Loading [MathJax]/jax/output/SVG/jax.js
Research article

Efficient computations for weighted generalized proportional fractional operators with respect to a monotone function

  • Received: 23 January 2021 Accepted: 12 May 2021 Published: 21 May 2021
  • MSC : 26A33, 26A51, 26D07, 26D10, 26D15

  • In this paper, we propose a new framework of weighted generalized proportional fractional integral operator with respect to a monotone function Ψ, we develop novel modifications of the aforesaid operator. Moreover, contemplating the so-called operator, we determine several notable weighted Chebyshev and Grüss type inequalities with respect to increasing, positive and monotone functions Ψ by employing traditional and forthright inequalities. Furthermore, we demonstrate the applications of the new operator with numerous integral inequalities by inducing assumptions on ω and Ψ verified the superiority of the suggested scheme in terms of efficiency. Additionally, our consequences have a potential association with the previous results. The computations of the proposed scheme show that the approach is straightforward to apply and computationally very user-friendly and accurate.

    Citation: Shuang-Shuang Zhou, Saima Rashid, Asia Rauf, Fahd Jarad, Y. S. Hamed, Khadijah M. Abualnaja. Efficient computations for weighted generalized proportional fractional operators with respect to a monotone function[J]. AIMS Mathematics, 2021, 6(8): 8001-8029. doi: 10.3934/math.2021465

    Related Papers:

    [1] Leilei Wei, Xiaojing Wei, Bo Tang . Numerical analysis of variable-order fractional KdV-Burgers-Kuramoto equation. Electronic Research Archive, 2022, 30(4): 1263-1281. doi: 10.3934/era.2022066
    [2] E. A. Abdel-Rehim . The time evolution of the large exponential and power population growth and their relation to the discrete linear birth-death process. Electronic Research Archive, 2022, 30(7): 2487-2509. doi: 10.3934/era.2022127
    [3] Li Tian, Ziqiang Wang, Junying Cao . A high-order numerical scheme for right Caputo fractional differential equations with uniform accuracy. Electronic Research Archive, 2022, 30(10): 3825-3854. doi: 10.3934/era.2022195
    [4] Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao . A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28(4): 1439-1457. doi: 10.3934/era.2020076
    [5] Bidi Younes, Abderrahmane Beniani, Khaled Zennir, Zayd Hajjej, Hongwei Zhang . Global solution for wave equation involving the fractional Laplacian with logarithmic nonlinearity. Electronic Research Archive, 2024, 32(9): 5268-5286. doi: 10.3934/era.2024243
    [6] Jun Pan, Yuelong Tang . Two-grid H1-Galerkin mixed finite elements combined with L1 scheme for nonlinear time fractional parabolic equations. Electronic Research Archive, 2023, 31(12): 7207-7223. doi: 10.3934/era.2023365
    [7] Jun Liu, Yue Liu, Xiaoge Yu, Xiao Ye . An efficient numerical method based on QSC for multi-term variable-order time fractional mobile-immobile diffusion equation with Neumann boundary condition. Electronic Research Archive, 2025, 33(2): 642-666. doi: 10.3934/era.2025030
    [8] Jingyun Lv, Xiaoyan Lu . Convergence of finite element solution of stochastic Burgers equation. Electronic Research Archive, 2024, 32(3): 1663-1691. doi: 10.3934/era.2024076
    [9] Qingming Hao, Wei Chen, Zhigang Pan, Chao Zhu, Yanhua Wang . Steady-state bifurcation and regularity of nonlinear Burgers equation with mean value constraint. Electronic Research Archive, 2025, 33(5): 2972-2988. doi: 10.3934/era.2025130
    [10] Nelson Vieira, M. Manuela Rodrigues, Milton Ferreira . Time-fractional telegraph equation of distributed order in higher dimensions with Hilfer fractional derivatives. Electronic Research Archive, 2022, 30(10): 3595-3631. doi: 10.3934/era.2022184
  • In this paper, we propose a new framework of weighted generalized proportional fractional integral operator with respect to a monotone function Ψ, we develop novel modifications of the aforesaid operator. Moreover, contemplating the so-called operator, we determine several notable weighted Chebyshev and Grüss type inequalities with respect to increasing, positive and monotone functions Ψ by employing traditional and forthright inequalities. Furthermore, we demonstrate the applications of the new operator with numerous integral inequalities by inducing assumptions on ω and Ψ verified the superiority of the suggested scheme in terms of efficiency. Additionally, our consequences have a potential association with the previous results. The computations of the proposed scheme show that the approach is straightforward to apply and computationally very user-friendly and accurate.



