θ=[ζ∗(θ),ζ∗(θ)], |
where
ζ∗(θ)=inf{w∈R|˜ζ(w)≥θ}, |
ζ∗(θ)=sup{w∈R|˜ζ(w)≥θ}. |
Thus a real fuzzy interval ˜ζ can be identified by a parametrized triples
{(ζ∗(θ),ζ∗(θ),θ):θ∈[0,1]}. |
These two end point functions ζ∗(θ) and ζ∗(θ) are used to characterize a real fuzzy interval as a result.
Proposition 2.3. [18] Let ˜ζ,˜Θ∈F0. Then fuzzy order relation "≼" given on F0 by
˜ζ≼˜Θifandonlyif,[˜ζ]θ≤I[˜Θ]θforallθ∈(0,1], |
it is partial order relation.
We'll now look at some of the properties of fuzzy intervals using arithmetic operations. Let ˜ζ,˜Θ∈F0 and ρ∈R, then we have
[˜ζ˜+˜Θ]θ=[˜ζ]θ+[˜Θ]θ, | (6) |
[˜ζ˜×˜Θ]θ=[˜ζ]θ×[˜Θ]θ, | (7) |
[ρ.˜ζ]θ=ρ.[˜ζ]θ. | (8) |
For ψ∈F0 such that ˜ζ=˜Θ˜+˜ψ, we have the existence of the Hukuhara difference of ˜ζ and ˜Θ, which we call the H-difference of ˜ζ and ˜Θ, and denoted by ˜ζ˜−˜Θ. If H-difference exists, then
(ψ)∗(θ)=(ζ˜−Θ)∗(θ)=ζ∗(θ)−Θ∗(θ),(ψ)∗(θ)=(ζ˜−Θ)∗(θ)=ζ∗(θ)−Θ∗(θ). | (9) |
Definition 2.4. [38] A fuzzy-interval-valued map ˜Ψ:[u,υ]⊂R→F0 is called F-I-V-F. For each θ∈(0,1], whose θ-levels define the family of I-V-Fs Ψθ:[u,υ]⊂R→KC are given by Ψθ(w)=[Ψ∗(w,θ),Ψ∗(w,θ)] for all w∈[u,υ]. Here, for each θ∈(0,1], the end point real functions Ψ∗(.,θ),Ψ∗(.,θ):[u,υ]→R are called lower and upper functions of ˜Ψ.
The following conclusions can be drawn from the preceding literature review [38,39,40]:
Definition 2.5. Let ˜Ψ:[u,ν]⊂R→F0 be an F-I-V-F. Then fuzzy integral of ˜Ψ over [u,ν], denoted by (FR)∫νu˜Ψ(w)dw, it is given level-wise by
[(FR)∫νu˜Ψ(w)dw]θ=(IR)∫νuΨθ(w)dw={∫νuΨ(w,θ)dw:Ψ(w,θ)∈R([u,ν],θ)}, | (10) |
for all θ∈(0,1], where R([u,ν],θ) denotes the collection of Riemannian integrable functions of I-V-Fs. ˜Ψ is FR-integrable over [u,ν] if (FR)∫νu˜Ψ(w)dw∈F0. Note that, if Ψ∗(w,θ),Ψ∗(w,θ) are Lebesgue-integrable, then Ψ is fuzzy Aumann-integrable function over [u,ν], see [18,39,40].
Theorem 2.6. Let ˜Ψ:[u,ν]⊂R→F0 be a F-I-V-F, whose θ-levels define the family of I-V-Fs Ψθ:[u,ν]⊂R→KC are given by Ψθ(w)=[Ψ∗(w,θ),Ψ∗(w,θ)] for all w∈[u,ν] and for all θ∈(0,1]. Then ˜Ψ is FR-integrable over [u,ν] if and only if, Ψ∗(w,θ) and Ψ∗(w,θ) both are R-integrable over [u,ν]. Moreover, if ˜Ψ is FR-integrable over [u,ν], then
[(FR)∫νu˜Ψ(w)dw]θ=[(R)∫νuΨ∗(w,θ)dw,(R)∫νuΨ∗(w,θ)dw]=(IR)∫νuΨθ(w)dw, | (11) |
for all θ∈(0,1]. For all θ∈(0,1],FR([u,ν],θ) denotes the collection of all FR-integrable F-I-V-Fs over [u,ν].
Definition 2.7. [42] A set K=[u,υ]⊂R+=(0,∞) is said to be convex set, if, for all w,y∈K,ξ∈[0,1], we have
wyξw+(1−ξ)y∈K. | (12) |
Definition 2.8. [42] The Ψ:[u,υ]→R+ is called harmonically convex function on [u,υ] if
Ψ(wyξw+(1−ξ)y)≤(1−ξ)Ψ(w)+ξΨ(y), | (13) |
for all w,y∈[u,υ],ξ∈[0,1], where Ψ(w)≥0 for all w∈[u,υ]. If (13) is reversed then, Ψ is called harmonically concave F-I-V-F on [u,υ].
Definition 2.11. [30] The F-I-V-F ˜Ψ:[u,υ]→F0 is called harmonically convex F-I-V-F on [u,υ] if
˜Ψ(wyξw+(1−ξ)y)≼(1−ξ)˜Ψ(w)˜+ξ˜Ψ(y), | (14) |
for all w,y∈[u,υ],ξ∈[0,1], where ˜Ψ(w)≽˜0, for all w∈[u,υ]. If (14) is reversed then, ˜Ψ is called harmonically concave F-I-V-F on [u,υ].
Definition 2.12. The F-I-V-F ˜Ψ:[u,υ]→F0 is called harmonically convex F-I-V-F on [u,υ] if
˜Ψ(wyξw+(1−ξ)y)≼(1−ξ)˜Ψ(w)˜+ξ˜Ψ(y), | (15) |
for all w,y∈[u,υ],ξ∈[0,1], where ˜Ψ(w)≽˜0, for all w∈[u,υ]. If (15) is reversed then, ˜Ψ is called harmonically concave F-I-V-F on [u,υ]. The set of all harmonically convex (harmonically concave) F-I-V-F is denoted by
HFSX([u,υ],F0), |
(HFSV([u,υ],F0)). |
Theorem 2.13. Let [u,υ] be harmonically convex set, and let ˜Ψ:[u,υ]→FC(R) be a F-I-V-F, whose θ-levels define the family of I-V-Fs Ψθ:[u,υ]⊂R→K+C⊂KC are given by
Ψθ(w)=[Ψ∗(w,θ),Ψ∗(w,θ)],∀w∈[u,υ]. | (16) |
for all w∈[u,υ], θ∈[0,1]. Then, ˜Ψ∈HFSX([u,υ],F0), if and only if, for all ∈[0,1],Ψ∗(w,θ), Ψ∗(w,θ)∈HSX([u,υ],R+).
Proof. The demonstration of proof is similar to proof of Theorem 2.12, see [26].
Example 2.14. We consider the F-I-V-Fs ˜Ψ:[0,2]→FC(R) defined by,
˜Ψ(w)(∂)={∂√w∂∈[0,√w]2−∂2√w∂∈(√w,2√w]0otherwise. |
Then, for each θ∈[0,1], we have Ψθ(w)=[θ√w,(2−θ)√w]. Since Ψ∗(w,θ), Ψ∗(w,θ)∈HSX([u,υ],R+), for each θ∈[0,1]. Hence ˜Ψ∈HFSX([u,υ],F0).
Remark 2.15. If T∗(u,θ)=T∗(υ,θ) with θ=1, then harmonically convex F-I-V-F reduces to the classical harmonically convex function, see [42].
In this section, we will prove two types of inequalities. First one is 𝐻.𝐻 and their variant forms, and the second one is H·H Fejér inequalities for convex F-I-V-Fs where the integrands are F-I-V-Fs.
