
This study focuses on developing efficient numerical techniques for solving the fractional Keller-Segel (KS) model, which is critical in explaining chemotaxis events. Within the Caputo operator framework, the study applied two unique methodologies: The Aboodh residual power series method (ARPSM) and the Aboodh transform iteration method (ATIM). These approaches were used to find precise solutions to the fractional KS equation, resulting in a better understanding of chemotactic behavior in biological systems. The comparative examination of the ARPSM and ATIM revealed their distinct strengths and applications in solving complicated fractional models. The work advances numerical approaches for fractional differential equations and improves our understanding of chemotaxis dynamics using a precise modeling approach.
Citation: Nader Al-Rashidi. Innovative approaches to fractional modeling: Aboodh transform for the Keller-Segel equation[J]. AIMS Mathematics, 2024, 9(6): 14949-14981. doi: 10.3934/math.2024724
[1] | Muhammad Imran Liaqat, Sina Etemad, Shahram Rezapour, Choonkil Park . A novel analytical Aboodh residual power series method for solving linear and nonlinear time-fractional partial differential equations with variable coefficients. AIMS Mathematics, 2022, 7(9): 16917-16948. doi: 10.3934/math.2022929 |
[2] | Musawa Yahya Almusawa, Hassan Almusawa . Numerical analysis of the fractional nonlinear waves of fifth-order KdV and Kawahara equations under Caputo operator. AIMS Mathematics, 2024, 9(11): 31898-31925. doi: 10.3934/math.20241533 |
[3] | Aslı Alkan, Halil Anaç . A new study on the Newell-Whitehead-Segel equation with Caputo-Fabrizio fractional derivative. AIMS Mathematics, 2024, 9(10): 27979-27997. doi: 10.3934/math.20241358 |
[4] | Humaira Yasmin, Aljawhara H. Almuqrin . Analytical study of time-fractional heat, diffusion, and Burger's equations using Aboodh residual power series and transform iterative methodologies. AIMS Mathematics, 2024, 9(6): 16721-16752. doi: 10.3934/math.2024811 |
[5] | Mariam Sultana, Muhammad Waqar, Ali Hasan Ali, Alina Alb Lupaş, F. Ghanim, Zaid Ameen Abduljabbar . Numerical investigation of systems of fractional partial differential equations by new transform iterative technique. AIMS Mathematics, 2024, 9(10): 26649-26670. doi: 10.3934/math.20241296 |
[6] | Humaira Yasmin, Aljawhara H. Almuqrin . Efficient solutions for time fractional Sawada-Kotera, Ito, and Kaup-Kupershmidt equations using an analytical technique. AIMS Mathematics, 2024, 9(8): 20441-20466. doi: 10.3934/math.2024994 |
[7] | M. Mossa Al-Sawalha, Khalil Hadi Hakami, Mohammad Alqudah, Qasem M. Tawhari, Hussain Gissy . Novel Laplace-integrated least square methods for solving the fractional nonlinear damped Burgers' equation. AIMS Mathematics, 2025, 10(3): 7099-7126. doi: 10.3934/math.2025324 |
[8] | Meshari Alesemi . Innovative approaches of a time-fractional system of Boussinesq equations within a Mohand transform. AIMS Mathematics, 2024, 9(10): 29269-29295. doi: 10.3934/math.20241419 |
[9] | Yousef Jawarneh, Humaira Yasmin, Abdul Hamid Ganie, M. Mossa Al-Sawalha, Amjid Ali . Unification of Adomian decomposition method and ZZ transformation for exploring the dynamics of fractional Kersten-Krasil'shchik coupled KdV-mKdV systems. AIMS Mathematics, 2024, 9(1): 371-390. doi: 10.3934/math.2024021 |
[10] | Maysaa Al Qurashi, Saima Rashid, Sobia Sultana, Fahd Jarad, Abdullah M. Alsharif . Fractional-order partial differential equations describing propagation of shallow water waves depending on power and Mittag-Leffler memory. AIMS Mathematics, 2022, 7(7): 12587-12619. doi: 10.3934/math.2022697 |
This study focuses on developing efficient numerical techniques for solving the fractional Keller-Segel (KS) model, which is critical in explaining chemotaxis events. Within the Caputo operator framework, the study applied two unique methodologies: The Aboodh residual power series method (ARPSM) and the Aboodh transform iteration method (ATIM). These approaches were used to find precise solutions to the fractional KS equation, resulting in a better understanding of chemotactic behavior in biological systems. The comparative examination of the ARPSM and ATIM revealed their distinct strengths and applications in solving complicated fractional models. The work advances numerical approaches for fractional differential equations and improves our understanding of chemotaxis dynamics using a precise modeling approach.
A novel mathematical tool for characterizing non-local structures is fractional calculus (FC). Mathematical explanations of many physical problems using fractional derivatives have proved successful in recent generations when applied to situations close to reality. Many authors, including Hadamard, Riemann-Liouville, Coimbra, Grunwald-Letnikov, Riesz, Weyl, Liouville Caputo, Atangana-Baleanu, and Caputo-Fabrizio, have offered crucial definitions of fractional operators [1,2,3,4]. The underlying principle of these traditional differential equations is their reliance on integer-order derivatives, which give the order an integer numerical value indicating the number of times that a function is differentiated. As opposed to fractional partial differential equations (FPDEs), these concepts are expanded by the addition of fractional derivatives. This kind of model is necessary for the description of delayed or dependent responses, non-local interactions, and anomalous diffusion. These relationships not only have the power to explain the complex phenomena of physics, biology, finance, and engineering, but they also can predict special events. The solution of FPDEs is based on a series of special numerical methods and analytical techniques, all adapted to face the scale-free and non-integer properties of fractional derivatives. Often, the systems required for modeling real-world phenomena follow interrelated processes that can be described using systems of partial differential equations [1,2,3,4,9]. Such systems have multiple differential equations, with each one describing how the value of a specific physical quantity or any of the interacting systemic components changes with time as they progress.
Computational models often include partial differential equations (PDEs), which are important in applications such as fluid flow, electromagnetics, population dynamics, and quantized mechanics. By studying the behavior of the components, their interactions, and their relationships with each other, one can understand how patterns and dynamics are formed and how the system stabilizes. Studying PDE systems with coupled terms is extremely complex and requires advanced mathematics, such as numerical simulations, perturbation methods, and symmetry analysis, to discern a solution [10,11,12,13,14]. The Hermite colocation method [10], the optimal homotopy asymptotic technique [11], the Adomian decomposition method [12], the homotopy perturbation transform method [13], the Pade approximation and homotopy-Pade technique [14], the invariant subspace method [20], the q-homotopy analysis transform method [21], the homotopy analysis Sumudu transform method [22], and the Sumudu transform series expansion method [23] are some of the sophisticated approaches developed for finding exact solutions to nonlinear FPDE models [24,25,26]. If perturbation methods are not used, the homotopy analysis method breaks a problem into an endless series of linear problems. This method employs the concept of homotopy from topology to derive a convergent series solution [27,28]. An approach to homotopy analysis proposed by Liao [29], and the Laplace transform [30] are combined in the Laplace homotopy perturbation method.
A gradient of chemical molecules guides the movement of cells, a process known as chemotaxis, which is essential for cell population self-organization and developmental biology in general. In 1970, Lee Segel and Evelyn Keller presented the first mathematical model of chemotaxis. To further understand how the mould aggregation process works in the chemical-attraction-based cellular slime, they used parabolic approaches [31]. Here, we take a look at the fractional-order system of a KS model that goes like this:
Dpφβ1(ψ,φ)−a∂2β1(ψ,φ)∂ψ2+∂∂ψ(β1(ψ,φ)∂ϖ(β2)∂ψ)=0,Dpφβ2(ψ,φ)−b∂2β2(ψ,φ)∂ψ2−cβ1(ψ,φ)+dβ2(ψ,φ)=0, where 0<p≤1, | (1.1) |
having IC's:
β1(ψ,0)=β10(ψ),β2(ψ,0)=β20(ψ). | (1.2) |
The concentration of amoebae are indicated by the unknown term β1(ψ,φ), while the chemical substance of concentration is expressed by β2(ψ,φ); ∂∂ψ(β1(ψ,φ)∂ϖ(β2)∂ψ); stands for the chemotactic word, indicating that the chemicals are attractive to and sensitive to the cells. The sensitivity function is denoted by ϖ(β2), and a,b,c, and d are positive constants. The parameter 0<p≤1 represents the order of the fractional derivative. Much recent research has focused on the KS model. For example, to solve the KS model, Atangana used a combination of methods, including a modified homotopy perturbation, the homotopy decomposition, and the Laplace transform approach [32,33,34]. Zayernouri established a fractional class of implicit Adams-Moulton and explicit Adams-Bashforth methods in [35] and so on [36,37,38].
According to [39], the residual power series method (RPSM) was developed in 2013 by a Jordanian mathematician named Omar Abu Arqub. The RPSM is a semi-analytical approach that uses Taylor's series to integrate the residual error function. It finds convergence series solutions for differential equations. In 2013, RPSM was first used to resolve fuzzy differential equations. A new RPSM method was created by Arqub et al. [40] to quickly get power series solutions for ordinary differential equations (DEs). A new and attractive RPSM approach for fractional DEs problems was developed by Arqub et al. [41]. A novel iterative technique to estimate fractional KdV-burgers equations was presented by El-Ajou et al. [42] utilizing RPSM. A unique method was developed by Xu et al. [43] for solving Boussinesq DEs with fractional power series. Zhang et al. [44] stated that a trustworthy numerical approach was developed. More readings on RPSM may be found in [45,46,47].
To resolve fractional-order differential equations (FODEs), the research team used two separate approaches. One approach to solving the updated equation is to project it into the space generated by the Aboodh transform. Next, the original equation may be solved by using the inverse Aboodh transform [48]. This novel methodology combines the Sumudu transform with the homotopy perturbation method. Without discretization, linearization, or perturbation, this novel approach may solve PDEs as power series expansions, irrespective of their linearity or nonlinearity. There is a significant reduction in the computations needed to find the coefficients compared to RPSM, which requires several repetitions of calculating distinct fractional derivatives throughout the solution phases. The proposed approach has the potential to provide an accurate and closed-form approximation solution.
The Aboodh transform iterative technique (ATIM) is a significant mathematical achievement for fractional partial differential equations. Complexity and convergence issues may develop when using traditional techniques to solve partial differential equations with fractional derivatives. Keeping a steady computational economy while continually improving approximations allows our new strategy to improve accuracy continuously, avoiding these limits. Due to this discovery, we can tackle difficult problems in applied mathematics, engineering, and physics, which enhances our capacity to identify and understand complex systems governed by fractional partial differential equations [49,50,51].
The two most basic approaches to solving fractional differential equations are the Aboodh transform iterative technique (ATIM) and the Aboodh residual power series method (ARPSM) [49,50,51,52,53], respectively. These techniques not only provide numerical solutions to PDEs that do not need discretization or linearization but also make the symbolic terms in analytical solutions instantly and visible. The primary objective of this study is to compare and contrast the performance of ARPSM and ATIM in solving the Keller-Segel (KS) model. It is worth mentioning that several linear and nonlinear fractional differential problems have been solved using these two approaches.
Definition 2.1. [54] Let us assume that the function β1(ψ,φ) is piecewise continuous with exponential order. The Aboodh transform (AT) is defined as follows, assuming τ≥0 for β1(ψ,φ),
A[β1(ψ,φ)]=Ψ(ψ,ξ)=1ξ∫∞0β1(ψ,φ)e−φξdφ, r1≤ξ≤r2. |
The Aboodh inverse transform (AIT) is specifically described as follows:
A−1[Ψ(ψ,ξ)]=β1(ψ,φ)=12πi∫u+i∞u−i∞Ψ(ψ,φ)ξeφξdφ, |
where ψ=(ψ1,ψ2,⋯,ψp)∈R and p∈N.