    Fractional calculus (FC) theory was proposed by N. H. Abel and J. Liouville, and a description of their work is presented in [1]. By using FC, integer derivatives, and integrals can be generalized to real or variable derivatives and integrals. FC is studied since fractional differential equations (FDEs) are better suited to modeling natural physics processes and dynamic systems than integer differential equations. Furthermore, FDEs that incorporate memory effects are better suited to describing natural processes that have memory and hereditary properties. In other words, because fractional derivatives have memory effects, FDEs are more accurate in describing physical phenomena with memory or hereditary characteristics. There was a trend to consider FC to be an esoteric theory with no application until the last few years. Now, more and more researchers are investigating how it can be applied to economics, control system and finance. As a result, many fractional order differential operators were developed, such as Hadamard, Riemann-Liouville, Caputo, Riesz, Grünwald-Letnikov, and variable order differential operators. The researchers have devoted considerable effort to solving FDEs numerically so that they can be applied to a variety of problems [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]. Several numerical approaches have been proposed in the literature, including eigenvector expansion, the fractional differential transform technique [21], the homotopy analysis technique [22], the homotopy perturbation transform technique [23], the generalized block pulse operational matrix technique [24] and the predictor-corrector technique [25]. In addition, the use of Legendre wavelets to integrate and differentiate fractional order matrices has been suggested as a numerical method [26,27].

    In this paper, we study the numerical solution of the time-fractional Burger's equation (TFBE) [28] as follows:

    γU(x,t)tγ+U(x,t)U(x,t)xv2U(x,t)x2=f(x,t), (1)

    which is subject to the following boundary conditions (BCs):

    U(a,t)=l1(t),U(b,t)=l2(t),axb,t[0,tf], (2)

    and the following initial condition (IC):

    U(x,0)=g(x)andaxb, (3)

    in which 0<γ1 is a parameter representing the order of the fractional time, v denotes a viscosity parameter and g(x),l1(t)andl2(t) are given functions of their argument. The TFBE is a kind of sub-diffusion convection, which is widely adopted to describe many physical problems such as unidirectional propagation of weakly nonlinear acoustic waves, shock waves in flow systems, viscous media, compressible turbulence, electromagnetic waves and weak shock propagation [29,30,31]. In recent years, there has been some technique development in the study of Burger's equation: an implicit difference scheme and algorithm implementation [32], pointwise error analysis of the third-order backward differentiation formula (BDF3) [33], pointwise error estimates of a compact difference scheme [34], efficient (BDF3) finite-difference scheme [35], semi-analytical methods [36], composite spectral methods [37], least-squares methods [38], geometric analysis methods [39], error and stability estimate techniques [40].

    Definition 1. Suppose that m is the smallest integer exceeding γ; the Caputo time fractional derivative operator of order γ>0 can be defined as follows [41]:

    CDγ0,tu(x,t)={mu(x,t)tmγ=mN1Γ(mγ)t0(tω)mγ1mu(x,ω)ωmdω,m1<γ<m,mN, (4)

    where u(x,t) is the unknown function that is (m1) times continuously differentiable and Γ(.) denotes the usual gamma function. The finite-element method has been an important method for solving both ordinary and partial differential equation, therefore, in recent research, it has been applied to solve the TFBE. In what follows, we describe the solution process by using the finite-element scheme for solving the TFBE.

    To discretize the TFBE (1), first let us define the cubic B-spline base function. We partition the interval [a,b], which represents the solution domain of (1) into M uniformly spaced points xm such that a=x0<x1<<xM1<xM=b and h=(xm+1xm). Then, the cubic B-spline Cm(x),(m=1(1)(M+1), at the knots xm which form basis on the solution interval [a,b], is defined as follows [42]:

    Cm(x)=1h3{(xxm2)3,ifx[xm2,xm1],h3+3h2(xxm1)+3h(xxm1)23(xm+1x)3,ifx[xm1,xm],h3+3h2(xm+1x)+3h(xm+1x)23(xm+1x)3,ifx[xm,xm+1],(5)(xm+2x)3,ifx[xm+1,xm+2],o,otherwise. (5)

    where the set of cubic B-splines (C1(x),C0(x),,CM(x),CM+1(x)) is a basis for the functions defined over interval [a,b]. Thus, the numerical solution UM(x,t) to the analytic solution U(x,t) can be illustrated as

    UM(x,t)=M+1m=1σm(t)Cm(x), (6)

    where σm(t) are unknown time-dependent parameters to be determined from the initial, boundary and weighted residual conditions. Since each cubic B-spline covers four consecutive elements, each element [xm,xm+1] is also covered by four cubic B-splines. So, the nodal values Um and its first and second derivatives U'm, U"m can be respectively computed in terms of the element parameter σm(t), at the knot xm as follows:

    Um=σm1+4σm+σm+1,U'm=3h(σm1σm+1),U"m=6h2(σm12σm+σm+1), (7)

    and by means of the local coordinate transformation [43] as follows:

    hη=xxm,0η1. (8)

    A cubic B-spline shape function in terms of η over the element [xm,xm+1] is formulated as:

    Cm1=(1η)3,Cm1=1+3(1η)+3(1η)23(1η)3,Cm+1=1+3η+3η23η3,Cm+2=η3 (9)

    and the variation of UM(η,t) over the typical element [xm,xm+1] is represented as

    UM(x,t)=m+2j=m1σj(t)Cj(η), (10)

    in which B-splines Cm1(η),Cm(η),Cm+1(η), Cm+2(η) and σm1(t), σm(t),σm+1 and σm+2(t) are element shape functions and element parameters, respectively.