Theorem 3.1. Let ˜Ψ∈HFSX([u,υ],F0), whose θ-levels define the family of I-V-Fs Ψθ:[u,υ]⊂R→K+C are given by Ψθ(w)=[Ψ∗(w,θ),Ψ∗(w,θ)] for all w∈[u,υ], θ∈[0,1]. If ˜Ψ∈FR([u,υ],θ), then
˜Ψ(2uυu+υ)≼uυυ−u∫υu˜Ψ(w)w2dw≼˜Ψ(u)˜+˜Ψ(υ)2. | (17) |
If ˜Ψ∈HFSV([u,υ],F0), then
˜Ψ(2uυu+υ)≽uυυ−u∫υu˜Ψ(w)w2dw≽˜Ψ(u)˜+˜Ψ(υ)2. | (18) |
Proof. Let ˜Ψ∈HFSX([u,υ],F0),. Then, by hypothesis, we have
2˜Ψ(2uυu+υ)≼˜Ψ(uυξu+(1−ξ)υ)˜+˜Ψ(uυ(1−ξ)u+ξυ). |
Therefore, for each θ∈[0,1], we have
2Ψ∗(2uυu+υ,θ)≤Ψ∗(uυξu+(1−ξ)υ,θ)+Ψ∗(uυ(1−ξ)u+ξυ,θ),2Ψ∗(2uυu+υ,θ)≤Ψ∗(uυξu+(1−ξ)υ,θ)+Ψ∗(uυ(1−ξ)u+ξυ,θ). |
Then
2∫10Ψ∗(2uυu+υ,θ)dξ≤∫10Ψ∗(uυξu+(1−ξ)υ,θ)dξ+∫10Ψ∗(uυ(1−ξ)u+ξυ,θ)dξ,2∫10Ψ∗(2uυu+υ,θ)dξ≤∫10Ψ∗(uυξu+(1−ξ)υ,θ)dξ+∫10Ψ∗(uυ(1−ξ)u+ξυ,θ)dξ. |
It follows that
Ψ∗(2uυu+υ,θ)≤uυυ−u∫υuΨ∗(w,θ)w2dw,Ψ∗(2uυu+υ,θ)≤uυυ−u∫υuΨ∗(w,θ)w2dw. |
That is
[Ψ∗(2uυu+υ,θ),Ψ∗(2uυu+υ,θ)]≤Iuυυ−u[∫υuΨ∗(w,θ)w2dw,∫υuΨ∗(w,θ)w2dw]. |
Thus,
˜Ψ(2uυu+υ)≼uυυ−u(FR)∫υu˜Ψ(w)w2dw. | (19) |
In a similar way as above, we have
uυυ−u(FR)∫υu˜Ψ(w)w2dw≼˜Ψ(u)˜+˜Ψ(υ)2. | (20) |
Combining (19) and (20), we have
˜Ψ(2uυu+υ)≼uυυ−u∫υu˜Ψ(w)w2dw≼˜Ψ(u)˜+˜Ψ(υ)2. |
Hence, the required result.
Remark 3.2. If Ψ∗(w,θ)=Ψ∗(w,θ) with θ=1, then Theorem 3.1 reduces to the result for classical harmonically convex function, see [42]:
Ψ(2uυu+υ)≤uυυ−u(R)∫υuΨ(w)w2dw≤Ψ(u)+Ψ(υ)2. |
Example 3.3. We consider the FIVFs ˜Ψ:[0,2]→FC(R), as in Example 2.14. Then, for each θ∈[0,1], we have Ψθ(w)=[θ√w,(2−θ)√w] is harmonically convex FIVF. Since, Ψ∗(w,θ)=θ√w,Ψ∗(w,θ)=(2−θ)√w. We now compute the following:
Ψ∗(2uυu+υ,θ)≤uυυ−u∫υuΨ∗(w,θ)w2dw≤Ψ∗(u,θ)+Ψ∗(υ,θ)2, |
Ψ∗(2uυu+υ,θ)=Ψ∗(0,θ)=0, |
uυυ−u∫υuΨ∗(w,θ)w2dw=02∫20θ√ww2dw=0, |
Ψ∗(u,θ)+Ψ∗(υ,θ)2=θ√2, |
for all θ∈[0,1]. That means
0≤0≤θ√2. |
Similarly, it can be easily show that
Ψ∗(2uυu+υ,θ)≤uυυ−u∫υuΨ∗(w,θ)w2dw≤Ψ∗(u,θ)+Ψ∗(υ,θ)2. |
for all θ∈[0,1], such that
Ψ∗(2uυu+υ,θ)=Ψ∗(0,θ)=0, |
uυυ−u∫υuΨ∗(w,θ)w2dw=02∫20(2−θ)√ww2dw=0, |
Ψ∗(u,θ)+Ψ∗(υ,θ)2=(2−θ)√2. |
From which, we have
0≤0≤(2−θ)√2, |
that is
[0,0]≤I[0,0]≤I1√2[θ,(2−θ)],forallθ∈[0,1]. |
Hence,
˜Ψ(2uυu+υ)≼uυυ−u∫υu˜Ψ(w)w2dw≼˜Ψ(u)˜+˜Ψ(υ)2. |
Theorem 3.4. Let ˜Ψ∈HFSX([u,υ],F0), whose θ-levels define the family of I-V-Fs Ψθ:[u,υ]⊂R→K+C are given by Ψθ(w)=[Ψ∗(w,θ),Ψ∗(w,θ)] for all w∈[u,υ], θ∈[0,1]. If ˜Ψ∈FR([u,υ],θ), then
˜Ψ(2uυu+υ)≼⪧2≼uυυ−u(FR)∫υu˜Ψ(w)w2dw≼⪧1≼˜Ψ(u)˜+˜Ψ(υ)2, | (21) |
where
⪧1=12[˜Ψ(u)˜+˜Ψ(υ)2˜+˜Ψ(2uυu+υ)], |
⪧2=12[˜Ψ(4uυu+3υ)˜+˜Ψ(4uυ3u+υ)], |
and ⪧1=[⪧1∗,⪧1∗], ⪧2=[⪧2∗,⪧2∗]. If ˜Ψ∈HFSV([u,υ],F0), then inequality (21) is reversed.
Proof. Take [u,2uυu+υ], we have
2˜Ψ(u4uυu+υξu+(1−ξ)2uυu+υ+u4uυu+υ(1−ξ)u+ξ2uυu+υ) |
≼˜Ψ(u2uυu+υξu+(1−ξ)2uυu+υ)˜+˜Ψ(u2uυu+υ(1−ξ)u+ξ2uυu+υ). |
Therefore, for every θ∈[0,1], we have
2Ψ∗(u4uυu+υξu+(1−ξ)2uυu+υ+u4uυu+υ(1−ξ)u+ξ2uυu+υ,θ)≤Ψ∗(u2uυu+υξu+(1−ξ)2uυu+υ,θ)+Ψ∗(u2uυu+υ(1−ξ)u+ξ2uυu+υ,θ),2Ψ∗(u4uυu+υξu+(1−ξ)2uυu+υ+u4uυu+υ(1−ξ)u+ξ2uυu+υ,θ)≤Ψ∗(u2uυu+υξu+(1−ξ)2uυu+υ,θ)+Ψ∗(u2uυu+υ(1−ξ)u+ξ2uυu+υ,θ). |
In consequence, we obtain
12Ψ∗(4uυu+3υ,θ)≤uυυ−u∫2uυu+υuΨ∗(w,θ)w2dw,12Ψ∗(4uυu+3υ,θ)≤uυυ−u∫2uυu+υuΨ∗(w,θ)w2dw. |
That is
12[Ψ∗(4uυu+3υ,θ),Ψ∗(4uυu+3υ,θ)]≤Iuυυ−u[∫2uυu+υuΨ∗(w,θ)w2dw,∫2uυu+υuΨ∗(w,θ)w2dw]. |
It follows that
12˜Ψ(4uυu+3υ)≼uυυ−u∫2uυu+υu˜Ψ(w)w2dw. | (22) |
In a similar way as above, we have
12˜Ψ(4uυ3u+υ)≼uυυ−u∫υ2uυu+υ˜Ψ(w)w2dw. | (23) |
Combining (22) and (23), we have
12[˜Ψ(4uυu+3υ)˜+˜Ψ(4uυ3u+υ)]≼uυυ−u∫υu˜Ψ(w)w2dw. | (24) |
Therefore, for every θ∈[0,1], by using Theorem 3.1, we have
Ψ∗(2uυu+υ,θ)≤12[Ψ∗(4uυu+3υ,θ)+Ψ∗(4uυ3u+υ,θ)],Ψ∗(2uυu+υ,θ)≤12[Ψ∗(4uυu+3υ,θ)+Ψ∗(4uυ3u+υ,θ)], |
=⪧2∗,=⪧2∗, |
≤uυυ−u∫υuΨ∗(w,θ)w2dw,≤uυυ−u∫υuΨ∗(w,θ)w2dw, |
≤12[Ψ∗(u,θ)+Ψ∗(υ,θ)2+Ψ∗(2uυu+υ,θ)],≤12[Ψ∗(u,θ)+Ψ∗(υ,θ)2+Ψ∗(2uυu+υ,θ)], |
=⪧1∗,=⪧1∗, |
≤12[Ψ∗(u,θ)+Ψ∗(υ,θ)2+12(Ψ∗(u,θ)+Ψ∗(υ,θ))],≤12[Ψ∗(u,θ)+Ψ∗(υ,θ)2+12(Ψ∗(u,θ)+Ψ∗(υ,θ))], |
=12[Ψ∗(u,θ)+Ψ∗(υ,θ)],=12[Ψ∗(u,θ)+Ψ∗(υ,θ)], |
that is
˜Ψ(2uυu+υ)≼⪧2≼uυυ−u(FR)∫υu˜Ψ(w)w2dw≼⪧1≼12[˜Ψ(u)˜+˜Ψ(υ)]. |
Theorem 3.5. Let ˜Ψ∈HFSX([u,υ],F0) and ˜P∈HFSX([u,υ],F0), whose θ-levels Ψθ,Pθ:[u,υ]⊂R→K+C are defined by Ψθ(w)=[Ψ∗(w,θ),Ψ∗(w,θ)] and Pθ(w)=[P∗(w,θ),P∗(w,θ)] for all w∈[u,υ], θ∈[0,1], respectively. If ˜Ψ˜×˜P∈FR([u,υ],θ), then
uυυ−u(FR)∫υu˜Ψ(w)˜×˜P(w)w2dw≼˜M(u,υ)3˜+˜N(u,υ)6, |
where ˜M(u,υ)=˜Ψ(u)˜×˜P(u)˜+˜Ψ(υ)˜×˜P(υ),˜N(u,υ)=˜Ψ(u)˜×˜P(υ)˜+˜Ψ(υ)˜×˜P(u), and Mθ(u,υ)=[M∗((u,υ),θ),M∗((u,υ),θ)] and Nθ(u,υ)=[N∗((u,υ),θ),N∗((u,υ),θ)].