Lemma 2.2. Let [55,56] β11(ψ,φ) and β12(ψ,φ) are two functions. It is assumed that they are piecewise continuous on [0,∞[ and exponentially ordered. Let A[β11(ψ,φ)]=Ψ1(ψ,φ),A[β12(ψ,φ)]=Ψ2(ψ,φ) and χ1,χ2 are constants. Thus, the following characteristics are true:
(1) A[χ1β11(ψ,φ)+χ2β12(ψ,φ)]=χ1Ψ1(ψ,ξ)+χ2Ψ2(ψ,φ),
(2) A−1[χ1Ψ1(ψ,φ)+χ2Ψ2(ψ,φ)]=χ1β11(ψ,ξ)+χ2β12(ψ,φ),
(3) A[Jpφβ1(ψ,φ)]=Ψ(ψ,ξ)ξp,
(4) A[Dpφβ1(ψ,φ)]=ξpΨ(ψ,ξ)−∑r−1K=0β1K(ψ,0)ξK−p+2,r−1<p≤r, r∈N.
Definition 2.3. [57] In terms of order p, the Caputo defines the fractional derivative of the function β1(ψ,φ) as:
Dpφβ1(ψ,φ)=Jm−pφβ1(m)(ψ,φ), r≥0, m−1<p≤m, |
where ψ=(ψ1,ψ2,⋯,ψp)∈Rp and m,p∈R,Jm−pφ is the R-L integral of β1(ψ,φ).
Definition 2.4. [58] Following is the structure of the power series notation:
∞∑r=0ℏr(ψ)(φ−φ0)rp=ℏ0(φ−φ0)0+ℏ1(φ−φ0)p+ℏ2(φ−φ0)2p+⋯, |
where ψ=(ψ1,ψ2,⋯,ψp)∈Rp and p∈N. The series concerning φ0 is referred to as a multiple fractional power series (MFPS), where the series coefficients are ℏr(ψ)′s and φ is variable.
Lemma 2.5. Let us suppose that the exponential order function is β1(ψ,φ). In this case, the AT is defined as: A[β1(ψ,φ)]=Ψ(ψ,ξ). Hence,
A[Drpφβ1(ψ,φ)]=ξrpΨ(ψ,ξ)−r−1∑j=0ξp(r−j)−2Djpφβ1(ψ,0), 0<p≤1, | (2.1) |
where ψ=(ψ1,ψ2,⋯,ψp)∈Rp and p∈N and Drpφ=Dpφ.Dpφ.⋯.Dpφ(r−times).
Proof. By induction, we are able to illustrate Eq (2.5). When r=1 is used in Eq (2.5), the following results are obtained:
A[D2pφβ1(ψ,φ)]=ξ2pΨ(ψ,ξ)−ξ2p−2β1(ψ,0)−ξp−2Dpφβ1(ψ,0). |
Equation (2.5) is true for r=1, according to Lemma 2.2, part (4). After substituting r=2 in Eq (2.5), we get:
A[D2prβ1(ψ,φ)]=ξ2pΨ(ψ,ξ)−ξ2p−2β1(ψ,0)−ξp−2Dpφβ1(ψ,0). | (2.2) |
Equation (2.2) L.H.S. enables us to determine
L.H.S=A[D2pφβ1(ψ,φ)]. | (2.3) |
The following way is used to express Eq (2.3):
L.H.S=A[Dpφβ1(ψ,φ)]. | (2.4) |
Assume
z(ψ,φ)=Dpφβ1(ψ,φ). | (2.5) |
Thus, Eq (2.4) becomes
L.H.S=A[Dpφz(ψ,φ)]. | (2.6) |
Implementing the Caputo derivative led to a modification in Eq (2.6).
L.H.S=A[J1−pz′(ψ,φ)]. | (2.7) |
Equation (2.7) provides the R-L integral for AT, which allows us to deduce the following:
L.H.S=A[z′(ψ,φ)]ξ1−p. | (2.8) |
Equation (2.8) is changed into the following form by using the differential characteristic of the AT:
L.H.S=ξpZ(ψ,ξ)−z(ψ,0)ξ2−p, | (2.9) |
from Eq (2.5), we obtain:
Z(ψ,ξ)=ξpΨ(ψ,ξ)−β1(ψ,0)ξ2−p, |
where A[z(ψ,φ)]=Z(ψ,ξ). Therefore, Eq (2.9) is transformed to
L.H.S=ξ2pΨ(ψ,ξ)−β1(ψ,0)ξ2−2p−Dpφβ1(ψ,0)ξ2−p, | (2.10) |
when r=K. Equations (2.5) and (2.10) are compatible. For r=K, let's assume that Eq (2.5) holds. Therefore, we substitute r=K into Eq (2.5):
A[DKpφβ1(ψ,φ)]=ξKpΨ(ψ,ξ)−K−1∑j=0ξp(K−j)−2DjpφDjpφβ1(ψ,0), 0<p≤1. | (2.11) |
Next, we will show how to solve Eq (2.5) for r=K+1. Based on Eq (2.5), we may express
A[D(K+1)pφβ1(ψ,φ)]=ξ(K+1)pΨ(ψ,ξ)−K∑j=0ξp((K+1)−j)−2Djpφβ1(ψ,0). | (2.12) |
After examining the left side of Eq (2.12), we get
L.H.S=A[DKpφ(DKpφ)], | (2.13) |
let
DKpφ=g(ψ,φ), |
by Eq (2.13), we drive
L.H.S=A[Dpφg(ψ,φ)]. | (2.14) |
Equation (2.14) is modified to provide the following result by using the R-L integral and Caputo derivative:
L.H.S=ξpA[DKpφβ1(ψ,φ)]−g(ψ,0)ξ2−p. | (2.15) |
Equation (2.15) is derived from Eq (2.11),
L.H.S=ξrpΨ(ψ,ξ)−r−1∑j=0ξp(r−j)−2Djpφβ1(ψ,0). | (2.16) |
In addition, the outcome that follows is obtained from Eq (2.16):
L.H.S=A[Drpφβ1(ψ,0)]. |
Thus, for r=K+1, the Eq (2.5) is valid. Equation (2.5) is valid for all positive integers according to the mathematical induction method.
Here, we find another novel way of looking to MFTS, or multiple fractional Taylor's series. The ARPSM, which will be discussed in more depth later on, will benefit from this formula.
Lemma 2.6. Assume that β1(ψ,φ) represents the exponential order function. The expression A[β1(ψ,φ)]=Ψ(ψ,ξ) is the AT of β1(ψ,φ). The AT MFTS notation looks like this:
Ψ(ψ,ξ)=∞∑r=0ℏr(ψ)ξrp+2,ξ>0, | (2.17) |
where, ψ=(s1,ψ2,⋯,ψp)∈Rp, p∈N.
Proof. Let us investigate Taylor's series' fractional order expression:
β1(ψ,φ)=ℏ0(ψ)+ℏ1(ψ)φpΓ[p+1]++ℏ2(ψ)φ2pΓ[2p+1]+⋯. | (2.18) |
The following equality is obtained by applying the AT to Eq (2.18):
A[β1(ψ,φ)]=A[ℏ0(ψ)]+A[ℏ1(ψ)φpΓ[p+1]]+A[ℏ1(ψ)φ2pΓ[2p+1]]+⋯ |
This is accomplished by using the AT's characteristics.
A[β1(ψ,φ)]=ℏ0(ψ)1ξ2+ℏ1(ψ)Γ[p+1]Γ[p+1]1ξp+2+ℏ2(ψ)Γ[2p+1]Γ[2p+1]1ξ2p+2⋯ |
A distinct variant of Taylor's series in the AT is therefore obtained.
Lemma 2.7. As stated in the new form of Taylor's series 2.17, the MFPS may be represented as A[β1(ψ,φ)]=Ψ(ψ,ξ).
ℏ0(ψ)=limξ→∞ξ2Ψ(ψ,ξ)=β1(ψ,0). | (2.19) |
Proof. This can be determined from the revised version of Taylor's series:
ℏ0(ψ)=ξ2Ψ(ψ,ξ)−ℏ1(ψ)ξp−ℏ2(ψ)ξ2p−⋯ | (2.20) |
As shown in Eq (2.20), the necessary solution may be obtained by evaluating limξ→∞ into Eq (2.19) and doing a quick computation.
Theorem 2.8. The function A[β1(ψ,φ)]=Ψ(ψ,ξ) may be expressed in MFPS form as follows:
Ψ(ψ,ξ)=∞∑0ℏr(ψ)ξrp+2, ξ>0, |
where ψ=(ψ1,ψ2,⋯,ψp)∈Rp and p∈N. Then we have
ℏr(ψ)=Drprβ1(ψ,0), |
where, Drpφ=Dpφ.Dpφ.⋯.Dpφ(r−times).
Proof. The new Taylor's series is as follows:
ℏ1(ψ)=ξp+2Ψ(ψ,ξ)−ξpℏ0(ψ)−ℏ2(ψ)ξp−ℏ3(ψ)ξ2p−⋯ | (2.21) |
limξ→∞, is applied to (2.21), we get
ℏ1(ψ)=limξ→∞(ξp+2Ψ(ψ,ξ)−ξpℏ0(ψ))−limξ→∞ℏ2(ψ)ξp−limξ→∞ℏ3(ψ)ξ2p−⋯ |
After calculating the limit, we have the following equality:
ℏ1(ψ)=limξ→∞(ξp+2Ψ(ψ,ξ)−ξpℏ0(ψ)). | (2.22) |
The result of inserting Lemma 2.5 into Eq (2.22) is as follows:
ℏ1(ψ)=limξ→∞(ξ2A[Dpφβ1(ψ,φ)](ξ)). | (2.23) |
Furthermore, it is transformed into by using Lemma 2.6 to Eq (2.23),
ℏ1(ψ)=Dpφβ1(ψ,0). |
Again, applying limit ξ→∞ and using the new form of Taylor's series, we obtain:
ℏ2(ψ)=ξ2p+2Ψ(ψ,ξ)−ξ2pℏ0(ψ)−ξpℏ1(ψ)−ℏ3(ψ)ξp−⋯ |
We get the result from Lemma 2.6.
ℏ2(ψ)=limξ→∞ξ2(ξ2pΨ(ψ,ξ)−ξ2p−2ℏ0(ψ)−ξp−2ℏ1(ψ)). | (2.24) |
Using Lemmas 2.5 and 2.7, we convert Eq (2.24) into
ℏ2(ψ)=D2pφβ1(ψ,0), |
when the new Taylor's series is put through the same process, the following results are obtained:
ℏ3(ψ)=limξ→∞ξ2(A[D2pφβ1(ψ,p)](ξ)), |
Lemma 2.7 is used to derive the final equation:
ℏ3(ψ)=D3pφβ1(ψ,0), |
in general
ℏr(ψ)=Drpφβ1(ψ,0). |
Consequently, proof ends here.
The principles regulating the convergence of Taylor's series in its new form are explained and proven in the following theorem.
Theorem 2.9. Presented in Lemma 2.6, the formula for multiple fractional Taylor's series may be represented in the following new form: A[β1(ψ,φ)]=Ψ(ψ,ξ). When |ξaA[D(K+1)pφβ1(ψ,φ)]|≤T, for all 0<ξ≤s and 0<p≤1, the following inequality satisfies the residual RK(ψ,ξ) of the new MFTS:
|RK(ψ,ξ)|≤Tξ(K=1)p+2, 0<ξ≤s. |
Proof. Let A[Drpφβ1(ψ,φ)](ξ) is defined on 0<ξ≤s for r=0,1,2,⋯,K+1. Let us assume that |ξ2A[Dpsi,φ]K+1β11]|≤T, on 0<ξ≤s. Determine the following relation using the new Taylor's series:
RK(ψ,ξ)=Ψ(ψ,ξ)−K∑r=0ℏr(ψ)ξrp+2. | (2.25) |
Equation (2.25) is converted using Theorem 2.8,
RK(ψ,ξ)=Ψ(ψ,ξ)−K∑r=0Drpφβ1(ψ,0)ξrp+2. | (2.26) |
To solve Eq (2.26), multiply ξ(K+1)a+2 on both sides,
ξ(K+1)p+2RK(ψ,ξ)=ξ2(ξ(K+1)pΨ(ψ,ξ)−K∑r=0ξ(K+1−r)p−2Drpφβ1(ψ,0)). | (2.27) |
Lemma 2.5 applied to Eq (2.27) yields
ξ(K+1)p+2RK(ψ,ξ)=ξ2A[D(K+1)pφβ1(ψ,φ)]. | (2.28) |
Taking absolute of Eq (2.28), we get
|ξ(K+1)p+2RK(ψ,ξ)|=|ξ2A[D(K+1)pφβ1(ψ,φ)]|. | (2.29) |
Applying the criteria listed in Eq (2.29) yields the following result:
−Tξ(K+1)p+2≤RK(ψ,ξ)≤Tξ(K+1)p+2. | (2.30) |
We use Eq (2.30) to get the necessary result,
|RK(ψ,ξ)|≤Tξ(K+1)p+2. |
Thus, a new series convergence criteria is developed.