    Based on the Galerkin's method with weight function W(x)>0, we get the following weak formula of (1):

    baW(γUtγ+UUxv2Ux2)dx=baWf(x,t); (11)

    using transformation (8) and by apply partial integration we obtain:

    10(WγUtγ+λWUη+ΦWηUη)dη=ΦWUη10+baWƑ(η,t)dη, (12)

    where λ=1hÛ, Φ=vh2 and Û=U(η,t) which is considered to be a constant on an element to simplify the integral [43]; replace the weight function W by quadratic B-spline Bm(x),m=1(1)M, at the knots xm, which forms a basis on the solution interval [a,b], introduced as follows [44]:

    Bm(x)=1h2{(xm+2x)23(xm+1x)2+3(xmx)2,ifx[xm1,xm],(xm+2x)23(xm+1x)2,ifx[xm,xm+1],(xm+2x)2,ifx[xm+1,xm+2],0,otherwise. (13)

    where (B1(x),B0(x),,BM(x)) is the set of splines for the basis of functions introduced on [a,b]. The numerical solution UM(x,t) to the analytic solution U(x,t) is expanded by

    UM(x,t)=Mm=1ϑm(t)Bm(x), (14)

    where ϑm are unknown time-dependent parameters, and by using local coordinate transformation (8), the quadratic B-spline shape functions for the typical element [xm,xm+1] are given as

    Bm1=(1η)2Bm=1+2η2η2Bm+1=η2 (15)

    The variation of the function U(η,t) is approximated by

    UM(η,t)=m+1i=m1ϑi(t)Bi(η), (16)

    where ϑm1(t), ϑm(t) and ϑm+1(t) act as element parameters and B-splines Bm1(η),Bm(η) and Bm+1(η) as element shape functions based on the above; (12) will be in the following form:

    m+2j=m1[10BiCjdη]˙σ+m+2j=m1[10(λBiC'j+ΦB'iC'j)dηΦBiC'j|10]σ=10BiƑ(η,t)dη,i=m1,m,m+1, (17)

    in which "Dot" represents the σth fractional derivative with respect to time. We can write (17) in matrix notation as follows:

    Xeij˙σe+(λYeij+Φ(ZeijQeij))σe=Eei, (18)

    in which σe=(σm1,σm,σm+1,σm+2)T are the element parameters. The element matrices Xeij,Yeij,Zeij,Qeij and Eei are rectangular 3×4 matrices introduced through the following integrals:

    Xeij=10BiCjdη=160[107138119221221191387110],
    Yeij=10BiC'jdη=110[671211341411311276],
    Zeij=10B'iC'jdη=12[357122221753],
    Qeij=BiC'j10=3[101011110101]and
    Eei=10BiƑ(η,t)dη,

    where i and j take only the values (m1,m,m+1) and (m1,m,m+1,m+2) respectively, and a lumped value for λ is defined by λ=12h(σm1+5σm+5σm+1+σm+2).

    By assembling all contributions from all elements, we get the following matrix equation:

    X˙σ+(λY+Φ(ZQ))σ=E, (19)

    where σ=(σ1,σ0,σ1,,σM,σM+1)T denotes a global element parameter. The matrices X,Z and Y represent rectangular, septa-diagonal and every sub-diagonal matrices, which include the following forms:

    X=160(1,57,302,302,57,1,0),
    Z=12(1,9,10,10,9,1,0),
    λY=110(λ1,12λ113λ2,7λ141λ26λ3,6λ1+41λ27λ3,13λ2+12λ3,λ3,0),

    in which,

    λ1=12h(σm2+5σm1+5σm+σm+1),
    λ2=12h(σm1+5σm+5σm+1+σm+2),
    λ3=12h(σm+5σm+1+5σm+2+σm+3).

    Following [45], we can approximate the temporal Caputo derivative with the help of the L1 formula:

    dγf(t)dtγtf=(Δt)γΓ(2γ)m1k=0bγk[f(tmkf(tm1k)]+O(Δt)2γ,

    where bγk=(k+1)1γk1γandΔt=tf0N, and tf=n(Δt),n=0,1,N,whereN represents a positive integer. Now, we recall the following lemma.

    Lemma 1: Suppose that 0<γ<1andbγk=(k+1)1γk1γ,k=0,1,;then,1=bγ0>bγ1>>bγk0,ask [46].

    Then, we can we write the parameter σm as follows:

    σm=dγσdtγ=(Δt)γΓ(2γ)m1k=0bγk[(σnk+1m1σnkm1)+4(σnk+1mσnkm)+(σnk+1m+1σnkm+1)]+O(Δt)2γ,bγk=(k+1)1γk1γ,

    while the parameter σ by the Crank-Nicolson scheme, is as follows:

    σm=12(σnm+σn+1m).