Proof. Since ˜Ψ,˜P are harmonically convex F-I-V-Fs then, for each θ∈[0,1] we have
Ψ∗(uυ(1−ξ)u+ξυ,θ)≤ξΨ∗(u,θ)+(1−ξ)Ψ∗(υ,θ),Ψ∗(uυ(1−ξ)u+ξυ,θ)≤ξΨ∗(u,θ)+(1−ξ)Ψ∗(υ,θ). |
And
P∗(uυ(1−ξ)u+ξυ,θ)≤ξP∗(u,θ)+(1−ξ)P∗(υ,θ),P∗(uυ(1−ξ)u+ξυ,θ)≤ξP∗(u,θ)+(1−ξ)P∗(υ,θ). |
From the definition of harmonically convexity of F-I-V-Fs it follows that ˜Ψ(w)≽˜0 and ˜P(w)≽˜0, so
Ψ∗(uυ(1−ξ)u+ξυ,θ)×P∗(uυ(1−ξ)u+ξυ,θ)≤(ξΨ∗(u,θ)+(1−ξ)Ψ∗(υ,θ))(ξP∗(u,θ)+(1−ξ)P∗(υ,θ))=Ψ∗(u,θ)×P∗(u,θ)[(ξ)(ξ)]+Ψ∗(υ,θ)×P∗(υ,θ)[(1−ξ)(1−ξ)]+Ψ∗(u,θ)P∗(υ,θ)ξ(1−ξ)+Ψ∗(υ,θ)×P∗(u,θ)ξ(1−ξ), |
Ψ∗(uυ(1−ξ)u+ξυ,θ)×P∗(uυ(1−ξ)u+ξυ,θ)≤(ξΨ∗(u,θ)+(1−ξ)Ψ∗(υ,θ))(ξP∗(u,θ)+(1−ξ)P∗(υ,θ))=Ψ∗(u,θ)×P∗(u,θ)[(ξ)(ξ)]+Ψ∗(υ,θ)×P∗(υ,θ)[(1−ξ)(1−ξ)]+Ψ∗(u,θ)×P∗(υ,θ)ξ(1−ξ)+Ψ∗(υ,θ)×P∗(u,θ)ξ(1−ξ). |
Integrating both sides of above inequality over [0, 1] we get
∫10Ψ∗(uυ(1−ξ)u+ξυ,θ)×P∗(uυ(1−ξ)u+ξυ,θ)=uυυ−u∫υuΨ∗(w,θ)×P∗(w,θ)w2dw≤(Ψ∗(u,θ)×P∗(u,θ)+Ψ∗(υ,θ)×P∗(υ,θ))∫10(ξ)(ξ)dξ+(Ψ∗(u,θ)×P∗(υ,θ)+Ψ∗(υ,θ)×P∗(u,θ))∫10ξ(1−ξ)dξ,∫10Ψ∗(uυ(1−ξ)u+ξυ,θ)×P∗(uυ(1−ξ)u+ξυ,θ)=uυυ−u∫υuΨ∗(w,θ)×P∗(w,θ)w2dw |
≤(Ψ∗(u,θ)×P∗(u,θ)+Ψ∗(υ,θ)×P∗(υ,θ))∫10(ξ)(ξ)dξ |
+(Ψ∗(u,θ)×P∗(υ,θ)+Ψ∗(υ,θ)×P∗(u,θ))∫10ξ(1−ξ)dξ. |
It follows that,
uυυ−u∫υuΨ∗(w,θ)×P∗(w,θ)dw≤M∗((u,υ),θ)3+N∗((u,υ),θ)6uυυ−u∫υuΨ∗(w,θ)×P∗(w,θ)dw≤M∗((u,υ),θ)3+N∗((u,υ),θ)6, |
that is
uυυ−u[∫υuΨ∗(w,θ)×P∗(w,θ)dw,∫υuΨ∗(w,θ)×P∗(w,θ)dw] |
≤I13[M∗((u,υ),θ),M∗((u,υ),θ)]+16[N∗((u,υ),θ),N∗((u,υ),θ)]. |
Thus,
uυυ−u(FR)∫υu˜Ψ(w)˜×˜P(w)w2dw≼˜M(u,υ)3˜+˜N(u,υ)6. |
Theorem 3.6. Let ˜Ψ,˜P∈HFSX([u,υ],F0), whose θ-levels Ψθ,Pθ:[u,υ]⊂R→K+C are defined by Ψθ(w)=[Ψ∗(w,θ),Ψ∗(w,θ)] and Pθ(w)=[P∗(w,θ),P∗(w,θ)] for all w∈[u,υ], θ∈[0,1], respectively. If ˜Ψ˜×˜P∈FR([u,υ],θ), then
2˜Ψ(2uυu+υ)˜×˜P(2uυu+υ)≼uυυ−u(FR)∫υu˜Ψ(w)˜×˜P(w)w2dw+˜M(u,υ)6˜+˜N(u,υ)3, |
where ˜M(u,υ)=˜Ψ(u)˜×˜P(u)˜+˜Ψ(υ)˜×˜P(υ),˜N(u,υ)=˜Ψ(u)˜×˜P(υ)˜+˜Ψ(υ)˜×˜P(u), and Mθ(u,υ)=[M∗((u,υ),θ),M∗((u,υ),θ)] and Nθ(u,υ)=[N∗((u,υ),θ),N∗((u,υ),θ)].