The ARPSM rules served as the foundation for our general model solution, which we describe below.
Step 1. The general equation may be simplified to obtain:
Dpφβ1(ψ,φ)+ϑ(ψ)N(β1)−δ(ψ,β1)=0. | (3.1) |
Step 2. The two sides of Eq (3.1) are evaluated using the AT in order to get
A[Dpφβ1(ψ,φ)+ϑ(ψ)N(β1)−δ(ψ,β1)]=0, | (3.2) |
transformation of Eq (3.2) by using Lemma 2.5. Thus,
Ψ(ψ,s)=q−1∑j=0Djφβ1(ψ,0)sqp+2−ϑ(ψ)Y(s)sqp+F(ψ,s)sqp, | (3.3) |
where, A[δ(ψ,β1)]=F(ψ,s),A[N(β1)]=Y(s).
Step 3. Examine the form that the solution to Eq (3.3) takes:
Ψ(ψ,s)=∞∑r=0ℏr(ψ)srp+2, s>0, |
Step 4. To proceed, follow these steps:
ℏ0(ψ)=lims→∞s2Ψ(ψ,s)=β1(ψ,0). |
The following outcome by using Theorem 2.9:
ℏ1(ψ)=Dpφβ1(ψ,0), |
ℏ2(ψ)=D2pφβ1(ψ,0), |
⋮ |
ℏw(ψ)=Dwpφβ1(ψ,0). |
Step 5. The Ψ(ψ,s) series that has been Kth truncated may be found using the formula below:
ΨK(ψ,s)=K∑r=0ℏr(ψ)srp+2, s>0, |
ΨK(ψ,s)=ℏ0(ψ)s2+ℏ1(ψ)sp+2+⋯+ℏw(ψ)swp+2+K∑r=w+1ℏr(ψ)srp+2. |
Step 6. Remember that, in order to derive the following, you must take into consideration both the Kth-truncated Aboodh residual function and the Aboodh residual function (ARF) from (3.3) separately:
ARes(ψ,s)=Ψ(ψ,s)−q−1∑j=0Djφβ1(ψ,0)sjp+2+ϑ(ψ)Y(s)sjp−F(ψ,s)sjp, |
and
AResK(ψ,s)=ΨK(ψ,s)−q−1∑j=0Djφβ1(ψ,0)sjp+2+ϑ(ψ)Y(s)sjp−F(ψ,s)sjp. | (3.4) |
Step 7. Put ΨK(ψ,s) into Eq (3.4) rather than use its expansion form,
AResK(ψ,s)=(ℏ0(ψ)s2+ℏ1(ψ)sp+2+⋯+ℏw(ψ)swp+2+K∑r=w+1ℏr(ψ)srp+2)−q−1∑j=0Djφβ1(ψ,0)sjp+2+ϑ(ψ)Y(s)sjp−F(ψ,s)sjp. | (3.5) |
Step 8. Equation (3.5) may be solved by multiplying both sides by sKp+2,
sKp+2AResK(ψ,s)=sKp+2(ℏ0(ψ)s2+ℏ1(ψ)sp+2+⋯+ℏw(ψ)swp+2+K∑r=w+1ℏr(ψ)srp+2−q−1∑j=0Djφβ1(ψ,0)sjp+2+ϑ(ψ)Y(s)sjp−F(ψ,s)sjp). | (3.6) |
Step 9. After taking lims→∞, we calculate the solution to Eq (3.6), which is:
lims→∞sKp+2AResK(ψ,s)=lims→∞sKp+2(ℏ0(ψ)s2+ℏ1(ψ)sp+2+⋯+ℏw(ψ)swp+2+K∑r=w+1ℏr(ψ)srp+2−q−1∑j=0Djφβ1(ψ,0)sjp+2+ϑ(ψ)Y(s)sjp−F(ψ,s)sjp). |
Step 10. Solving the above equation will provide the value of ℏK(ψ),
lims→∞(sKp+2AResK(ψ,s))=0, |
where K=w+1,w+2,⋯.
Step 11. Using a K-truncated series of Ψ(ψ,s), replace the values of ℏK(ψ) to get the K-approximate solution of Eq (3.3).
Step 12. Solve ΨK(ψ,s) using the AIT to get the K-approximate solution β1K(ψ,φ).
Consider the following PDE of space and time fractional order:
Dpφβ1(ψ,φ)=Φ(β1(ψ,φ),Dφψβ1(ψ,φ),D2φψβ1(ψ,φ),D3φψβ1(ψ,φ)), 0<p,φ≤1, | (3.7) |
having the IC's
β1(k)(ψ,0)=hk, k=0,1,2,⋯,m−1, | (3.8) |
the function β1(ψ,φ) is unknown, while Φ(β1(ψ,φ),Dφψβ1(ψ,φ),D2φψβ1(ψ,φ),D3φψβ1(ψ,φ)) may be a nonlinear operator or linear of β1(ψ,φ),Dφψβ1(ψ,φ),D2φψβ1(ψ,φ) and D3φψβ1(ψ,φ). Applying the AT to both sides of Eq (3.7) yields the following equation; for convenience, we will denote β1(ψ,φ) using the symbol β1,
A[β1(ψ,φ)]=1sp(m−1∑k=0β1(k)(ψ,0)s2−p+k+A[Φ(β1(ψ,φ),Dφψβ1(ψ,φ),D2φψβ1(ψ,φ),D3φψβ1(ψ,φ))]), | (3.9) |
as a result of using the AIT to solve this problem,
β1(ψ,φ)=A−1[1sp(m−1∑k=0β1(k)(ψ,0)s2−p+k+A[Φ(β1(ψ,φ),Dφψβ1(ψ,φ),D2φψβ1(ψ,φ),D3φψβ1(ψ,φ))])]. | (3.10) |
The solution obtained by using the iterative Aboodh transform method is represented as an infinite series,
β1(ψ,φ)=∞∑i=0β1i. | (3.11) |
Since Φ(β1,Dφψβ1,D2φψβ1,D3φψβ1) is either a nonlinear or linear operator, which can be decomposed as follows:
Φ(β1,Dφψβ1,D2φψβ1,D3φψβ1)=Φ(β10,Dφψβ10,D2φψβ10,D3φψβ10)+∞∑i=0(Φ(i∑k=0(β1k,Dφψβ1k,D2φψβ1k,D3φψβ1k))−Φ(i−1∑k=1(β1k,Dφψβ1k,D2φψβ1k,D3φψβ1k))). | (3.12) |
Equation (3.10) is changed to the following equation by substituting the values of (3.12) and (3.11).
∞∑i=0β1i(ψ,φ)=A−1[1sp(m−1∑k=0β1(k)(ψ,0)s2−p+k+A[Φ(β10,Dφψβ10,D2φψβ10,D3φψβ10)])]+A−1[1sp(A[∞∑i=0(Φi∑k=0(β1k,Dφψβ1k,D2φψβ1k,D3φψβ1k))])]−A−1[1sp(A[(Φi−1∑k=1(β1k,Dφψβ1k,D2φψβ1k,D3φψβ1k))])], | (3.13) |
β10(ψ,φ)=A−1[1sp(m−1∑k=0β1(k)(ψ,0)s2−p+k)],β11(ψ,φ)=A−1[1sp(A[Φ(β10,Dφψβ10,D2φψβ10,D3φψβ10)])],⋮β1m+1(ψ,φ)=A−1[1sp(A[∞∑i=0(Φi∑k=0(β1k,Dφψβ1k,D2φψβ1k,D3φψβ1k))])]−A−1[1sp(A[(Φi−1∑k=1(β1k,Dφψβ1k,D2φψβ1k,D3φψβ1k))])], m=1,2,⋯. | (3.14) |
The m-term of Eq (3.7) may be analytically approximated using the following expression:
β1(ψ,φ)=m−1∑i=0β1i. | (3.15) |
Examine the time-fractional KS model with sensitivity term ϖ(β2)=1, as shown in [23]. Then, ∂∂ψ(β1(ψ,φ)∂ϖ(β2)∂ψ)=0,
Dpφβ1(ψ,φ)−a∂2β1(ψ,φ)∂ψ2=0,Dpφβ2(ψ,φ)−b∂2β2(ψ,φ)∂ψ2−cβ1(ψ,φ)+dβ2(ψ,φ)=0, where 0<p≤1, | (4.1) |
having IC's:
β1(ψ,0)=l1e−ψ2,β2(ψ,0)=l2e−ψ2. | (4.2) |
Using Eq (4.2), AT is applied to Eq (4.1) in order to get
β1(ψ,s)−l1e−ψ2s2−asp[∂2β1(ψ,φ)∂ψ2]=0,β2(ψ,s)−l2e−ψ2s2−bsp[∂2β2(ψ,φ)∂ψ2]−csp[β1(ψ,φ)]+dsp[β2(ψ,φ)]=0. | (4.3) |
The kth-truncated term series are
β1(ψ,s)=l1e−ψ2s2+k∑r=1fr(ψ,s)srp+1,β2(ψ,s)=l2e−ψ2s2+k∑r=1jr(ψ,s)srp+1, r=1,2,3,4⋯ | (4.4) |
Aboodh residual functions (ARFs) are
AφRes(ψ,s)=β1(ψ,s)−l1e−ψ2s2−asp[∂2β1(ψ,φ)∂ψ2]=0,AφRes(ψ,s)=β2(ψ,s)−l2e−ψ2s2−bsp[∂2β2(ψ,φ)∂ψ2]−csp[β1(ψ,φ)]+dsp[β2(ψ,φ)]=0, | (4.5) |
and the kth-LRFs as:
AφResk(ψ,s)=β1k(ψ,s)−l1e−ψ2s2−asp[∂2β1k(ψ,φ)∂ψ2]=0,AφResk(ψ,s)=β2k(ψ,s)−l2e−ψ2s2−bsp[∂2β2k(ψ,φ)∂ψ2]−csp[β1k(ψ,φ)]+dsp[β2k(ψ,φ)]=0, | (4.6) |
To determine fr(ψ,s) and jr(ψ,s), for r=1,2,3,.... Then, we iteratively solve lims→∞(srp+1) by multiplying the resulting equation by srp+1, substituting the rth-Aboodh residual function Eq (4.6) for the rth-truncated series Eq (4.4). AφResβ1,r(ψ,s))=0 and AφResβ2,r(ψ,s))=0, and r=1,2,3,⋯. Putting a=0.5,b=3,c=1 and d=0.8 and taking the values of l1=160 and l2=120, we find the first few terms as:
f1(ψ,s)=e−ψ2(320β22−160),j1(ψ,s)=e−ψ2(1440ψ2−656), | (4.7) |
f2(ψ,s)=e−ψ2(640ψ4−1920ψ2+480),j2(ψ,s)=e−ψ2(17280ψ4−51904ψ2+12941), | (4.8) |
and so on.