    Substitution both parameters above into (18), we obtain the (M+2)×(M+3) matrix system:

    [X+[(Δt)γΓ(2γ)(λY+Φ(ZQ)]2]σn+1=[X[(Δt)γΓ(2γ)(λY+Φ(ZQ)]2]σnXnk=1bγk[(σnk+1m1σnkm1)+4(σnk+1mσnkm)+(σnk+1m+1σnkm+1)]+(Δt)γΓ(2γ)E, (20)

    where σ=(σm2+σm1+σm+σm+1+σm+1+σm+2+σm+3)T; to make the matrix equation be square, we need to find an additional constraint of BC (2) and their second derivatives and we obtain discard σ1 from system (20) as follows:

    σ1(t)=4σ0(t)σ1(t)+U(x0,t);

    the variables σn1 and σnM+1 can be ignored from system (20) and then the system can be converted to an (M+1)×(M+1) matrix system. The initial vector of parameter σ0=(σ00,σ01,,σ0M) should be obtained to iterate system (20); the approximation of (6) has been reformulated on the interval [a,b] when time t=0 as follows:

    UN(x,0)=Mm=0Cmσ0m,

    where U(x,0) fulfills the following equation at node xm:

    UM(xm,0)=U(xm,0),m=0,1,,M+1
    U'M(x0,0)=U'(xM,0)=0,
    U''M(x0,0)=U''(xM,0)=0.

    Therefore, we can obtain the following system:

    [σ00σ01σ0M1σ0M60001410144141006][σ00σ01σ0M1σ0M]=[U(x0,0)h26g"(a)U(x1,0)U(xM1,0)U(xM,0)h26g"(b)]

    and we solve this identity matrix by applying the Jain algorithm [47].

    This section adopts the von Neumann stability analysis to investigate the stability of approximation obtained by scheme (20). First, we introduce the recurrence relationship between successive time levels relating unknown element parameters σn+1m(t), as follows:

    q1σn+1m2+q2σn+1m1+q3σn+1m+q4σn+1m+1+q5σn+1m+2+q6σn+1m+3=q6σnm2+q5σnm1+q4σnm+q3σnm+1+q2σnm+2+q1σnm+320nk=1bγk[((σnk+1m2σnkm2)+4(σnk+1m2σnkm2)+(σnk+1m2σnkm2))+57((σnk+1m1σnkm1)+4(σnk+1m1σnkm1)++(σnk+1m1σnkm1))+302((σnk+1mσnkm)+4(σnk+1mσnkm)+(σnk+1mσnkm))+302((σnk+1m+1σnkm+1)+4(σnk+1m+1σnkm+1)+(σnk+1m+1σnkm+1))+57((σnk+1m+2σnkm+2)+4(σnk+1m+2σnkm+2)+(σnk+1m+2σnkm+2))+((σnk+1m+3σnkm+3)+4(σnk+1m+3σnkm+3)+(σnk+1m+3σnkm+3))] (21)

    where

    q1=20300Φα60λα,q2=11402700Φα1500λα,q3=6040+3000Φα2400λα
    q4=6040+3000Φα+2400λα,q5=11402700Φα+1500λα,q6=20300Φα+60λα

    and α=(Δt)γΓ(2γ).

    The growth factor of the typical Fourier mode is defined as

    σnm=ξneiβmh (22)

    where, i=1,β is a mode number and h is the element size. Substitution of (22) into (21) yields

    ξn+1(q1e2iβh+q2eiβh+q3+q4eiβh+q5e2iβh+q6e3iβh)=ξn(q6e2iβh+q5eiβh+q4+q3eiβh+q2e2iβh+q1e3iβh)20nk=1bγk[((σnk+1m2σnkm2)+4(σnk+1m2σnkm2)+(σnk+1m2σnkm2))(e2iβh302+302eiβh+57e2iβh+e2iβh)]; (23)

    let ξn+1=Ϋξn and assume that ΫΫ(θ) is independent of time, therefore, we can write Ϋ as follows:

    Ϋ=AiBA+iB,

    where

    A=(6040+3000Φα)cos(θ2)h+(11402700Φα)cos(3θ2)h
    +(20300Φα)cos(5θ2)h,
    B=(2400λα)sin(θ2)h++(1500λα)sin(3θ2)h+(60λα)sin(θ2)h,

    Obviously note that |Ϋ|1. Therefore, according to the Fourier condition, the scheme (20) is unconditionally stable.

    This section introduces two numerical examples, which highlight numerical results for the TFBE with different IC and BCs given by the CBSGM with quadratic weight function. In this section, we use the L2 and L to calculate the accuracy of the CBSGM with a quadratic weight function, which has been employed in this study; we will also show how the analytical results and the numerical results are close to each other. To do this, first we will find the exact solutions to the problem (1) by applying the following problems; then, we compare the results with the numerical solution obtained from the given method. To this aim, the L and L2 error norms are respectively defined as [48]

    L=||UUM||maxj|Uj(UM)j|,
    L2=||UUM||2hMj=0|Uj(UM)j|2

    where U and UM represent the exact solution and numerical solution, respectively.

    Example 1: Let us consider the TFBE (1) with the BCs

    U(O,t)=l1(t)=t2,U(1,t)=l2(t)=t2,t0,

    and IC

    U(x,0)=g(x)=0,0x1,

    such that the forcing term f(x,t) is achieved as [45]

    f(x,t)=2t2γexΓ(3γ)+t4e2xvt2ex,

    where the analytic solution is obtained as

    U(x,t)=t2ex.