Proof. By hypothesis, for each θ∈[0,1], we have
Ψ∗(2uυu+υ,θ)×J∗(2uυu+υ,θ)Ψ∗(2uυu+υ,θ)×J∗(2uυu+υ,θ) |
≤14[Ψ∗(uυξu+(1−ξ)υ,θ)×J∗(uυξu+(1−ξ)υ,θ)+Ψ∗(uυξu+(1−ξ)υ,θ)×J∗(uυξu+(1−ξ)υ,θ)]+14[Ψ∗(uυ(1−ξ)u+ξυ,θ)×J∗(uυξu+(1−ξ)υ,θ)+Ψ∗(uυξu+(1−ξ)υ,θ)×J∗(uυ(1−ξ)u+ξυ,θ)],≤14[Ψ∗(uυξu+(1−ξ)υ,θ)×J∗(uυξu+(1−ξ)υ,θ)+Ψ∗(uυξu+(1−ξ)υ,θ)×J∗(uυξu+(1−ξ)υ,θ)]+14[Ψ∗(uυ(1−ξ)u+ξυ,θ)×J∗(uυξu+(1−ξ)υ,θ)+Ψ∗(uυξu+(1−ξ)υ,θ)×J∗(uυ(1−ξ)u+ξυ,θ)], |
≤14[Ψ∗(uυξu+(1−ξ)υ,θ)×J∗(uυξu+(1−ξ)υ,θ)+Ψ∗(uυ(1−ξ)u+ξυ,θ)×J∗(uυξu+(1−ξ)υ,θ)]+14[(ξΨ∗(u,θ)+(1−ξ)Ψ∗(υ,θ))×((1−ξ)J∗(u,θ)+ξJ∗(υ,θ))+((1−ξ)Ψ∗(u,θ)+ξΨ∗(υ,θ))×(ξJ∗(u,θ)+(1−ξ)J∗(υ,θ))],≤14[Ψ∗(uυξu+(1−ξ)υ,θ)×J∗(uυξu+(1−ξ)υ,θ)+Ψ∗(uυξu+(1−ξ)υθ)×J∗(uυξu+(1−ξ)υ,θ)]+14[(ξΨ∗(u,θ)+(1−ξ)Ψ∗(υ,θ))×((1−ξ)J∗(u,θ)+ξJ∗(υ,θ))+((1−ξ)Ψ∗(u,θ)+ξΨ∗(υ,θ))×(ξJ∗(u,θ)+(1−ξ)J∗(υ,θ))], |
=14[Ψ∗(uυξu+(1−ξ)υ,θ)×J∗(uυξu+(1−ξ)υ,θ)+Ψ∗(uυξu+(1−ξ)υ,θ)×J∗(uυξu+(1−ξ)υ,θ)]+14[{(ξ)(ξ)+(1−ξ)(1−ξ)}N∗((u,υ),θ)+{ξ(1−ξ)+ξ(1−ξ)}M∗((u,υ),θ)],=14[Ψ∗(uυξu+(1−ξ)υ,θ)×J∗(uυξu+(1−ξ)υ,θ)+Ψ∗(uυξu+(1−ξ)υ,θ)×J∗(uυξu+(1−ξ)υ,θ)]+14[{(ξ)(ξ)+(1−ξ)(1−ξ)}N∗((u,υ),θ)+{ξ(1−ξ)+ξ(1−ξ)}M∗((u,υ),θ)]. |
Integrating over \left[0, 1\right], we have
2{\varPsi }_{*}\left(\frac{2{u}\upsilon }{{u}+\upsilon }, \theta\right)\times {\mathcal{J}}_{*}\left(\frac{2{u}\upsilon }{{u}+\upsilon }, \theta\right)\\ \le \frac{1}{\upsilon -{u}}\left(R\right){\int }_{{u}}^{\upsilon }{\varPsi }_{*}\left({w}, \theta\right)\times {\mathcal{J}}_{*}\left({w}, \theta\right)d{w}+{\mathcal{M}}_{*}\left(\left({u}, \upsilon \right), \theta\right){\int }_{0}^{1}\xi \left(1-\xi \right)d\xi \\ +{\mathcal{N}}_{*}\left(\left({u}, \upsilon \right), \theta\right){\int }_{0}^{1}\left(\xi \right)\left(\xi \right)d\xi , \\ 2{\varPsi }^{*}\left(\frac{2{u}\upsilon }{{u}+\upsilon }, \theta\right)\times {\mathcal{J}}^{*}\left(\frac{2{u}\upsilon }{{u}+\upsilon }, \theta\right)\\ \le \frac{1}{\upsilon -{u}}\left(R\right){\int }_{{u}}^{\upsilon }{\varPsi }^{*}\left({w}, \theta\right){\times \mathcal{J}}^{*}\left({w}, \theta\right)d{w}+{\mathcal{M}}^{*}\left(\left({u}, \upsilon \right), \theta\right){\int }_{0}^{1}\xi \left(1-\xi \right)d\xi \\+{\mathcal{N}}^{*}\left(\left({u}, \upsilon \right), \theta\right){\int }_{0}^{1}\left(\xi \right)\left(\xi \right)d\xi , |
that is
2\widetilde{\varPsi }\left(\frac{2{u}\upsilon }{{u}+\upsilon }\right)\widetilde{\times }\widetilde{\mathcal{P}}\left(\frac{2{u}\upsilon }{{u}+\upsilon }\right)\preccurlyeq \frac{\begin{array}{c}\\ u\upsilon \end{array}}{\upsilon -{u}}\left(FR\right){\int }_{{u}}^{\upsilon }\frac{\widetilde{\varPsi }\left({w}\right)\widetilde{\times }\widetilde{\mathcal{P}}\left({w}\right)}{{{w}}^{2}}d{w}+\frac{\widetilde{\mathcal{M}}\left({u}, \upsilon \right)}{6}\widetilde{+}\frac{\widetilde{\mathcal{N}}\left({u}, \upsilon \right)}{3}\text{.} |
The theorem has been proved.
First, we will purpose the following inequality linked with the right part of the classical H-H Fejér inequality for harmonically convex F-I-V-Fs through fuzzy order relation, which is said to be 2nd fuzzy H-H Fejér inequality.
Theorem 3.7. (Second fuzzy H-H Fejér inequality) Let \widetilde{\varPsi }\in HFSX\left(\left[{u}, \upsilon \right], {\mathbb{F}}_{0}\right) , whose \theta -levels define the family of I-V-Fs {\varPsi }_{\theta}:\left[{u}, \upsilon \right]\subset \mathbb{R}\to {\mathcal{K}}_{C}^{+} are given by {\varPsi }_{\theta}\left({w}\right) = \left[{\varPsi }_{*}\left({w}, \theta\right), {\varPsi }^{*}\left({w}, \theta\right)\right] for all {w}\in \left[{u}, \upsilon \right] , \theta\in \left[0, 1\right] . If \widetilde{\varPsi }\in {\mathcal{F}\mathcal{R}}_{\left(\left[{u}, \upsilon \right], \theta\right)} and \nabla :\left[{u}, \upsilon \right]\to \mathbb{R}, \nabla \left(\frac{1}{\frac{1}{{u}}+\frac{1}{\upsilon }-\frac{1}{{w}}}\right) = \nabla \left({w}\right)\ge 0, then
\left(FR\right){\int }_{{u}}^{\nu }\frac{\widetilde{\varPsi }\left({w}\right)}{{{w}}^{2}}\nabla \left({w}\right)d{w}\preccurlyeq \frac{\widetilde{\varPsi }\left({u}\right)\widetilde{+}\widetilde{\varPsi }\left(\nu \right)}{2}{\int }_{0}^{1}\frac{\nabla \left({w}\right)}{{{w}}^{2}}d{w}\text{.} | (25) |
If \widetilde{\varPsi }\in HFSV\left(\left[{u}, \upsilon \right], {\mathbb{F}}_{0}\right) , then inequality (25) is reversed.