Putting fr(ψ,s), for r=1,2,3,⋯, in Eq (4.4), we get
β1(ψ,s)=e−ψ2(320ψ2−160)sp+1+e−ψ2(640ψ4−1920ψ2+480)s2p+1+160e−ψ2s2+⋯,β2(ψ,s)=e−ψ2(1440ψ2−656)sp+1+e−ψ2(17280ψ4−51904ψ2+12941)s2p+1+120e−ψ2s2+⋯. | (4.9) |
The AIT may be used to get
β1(ψ,φ)=e−ψ2φp(320ψ2−160)Γ(p+1)+e−ψ2φ2p(640ψ4−1920ψ2+480)Γ(2p+1)+160e−ψ2+⋯,β2(ψ,s)=e−ψ2φp(1440ψ2−656)Γ(p+1)+e−ψ2φ2p(17280ψ4−51904ψ2+12941)Γ(2p+1)+120e−ψ2+⋯. | (4.10) |
Dpφβ1(ψ,φ)=a∂2β1(ψ,φ)∂ψ2,Dpφβ2(ψ,φ)=b∂2β2(ψ,φ)∂ψ2+cβ1(ψ,φ)−dβ2(ψ,φ), where 0<p≤1, | (4.11) |
having IC's:
β1(ψ,0)=l1e−ψ2,β2(ψ,0)=l2e−ψ2, | (4.12) |
By using the AT on each side of Eq (4.11), we are able to get the following result:
A[Dpφβ1(ψ,φ)]=1sp(m−1∑k=0β1(k)(ψ,0)s2−p+k+A[a∂2β1(ψ,φ)∂ψ2]),A[Dpφβ2(ψ,φ)]=1sp(m−1∑k=0β2(k)(ψ,0)s2−p+k+A[b∂2β2(ψ,φ)∂ψ2+cβ1(ψ,φ)−dβ2(ψ,φ)]), | (4.13) |
using the AIT on each side of 4.13, we get the following result:
β1(ψ,φ)=A−1[1sp(m−1∑k=0β1(k)(ψ,0)s2−p+k+A[a∂2β1(ψ,φ)∂ψ2])],β2(ψ,φ)=A−1[1sp(m−1∑k=0β2(k)(ψ,0)s2−p+k+A[b∂2β2(ψ,φ)∂ψ2+cβ1(ψ,φ)−dβ2(ψ,φ)])]. | (4.14) |
The equation that is produced as a consequence of applying the AT in an iterative manner is as follows:
β10(ψ,φ)=A−1[1sp(m−1∑k=0β1(k)(ψ,0)s2−p+k)]=A−1[β1(ψ,0)s2]=l1e−ψ2, |
β20(ψ,φ)=A−1[1sp(m−1∑k=0β2(k)(ψ,0)s2−p+k)]=A−1[β2(ψ,0)s2]=l2e−ψ2. |
We replaced the RL integral in Eq (4.11) to get the equivalent variant.
β1(ψ,φ)=l1e−ψ2−A[a∂2β1(ψ,φ)∂ψ2],β2(ψ,φ)=l2e−ψ2−A[b∂2β2(ψ,φ)∂ψ2+cβ1(ψ,φ)−dβ2(ψ,φ)]. | (4.15) |
Putting a=0.5,b=3,c=1, and d=0.8 and taking the values of l1=160 and l2=120, the following terms are then acquired by using the ATIM procedure:
β10(ψ,φ)=160e−ψ2,β20(ψ,φ)=120e−ψ2,β11(ψ,φ)=e−ψ2(320ψ2−160)φpΓ(p+1),β21(ψ,φ)=e−ψ2(1440ψ2−656)φpΓ(p+1),β12(ψ,φ)=e−ψ2(640ψ4−1920ψ2+478)φ2pΓ(2p+1),β22(ψ,φ)=e−ψ2zeta2p((364.8−832ψ2)Γ(p+1)+p(17280ψ4−51072ψ2+12576)Γ(p))Γ(p+1)Γ(2p+1). | (4.16) |
The following is the final ATIM solution:
β1(ψ,φ)=β10(ψ,φ)+β11(ψ,φ)+β12(ψ,φ)+⋯,β2(ψ,φ)=β20(ψ,φ)+β21(ψ,φ)+β22(ψ,φ)+⋯. | (4.17) |
β1(ψ,φ)=160e−ψ2+e−ψ2(320ψ2−160)φpΓ(p+1)+e−ψ2(640ψ4−1920ψ2+478)φ2pΓ(2p+1)+⋯,β2(ψ,φ)=120e−ψ2+e−ψ2(1440ψ2−656)φpΓ(p+1)+e−ψ2zeta2p((364.8−832ψ2)Γ(p+1)+p(17280ψ4−51072ψ2+12576)Γ(p))Γ(p+1)Γ(2p+1)+⋯. | (4.18) |
Examine the KS model of fractional order as stated in [23] with sensitivity term ϖ(β2)=β2(ψ,φ). Then, the function ∂∂ψ(β1(ψ,φ)∂ϖ(β2)∂ψ)=β1(ψ,φ)∂2β2(ψ,φ)∂ψ2+∂β1(ψ,φ)∂ψ∂β2(ψ,φ)∂ψ,
Dpφβ1(ψ,φ)−a∂2β1(ψ,φ)∂ψ2+β1(ψ,φ)∂2β2(ψ,φ)∂ψ2+∂β1(ψ,φ)∂ψ∂β2(ψ,φ)∂ψ=0,Dpφβ2(ψ,φ)−b∂2β2(ψ,φ)∂ψ2−cβ1(ψ,φ)+dβ2(ψ,φ)=0, where 0<p≤1, | (5.1) |
having IC's:
β1(ψ,0)=l1e−ψ2,β2(ψ,0)=l2e−ψ2. | (5.2) |
AT is applied to Eq (5.1), the following results are obtained using Eq (5.2):
β1(ψ,s)−l1e−ψ2s2−asp[∂2β1(ψ,φ)∂ψ2]+1spAφ[A−1φβ1(ψ,φ)×A−1φ∂2β2(ψ,φ)∂ψ2]+1spAφ[∂A−1φβ1(ψ,φ)∂ψ×∂A−1φβ2(ψ,φ)∂ψ]=0,β2(ψ,s)−l2e−ψ2s2−bsp[∂2β2(ψ,φ)∂ψ2]−csp[β1(ψ,φ)]+dsp[β2(ψ,φ)]=0. | (5.3) |
The kth truncated term series are
β1(ψ,s)=l1e−ψ2s2+k∑r=1fr(ψ,s)srp+1,β2(ψ,s)=l2e−ψ2s2+k∑r=1jr(ψ,s)srp+1, r=1,2,3,4⋯. | (5.4) |
Aboodh residual functions (ARFs) are
AφRes(ψ,s)=β1(ψ,s)−l1e−ψ2s2−asp[∂2β1(ψ,φ)∂ψ2]+1spAφ[A−1φβ1(ψ,φ)×A−1φ∂2β2(ψ,φ)∂ψ2]+1spAφ[∂A−1φβ1(ψ,φ)∂ψ×∂A−1φβ2(ψ,φ)∂ψ]=0,AφRes(ψ,s)=β2(ψ,s)−l2e−ψ2s2−bsp[∂2β2(ψ,φ)∂ψ2]−csp[β1(ψ,φ)]+dsp[β2(ψ,φ)]=0, | (5.5) |
and the kth-LRFs as:
AφResk(ψ,s)=β1k(ψ,s)+l1e−ψ2s2−asp[∂2β1k(ψ,φ)∂ψ2]+1spAφ[A−1φβ1k(ψ,φ)×A−1φ∂2β2k(ψ,φ)∂ψ2]+1spAφ[∂A−1φβ1k(ψ,φ)∂ψ×∂A−1φβ2k(ψ,φ)∂ψ]=0,AφResk(ψ,s)=β2k(ψ,s)−l2e−ψ2s2−bsp[∂2β2k(ψ,φ)∂ψ2]−csp[β1k(ψ,φ)]+dsp[β2k(ψ,φ)]=0. | (5.6) |
To determine fr(ψ,s) and jr(ψ,s), for r=1,2,3,.... Then, we iteratively solve lims→∞(srp+1) by multiplying the resulting equation by srp+1, substituting the rth-Aboodh residual function Eq (5.6) for the rth-truncated series Eq (5.4). AφResβ1,r(ψ,s))=0 and AφResβ2,r(ψ,s))=0, and r=1,2,3,⋯. Putting a=0.5,b=3,c=1, and d=0.8 and taking the values of l1=160 and l2=120, we find the first few terms as:
f1(ψ,s)=e−ψ2(320ψ2−160)−38400e−2ψ2,j1(ψ,s)=e−ψ2(1440ψ2−656), | (5.7) |
f2(ψ,s)=e−3ψ2(18432000ψ2+9216000)+e−2ψ2(785920−1612800ψ2)+e−ψ2(640ψ4−1920ψ2+480),j2(ψ,s)=e−ψ2(17280ψ4−51904ψ2+12941)−38400e−2ψ2, | (5.8) |
and so on.
Equation (5.4) is used to obtain fr(ψ,s) for r=1,2,3,⋯,
β1(ψ,s)=160e−ψ2s2+e−ψ2(320ψ2−160)−38400e−2ψ2sp+1+e−3ψ2(18432000ψ2+9216000)+e−2ψ2(785920−1612800ψ2)+e−ψ2(640ψ4−1920ψ2+480)s2p+1+⋯,β2(ψ,s)=120e−ψ2s2+e−ψ2(1440ψ2−656)sp+1+e−ψ2(17280ψ4−51904ψ2+12941)−38400e−2ψ2s2p+1+⋯. | (5.9) |
AIT is applied to get
β1(ψ,φ)=160e−ψ2+e−ψ2φp(320ψ2−160)−38400e−2ψ2Γ(p+1)+e−3ψ2φ2p(18432000ψ2+9216000)+e−2ψ2(785920−1612800ψ2)+e−ψ2(640ψ4−1920ψ2+480)Γ(2p+1)+⋯,β2(ψ,φ)=120e−ψ2s2+e−ψ2φp(1440ψ2−656)Γ(p+1)+e−ψ2φ2p(17280ψ4−51904ψ2+12941)−38400e−2ψ2Γ(2p+1)+⋯. | (5.10) |
Dpφβ1(ψ,φ)=a∂2β1(ψ,φ)∂ψ2−β1(ψ,φ)∂2β2(ψ,φ)∂ψ−∂β1(ψ,φ)∂ψ∂β2(ψ,φ)∂ψ,Dpφβ2(ψ,φ)=b∂2β2(ψ,φ)∂ψ2+cβ1(ψ,φ)−dβ2(ψ,φ), where 0<p≤1, | (5.11) |
having IC's:
β1(ψ,0)=l1e−ψ2,β2(ψ,0)=l2e−ψ2, | (5.12) |
when applying the AT to both sides of Eq (5.11), we get the following result:
A[Dpφβ1(ψ,φ)]=1sp(m−1∑k=0β1(k)(ψ,0)s2−p+k+A[a∂2β1(ψ,φ)∂ψ2−β1(ψ,φ)∂2β2(ψ,φ)∂ψ−∂β1(ψ,φ)∂ψ∂β2(ψ,φ)∂ψ]),A[Dpφβ2(ψ,φ)]=1sp(m−1∑k=0β2(k)(ψ,0)s2−p+k+A[b∂2β2(ψ,φ)∂ψ2+cβ1(ψ,φ)−dβ2(ψ,φ)]), | (5.13) |
applying the AIT to both sides of Eq (5.13) yields the following result:
β1(ψ,φ)=A−1[1sp(m−1∑k=0β1(k)(ψ,0)s2−p+k+A[a∂2β1(ψ,φ)∂ψ2−β1(ψ,φ)∂2β2(ψ,φ)∂ψ−∂β1(ψ,φ)∂ψ∂β2(ψ,φ)∂ψ])],β2(ψ,φ)=A−1[1sp(m−1∑k=0β2(k)(ψ,0)s2−p+k+A[b∂2β2(ψ,φ)∂ψ2+cβ1(ψ,φ)−dβ2(ψ,φ)])]. | (5.14) |
This equation is obtained by using the AT's iterative procedure:
β10(ψ,φ)=A−1[1sp(m−1∑k=0β1(k)(ψ,0)s2−p+k)]=A−1[β1(ψ,0)s2]=l1e−ψ2, |
β20(ψ,φ)=A−1[1sp(m−1∑k=0β2(k)(ψ,0)s2−p+k)]=A−1[β2(ψ,0)s2]=l2e−ψ2. |
The RL integral is applied to Eq (5.1) to yield the equivalent form.