    Numerical results are reported in Tables 13 and Figure 1. Table 1 lists the numerical solutions and the L2 and L error norms with γ=0.5,Δt=0.0025,tf=0.05andv=1 for various numbers of partitions M. As seen in Table 1, we notice that when the number of partitions M are increased, the L and L2 error norms will decrease considerably. Table 2 displays the numerical solutions with γ=0.5,M=40,t=1,tf=0.05andv=1 for various values of Δt. In view of Table 2, we can see that when Δt decreases, the L and L2 error norms decrease, as was expected. Table 3 shows the numerical solutions with Δt=0.00025,M=40,t=1,tf=0.05,v=1 for various values of γ. As observed in Table 3, the L and L2 error norms decrease when γ increases. A comparison between the results of our proposed strategy and two other methods is demonstrated in detail, the researchers of which relied on their work on a weight function corresponding to the spline function in terms of degree; see [44,45]. Figure 1 represents the surfaces of the exact and numerical solutions of the TFBE in Example (1).

    Table 1.  Numerical solutions with γ=0.5,Δt=0.0025,tf=0.05,v=1 for various numbers of partitions M.
    x M = 10 M = 20 M = 40 M = 80 Exact
    0.0 0.000000 0.000000 0.000000 0.000000 0.000000
    0.1 1.104360 1.105211 1.105166 1.105122 1.105101
    0.2 1.222151 1.222040 1.221593 1.221555 1.221511
    0.3 1.351010 1.350426 1.350012 1.349831 1.349789
    0.4 1.493377 1.492288 1.491990 1.491910 1.491844
    0.5 1.650589 1.650001 1.649822 1.648889 1.648731
    0.6 1.824211 1.823336 1.822449 1.822214 1.822110
    0.7 2.015587 2.014111 2.013822 2.013776 2.013692
    0.8 2.227577 2.226110 2.225699 2.225611 2.225562
    0.9 2.461410 2.461101 2.460893 2.459550 2.459491
    1.0 2.718202 2.718202 2.718202 2.718202 2.718202
    L2×103 1.631895 0.440555 0.160761 0.062504
    L2×103 [44] 1.764966 0.465690 0.167743 0.095754
    L2×103 [45] 1.632995 0.447720 0.161833 0.082624
    L×103 2.291578 0.64933 0.206677 0.032882
    L×103 [49] 3.101238 0.812842 0.209495 0.069208
    L×103 [50] 2.296683 0.625018 0.207352 0.033125

     | Show Table
    DownLoad: CSV
    Table 2.  Numerical solutions with γ=0.5,M=40,t=1,tf=0.05,v=1 for various values of Δt.
    x Δt = 0.005 Δt = 0.001 Δt = 0.0005 Δt = 0.00025 Exact
    0.0 0.000000 0.000000 0.000000 0.000000 0.000000
    0.1 1.105216 1.105211 1.105199 1.105186 1.105150
    0.2 1.221701 1.221601 1.221511 1.221445 1.221389
    0.3 1.350321 1.350188 1.350141 1.350110 1.349998
    0.4 1.492461 1.492211 1.492101 1.491879 1.491804
    0.5 1.649485 1.649112 1.648961 1.648822 1.648690
    0.6 1.822941 1.822675 1.822431 1.822310 1.822144
    0.7 2.014601 2.014201 2.014055 2.013979 2.013788
    0.8 2.226288 2.226001 2.225812 2.225699 2.225528
    0.9 2.260100 2.459980 2.459862 2.459785 2.459655
    1.0 2.718202 2.718202 2.718202 2.718202 2.718202
    L2×103 0.659999 0.374901 0.232591 0.092489
    L2×103 [44] 0.176195 0.068869
    L2×103 [45] 0.375012 0.232768 0.092624
    L×103 0.936512 0.529997 0.326112 0.132945
    L×103 [44] 0.665419 0.411883
    L×103 [45] 0.530231 0.328303 0.133125

     | Show Table
    DownLoad: CSV
    Table 3.  Numerical solutions with Δt=0.00025,M=40,t=1,tf=0.05,v=1 for various values of γ.
    x γ=0.10 γ=0.25 γ=0.75 γ=0.90 Exact
    0.0 0.000000 0.000000 0.000000 0.000000 0.000000
    0.1 1.105068 1.104981 1.104890 1.104899 1.104882
    0.2 1.221701 1.221601 1.221511 1.221445 1.221389
    0.3 1.350321 1.350188 1.350141 1.350110 1.349998
    0.4 1.492461 1.492211 1.492101 1.491879 1.491804
    0.5 1.649485 1.649112 1.648961 1.648822 1.648690
    0.6 1.822941 1.822675 1.822431 1.822310 1.822144
    0.7 2.014601 2.014201 2.014055 2.013979 2.013788
    0.8 2.226288 2.226001 2.225812 2.225699 2.225528
    0.9 2.260100 2.459980 2.459862 2.459785 2.459655
    1.0 2.718202 2.718202 2.718202 2.718202 2.718202
    L2×103 0.659999 0.374901 0.232591 0.092489
    L2×103 [44] 0.096733 0.090053 0.035448 0.044398
    L2×103 [45] 0.167077 0.165443 0.159924 0.166085
    L×103 0.936512 0.529997 0.328112 0.132945
    L×103 [44] 0.272943 0.258623 0.124569 0.066682
    L×103 [45] 0.235837 0.232645 0.224532 0.232565

     | Show Table
    DownLoad: CSV
    Figure 1.  The surfaces of the exact and numerical solutions of the TFBE in Example (1).