Proof. Let \varPsi be a harmonically convex F-I-V-F. Then, for each \theta\in \left[0, 1\right], we have
{\varPsi }_{*}\left(\frac{{u}\upsilon }{\left(1-\xi \right){u}+\xi \upsilon }, \theta\right)\nabla \left(\frac{{u}\upsilon }{\left(1-\xi \right){u}+\xi \upsilon }\right) |
\le \left(\xi {\varPsi }_{*}\left({u}, \theta\right)+\left(1-\xi \right){\varPsi }_{*}\left(\nu , \theta\right)\right)\nabla \left(\frac{{u}\upsilon }{\left(1-\xi \right){u}+\xi \upsilon }\right), |
{\varPsi }^{*}\left(\frac{{u}\upsilon }{\left(1-\xi \right){u}+\xi \upsilon }, \theta\right)\nabla \left(\frac{{u}\upsilon }{\left(1-\xi \right){u}+\xi \upsilon }\right) |
\le \left(\xi {\varPsi }^{*}\left({u}, \theta\right)+\left(1-\xi \right){\varPsi }^{*}\left(\nu , \theta\right)\right)\nabla \left(\frac{{u}\upsilon }{\left(1-\xi \right){u}+\xi \upsilon }\right). | (26) |
And
{\varPsi }_{*}\left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }, \theta\right)\nabla \left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }\right) |
\le \left(\left(1-\xi \right){\varPsi }_{*}\left({u}, \theta\right)+\xi {\varPsi }_{*}\left(\nu , \theta\right)\right)\nabla \left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }\right), |
{\varPsi }^{*}\left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }, \theta\right)\nabla \left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }\right) |
\le \left(\left(1-\xi \right){\varPsi }^{*}\left({u}, \theta\right)+\xi {\varPsi }^{*}\left(\nu , \theta\right)\right)\nabla \left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }\right). | (27) |
After adding (26) and (27), and integrating over \left[0, 1\right], we get
{\int }_{0}^{1}{\varPsi }_{*}\left(\frac{{u}\upsilon }{\left(1-\xi \right){u}+\xi \upsilon }, \theta\right)\nabla \left(\frac{{u}\upsilon }{\left(1-\xi \right){u}+\xi \upsilon }\right)d\xi |
+{\int }_{0}^{1}{\varPsi }_{*}\left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }, \theta\right)\nabla \left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }\right)d\xi \\ \le {\int }_{0}^{1}\left[\begin{array}{c}{\varPsi }_{*}\left({u}, \theta\right)\left\{\begin{array}{c}\xi \nabla \left(\frac{{u}\upsilon }{\left(1-\xi \right){u}+\xi \upsilon }\right)+\left(1-\xi \right)\nabla \left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }\right)\end{array}\right\}\\ +{\varPsi }_{*}\left(\nu , \theta\right)\left\{\begin{array}{c}\left(1-\xi \right)\nabla \left(\frac{{u}\upsilon }{\left(1-\xi \right){u}+\xi \upsilon }\right)+\xi \nabla \left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }\right)\end{array}\right\}\end{array}\right]d\xi , \\ {\int }_{0}^{1}{\varPsi }^{*}\left(\frac{{u}\upsilon }{\left(1-\xi \right){u}+\xi \upsilon }, \theta\right)\nabla \left(\frac{{u}\upsilon }{\left(1-\xi \right){u}+\xi \upsilon }\right)d\xi \\ +{\int }_{0}^{1}{\varPsi }^{*}\left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }, \theta\right)\nabla \left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }\right)d\xi \\ \le {\int }_{0}^{1}\left[\begin{array}{c}{\varPsi }^{*}\left({u}, \theta\right)\left\{\begin{array}{c}\xi \nabla \left(\frac{{u}\upsilon }{\left(1-\xi \right){u}+\xi \upsilon }\right)+\left(1-\xi \right)\nabla \left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }\right)\end{array}\right\}\\ +{\varPsi }^{*}\left(\nu , \theta\right)\left\{\begin{array}{c}\left(1-\xi \right)\nabla \left(\frac{{u}\upsilon }{\left(1-\xi \right){u}+\xi \upsilon }\right)+\xi \nabla \left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }\right)\end{array}\right\}\end{array}\right]d\xi . |
= 2{\varPsi }_{*}\left({u}, \theta\right){\int }_{0}^{1}\begin{array}{c}\xi \nabla \left(\frac{{u}\upsilon }{\left(1-\xi \right){u}+\xi \upsilon }\right)\end{array}d\xi +2{\varPsi }_{*}\left(\nu , \theta\right){\int }_{0}^{1}\begin{array}{c}\xi \nabla \left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }\right)\end{array}d\xi , \\ = 2{\varPsi }^{*}\left({u}, \theta\right){\int }_{0}^{1}\begin{array}{c}\xi \nabla \left(\frac{{u}\upsilon }{\left(1-\xi \right){u}+\xi \upsilon }\right)\end{array}d\xi +2{\varPsi }^{*}\left(\nu , \theta\right){\int }_{0}^{1}\begin{array}{c}\xi \nabla \left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }\right)\end{array}d\xi . |
Since \nabla is symmetric, then
= 2\left[{\varPsi }_{*}\left({u}, \theta\right)+{\varPsi }_{*}\left(\nu , \theta\right)\right]{\int }_{0}^{1}\begin{array}{c}\xi \nabla \left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }\right)\end{array}d\xi , |
= 2\left[{\varPsi }^{*}\left({u}, \theta\right)+{\varPsi }^{*}\left(\nu , \theta\right)\right]{\int }_{0}^{1}\begin{array}{c}\xi \nabla \left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }\right)\end{array}d\xi . | (28) |
Since
{\int }_{0}^{1}{\varPsi }_{*}\left(\xi {u}+\left(1-\xi \right)\nu , \theta\right)\nabla \left(\frac{{u}\upsilon }{\left(1-\xi \right){u}+\xi \upsilon }\right)d\xi \\ = {\int }_{0}^{1}{\varPsi }_{*}\left(\left(1-\xi \right){u}+\xi \nu , \theta\right)\nabla \left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }\right)d\xi \\ = \frac{{u}\upsilon }{\nu -{u}}{\int }_{{u}}^{\nu }{\varPsi }_{*}\left({w}, \theta\right)\nabla \left({w}\right)d{w}\\{\int }_{0}^{1}{\varPsi }^{*}\left(\left(1-\xi \right){u}+\xi \nu , \theta\right)\nabla \left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }\right)d\xi \\ = {\int }_{0}^{1}{\varPsi }^{*}\left(\xi {u}+\left(1-\xi \right)\nu , \theta\right)\nabla \left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }\right)d\xi |
= \frac{{u}\upsilon }{\nu -{u}}{\int }_{{u}}^{\nu }{\varPsi }^{*}\left({w}, \theta\right)\nabla \left({w}\right)d{w}. | (29) |
From (28) and (29), we have
\frac{{u}\upsilon }{\nu -{u}}{\int }_{{u}}^{\nu }{\varPsi }_{*}\left({w}, \theta\right)\nabla \left({w}\right)d{w}\le \left[{\varPsi }_{*}\left({u}, \theta\right)+{\varPsi }_{*}\left(\nu , \theta\right)\right]{\int }_{0}^{1}\begin{array}{c}\xi \nabla \left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }\right)\end{array}d\xi , \\ \frac{{u}\upsilon }{\nu -{u}}{\int }_{{u}}^{\nu }{\varPsi }^{*}\left({w}, \theta\right)\nabla \left({w}\right)d{w}\le \left[{\varPsi }^{*}\left({u}, \theta\right)+{\varPsi }^{*}\left(\nu , \theta\right)\right]{\int }_{0}^{1}\begin{array}{c}\xi \nabla \left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }\right)\end{array}d\xi , |
that is
\left[\frac{{u}\upsilon }{\nu -{u}}{\int }_{{u}}^{\nu }{\varPsi }_{*}\left({w}, \theta\right)\nabla \left({w}\right)d{w}, \frac{{u}\upsilon }{\nu -{u}}{\int }_{{u}}^{\nu }{\varPsi }^{*}\left({w}, \theta\right)\nabla \left({w}\right)d{w}\right] |
{\le }_{I}\left[{\varPsi }_{*}\left({u}, \theta\right)+{\varPsi }_{*}\left(\nu , \theta\right), {\varPsi }^{*}\left({u}, \theta\right)+{\varPsi }^{*}\left(\nu , \theta\right)\right]{\int }_{0}^{1}\begin{array}{c}\xi \nabla \left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }\right)\end{array}d\xi \text{, } |
hence
\frac{{u}\upsilon }{\nu -{u}}\left(FR\right){\int }_{{u}}^{\nu }\frac{\widetilde{\varPsi }\left({w}\right)}{{{w}}^{2}}\nabla \left({w}\right)d{w}\preccurlyeq \left[\widetilde{\varPsi }\left({u}\right)\widetilde{+}\widetilde{\varPsi }\left(\nu \right)\right]{\int }_{0}^{1}\xi \nabla \left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }\right)d\xi , |
this concludes the proof.
Next, we construct first H·H Fejér inequality for harmonically convex F-I-V-F, which generalizes first H-H Fejér inequality for harmonically convex function.