β1(ψ,φ)=l1e−ψ2−A[a∂2β1(ψ,φ)∂ψ2−β1(ψ,φ)∂2β2(ψ,φ)∂ψ−∂β1(ψ,φ)∂ψ∂β2(ψ,φ)∂ψ],β2(ψ,φ)=l2e−ψ2−A[b∂2β2(ψ,φ)∂ψ2+cβ1(ψ,φ)−dβ2(ψ,φ)]. | (5.15) |
Putting a=0.5,b=3,c=1, and d=0.8 and taking the values of l1=160 and l2=120, the following terms are then acquired by using the ATIM procedure: These terms are obtained using the ATIM process,
β10(ψ,φ)=160e−ψ2,β20(ψ,φ)=120e−ψ2,β11(ψ,φ)=e−2β22(eβ22(320β22−160)−38400)φpΓ(p+1),β21(ψ,φ)=e−x2(1440x2−656)tpΓ(p+1),β12(ψ,φ)=−(225 46−pe−2ψ2φp(pΓ(p)(4pΓ(p+12)(e−ψ2(−240ψ4−10.66ψ2+eψ2(ψ4−0.044ψ2+0.727)+174.66)φ2pΓ(2p+1)+0.0416Γ(p+1)Γ(3p+1))+φpΓ(p+1)Γ(3p+1)(3.10179ψ2+(−0.0012ψ4+35.4528ψ2+17.7236)sinh(ψ2)+(−0.00123ψ4−35.4453ψ2−17.7254)cosh(ψ2)−1.5115))−0.0738Γ(p+1)Γ(2p+1)Γ(3p+1)))/(pΓ(p)Γ(p+12)Γ(p+1)2Γ(3p+1)),β22(ψ,φ)=(e−2ψ2φ2p(eψ2((524.8−1152ψ2)Γ(p+1)+p(17280ψ4−50752ψ2+12416)Γ(p))−38400pΓ(p)))/(Γ(p+1)Γ(2p+1)). | (5.16) |
The following is the ATIM procedure's ultimate solution:
β1(ψ,φ)=β10(ψ,φ)+β11(ψ,φ)+β12(ψ,φ)+⋯,β2(ψ,φ)=β20(ψ,φ)+β21(ψ,φ)+β22(ψ,φ)+⋯. | (5.17) |
β1(ψ,φ)=160e−ψ2+(e−2β22(eβ22(320β22−160)−38400)φp)/(Γ(p+1))−(225 46−pe−2ψ2φp×(pΓ(p)(4pΓ(p+12)(e−ψ2(−240ψ4−10.66ψ2+eψ2(ψ4−0.044ψ2+0.727)+174.66)φ2pΓ(2p+1)+0.0416Γ(p+1)Γ(3p+1))+φpΓ(p+1)Γ(3p+1)(3.10179ψ2+(−0.0012ψ4+35.4528ψ2+17.7236)sinh(ψ2)+(−0.00123ψ4−35.4453ψ2−17.7254)cosh(ψ2)−1.5115))−0.0738Γ(p+1)Γ(2p+1)Γ(3p+1)))/(pΓ(p)Γ(p+12)Γ(p+1)2Γ(3p+1))+⋯, | (5.18) |
β2(ψ,φ)=120e−ψ2+(e−x2(1440x2−656)tp)/(Γ(p+1))+(e−2ψ2φ2p(eψ2((524.8−1152ψ2)Γ(p+1)+p(17280ψ4−50752ψ2+12416)Γ(p))−38400pΓ(p)))/(Γ(p+1)Γ(2p+1))+⋯. | (5.19) |
In Problem 1, we embark on a comprehensive exploration of the solutions β1(ψ,φ) and β2(ψ,φ) through both graphical and numerical analyses employing two distinct methodologies: the Aboodh residual power series method (ARPSM) and the Aboodh transform iteration method (ATIM). Beginning with β1(ψ,φ), Figure 1 offers an insightful depiction of the approximate solution obtained via ARPSM for a specific value of p=1. Building upon this foundation, Figure 2 extends the analysis, providing both 3D and 2D representations to elucidate the influence of varying p on the solution when φ=0.1. Similarly, Figures 3 and 4 delve into the corresponding analyses for β2(ψ,φ). These visualizations offer a nuanced understanding of how changes in the parameter p affect the behavior of the solutions across different dimensions. In conjunction with the graphical exploration, Tables 1 and 2 complement our investigation by presenting detailed fractional order analyses for ARPSM applied to β1(ψ,φ) and β2(ψ,φ), respectively. These tables provide valuable insights into the fractional characteristics of the solutions and contribute to a comprehensive understanding of their properties.
φ | p=0.40 | p=0.60 | p=0.80 | p=1.00 |
0.2 | 0.0048028 | 0.0022338 | 0.00098417 | 0.00043033 |
0.4 | 0.0082096 | 0.0049227 | 0.00273349 | 0.00144405 |
0.6 | 0.0112581 | 0.0078699 | 0.00506050 | 0.00305916 |
0.8 | 0.0140966 | 0.0110044 | 0.00787829 | 0.00527565 |
1.0 | 0.0167894 | 0.0142882 | 0.0111338 | 0.00809353 |
φ | p=0.40 | p=0.60 | p=0.80 | p=1.00 |
0.2 | 0.121739 | 0.054477 | 0.022375 | 0.0086336 |
0.4 | 0.211321 | 0.124300 | 0.066837 | 0.0334867 |
0.6 | 0.291879 | 0.201620 | 0.127169 | 0.0745724 |
0.8 | 0.367092 | 0.284277 | 0.200911 | 0.1318910 |
1.0 | 0.438569 | 0.371156 | 0.286582 | 0.2054420 |
Shifting focus to the ATIM method, Figures 5 and 7 display the approximate solutions of β1(ψ,φ) and β2(ψ,φ) for p=1, respectively. Figures 6 and 8 further extend the analysis, offering insights into the impact of varying p at φ=0.1. The fractional order sensitivity is examined through Tables 3 and 4 for β1(ψ,φ) and β2(ψ,φ) under ATIM.
φ | p=0.40 | p=0.60 | p=0.80 | p=1.00 |
0.2 | 0.0048028 | 0.0022338 | 0.00098416 | 0.00043033 |
0.4 | 0.0082095 | 0.0049226 | 0.00273345 | 0.00144403 |
0.6 | 0.0112579 | 0.0078698 | 0.00506043 | 0.00305912 |
0.8 | 0.0140964 | 0.0110042 | 0.00787818 | 0.00527558 |
1.0 | 0.0167892 | 0.0142880 | 0.01113370 | 0.00809342 |
φ | p=0.40 | p=0.60 | p=0.80 | p=1.00 |
0.2 | 0.121748 | 0.054481 | 0.022376 | 0.0086342 |
0.4 | 0.211336 | 0.124308 | 0.066842 | 0.0334890 |
0.6 | 0.291899 | 0.201634 | 0.127178 | 0.0745776 |
0.8 | 0.367118 | 0.284297 | 0.200924 | 0.1319000 |
1.0 | 0.438600 | 0.371182 | 0.286602 | 0.2054560 |
In order to facilitate a comprehensive comparison, Tables 5 and 6 juxtapose the results obtained from both ARPSM and ATIM for β1(ψ,φ) and β2(ψ,φ) in Problem 1. These tables provide a nuanced understanding of the performance of each method, shedding light on their strengths and limitations in solving the given fractional-order equations. The two most basic approaches to solving fractional differential equations are the ATIM and the ARPSM, as stated in [52,53] and [49,50,51], respectively. These techniques provide numerical solutions to PDEs that do not need discretization or linearization, making the symbolic terms in analytical solutions instantly visible. The primary objective of this study is to compare and contrast the performance of ARPSM and ATIM in solving the Keller-Segel (KS) model. It is worth mentioning that several linear and nonlinear fractional differential problems have been solved using these two approaches.
p=1.00 | p=0.80 | p=0.60 | p=0.40 | |||||
φ | ARPSM | ATIM | ARPSM | ATIM | ARPSM | ATIM | ARPSM | ATIM |
0.2 | 0.00043033 | 0.00043033 | 0.00098417 | 0.00098416 | 0.0022338 | 0.0022338 | 0.0048028 | 0.0048028 |
0.4 | 0.00144405 | 0.00144403 | 0.00273349 | 0.00273345 | 0.0049227 | 0.0049226 | 0.0082096 | 0.0082095 |
0.6 | 0.00305916 | 0.00305912 | 0.00506050 | 0.00506043 | 0.0078699 | 0.0078698 | 0.0112581 | 0.0112579 |
0.8 | 0.00527565 | 0.00527558 | 0.00787829 | 0.00787818 | 0.0110044 | 0.0110042 | 0.0140966 | 0.0140964 |
1.0 | 0.00809353 | 0.00809342 | 0.01113380 | 0.01113370 | 0.0142882 | 0.0142880 | 0.0167894 | 0.0167892 |
p=1.00 | p=0.80 | p=0.60 | p=0.40 | |||||
φ | ARPSM | ATIM | ARPSM | ATIM | ARPSM | ATIM | ARPSM | ATIM |
0.2 | 0.0086336 | 0.0086342 | 0.022375 | 0.022376 | 0.054477 | 0.054481 | 0.121739 | 0.121748 |
0.4 | 0.0334867 | 0.0334890 | 0.066837 | 0.066842 | 0.124300 | 0.124308 | 0.211321 | 0.211336 |
0.6 | 0.0745724 | 0.0745776 | 0.127169 | 0.127178 | 0.201620 | 0.201634 | 0.291879 | 0.291899 |
0.8 | 0.1318910 | 0.1319000 | 0.200911 | 0.200924 | 0.284277 | 0.284297 | 0.367092 | 0.367118 |
1.0 | 0.2054420 | 0.2054560 | 0.286582 | 0.286602 | 0.371156 | 0.371182 | 0.438569 | 0.438600 |
In Problem 2, the analysis of solutions β1(ψ,φ) and β2(ψ,φ) is carried out using the ARPSM and the ATIM. For β1(ψ,φ), Figure 9 illustrates the approximate solution via ARPSM for p=1. Subsequently, Figure 10 presents 3D and 2D analyses, demonstrating the influence of varying p on the solution at φ=0.1. Analogously, Figures 11 and 12 provide the corresponding analyses for β2(ψ,φ). Complementing the graphical exploration, Table 7 details the fractional order analysis for ARPSM of β1(ψ,φ), and Table 8 does the same for β2(ψ,φ).
φ | p=0.40 | p=0.60 | p=0.80 | p=1.00 |
0.2 | 0.0048027 | 0.0022338 | 0.00098415 | 0.00043032 |
0.4 | 0.0082094 | 0.0049226 | 0.00273344 | 0.00144403 |
0.6 | 0.0112578 | 0.0078698 | 0.00506040 | 0.00305910 |
0.8 | 0.0140963 | 0.0110042 | 0.00787813 | 0.00527555 |
1.0 | 0.0167891 | 0.0142880 | 0.01113360 | 0.00809337 |
φ | p=0.40 | p=0.60 | p=0.80 | p=1.00 |
0.2 | 0.121739 | 0.054477 | 0.022375 | 0.0086336 |
0.4 | 0.211321 | 0.124300 | 0.066837 | 0.0334867 |
0.6 | 0.291879 | 0.201620 | 0.127169 | 0.0745724 |
0.8 | 0.367092 | 0.284277 | 0.200911 | 0.1318910 |
1.0 | 0.438569 | 0.371156 | 0.286582 | 0.2054420 |
Shifting focus to the ATIM method, Figures 13 and 15 display the approximate solutions of β1(ψ,φ) and β2(ψ,φ) for p=1, respectively. Figures 14 and 16 further extend the analysis, offering insights into the impact of varying p at φ=0.1. The fractional order sensitivity is examined through Tables 9 and 10 for β1(ψ,φ) and β2(ψ,φ) under ATIM.