    Example 2: Finally, we consider the TFBE (1) with the BCs

    U(0,t)=0,U(1,t)=0,t0,

    and IC

    U(x,0)=0,0x1,

    where the source term f(x,t) can be obtained as [44]

    f(x,t)=2t2γsin(2πx)Γ(3γ)+2πt4sin(2πx)cos(2πx)+4vt2π2sin(2πx).

    The exact solution is

    U(x,t)=t2sin(2πx).

    Numerical results are represented in Tables 4 and 5 and Figure 2. Tables 4 and 5 report the numerical solutions for various numbers of partitions M and values of Δt. As seen in Tables 4 and 5, when the number of partitions M increased, the error norms L and L2 will decrease considerably, while, in Table 5, we can see that when ∆t decrease, the error norms L and L2 decrease. Figure 2 demonstrates the surfaces of the exact and numerical solutions of the TFBE in Example (2).

    Table 4.  Numerical solutions with γ=0.5,Δt=0.0025,tf=0.05,v=1 for various numbers of partitions M.
    x M = 10 M = 20 M = 40 M = 80 Exact
    0.0 1,000,000 1,000,000 1,000,000 1,000,000 1,000,000
    0.1 0.951196 0.950876 0.951005 0.951077 0.951070
    0.2 0.808211 0.808681 0.808911 0.808988 0.808978
    0.3 0.587211 0.587513 0.587699 0.587761 0.587754
    0.4 0.308662 0.308901 0.308987 0.309011 0.309006
    0.5 0.000000 0.000000 0.000000 0.000000 0.000000
    0.6 -0.308662 -0.308843 -.308931 -0.309011 -0.309006
    0.7 -0.587194 -0.587501 -0.587694 -0.587737 -0.587732
    0.8 -0.808205 -0.808644 -0.808823 -0.808972 -0.808970
    0.9 -0.951211 -0.951661 -0.951811 -0.951965 -0.951960
    1.0 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000
    L2×103 0.435298 0.183971 0.041943 0.001960
    L2×103 [44] 1.224329 0.177703
    L2×103 [45] 2.899412 0.577143
    L×103 0.731071 0.273289 0.063201 0.004168
    L×103 [44] 1.730469 0.253053
    L×103 [45] 4.063808 0.813220

     | Show Table
    DownLoad: CSV
    Table 5.  Numerical solutions with γ=0.5,M=80,t=1,tf=0.05,v=1 for various values of Δt..
    x Δt = 0.005 Δt = 0.001 Δt = 0.0005 Δt = 0.00025 Exact
    0.0 1000000 1000000 1000000 1000000 1000000
    0.1 0.951196 0.950876 0.951005 0.951077 0.951070
    0.2 0.808211 0.808681 0.808911 0.808988 0.808978
    0.3 0.587211 0.587513 0.587699 0.587761 0.587754
    0.4 0.308662 0.308901 0.308987 0.309011 0.309006
    0.5 0.000000 0.000000 0.000000 0.000000 0.000000
    0.6 -0.308662 -0.308843 -.308931 -0.309011 -0.309006
    0.7 -0.587194 -0.587501 -0.587694 -0.587737 -0.587732
    0.8 -0.808205 -0.808644 -0.808823 -0.808972 -0.808970
    0.9 -0.951211 -0.951661 -0.951811 -0.951965 -0.951960
    1.0 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000
    L2×103 0.124034 0.054081 0.014255 0.001960
    L2×103 [44] 0.532436 0.188710
    L2×103 [45] 0.359489 0.017828
    L×103 0.175611 0.077465 0.028523 0.004168
    L×103 [44] 0.753171 0.267546
    L×103 [45] 0.512105 0.0321162

     | Show Table
    DownLoad: CSV
    Figure 2.  The surfaces of the exact and numerical solutions of the TFBE in Example (2).

    This paper presented a numerical approach based on the CBSGM with a quadratic weight function for the TFBE including the time Caputo derivative. Numerical results have shown that the proposed method is an appropriate and efficient scheme for solving such problems.

    The authors declare no conflict of interest.