Theorem 3.8. (First fuzzy fractional H-H Fejér inequality) Let \widetilde{\varPsi }\in HFSX\left(\left[{u}, \upsilon \right], {\mathbb{F}}_{0}\right) , whose \theta -levels define the family of I-V-Fs {\varPsi }_{\theta}:\left[{u}, \upsilon \right]\subset \mathbb{R}\to {\mathcal{K}}_{C}^{+} are given by {\varPsi }_{\theta}\left({w}\right) = \left[{\varPsi }_{*}\left({w}, \theta\right), {\varPsi }^{*}\left({w}, \theta\right)\right] for all {w}\in \left[{u}, \upsilon \right] , \theta\in \left[0, 1\right] . If \widetilde{\varPsi }\in {\mathcal{F}\mathcal{R}}_{\left(\left[{u}, \nu \right], \theta\right)} and \nabla :\left[{u}, \upsilon \right]\to \mathbb{R}, \nabla \left(\frac{1}{\frac{1}{{u}}+\frac{1}{\upsilon }-\frac{1}{{w}}}\right) = \nabla \left({w}\right)\ge 0, then
\widetilde{\varPsi }\left(\frac{2{u}\nu }{{u}+\nu }\right){\int }_{{u}}^{\nu }\frac{\widetilde{\varPsi }\left({w}\right)}{{{w}}^{2}}d{w}\preccurlyeq \left(FR\right){\int }_{{u}}^{\nu }\frac{\widetilde{\varPsi }\left({w}\right)}{{{w}}^{2}}\nabla \left({w}\right)d{w}\text{.} | (30) |
If \widetilde{\varPsi }\in HFSV\left(\left[{u}, \upsilon \right], {\mathbb{F}}_{0}\right) , then inequality (30) is reversed.
Proof. Since \varPsi is a harmonically convex, then for \theta\in \left[0, 1\right], we have
{\varPsi }_{*}\left(\frac{2{u}\nu }{{u}+\nu }, \theta\right)\le \frac{1}{2}\left(\begin{array}{c}{\varPsi }_{*}\left(\frac{{u}\upsilon }{\left(1-\xi \right){u}+\xi \upsilon }, \theta\right)+{\varPsi }_{*}\left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }, \theta\right)\end{array}\right) |
{\varPsi }^{*}\left(\frac{2{u}\nu }{{u}+\nu }, \theta\right)\le \frac{1}{2}\left(\begin{array}{c}{\varPsi }^{*}\left(\frac{{u}\upsilon }{\left(1-\xi \right){u}+\xi \upsilon }, \theta\right)+{\varPsi }^{*}\left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }, \theta\right)\end{array}\right). | (31) |
By multiplying (31) by \nabla \left(\frac{{u}\upsilon }{\left(1-\xi \right){u}+\xi \upsilon }\right) = \nabla \left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }\right) and integrate it by \xi over \left[0, 1\right], we obtain
{\varPsi }_{*}\left(\frac{2{u}\nu }{{u}+\nu }, \theta\right){\int }_{0}^{1}\nabla \left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }\right)d\xi |
\le \frac{1}{2}\left(\begin{array}{c}{\int }_{0}^{1}{\varPsi }_{*}\left(\frac{{u}\upsilon }{\left(1-\xi \right){u}+\xi \upsilon }, \theta\right)\nabla \left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }\right)d\xi \\ +{\int }_{0}^{1}{\varPsi }_{*}\left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }, \theta\right)\nabla \left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }\right)d\xi \end{array}\right) |
{\varPsi }^{*}\left(\frac{2{u}\nu }{{u}+\nu }, \theta\right){\int }_{0}^{1}\nabla \left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }\right)d\xi |
\le \frac{1}{2}\left(\begin{array}{c}{\int }_{0}^{1}{\varPsi }^{*}\left(\frac{{u}\upsilon }{\left(1-\xi \right){u}+\xi \upsilon }, \theta\right)\nabla \left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }\right)d\xi \\ +{\int }_{0}^{1}{\varPsi }^{*}\left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }, \theta\right)\nabla \left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }\right)d\xi \end{array}\right). | (32) |
Since
{\int }_{0}^{1}{\varPsi }_{*}\left(\frac{{u}\upsilon }{\left(1-\xi \right){u}+\xi \upsilon }, \theta\right)\nabla \left(\frac{{u}\upsilon }{\left(1-\xi \right){u}+\xi \upsilon }\right)d\xi \\ = {\int }_{0}^{1}{\varPsi }_{*}\left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }, \theta\right)\nabla \left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }\right)d\xi \\ = \frac{{u}\upsilon }{\nu -{u}}{\int }_{{u}}^{\nu }{\varPsi }_{*}\left({w}, \theta\right)\nabla \left({w}\right)d{w}, \\{\int }_{0}^{1}{\varPsi }^{*}\left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }, \theta\right)\nabla \left(\frac{{u}\upsilon }{\xi {u}+\left(1-\xi \right)\upsilon }\right)d\xi \\ = {\int }_{0}^{1}{\varPsi }^{*}\left(\frac{{u}\upsilon }{\left(1-\xi \right){u}+\xi \upsilon }, \theta\right)\nabla \left(\frac{{u}\upsilon }{\left(1-\xi \right){u}+\xi \upsilon }\right)d\xi |
= \frac{{u}\upsilon }{\nu -{u}}{\int }_{{u}}^{\nu }{\varPsi }^{*}\left({w}, \theta\right)\nabla \left({w}\right)d{w}. | (33) |
From (32) and (33), we have
{\varPsi }_{*}\left(\frac{2{u}\nu }{{u}+\nu }, \theta\right)\le \frac{1}{{\int }_{{u}}^{\nu }\nabla \left({w}\right)d{w}}{\int }_{{u}}^{\nu }{\varPsi }_{*}\left({w}, \theta\right)\nabla \left({w}\right)d{w}, \\{\varPsi }^{*}\left(\frac{2{u}\nu }{{u}+\nu }, \theta\right)\le \frac{1}{{\int }_{{u}}^{\nu }\nabla \left({w}\right)d{w}}{\int }_{{u}}^{\nu }{\varPsi }^{*}\left({w}, \theta\right)\nabla \left({w}\right)d{w}. |
From which, we have
\left[{\varPsi }_{*}\left(\frac{2{u}\nu }{{u}+\nu }, \theta\right), {\varPsi }^{*}\left(\frac{2{u}\nu }{{u}+\nu }, \theta\right)\right] \\ \le _{I}\frac{1}{{\int }_{{u}}^{\nu }\nabla \left({w}\right)d{w}}\left[{\int }_{{u}}^{\nu }{\varPsi }_{*}\left({w}, \theta\right)\nabla \left({w}\right)d{w}, {\int }_{{u}}^{\nu }{\varPsi }^{*}\left({w}, \theta\right)\nabla \left({w}\right)d{w}\right], |
that is
\widetilde{\varPsi }\left(\frac{2{u}\nu }{{u}+\nu }\right){\int }_{{u}}^{\nu }\frac{\widetilde{\varPsi }\left({w}\right)}{{{w}}^{2}}d{w}\preccurlyeq \left(FR\right){\int }_{{u}}^{\nu }\frac{\widetilde{\varPsi }\left({w}\right)}{{{w}}^{2}}\nabla \left({w}\right)d{w}\text{.} |
Then we complete the proof.
Remark 3.9. If \nabla \left({w}\right) = 1 , then from Theorems 3.7 and 3.8, we obtain inequality (17). If {\varPsi }_{*}\left({w}, \theta\right) = {\varPsi }^{*}\left({w}, \theta\right) with \theta = 1, then Theorems 3.7 and 3.8 reduce to classical first and second classical H-H Fejér inequality for classical harmonically convex function.
Several novel conclusions in convex analysis and associated optimization theory can be obtained using this new class of functions known as harmonically convex F-I-V. The main findings include some new bounds with error estimations via fuzzy Riemann integrals. All of these papers aim to provide new estimations and optimal approaches. But, the main motivation of this paper is that we obtained new method by using fuzzy integrals for harmonically convex F-I-V-Fs calculus. The authors anticipate that this study may inspire more research in a variety of pure and applied sciences fields.
The authors would like to thank the Rector, COMSATS University Islamabad, Islamabad, Pakistan, for providing excellent research and academic environments and this work was supported by Taif University Researches Supporting Project number (TURSP-2020/326), Taif University, Taif, Saudi Arabia, and the authors T. Abdeljawad and B. Abdalla would like to thank Prince Sultan University for APC and for the support through the TAS research lab.
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.
The authors declare that they have no competing interests.