φ | p=0.40 | p=0.60 | p=0.80 | p=1.00 |
0.2 | 0.0047363 | 0.00220436 | 0.00097225 | 0.00042586 |
0.4 | 0.0080934 | 0.00485484 | 0.00269728 | 0.00142614 |
0.6 | 0.0110971 | 0.00775928 | 0.00499109 | 0.00301877 |
0.8 | 0.0138937 | 0.01084780 | 0.00776810 | 0.00520373 |
1.0 | 0.0165466 | 0.01408330 | 0.01097610 | 0.00798096 |
φ | p=0.40 | p=0.60 | p=0.80 | p=1.00 |
0.2 | 0.121748 | 0.054481 | 0.0223765 | 0.0086342 |
0.4 | 0.211336 | 0.124308 | 0.0668425 | 0.0334890 |
0.6 | 0.291899 | 0.201634 | 0.1271780 | 0.0745776 |
0.8 | 0.367118 | 0.284297 | 0.2009240 | 0.1319000 |
1.0 | 0.438600 | 0.371182 | 0.2866020 | 0.2054560 |
To facilitate a comprehensive comparison, Tables 11 and 12 juxtapose the results obtained from both ARPSM and ATIM for β1(ψ,φ) and β2(ψ,φ) in Problem 2. These tables provide a nuanced understanding of the performance of each method, shedding light on their strengths and limitations in solving the given fractional-order equations in the context of Problem 2.
p=1.00 | p=0.80 | p=0.60 | p=0.40 | |||||
φ | ARPSM | ATIM | ARPSM | ATIM | ARPSM | ATIM | ARPSM | ATIM |
0.2 | 0.0004303 | 0.0004258 | 0.0009841 | 0.0009722 | 0.0022338 | 0.0022043 | 0.004802 | 0.0047363 |
0.4 | 0.0014440 | 0.0014261 | 0.0027334 | 0.0026972 | 0.0049226 | 0.0048548 | 0.008209 | 0.0082096 |
0.6 | 0.0030591 | 0.0030187 | 0.0050604 | 0.0049910 | 0.0078698 | 0.0077592 | 0.011257 | 0.0110971 |
0.8 | 0.0052755 | 0.0052037 | 0.0078781 | 0.0077681 | 0.0110042 | 0.0108478 | 0.014096 | 0.0138937 |
1.0 | 0.0080933 | 0.0079809 | 0.0111336 | 0.0109761 | 0.0142880 | 0.0140833 | 0.016789 | 0.0165466 |
p=1.00 | p=0.80 | p=0.60 | p=0.40 | |||||
φ | ARPSM | ATIM | ARPSM | ATIM | ARPSM | ATIM | ARPSM | ATIM |
0.2 | 0.0086336 | 0.0086342 | 0.022375 | 0.022376 | 0.054477 | 0.054481 | 0.121739 | 0.121748 |
0.4 | 0.0334867 | 0.0334890 | 0.066837 | 0.066842 | 0.124300 | 0.124308 | 0.211321 | 0.211336 |
0.6 | 0.0745724 | 0.0745776 | 0.127169 | 0.127178 | 0.201620 | 0.201634 | 0.291879 | 0.291899 |
0.8 | 0.1318910 | 0.1319000 | 0.200911 | 0.200924 | 0.284277 | 0.284297 | 0.367092 | 0.367118 |
1.0 | 0.2054420 | 0.2054560 | 0.286582 | 0.286602 | 0.371156 | 0.371182 | 0.438569 | 0.438600 |
In summary, this research has focused on improving numerical methods designed for solving the fractional Keller-Segel (KS) model, which is a crucial framework for studying chemotaxis phenomena. By utilizing the Caputo operator framework, we have employed two distinct methodologies: the Aboodh residual power series method (ARPSM) and the Aboodh transform iteration method (ATIM). These approaches have enabled us to obtain accurate solutions to the fractional KS equation, contributing to a better understanding of chemotactic behavior in biological systems. Through a comparative analysis of ARPSM and ATIM, we have revealed their individual strengths and applications in addressing complex fractional models. This work not only advances numerical techniques tailored for fractional differential equations but also improves our understanding of chemotaxis dynamics through precise modeling.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The researcher would like to thank the Deanship of Scientific Research, Shaqra University, for funding the publication of this project.
The authors declare that they have no competing interests.
[1] | A. Carpinteri, F. Mainardi, Fractals and fractional calculus in continuum mechanics, Vienna: Springer, https://doi.org/10.1007/978-3-7091-2664-6 |
[2] |
L. Debnath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci., 2003 (2003), 753601. https://doi.org/10.1155/S0161171203301486 doi: 10.1155/S0161171203301486
![]() |
[3] |
J. T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 1140–1153. https://doi.org/10.1016/j.cnsns.2010.05.027 doi: 10.1016/j.cnsns.2010.05.027
![]() |
[4] |
A. A. M. Arafa, S. Z. Rida, H. Mohamed, Approximate analytical solutions of Schnakenberg systems by homotopy analysis method, Appl. Math. Model., 36 (2012), 4789–4796. https://doi.org/10.1016/j.apm.2011.12.014 doi: 10.1016/j.apm.2011.12.014
![]() |
[5] |
P. Sunthrayuth, A. M. Zidan, S. W. Yao, R. Shah, M. Inc, The comparative study for solving fractional-order Fornberg Whitham equation via ρ-Laplace transform, Symmetry, 13 (2021), 784. https://doi.org/10.3390/sym13050784 doi: 10.3390/sym13050784
![]() |
[6] |
R. Shah, H. Khan, D. Baleanu, Fractional Whitham Broer Kaup equations within modified analytical approaches, Axioms, 8 (2019), 125. https://doi.org/10.3390/axioms8040125 doi: 10.3390/axioms8040125
![]() |
[7] |
H. M. Srivastava, R. Shah, H. Khan, M. Arif, Some analytical and numerical investigation of a family of fractional-order Helmholtz equations in two space dimensions, Math. Methods Appl. Sci., 43 (2020), 199–212. https://doi.org/10.1002/mma.5846 doi: 10.1002/mma.5846
![]() |
[8] |
H. Yasmin, N. H. Aljahdaly, A. M. Saeed, Investigating symmetric soliton solutions for the fractional coupled konno onno system using improved versions of a novel analytical technique, Mathematics, 11 (2023), 2686. https://doi.org/10.3390/math11122686 doi: 10.3390/math11122686
![]() |
[9] |
M. M. Al-Sawalha, R. Shah, A. Khan, O. Y. Ababneh, T. Botmart, Fractional view analysis of Kersten-Krasil'shchik coupled KdV-mKdV systems with non-singular kernel derivatives, AIMS Mathematics, 7 (2022), 18334-18359. https://doi.org/10.3934/math.20221010 doi: 10.3934/math.20221010
![]() |
[10] |
A. A. Alderremy, R. Shah, N. Iqbal, S. Aly, K. Nonlaopon, Fractional series solution construction for nonlinear fractional reaction-diffusion Brusselator model utilizing Laplace residual power series, Symmetry, 14 (2022), 1944. https://doi.org/10.3390/sym14091944 doi: 10.3390/sym14091944
![]() |
[11] |
S. Alshammari, M. M. Al-Sawalha, R. Shah, Approximate analytical methods for a fractional-order nonlinear system of Jaulent Miodek equation with energy-dependent Schrodinger potential, Fractal Fract., 7 (2023), 140. https://doi.org/10.3390/fractalfract7020140 doi: 10.3390/fractalfract7020140
![]() |
[12] |
E. M. Elsayed, R. Shah, K. Nonlaopon, The analysis of the fractional-order Navier-Stokes equations by a novel approach, J. Funct. Spaces, 2022 (2022), 8979447. https://doi.org/10.1155/2022/8979447 doi: 10.1155/2022/8979447
![]() |
[13] |
M. Alqhtani, K. M. Saad, W. Weera, W. M. Hamanah, Analysis of the fractional-order local Poisson equation in fractal porous media, Symmetry, 14 (2022), 1323. https://doi.org/10.3390/sym14071323 doi: 10.3390/sym14071323
![]() |
[14] |
H. Yasmin, A. S. Alshehry, A. H. Ganie, A. M. Mahnashi, Perturbed Gerdjikov Ivanov equation: Soliton solutions via Backlund transformation, Optik, 298 (2024), 171576. http://dx.doi.org/10.1016/j.ijleo.2023.171576 doi: 10.1016/j.ijleo.2023.171576
![]() |
[15] |
N. A. Pirim, F. Ayaz, A new technique for solving fractional order systems: Hermite collocation method, Appl. Math., 7 (2016), 2307–2323. http://dx.doi.org/10.4236/am.2016.718182 doi: 10.4236/am.2016.718182
![]() |
[16] |
V. Marinca, N. Herisanu, Application of optimal homotopy asymptotic method for solving nonlinear equations arising in heat transfer, Int. Commun. Heat Mass Transfer, 35 (2008), 710–715. https://doi.org/10.1016/j.icheatmasstransfer.2008.02.010 doi: 10.1016/j.icheatmasstransfer.2008.02.010
![]() |
[17] | J. S. Duan, R. Rach, D. Baleanu, A. M. Wazwaz, A review of the Adomian decomposition method and its applications to fractional differential equations, Commun. Frac. Calc., 3 (2012), 73–99. |
[18] |
M. Khan, M. A. Gondal, I. Hussain, S. K. Vanani, A new comparative study between homotopy analysis transform method and homotopy perturbation transform method on a semi infinite domain, Math. Comput. Model., 55 (2012), 1143–1150. https://doi.org/10.1016/j.mcm.2011.09.038 doi: 10.1016/j.mcm.2011.09.038
![]() |
[19] |
A. Jabbari, H. Kheiri, A. Yildirim, Homotopy analysis and homotopy Pade methods for (1+1) and (2+1) dimensional dispersive long wave equations, Internat. J. Numer. Methods Heat Fluid Flow, 23 (2013), 692–706. http://dx.doi.org/10.1108/09615531311323818 doi: 10.1108/09615531311323818
![]() |
[20] |
R. K. Gazizov, A. A. Kasatkin, Construction of exact solutions for fractional order differential equations by the invariant subspace method, Comput. Math. Appl., 66 (2013), 576–584. https://doi.org/10.1016/j.camwa.2013.05.006 doi: 10.1016/j.camwa.2013.05.006
![]() |
[21] |
A. Prakash, P. Veeresha, D. G. Prakasha, M. Goyal, A new efficient technique for solving fractional coupled Navier-Stokes equations using q-homotopy analysis transform method, Pramana-J. Phys., 93 (2018), 6. https://doi.org/10.1007/s12043-019-1763-x doi: 10.1007/s12043-019-1763-x
![]() |
[22] |
R. K. Pandey, H. K. Mishra, Homotopy analysis Sumudu transform method for time-fractional third order dispersive partial differential equation, Adv. Comput. Math., 43 (2017), 365–383. https://doi.org/10.1007/s10444-016-9489-5 doi: 10.1007/s10444-016-9489-5
![]() |
[23] |
Z. H. Guo, O. Acan, S. Kumar, Sumudu transform series expansion method for solving the local fractional Laplace equation in fractal thermal problems, Thermal Sci., 20 (2016), 739–742. http://dx.doi.org/10.2298/TSCI16S3739G doi: 10.2298/TSCI16S3739G