    [1] R. Gorenflo, F. Mainardi, I. Podlubny, Fractional differential equations, Academic Press, 1999,683–699.
    [2] R. Hilfer, Applications of fractional calculus in physics, Word Scientific, 2000.
    [3] A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and application of fractional differential equations, elsevier, 2006.
    [4] R. L. Magin, Fractional calculus in bioengineering, Begell House, 2006.
    [5] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Gordon and Breach, Yverdon, 1993.
    [6] F. Jarad, T. Abdeljawad, D. Baleanu, Caputo-type modification of the Hadamard fractional derivative, Adv. Differ. Equ., 2012 (2012), 1–8. doi: 10.1186/1687-1847-2012-1
    [7] U. N. Katugampola, New approach to generalized fractional integral, Appl. Math. Comput., 218 (2010), 860–865.
    [8] U. N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 6 (2014), 1–15.
    [9] F. Jarad, T. Abdeljawad, J. Alzabut, Generalized fractional derivatives generated by a class of local proportional derivatives, Eur. Phys. J. Spec. Top., 226 (2017), 3457–3471. doi: 10.1140/epjst/e2018-00021-7
    [10] S. S. Zhou, S. Rashid, S. Parveen, A. O. Akdemir, Z. Hammouch, New computations for extended weighted functionals within the Hilfer generalized proportional fractional integral operators, AIMS Mathematics, 6 (2021), 4507–4525. doi: 10.3934/math.2021267
    [11] M. Al-Qurashi, S. Rashid, S. Sultana, H. Ahmad, K. A. Gepreel, New formulation for discrete dynamical type inequalities via -discrete fractional operator pertaining to nonsingular kernel, Math. Biosci. Eng., 18 (2021), 1794–1812. DOI: 10.3934/mbe.2021093.
    [12] Y. M. Chu, S. Rashid, J. Singh, A novel comprehensive analysis on generalized harmonically Ψ-convex with respect to Raina's function on fractal set with applications, Math. Method. Appl. Sci., 2021, DOI: 10.1002/mma.7346.
    [13] S. Rashid, Y. M. Chu, J. Singh, D. Kumar, A unifying computational framework for novel estimates involving discrete fractional calculus approaches, Alex. Eng. J., 60 (2021), 2677–2685. doi: 10.1016/j.aej.2021.01.003
    [14] S. Rashid, Z. Hammouch, R. Ashraf, Y. M. Chu, New computation of unified bounds via a more general fractional operator using generalized Mittag-Leffler function in the kernel, Comp. Model. Eng., 126 (2021), 359–378.
    [15] O. P. Agrawal, Generalized Multiparameters fractional variational calculus, Int. J. Differ. Equ., 2012 (2012), 1–38. doi: 10.1186/1687-1847-2012-1
    [16] O. P. Agrawal, Some generalized fractional calculus operators and their applications in integral equations, Fract. Calc. Appl. Anal., 15 (2012), 700–711.
    [17] M. Al-Refai, A. M. Jarrah, Fundamental results on weigted Caputo-Fabrizio fractional derivative, Chaos Soliton. Fract., 126 (2019), 7–11. doi: 10.1016/j.chaos.2019.05.035
    [18] M. Al-Refai, On weighted Atangana-Baleanu fractional operators, Adv. Differ. Equ., 2020 (2020), 1–11. doi: 10.1186/s13662-019-2438-0
    [19] F. Jarard, T. Abdeljawad, K. Shah, On the weighted fractional operators of a function with respect to another function, Fractals, 28 (2020), 2040011. doi: 10.1142/S0218348X20400113
    [20] Y. Zhang, X. Xing Liu, M. R. Belic, W. Zhong, Y. P. Zhang, M. Xiao, Propagation Dynamics of a Light Beam in a Fractional Schrödinger Equation, Phys. Rev. Lett., 115 (2015), 180403. doi: 10.1103/PhysRevLett.115.180403
    [21] Y. Zhang, H. Zhong, M. R. Belic, Y. Zhu, W. P. Zhong, Y. Zhang, et al. PT symmetry in a fractional Schrödinger equation, Laser Photonics Rev., 10 (2016), 526–531. doi: 10.1002/lpor.201600037
    [22] S. Belarbi, Z. Dahmani, On some new fractional integral inequalities, J. Inequal. Pure Appl. Math., 10 (2009), 1–12.
    [23] S. I. Butt, A. O. Akdemir, M. Y. Bhatti, M. Nadeem, New refinements of Chebyshev-Polya-Szego-type inequalities via generalized fractional integral operators, J. Inequal. Appl., 2020 (2020), 1–13. doi: 10.1186/s13660-019-2265-6
    [24] S. Rashid, F. Jarad, H. Kalsoom, Y. M. Chu, On Polya-Szego and Cebysev type inequalities via generalized k-fractional integrals, Adv. Differ. Equ., 2020 (2020), 1–18. doi: 10.1186/s13662-019-2438-0
    [25] E. Set, Z. Dahmani, İ. Mumcu, New extensions of Chebyshev type inequalities using generalized Katugampola integrals via Polya-Szego inequality, IJOCTA, 8 (2018), 137–144.
    [26] Z. Dahmani, New inequalities in fractional integrals, Int. J. Nonlinear Sci., 9 (2010), 493–497.
    [27] V. Chinchane, D. Pachpatte, On some integral inequalities using Hadamard fractional integral, J. Mat., 1 (2012), 62–66.
    [28] K. Brahim, S. Taf, On some fractional q-integral inequalities, J. Mat., 3 (2013), 21–26.