[1] |
G. S. Teodoro, J. A. T. Machado, E. C. de Oliveira, A review of definitions of fractional derivatives and other operators, J. Comput. Phys., 388 (2019), 195–208. https://doi.org/10.1016/j.jcp.2019.03.008 doi: 10.1016/j.jcp.2019.03.008
![]() |
[2] |
H. G. Sun, Y. Zhang, D. Baleanu, W. Chen, Y. Q. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci. Numer. Simul., 64 (2018), 213–231. https://doi.org/10.1016/j.cnsns.2018.04.019 doi: 10.1016/j.cnsns.2018.04.019
![]() |
[3] | J. F. Gómez-Aguilar, A. Atangana, Applications of fractional calculus to modeling in dynamics and chaos, Boca Raton: Chapman & Hall/CRC Press, 2022. https://doi.org/10.1201/9781003006244 |
[4] | J. A. T. Machado, Fractional calculus: fundamentals and applications, In: Acoustics and vibration of mechanical structures—AVMS-2017: Proceedings of the 14th AVMS Conference, 2018, 3–11. https://doi.org/10.1007/978-3-319-69823-6_1 |
[5] | S. Chakraverty, R. M. Jena, S. K. Jena, Computational fractional dynamical systems: fractional differential equations and applications, John Wiley & Sons, 2023. |
[6] |
C. Ionescu, A. Lopes, D. Copot, J. A. T. Machado, J. H. T. Bates, The role of fractional calculus in modeling biological phenomena: a review, Commun. Nonlinear Sci. Numer. Simul., 51 (2017), 141–159. https://doi.org/10.1016/j.cnsns.2017.04.001 doi: 10.1016/j.cnsns.2017.04.001
![]() |
[7] |
J. A. T. Machado, M. F. Silva, R. S. Barbosa, I. S. Jesus, C. M. Reis, M. G. Marcos, et al., Some applications of fractional calculus in engineering, Math. Probl. Eng., 2010 (2010), 1–34. https://doi.org/10.1155/2010/639801 doi: 10.1155/2010/639801
![]() |
[8] | S. Das, Observation of fractional calculus in physical system description, In: Functional fractional calculus, Berlin, Heidelberg: Springer, 2011. https://doi.org/10.1007/978-3-642-20545-3_3 |
[9] | R. Hilfer, Applications of fractional calculus in physics, World Scientific, 2000. |
[10] | H. Jafari, B. Mehdinejadiani, D. Baleanu, Fractional calculus for modeling unconfined groundwater, Berlin, Boston: De Gruyter, 2019. https://doi.org/10.1515/9783110571905-007 |
[11] | N. Su, Fractional calculus for hydrology, soil science and geomechanics, Boca Raton: CRC Press, 2020. https://doi.org/10.1201/9781351032421 |
[12] |
C. P. Li, Y. Q. Chen, J. Kurths, Fractional calculus and its applications, Phil. Trans. R. Soc. A, 371 (2013), 20130037. http://dx.doi.org/10.1098/rsta.2013.0037 doi: 10.1098/rsta.2013.0037
![]() |
[13] |
Z. J. Meng, L. F. Wang, H. Li, W. Zhang, Legendre wavelets method for solving fractional integro-differential equations, Int. J. Comput. Math., 92 (2015), 1275–1291. https://doi.org/10.1080/00207160.2014.932909 doi: 10.1080/00207160.2014.932909
![]() |
[14] |
K. Kumar, R. K. Pandey, S. Sharma, Comparative study of three numerical schemes for fractional integro-differential equations, J. Comput. Appl. Math., 315 (2017), 287–302. https://doi.org/10.1016/j.cam.2016.11.013 doi: 10.1016/j.cam.2016.11.013
![]() |
[15] |
M. B. Almatrafi, A. R. Alharbi, A. R. Seadawy, Structure of analytical and numerical wave solutions for the Ito integro-differential equation arising in shallow water waves, J. King Saud Univ. Sci., 33 (2021), 101375. https://doi.org/10.1016/j.jksus.2021.101375 doi: 10.1016/j.jksus.2021.101375
![]() |
[16] |
K. Agilan, V. Parthiban, Initial and boundary value problem of fuzzy fractional-order nonlinear Volterra integro-differential equations, J. Appl. Math. Comput., 69 (2023), 1765–1793. https://doi.org/10.1007/s12190-022-01810-2 doi: 10.1007/s12190-022-01810-2
![]() |
[17] |
M. Derakhshan, M. Jahanshahi, H. K. demneh, Investigation the boundary and initial value problems including fractional integro-differential equations with singular kernels, J. Adv. Math. Model., 11 (2021), 97–108. https://doi.org/10.22055/JAMM.2021.34670.1848 doi: 10.22055/JAMM.2021.34670.1848
![]() |
[18] |
X. H. Yang, Z. M. Zhang, On conservative, positivity preserving, nonlinear FV scheme on distorted meshes for the multi-term nonlocal Nagumo-type equations, Appl. Math. Lett., 150 (2024), 108972. https://doi.org/10.1016/j.aml.2023.108972 doi: 10.1016/j.aml.2023.108972
![]() |
[19] |
J. W. Wang, X. X. Jiang, X. H. Yang, H. X. Zhang, A nonlinear compact method based on double reduction order scheme for the nonlocal fourth-order PDEs with Burgers' type nonlinearity, J. Appl. Math. Comput., 70 (2024), 489–511. https://doi.org/10.1007/s12190-023-01975-4 doi: 10.1007/s12190-023-01975-4
![]() |
[20] |
J. W. Wang, X. X. Jiang, H. X. Zhang, A BDF3 and new nonlinear fourth-order difference scheme for the generalized viscous Burgers' equation, Appl. Math. Lett., 151 (2024), 109002. https://doi.org/10.1016/j.aml.2024.109002 doi: 10.1016/j.aml.2024.109002
![]() |
[21] |
L. J. Wu, H. X. Zhang, X. H. Yang, F. R. Wang, A second-order finite difference method for the multi-term fourth-order integral-differential equations on graded meshes, Comput. Appl. Math., 41 (2022), 313. https://doi.org/10.1007/s40314-022-02026-7 doi: 10.1007/s40314-022-02026-7
![]() |
[22] |
X. H. Yang, W. L. Qiu, H. F. Chen, H. X. Zhang, Second-order BDF ADI Galerkin finite element method for the evolutionary equation with a nonlocal term in three-dimensional space, Appl. Numer. Math., 172 (2022), 497–513. https://doi.org/10.1016/j.apnum.2021.11.004 doi: 10.1016/j.apnum.2021.11.004
![]() |
[23] |
F. R. Wang, X. H. Yang, H. X. Zhang, L. J. Wu, A time two-grid algorithm for the two dimensional nonlinear fractional PIDE with a weakly singular kernel, Math. Comput. Simul., 199 (2022), 38–59. https://doi.org/10.1016/j.matcom.2022.03.004 doi: 10.1016/j.matcom.2022.03.004
![]() |
[24] | H. X. Zhang, X. X. Jiang, F. R. Wang, X. H. Yang, The time two-grid algorithm combined with difference scheme for 2D nonlocal nonlinear wave equation, J. Appl. Math. Comput., 2024, 1–25. https://doi.org/10.1007/s12190-024-02000-y |
[25] |
F. Safari, An accurate RBF-based meshless technique for the inverse multi-term time-fractional integro-differential equation, Eng. Anal. Bound. Elem., 153 (2023), 116–125. https://doi.org/10.1016/j.enganabound.2023.05.015 doi: 10.1016/j.enganabound.2023.05.015
![]() |
[26] |
S. Z. Rida, H. S. Hussien, Efficient Mittag-Leffler collocation method for solving linear and nonlinear fractional differential equations, Mediterr. J. Math., 15 (2018), 1–15. https://doi.org/10.1007/s00009-018-1174-0 doi: 10.1007/s00009-018-1174-0
![]() |
[27] |
S. Z. Rida, H. S. Hussien, A. H. Noreldeen, M. M. Farag, Effective fractional technical for some fractional initial value problems, Int. J. Appl. Comput. Math., 8 (2022), 149. https://doi.org/10.1007/s40819-022-01346-w doi: 10.1007/s40819-022-01346-w
![]() |
[28] |
M. S. Akel, H. S. Hussein, Numerical treatment of solving singular integral equations by using Sinc approximations, Appl. Math. Comput., 218 (2011), 3565–3573. https://doi.org/10.1016/j.amc.2011.08.102 doi: 10.1016/j.amc.2011.08.102
![]() |
[29] |
S. Behera, S. S. Ray, On a wavelet-based numerical method for linear and nonlinear fractional Volterra integro-differential equations with weakly singular kernels, Comput. Appl. Math., 41 (2022), 211. https://doi.org/10.1007/s40314-022-01897-0 doi: 10.1007/s40314-022-01897-0
![]() |
[30] |
G. D. Shi, Y. L. Gong, M. X. Yi, Alternative Legendre polynomials method for nonlinear fractional integro-differential equations with weakly singular kernel, J. Math., 2021 (2021), 1–13. https://doi.org/10.1155/2021/9968237 doi: 10.1155/2021/9968237
![]() |
[31] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
[32] | D. Baleanu, Z. B. Guvenc, J. A. T. Machado, New trends in nanotechnology and fractional calculus applications, Dordrecht: Springer, 2010. https://doi.org/10.1007/978-90-481-3293-5 |
[33] |
M. Bahmanpour, M. T. Kajani, M. Maleki, Solving Fredholm integral equations of the first kind using Muntz wavelets, Appl. Numer. Math., 143 (2019), 159–171. https://doi.org/10.1016/j.apnum.2019.04.007 doi: 10.1016/j.apnum.2019.04.007
![]() |
[34] |
S. C. Shiralashetti, S. Kumbinarasaiah, Laguerre wavelets exact Parseval frame-based numerical method for the solution of system of differential equations, Int. J. Comput. Math., 6 (2020), 101. https://doi.org/10.1007/s40819-020-00848-9 doi: 10.1007/s40819-020-00848-9
![]() |
[35] |
B. B. Tavasani, A. H. R. Sheikhani, H. Aminikhah, Numerical scheme to solve a class of variable-order Hilfer-Prabhakar fractional differential equations with Jacobi wavelets polynomials, Appl. Math. J. Chinese Univ., 37 (2022), 35–51. https://doi.org/10.1007/s11766-022-4241-z doi: 10.1007/s11766-022-4241-z
![]() |
[36] | D. Hong, J. Z. Wang, R. Gardner, Real analysis with an introduction to wavelets and applications, Elsevier, 2005. |
[37] | A. M. Mathai, H. J. Haubold, Special functions for applied scientists, New York: Springer, 2008. https://doi.org/10.1007/978-0-387-75894-7 |
[38] |
J. Shahni, R. Singh, Laguerre wavelet method for solving Thomas-Fermi type equations, Eng. Comput., 38 (2022), 2925–2935. https://doi.org/10.1007/s00366-021-01309-7 doi: 10.1007/s00366-021-01309-7
![]() |
[39] |
B. Q. Tang, X. F. Li, Solution of a class of Volterra integral equations with singular and weakly singular kernels, Appl. Math. Comput., 199 (2008), 406–413. https://doi.org/10.1016/j.amc.2007.09.058 doi: 10.1016/j.amc.2007.09.058
![]() |
[40] | P. K. Kythe, P. Puri, Computational methods for linear integral equations, Boston: Birkhauser, 2002. |
[41] |
M. X. Yi, J. Huang, CAS wavelet method for solving the fractional integro-differential equation with a weakly singular kernel, Int. J. Comput. Math., 92 (2015), 1715–1728. https://doi.org/10.1080/00207160.2014.964692 doi: 10.1080/00207160.2014.964692
![]() |
[42] |
V. V. Zozulya, P. I. Gonzalez-Chi, Weakly singular, singular and hypersingular integrals in 3-D elasticity and fracture mechanics, J. Chin. Inst. Eng., 22 (1999), 763–775. https://doi.org/10.1080/02533839.1999.9670512 doi: 10.1080/02533839.1999.9670512
![]() |
[43] |
S. Nemati, S. Sedaghat, I. Mohammadi, A fast numerical algorithm based on the second kind Chebyshev polynomials for fractional integro-differential equations with weakly singular kernels, J. Comput. Appl. Math., 308 (2016), 231–242. https://doi.org/10.1016/j.cam.2016.06.012 doi: 10.1016/j.cam.2016.06.012
![]() |
[44] |
Y. X. Wang, L. Zhu, Z. Wang, Fractional-order Euler functions for solving fractional integro-differential equations with weakly singular kernel, Adv. Differ. Equ., 2018 (2018), 1–13. https://doi.org/10.1186/s13662-018-1699-3 doi: 10.1186/s13662-018-1699-3
![]() |
[45] |
S. Nemati, P. M. Lima, Numerical solution of nonlinear fractional integro-differential equations with weakly singular kernels via a modification of hat functions, Appl. Math. Comput., 327 (2018), 79–92. https://doi.org/10.1016/j.amc.2018.01.030 doi: 10.1016/j.amc.2018.01.030
![]() |
1. | Deepak PACHPATTE, Tariq A. ALJAAİDİ, NEW GENERALIZATION OF REVERSE MINKOWSKI’S INEQUALITY FOR FRACTIONAL INTEGRAL, 2020, 2587-2648, 10.31197/atnaa.756605 | |
2. | Tariq A. Aljaaidi, Deepak B. Pachpatte, The Minkowski’s inequalities via \psi-Riemann–Liouville fractional integral operators, 2020, 0009-725X, 10.1007/s12215-020-00539-w | |
3. | Tariq A. Aljaaidi, Deepak B. Pachpatte, Mohammed S. Abdo, Thongchai Botmart, Hijaz Ahmad, Mohammed A. Almalahi, Saleh S. Redhwan, (k, ψ)-Proportional Fractional Integral Pólya–Szegö- and Grüss-Type Inequalities, 2021, 5, 2504-3110, 172, 10.3390/fractalfract5040172 | |
4. | Wengui Yang, Certain New Chebyshev and Grüss-Type Inequalities for Unified Fractional Integral Operators via an Extended Generalized Mittag-Leffler Function, 2022, 6, 2504-3110, 182, 10.3390/fractalfract6040182 | |
5. | Omar Mutab Alsalami, Soubhagya Kumar Sahoo, Muhammad Tariq, Asif Ali Shaikh, Clemente Cesarano, Kamsing Nonlaopon, Some New Fractional Integral Inequalities Pertaining to Generalized Fractional Integral Operator, 2022, 14, 2073-8994, 1691, 10.3390/sym14081691 | |
6. | Asha B. Nale, Satish K. Panchal, Vaijanath L. Chinchane, Grüss-type fractional inequality via Caputo-Fabrizio integral operator, 2022, 14, 2066-7752, 262, 10.2478/ausm-2022-0018 | |
7. | Tariq A. Aljaaidi, Deepak B. Pachpatte, Wasfi Shatanawi, Mohammed S. Abdo, Kamaleldin Abodayeh, Generalized proportional fractional integral functional bounds in Minkowski’s inequalities, 2021, 2021, 1687-1847, 10.1186/s13662-021-03582-8 | |
8. | Muhammad Tariq, Sotiris K. Ntouyas, Hijaz Ahmad, Asif Ali Shaikh, Bandar Almohsen, Evren Hincal, A comprehensive review of Grüss-type fractional integral inequality, 2023, 9, 2473-6988, 2244, 10.3934/math.2024112 | |
9. | Saleh S. Redhwan, Tariq A. Aljaaidi, Ali Hasan Ali, Maryam Ahmed Alyami, Mona Alsulami, Najla Alghamdi, New Grüss’s inequalities estimates considering the φ-fractional integrals, 2024, 11, 26668181, 100836, 10.1016/j.padiff.2024.100836 | |
10. | Nale Asha B., Satish K. Panchal, L. Chinchane Vaijanath , Certain fractional integral inequalities using generalized Katugampola fractional integral operator, 2020, 8, 23193786, 809, 10.26637/MJM0803/0013 | |
11. | Bhagwat R. Yewale, Deepak B. Pachpatte, 2023, 9781119879671, 45, 10.1002/9781119879831.ch3 | |
12. | Bouharket Benaissa, Noureddine Azzouz, Mehmet Sarikaya, On some Grüss-type inequalities via k-weighted fractional operators, 2024, 38, 0354-5180, 4009, 10.2298/FIL2412009B | |
13. | Xiaohong Zuo, Wengui Yang, Mohammad W. Alomari, Certain Novel p,q‐Fractional Integral Inequalities of Grüss and Chebyshev‐Type on Finite Intervals, 2025, 2025, 2314-4629, 10.1155/jom/9536854 |