![]() |
[24] |
K. K. Ali, M. Maneea, M. S. Mohamed, Solving nonlinear fractional models in superconductivity using the q-Homotopy analysis transform method, J. Math., 2023 (2023), 6647375. https://doi.org/10.1155/2023/6647375 doi: 10.1155/2023/6647375
![]() |
[25] |
Z. Y. Fan, K. K. Ali, M. Maneea, M. Inc, S. W. Yao, Solution of time fractional Fitzhugh-Nagumo equation using semi analytical techniques, Results Phys., 51 (2023), 106679. https://doi.org/10.1016/j.rinp.2023.106679 doi: 10.1016/j.rinp.2023.106679
![]() |
[26] |
K. K. Ali, F. E. A. Elbary, M. Maneea, Efficient techniques for nonlinear dynamics: A study of fractional generalized quintic Ginzburg-Landau equation, J. Taibah Univ. Sci., 18 (2024), 2333593. https://doi.org/10.1080/16583655.2024.2333593 doi: 10.1080/16583655.2024.2333593
![]() |
[27] | M. A. El-Tawil, S. N. Huseen, The q-homotopy analysis method (q-HAM), Int. J. Appl. Math. Mech., 8 (2012), 51–75. |
[28] | M. A. El-Tawil, S. N. Huseen, On convergence of the q-homotopy analysis method, Int. J. Contemp. Math. Sci., 8 (2013), 481–497. |
[29] |
Z. J. Liu, M. Y. Adamu, E. Suleiman, J. H. He, Hybridization of homotopy perturbation method and Laplace transformation for the partial differential equations, Thermal Sci., 21 (2017), 1843–1846. http://dx.doi.org/10.2298/TSCI160715078L doi: 10.2298/TSCI160715078L
![]() |
[30] | A. Prakash, H. Kaur, q-homotopy analysis transform method for space and time-fractional KdV-Burgers equation, Nonlinear Sci. Lett. A, 9 (2018), 44–61. |
[31] |
E. F. Keller, L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399–415. https://doi.org/10.1016/0022-5193(70)90092-5 doi: 10.1016/0022-5193(70)90092-5
![]() |
[32] |
A. Atangana, Extension of the Sumudu homotopy perturbation method to an attractor for one-dimensional Keller-Segel equations, Appl. Math. Model., 39 (2015), 2909–2916. https://doi.org/10.1016/j.apm.2014.09.029 doi: 10.1016/j.apm.2014.09.029
![]() |
[33] |
A. Atangana, B. S. T. Alkahtani, Analysis of the Keller-Segel model with a fractional derivative without singular kernel, Entropy, 17 (2015), 4439–4453. https://doi.org/10.3390/e17064439 doi: 10.3390/e17064439
![]() |
[34] |
A. Atangana, E. Alabaraoye, Solving a system of fractional partial differential equations arising in the model of HIV infection of CD4+ cells and attractor one-dimensional Keller-Segel equations, Adv. Differ. Equ., 2013 (2013), 94. https://doi.org/10.1186/1687-1847-2013-94 doi: 10.1186/1687-1847-2013-94
![]() |
[35] |
M. Zayernouri, A. Matzavinos, Fractional Adams-Bashforth/Moulton methods: An application to the fractional Keller-Segel chemotaxis system, J. Comput. Phys., 317 (2016), 1–14. https://doi.org/10.1016/j.jcp.2016.04.041 doi: 10.1016/j.jcp.2016.04.041
![]() |
[36] |
S. Kumar, A. Kumar, I. K. Argyros, A new analysis for the Keller-Segel model of fractional order, Numer. Algorithms, 75 (2017), 213–228. https://doi.org/10.1007/s11075-016-0202-z doi: 10.1007/s11075-016-0202-z
![]() |
[37] |
M. A. Dokuyucu, D. Baleanu, E. Çelik, Analysis of Keller-Segel model with Atangana-Baleanu fractional derivative, Filomat, 32 (2018), 5633–5643. http://dx.doi.org/10.2298/FIL1816633D doi: 10.2298/FIL1816633D
![]() |
[38] |
X. Luo, M. Nadeem, M. Inc, S. Dawood, Fractional complex transform and homotopy perturbation method for the approximate solution of Keller-Segel model, J. Funct. Spaces, 2022 (2022), 9637098. https://doi.org/10.1155/2022/9637098 doi: 10.1155/2022/9637098
![]() |
[39] |
O. A. Arqub, Series solution of fuzzy differential equations under strongly generalized differentiability, J. Adv. Res. Appl. Math., 5 (2013), 31–52. http://dx.doi.org/10.5373/jaram.1447.051912 doi: 10.5373/jaram.1447.051912
![]() |
[40] |
O. A. Arqub, Z. Abo-Hammour, R. Al-Badarneh, S. Momani, A reliable analytical method for solving higher-order initial value problems, Discrete Dyn. Nat. Soc., 2013 (2013), 673829. http://dx.doi.org/10.1155/2013/673829 doi: 10.1155/2013/673829
![]() |
[41] |
O. A. Arqub, A. El-Ajou, Z. A. Zhour, S. Momani, Multiple solutions of nonlinear boundary value problems of fractional order: A new analytic iterative technique, Entropy, 16 (2014), 471–493. https://doi.org/10.3390/e16010471 doi: 10.3390/e16010471
![]() |
[42] |
A. El-Ajou, O. A. Arqub, S. Momani, Approximate analytical solution of the nonlinear fractional KdV-Burgers equation: A new iterative algorithm, J. Comput. Phys., 293 (2015), 81–95. https://doi.org/10.1016/j.jcp.2014.08.004 doi: 10.1016/j.jcp.2014.08.004
![]() |
[43] |
S. Rida, A. Arafa, A. Abedl-Rady, H. Abdl-Rahaim, Fractional physical differential equations via natural transform, Chinese J. Phys., 55 (2017), 1569–1575. https://doi.org/10.1016/j.cjph.2017.05.004 doi: 10.1016/j.cjph.2017.05.004
![]() |
[44] |
J. Zhang, Z. Wei, L. Li, C. Zhou, Least-squares residual power series method for the time-fractional differential equations, Complexity, 2019 (2019), 6159024. https://doi.org/10.1155/2019/6159024 doi: 10.1155/2019/6159024
![]() |
[45] |
Y. Xie, I. Ahmad, T. I. S. Ikpe, E. F. Sofia, H. Seno, What influence could the acceptance of visitors cause on the epidemic dynamics of a Reinfectious disease?: A mathematical model, Acta Biotheor., 72 (2024), 3. https://doi.org/10.1007/s10441-024-09478-w doi: 10.1007/s10441-024-09478-w
![]() |
[46] |
I. Jaradat, M. Alquran, K. Al-Khaled, An analytical study of physical models with inherited temporal and spatial memory, Eur. Phys. J. Plus, 133 (2018), 162. https://doi.org/10.1140/epjp/i2018-12007-1 doi: 10.1140/epjp/i2018-12007-1
![]() |
[47] | M. Alquran, K. Al-Khaled, S. Sivasundaram, H. M. Jaradat, Mathematical and numerical study of existence of bifurcations of the generalized fractional Burgers-Huxley equation, Nonlinear Stud., 24 (2017), 235–244. |
[48] |
I. Ahmad, H. Seno, An epidemic dynamics model with limited isolation capacity, Theory Biosci., 142 (2023), 259–273. https://doi.org/10.1007/s12064-023-00399-9 doi: 10.1007/s12064-023-00399-9
![]() |
[49] |
G. O. Ojo, N. I. Mahmudov, Aboodh transform iterative method for spatial diffusion of a biological population with fractional-order, Mathematics, 9 (2021), 155. https://doi.org/10.3390/math9020155 doi: 10.3390/math9020155
![]() |
[50] |
M. A. Awuya, G. O. Ojo, N. I. Mahmudov, Solution of space-time fractional differential equations using Aboodh transform iterative method, J. Math., 2022 (2022), 4861588. https://doi.org/10.1155/2022/4861588 doi: 10.1155/2022/4861588
![]() |
[51] |
M. A. Awuya, D. Subasi, Aboodh transform iterative method for solving fractional partial differential equation with Mittag-Leffler Kernel, Symmetry, 13 (2021), 2055. https://doi.org/10.3390/sym13112055 doi: 10.3390/sym13112055
![]() |
[52] |
M. I. Liaqat, S. Etemad, S. Rezapour, C. Park, A novel analytical Aboodh residual power series method for solving linear and nonlinear time-fractional partial differential equations with variable coefficients, AIMS Mathematics, 7 (2022), 16917–16948. http://dx.doi.org/10.3934/math.2022929 doi: 10.3934/math.2022929
![]() |
[53] |
M. I. Liaqat, A. Akgul, H. Abu-Zinadah, Analytical investigation of some time-fractional Black-Scholes models by the Aboodh residual power series method, Mathematics, 11 (2023), 276. https://doi.org/10.3390/math11020276 doi: 10.3390/math11020276
![]() |
[54] | K. S. Aboodh, The new integral transform'Aboodh transform, Glob. J. Pure Appl. Math., 9 (2013), 35–43. |
[55] | S. Aggarwal, R. Chauhan, A comparative study of Mohand and Aboodh transforms, Int. J. Res. Adv. Technol., 7 (2019), 520–529. |
[56] |
M. E. Benattia, K. Belghaba, Application of the Aboodh transform for solving fractional delay differential equations, Univ. J. Math. Appl., 3 (2020), 93–101. https://doi.org/10.32323/ujma.702033 doi: 10.32323/ujma.702033
![]() |
[57] |
B. B. Delgado, J. E. Macias-Diaz, On the general solutions of some non-homogeneous Div-curl systems with Riemann-Liouville and Caputo fractional derivatives, Fractal Fract., 5 (2021), 117. https://doi.org/10.3390/fractalfract5030117 doi: 10.3390/fractalfract5030117
![]() |
[58] |
S. Alshammari, M. Al-Smadi, I. Hashim, M. A. Alias, Residual power series technique for simulating fractional Bagley-Torvik problems emerging in applied physics, Appl. Sci., 9 (2019), 5029. https://doi.org/10.3390/app9235029 doi: 10.3390/app9235029
![]() |
φ | p=0.40 | p=0.60 | p=0.80 | p=1.00 |
0.2 | 0.0048028 | 0.0022338 | 0.00098417 | 0.00043033 |
0.4 | 0.0082096 | 0.0049227 | 0.00273349 | 0.00144405 |
0.6 | 0.0112581 | 0.0078699 | 0.00506050 | 0.00305916 |
0.8 | 0.0140966 | 0.0110044 | 0.00787829 | 0.00527565 |
1.0 | 0.0167894 | 0.0142882 | 0.0111338 | 0.00809353 |
φ | p=0.40 | p=0.60 | p=0.80 | p=1.00 |
0.2 | 0.121739 | 0.054477 | 0.022375 | 0.0086336 |
0.4 | 0.211321 | 0.124300 | 0.066837 | 0.0334867 |
0.6 | 0.291879 | 0.201620 | 0.127169 | 0.0745724 |
0.8 | 0.367092 | 0.284277 | 0.200911 | 0.1318910 |
1.0 | 0.438569 | 0.371156 | 0.286582 | 0.2054420 |
φ | p=0.40 | p=0.60 | p=0.80 | p=1.00 |
0.2 | 0.0048028 | 0.0022338 | 0.00098416 | 0.00043033 |
0.4 | 0.0082095 | 0.0049226 | 0.00273345 | 0.00144403 |
0.6 | 0.0112579 | 0.0078698 | 0.00506043 | 0.00305912 |
0.8 | 0.0140964 | 0.0110042 | 0.00787818 | 0.00527558 |
1.0 | 0.0167892 | 0.0142880 | 0.01113370 | 0.00809342 |
φ | p=0.40 | p=0.60 | p=0.80 | p=1.00 |
0.2 | 0.121748 | 0.054481 | 0.022376 | 0.0086342 |
0.4 | 0.211336 | 0.124308 | 0.066842 | 0.0334890 |
0.6 | 0.291899 | 0.201634 | 0.127178 | 0.0745776 |
0.8 | 0.367118 | 0.284297 | 0.200924 | 0.1319000 |
1.0 | 0.438600 | 0.371182 | 0.286602 | 0.2054560 |
p=1.00 | p=0.80 | p=0.60 | p=0.40 | |||||
φ | ARPSM | ATIM | ARPSM | ATIM | ARPSM | ATIM | ARPSM | ATIM |
0.2 | 0.00043033 | 0.00043033 | 0.00098417 | 0.00098416 | 0.0022338 | 0.0022338 | 0.0048028 | 0.0048028 |
0.4 | 0.00144405 | 0.00144403 | 0.00273349 | 0.00273345 | 0.0049227 | 0.0049226 | 0.0082096 | 0.0082095 |
0.6 | 0.00305916 | 0.00305912 | 0.00506050 | 0.00506043 | 0.0078699 | 0.0078698 | 0.0112581 | 0.0112579 |
0.8 | 0.00527565 | 0.00527558 | 0.00787829 | 0.00787818 | 0.0110044 | 0.0110042 | 0.0140966 | 0.0140964 |
1.0 | 0.00809353 | 0.00809342 | 0.01113380 | 0.01113370 | 0.0142882 | 0.0142880 | 0.0167894 | 0.0167892 |
p=1.00 | p=0.80 | p=0.60 | p=0.40 | |||||
φ | ARPSM | ATIM | ARPSM | ATIM | ARPSM | ATIM | ARPSM | ATIM |
0.2 | 0.0086336 | 0.0086342 | 0.022375 | 0.022376 | 0.054477 | 0.054481 | 0.121739 | 0.121748 |
0.4 | 0.0334867 | 0.0334890 | 0.066837 | 0.066842 | 0.124300 | 0.124308 | 0.211321 | 0.211336 |
0.6 | 0.0745724 | 0.0745776 | 0.127169 | 0.127178 | 0.201620 | 0.201634 | 0.291879 | 0.291899 |
0.8 | 0.1318910 | 0.1319000 | 0.200911 | 0.200924 | 0.284277 | 0.284297 | 0.367092 | 0.367118 |
1.0 | 0.2054420 | 0.2054560 | 0.286582 | 0.286602 | 0.371156 | 0.371182 | 0.438569 | 0.438600 |
φ | p=0.40 | p=0.60 | p=0.80 | p=1.00 |
0.2 | 0.0048027 | 0.0022338 | 0.00098415 | 0.00043032 |
0.4 | 0.0082094 | 0.0049226 | 0.00273344 | 0.00144403 |
0.6 | 0.0112578 | 0.0078698 | 0.00506040 | 0.00305910 |
0.8 | 0.0140963 | 0.0110042 | 0.00787813 | 0.00527555 |
1.0 | 0.0167891 | 0.0142880 | 0.01113360 | 0.00809337 |
φ | p=0.40 | p=0.60 | p=0.80 | p=1.00 |
0.2 | 0.121739 | 0.054477 | 0.022375 | 0.0086336 |
0.4 | 0.211321 | 0.124300 | 0.066837 | 0.0334867 |
0.6 | 0.291879 | 0.201620 | 0.127169 | 0.0745724 |
0.8 | 0.367092 | 0.284277 | 0.200911 | 0.1318910 |
1.0 | 0.438569 | 0.371156 | 0.286582 | 0.2054420 |
φ | p=0.40 | p=0.60 | p=0.80 | p=1.00 |
0.2 | 0.0047363 | 0.00220436 | 0.00097225 | 0.00042586 |
0.4 | 0.0080934 | 0.00485484 | 0.00269728 | 0.00142614 |
0.6 | 0.0110971 | 0.00775928 | 0.00499109 | 0.00301877 |
0.8 | 0.0138937 | 0.01084780 | 0.00776810 | 0.00520373 |
1.0 | 0.0165466 | 0.01408330 | 0.01097610 | 0.00798096 |
φ | p=0.40 | p=0.60 | p=0.80 | p=1.00 |
0.2 | 0.121748 | 0.054481 | 0.0223765 | 0.0086342 |
0.4 | 0.211336 | 0.124308 | 0.0668425 | 0.0334890 |
0.6 | 0.291899 | 0.201634 | 0.1271780 | 0.0745776 |
0.8 | 0.367118 | 0.284297 | 0.2009240 | 0.1319000 |
1.0 | 0.438600 | 0.371182 | 0.2866020 | 0.2054560 |
p=1.00 | p=0.80 | p=0.60 | p=0.40 | |||||
φ | ARPSM | ATIM | ARPSM | ATIM | ARPSM | ATIM | ARPSM | ATIM |
0.2 | 0.0004303 | 0.0004258 | 0.0009841 | 0.0009722 | 0.0022338 | 0.0022043 | 0.004802 | 0.0047363 |
0.4 | 0.0014440 | 0.0014261 | 0.0027334 | 0.0026972 | 0.0049226 | 0.0048548 | 0.008209 | 0.0082096 |
0.6 | 0.0030591 | 0.0030187 | 0.0050604 | 0.0049910 | 0.0078698 | 0.0077592 | 0.011257 | 0.0110971 |
0.8 | 0.0052755 | 0.0052037 | 0.0078781 | 0.0077681 | 0.0110042 | 0.0108478 | 0.014096 | 0.0138937 |
1.0 | 0.0080933 | 0.0079809 | 0.0111336 | 0.0109761 | 0.0142880 | 0.0140833 | 0.016789 | 0.0165466 |
p=1.00 | p=0.80 | p=0.60 | p=0.40 | |||||
φ | ARPSM | ATIM | ARPSM | ATIM | ARPSM | ATIM | ARPSM | ATIM |
0.2 | 0.0086336 | 0.0086342 | 0.022375 | 0.022376 | 0.054477 | 0.054481 | 0.121739 | 0.121748 |
0.4 | 0.0334867 | 0.0334890 | 0.066837 | 0.066842 | 0.124300 | 0.124308 | 0.211321 | 0.211336 |
0.6 | 0.0745724 | 0.0745776 | 0.127169 | 0.127178 | 0.201620 | 0.201634 | 0.291879 | 0.291899 |
0.8 | 0.1318910 | 0.1319000 | 0.200911 | 0.200924 | 0.284277 | 0.284297 | 0.367092 | 0.367118 |
1.0 | 0.2054420 | 0.2054560 | 0.286582 | 0.286602 | 0.371156 | 0.371182 | 0.438569 | 0.438600 |
φ | p=0.40 | p=0.60 | p=0.80 | p=1.00 |
0.2 | 0.0048028 | 0.0022338 | 0.00098417 | 0.00043033 |
0.4 | 0.0082096 | 0.0049227 | 0.00273349 | 0.00144405 |
0.6 | 0.0112581 | 0.0078699 | 0.00506050 | 0.00305916 |
0.8 | 0.0140966 | 0.0110044 | 0.00787829 | 0.00527565 |
1.0 | 0.0167894 | 0.0142882 | 0.0111338 | 0.00809353 |
φ | p=0.40 | p=0.60 | p=0.80 | p=1.00 |
0.2 | 0.121739 | 0.054477 | 0.022375 | 0.0086336 |
0.4 | 0.211321 | 0.124300 | 0.066837 | 0.0334867 |
0.6 | 0.291879 | 0.201620 | 0.127169 | 0.0745724 |
0.8 | 0.367092 | 0.284277 | 0.200911 | 0.1318910 |
1.0 | 0.438569 | 0.371156 | 0.286582 | 0.2054420 |
φ | p=0.40 | p=0.60 | p=0.80 | p=1.00 |
0.2 | 0.0048028 | 0.0022338 | 0.00098416 | 0.00043033 |
0.4 | 0.0082095 | 0.0049226 | 0.00273345 | 0.00144403 |
0.6 | 0.0112579 | 0.0078698 | 0.00506043 | 0.00305912 |
0.8 | 0.0140964 | 0.0110042 | 0.00787818 | 0.00527558 |
1.0 | 0.0167892 | 0.0142880 | 0.01113370 | 0.00809342 |
φ | p=0.40 | p=0.60 | p=0.80 | p=1.00 |
0.2 | 0.121748 | 0.054481 | 0.022376 | 0.0086342 |
0.4 | 0.211336 | 0.124308 | 0.066842 | 0.0334890 |
0.6 | 0.291899 | 0.201634 | 0.127178 | 0.0745776 |
0.8 | 0.367118 | 0.284297 | 0.200924 | 0.1319000 |
1.0 | 0.438600 | 0.371182 | 0.286602 | 0.2054560 |
p=1.00 | p=0.80 | p=0.60 | p=0.40 | |||||
φ | ARPSM | ATIM | ARPSM | ATIM | ARPSM | ATIM | ARPSM | ATIM |
0.2 | 0.00043033 | 0.00043033 | 0.00098417 | 0.00098416 | 0.0022338 | 0.0022338 | 0.0048028 | 0.0048028 |
0.4 | 0.00144405 | 0.00144403 | 0.00273349 | 0.00273345 | 0.0049227 | 0.0049226 | 0.0082096 | 0.0082095 |
0.6 | 0.00305916 | 0.00305912 | 0.00506050 | 0.00506043 | 0.0078699 | 0.0078698 | 0.0112581 | 0.0112579 |
0.8 | 0.00527565 | 0.00527558 | 0.00787829 | 0.00787818 | 0.0110044 | 0.0110042 | 0.0140966 | 0.0140964 |
1.0 | 0.00809353 | 0.00809342 | 0.01113380 | 0.01113370 | 0.0142882 | 0.0142880 | 0.0167894 | 0.0167892 |
p=1.00 | p=0.80 | p=0.60 | p=0.40 | |||||
φ | ARPSM | ATIM | ARPSM | ATIM | ARPSM | ATIM | ARPSM | ATIM |
0.2 | 0.0086336 | 0.0086342 | 0.022375 | 0.022376 | 0.054477 | 0.054481 | 0.121739 | 0.121748 |
0.4 | 0.0334867 | 0.0334890 | 0.066837 | 0.066842 | 0.124300 | 0.124308 | 0.211321 | 0.211336 |
0.6 | 0.0745724 | 0.0745776 | 0.127169 | 0.127178 | 0.201620 | 0.201634 | 0.291879 | 0.291899 |
0.8 | 0.1318910 | 0.1319000 | 0.200911 | 0.200924 | 0.284277 | 0.284297 | 0.367092 | 0.367118 |
1.0 | 0.2054420 | 0.2054560 | 0.286582 | 0.286602 | 0.371156 | 0.371182 | 0.438569 | 0.438600 |
φ | p=0.40 | p=0.60 | p=0.80 | p=1.00 |
0.2 | 0.0048027 | 0.0022338 | 0.00098415 | 0.00043032 |
0.4 | 0.0082094 | 0.0049226 | 0.00273344 | 0.00144403 |
0.6 | 0.0112578 | 0.0078698 | 0.00506040 | 0.00305910 |
0.8 | 0.0140963 | 0.0110042 | 0.00787813 | 0.00527555 |
1.0 | 0.0167891 | 0.0142880 | 0.01113360 | 0.00809337 |
φ | p=0.40 | p=0.60 | p=0.80 | p=1.00 |
0.2 | 0.121739 | 0.054477 | 0.022375 | 0.0086336 |
0.4 | 0.211321 | 0.124300 | 0.066837 | 0.0334867 |
0.6 | 0.291879 | 0.201620 | 0.127169 | 0.0745724 |
0.8 | 0.367092 | 0.284277 | 0.200911 | 0.1318910 |
1.0 | 0.438569 | 0.371156 | 0.286582 | 0.2054420 |
φ | p=0.40 | p=0.60 | p=0.80 | p=1.00 |
0.2 | 0.0047363 | 0.00220436 | 0.00097225 | 0.00042586 |
0.4 | 0.0080934 | 0.00485484 | 0.00269728 | 0.00142614 |
0.6 | 0.0110971 | 0.00775928 | 0.00499109 | 0.00301877 |
0.8 | 0.0138937 | 0.01084780 | 0.00776810 | 0.00520373 |
1.0 | 0.0165466 | 0.01408330 | 0.01097610 | 0.00798096 |
φ | p=0.40 | p=0.60 | p=0.80 | p=1.00 |
0.2 | 0.121748 | 0.054481 | 0.0223765 | 0.0086342 |
0.4 | 0.211336 | 0.124308 | 0.0668425 | 0.0334890 |
0.6 | 0.291899 | 0.201634 | 0.1271780 | 0.0745776 |
0.8 | 0.367118 | 0.284297 | 0.2009240 | 0.1319000 |
1.0 | 0.438600 | 0.371182 | 0.2866020 | 0.2054560 |
p=1.00 | p=0.80 | p=0.60 | p=0.40 | |||||
φ | ARPSM | ATIM | ARPSM | ATIM | ARPSM | ATIM | ARPSM | ATIM |
0.2 | 0.0004303 | 0.0004258 | 0.0009841 | 0.0009722 | 0.0022338 | 0.0022043 | 0.004802 | 0.0047363 |
0.4 | 0.0014440 | 0.0014261 | 0.0027334 | 0.0026972 | 0.0049226 | 0.0048548 | 0.008209 | 0.0082096 |
0.6 | 0.0030591 | 0.0030187 | 0.0050604 | 0.0049910 | 0.0078698 | 0.0077592 | 0.011257 | 0.0110971 |
0.8 | 0.0052755 | 0.0052037 | 0.0078781 | 0.0077681 | 0.0110042 | 0.0108478 | 0.014096 | 0.0138937 |
1.0 | 0.0080933 | 0.0079809 | 0.0111336 | 0.0109761 | 0.0142880 | 0.0140833 | 0.016789 | 0.0165466 |
p=1.00 | p=0.80 | p=0.60 | p=0.40 | |||||
φ | ARPSM | ATIM | ARPSM | ATIM | ARPSM | ATIM | ARPSM | ATIM |
0.2 | 0.0086336 | 0.0086342 | 0.022375 | 0.022376 | 0.054477 | 0.054481 | 0.121739 | 0.121748 |
0.4 | 0.0334867 | 0.0334890 | 0.066837 | 0.066842 | 0.124300 | 0.124308 | 0.211321 | 0.211336 |
0.6 | 0.0745724 | 0.0745776 | 0.127169 | 0.127178 | 0.201620 | 0.201634 | 0.291879 | 0.291899 |
0.8 | 0.1318910 | 0.1319000 | 0.200911 | 0.200924 | 0.284277 | 0.284297 | 0.367092 | 0.367118 |
1.0 | 0.2054420 | 0.2054560 | 0.286582 | 0.286602 | 0.371156 | 0.371182 | 0.438569 | 0.438600 |