    [29] S. B. Chen, S. Rashid, M. A. Noor, R. Ashraf, Y. M. Chu, A new approach on fractional calculus and probability density function, AIMS Mathematics, 5 (2020), 7041–7054. doi: 10.3934/math.2020451
    [30] P. L. Chebyshev, Sur les expressions approximatives des integrales definies par les autres prises entre les mmes limites, Proc. Math. Soc. Charkov, 2 (1882), 93–98.
    [31] G. Grüss, Uber das Maximum des absoluten Betrages von 1b1a1b1a1f1(ϰ)g1(ϰ)dϰ(1b1a1)2b1a1f1(ϰ)dϰb1a1g1(ϰ)dϰ, Math. Z., 39 (1935), 215–226. doi: 10.1007/BF01201355
    [32] D. S. Mitrinovic, J. E. Pecaric, A. M. Fink, Classical and new inequalities in analysis, Springer, Dordrecht, 1993.
    [33] S. Rashid, T. Abdeljawad, F. Jarad, M. A. Noor, Some estimates for generalized Riemann-Liouville fractional integrals of exponentially convex functions and their applications, Mathematics, 7 (2019), 807. doi: 10.3390/math7090807
    [34] T. H. Zhao, M. K. Wang, Y. M. Chu, A sharp double inequality involving generalized complete elliptic integral of the first kind, AIMS Mathematics, 5 (2020), 4512–4528. doi: 10.3934/math.2020290
    [35] M. Adil Khan, J. E. Pecaric, Y. M. Chu, Refinements of Jensen's and McShane's inequalities with applications, AIMS Mathematics, 5 (2020), 4931–4945. doi: 10.3934/math.2020315
    [36] S. S. Dragomir, Quasi Grüss type inequalities for continuous functions of selfadjoint operators in Hilbert spaces, Filomat, 27 (2013), 277–289. doi: 10.2298/FIL1302277D
    [37] S. S. Dragomir, Some integral inequalities of Grüss type, Indian J. Pure Appl. Math., 4 (1998), 397–415.
    [38] Z. Dahmani, L. Tabharit, S. Taf, New generalisations of Grüss inequality using Riemann-Liouville fractional integrals, Bull. Math. Anal. Appl., 2 (2010), 93–99.
    [39] Z. Dahmani, A. Benzidane, New weighted Grüss type inequalities via (α,β) fractional q-integral inequalities, IJIAS, 1 (2012), 76–83.
    [40] Z. Dahmani, Some results associate with fractional integrals involving the extended Chebyshev functional, Acta Univ. Apulens, 27 (2011), 217–224
    [41] Z. Dahmani, L. Tabharit, S. Taf, New results using fractional integrals, Journal of Interdisciplinary Mathematics, 13 (2010), 601–606. doi: 10.1080/09720502.2010.10700721
    [42] E. Set, M. Tomar, M. Z. Sarikaya, On generalized Grüss type inequalities for k-fractional integrals, Appl. Math. Comput., 269 (2015), 29–34.
    [43] S. B. Chen, S. Rashid, M. A. Noor, Z. Hammouch, Y. M. Chu, New fractional approaches for n-polynomial p-convexity with applications in special function theory, Adv. Differ. Equ., 2020 (2020), 1–31. doi: 10.1186/s13662-019-2438-0
    [44] T. Abdeljawad, S. Rashid, Z. Hammouch, İ. İşcan, Y. M. Chu, Some new Simpson-type inequalities for generalized p-convex function on fractal sets with applications, Adv. Differ. Equ., 2020 (2020), 1–26. doi: 10.1186/s13662-019-2438-0
    [45] F. Jarad, T. Abdeljawad, S. Rashid, Z. Hammouch, More properties of the proportional fractional integrals and derivatives of a function with respect to another function, Adv. Differ. Equ., 2020 (2020), 1–16. doi: 10.1186/s13662-019-2438-0
    [46] S. Rashid, F. Jarad, M. A. Noor, H. Kalsoom, Y. M. Chu, Inequalities by means of generalized proportional fractional integral operators with respect to another function, Mathematics, 7 (2019), 1225. doi: 10.3390/math7121225
    [47] F. Jarad, M. A. Alqudah, T. Abdeljawad, On more generalized form of proportional fractional operators, Open Math., 18 (2020), 167–176. doi: 10.1515/math-2020-0014
    [48] F. Jarad, T. Abdeljawad, J. Alzabut, Generalized fractional derivatives generated by a class of local proportional derivatives, Eur. Phys. J. Spec. Top., 226 (2017), 3457–3471. doi: 10.1140/epjst/e2018-00021-7
    [49] G. Rahman, T. Abdeljawad, F. Jarad, A. Khan, K. S. Nisar, Certain inequalities via generalized proportional Hadamard fractional integral operators, Adv. Differ. Equ., 2019 (2019), 1–10. doi: 10.1186/s13662-018-1939-6
    [50] T. U. Khan, M. Adil Khan, Generalized conformable fractional operators, J. Comput. Appl. Math., 346 (2019), 378–389. doi: 10.1016/j.cam.2018.07.018
    [51] F. Jarad, E. Ugurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017), 1–16. doi: 10.1186/s13662-016-1057-2
    [52] G. J. O. Jameson, The incomplete gamma functions, The Mathematical Gazette, 100 (2016), 298–306. doi: 10.1017/mag.2016.67
    [53] N. N. Lebedev, Special functions and their applications Prentice-Hall, INC. Englewood Cliffs, 1965.
    [54] D. R. Anderson, D. J. Ulness, Newly defined conformable derivatives, Adv. Dyn. Syst. Appl., 10 (2015), 109–137.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2957) PDF downloads(126) Cited by(13)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog