Research article

A new similarity function for Pythagorean fuzzy sets with application in football analysis

  • The idea of Pythagorean fuzzy sets (PFSs) has been extensively applied in various decision-making scenarios. Many of the applications of PFSs were carried out based on similarity functions. Some methods of similarity functions for PFSs (SFPFSs) cannot be trusted for a reliable interpretations in practical cases due to some of their setbacks. In this work, a new method of SFPFSs is developed with the capacity to outsmart the efficiency of the extant SFPFSs in terms of precise results and appropriately satisfying the rules of SFs. The new method is described with some results to validate the properties of SFs. In terms of practical application, we use the newly developed method of SFPFSs to discuss the relationship between the players of the Liverpool Football Club (FC) in the 2022/2023 English Premier League (EPL) season to assess their performances in their resurgent moments within the season. Using data from BBC Sport analysis (BBCSA) on the players' rating per match in a Pythagorean fuzzy setting, we establish the players' interactions, communications, passing, contributions, and performances to ascertain the high ranking players based on performances. Similarly, a comparative analyses are presented in tables to undoubtedly express the superiority of the newly developed method of SFPFSs. Due to the flexibility of the newly developed method of SFPFSs, it can be used for clustering analysis. In addition, the new method of SFPFSs can be extended to other uncertain environments other than PFSs.

    Citation: Rongfeng Li, Paul Augustine Ejegwa, Kun Li, Iorshase Agaji, Yuming Feng, Idoko Charles Onyeke. A new similarity function for Pythagorean fuzzy sets with application in football analysis[J]. AIMS Mathematics, 2024, 9(2): 4990-5014. doi: 10.3934/math.2024242

    Related Papers:

    [1] Fengxia Zhang, Ying Li, Jianli Zhao . The semi-tensor product method for special least squares solutions of the complex generalized Sylvester matrix equation. AIMS Mathematics, 2023, 8(3): 5200-5215. doi: 10.3934/math.2023261
    [2] Dong Wang, Ying Li, Wenxv Ding . The least squares Bisymmetric solution of quaternion matrix equation AXB=C. AIMS Mathematics, 2021, 6(12): 13247-13257. doi: 10.3934/math.2021766
    [3] Anli Wei, Ying Li, Wenxv Ding, Jianli Zhao . Three special kinds of least squares solutions for the quaternion generalized Sylvester matrix equation. AIMS Mathematics, 2022, 7(4): 5029-5048. doi: 10.3934/math.2022280
    [4] Wenxv Ding, Ying Li, Anli Wei, Zhihong Liu . Solving reduced biquaternion matrices equation ki=1AiXBi=C with special structure based on semi-tensor product of matrices. AIMS Mathematics, 2022, 7(3): 3258-3276. doi: 10.3934/math.2022181
    [5] Fengxia Zhang, Ying Li, Jianli Zhao . A real representation method for special least squares solutions of the quaternion matrix equation (AXB,DXE)=(C,F). AIMS Mathematics, 2022, 7(8): 14595-14613. doi: 10.3934/math.2022803
    [6] Jin Zhong, Yilin Zhang . Dual group inverses of dual matrices and their applications in solving systems of linear dual equations. AIMS Mathematics, 2022, 7(5): 7606-7624. doi: 10.3934/math.2022427
    [7] Vladislav N. Kovalnogov, Ruslan V. Fedorov, Igor I. Shepelev, Vyacheslav V. Sherkunov, Theodore E. Simos, Spyridon D. Mourtas, Vasilios N. Katsikis . A novel quaternion linear matrix equation solver through zeroing neural networks with applications to acoustic source tracking. AIMS Mathematics, 2023, 8(11): 25966-25989. doi: 10.3934/math.20231323
    [8] Mahmoud S. Mehany, Faizah D. Alanazi . An η-Hermitian solution to a two-sided matrix equation and a system of matrix equations over the skew-field of quaternions. AIMS Mathematics, 2025, 10(4): 7684-7705. doi: 10.3934/math.2025352
    [9] Abdur Rehman, Ivan Kyrchei, Muhammad Zia Ur Rahman, Víctor Leiva, Cecilia Castro . Solvability and algorithm for Sylvester-type quaternion matrix equations with potential applications. AIMS Mathematics, 2024, 9(8): 19967-19996. doi: 10.3934/math.2024974
    [10] Hongjie Jiang, Xiaoji Liu, Caijing Jiang . On the general strong fuzzy solutions of general fuzzy matrix equation involving the Core-EP inverse. AIMS Mathematics, 2022, 7(2): 3221-3238. doi: 10.3934/math.2022178
  • The idea of Pythagorean fuzzy sets (PFSs) has been extensively applied in various decision-making scenarios. Many of the applications of PFSs were carried out based on similarity functions. Some methods of similarity functions for PFSs (SFPFSs) cannot be trusted for a reliable interpretations in practical cases due to some of their setbacks. In this work, a new method of SFPFSs is developed with the capacity to outsmart the efficiency of the extant SFPFSs in terms of precise results and appropriately satisfying the rules of SFs. The new method is described with some results to validate the properties of SFs. In terms of practical application, we use the newly developed method of SFPFSs to discuss the relationship between the players of the Liverpool Football Club (FC) in the 2022/2023 English Premier League (EPL) season to assess their performances in their resurgent moments within the season. Using data from BBC Sport analysis (BBCSA) on the players' rating per match in a Pythagorean fuzzy setting, we establish the players' interactions, communications, passing, contributions, and performances to ascertain the high ranking players based on performances. Similarly, a comparative analyses are presented in tables to undoubtedly express the superiority of the newly developed method of SFPFSs. Due to the flexibility of the newly developed method of SFPFSs, it can be used for clustering analysis. In addition, the new method of SFPFSs can be extended to other uncertain environments other than PFSs.



    Let H(U) be the class of analytic functions in the open unit disc U={zC:|z|<1} and let H[a,υ] be the subclass of H(U) including form-specific functions

    f(z)=a+aυzυ+aυ+1zυ+1+(aC),

    we denote by H=H[1,1].

    Also, A(p) should denote the class of multivalent analytic functions in U, with the power series expansion of the type:

    f(z)=zp+υ=p+1aυzυ(pN={1,2,3,..}). (1.1)

    Upon differentiating j-times for each one of the (1.1) we obtain:

    f(j)(z)=δ(p,j)zpj+υ=p+1δ(υ,j)aυzυjzU,δ(p,j)=p!(pj)!       (pN, jN0=N{0}, pj). (1.2)

    Numerous mathematicians, for instance, have looked at higher order derivatives of multivalent functions (see [1,3,6,9,16,27,28,31]).

    For f,H, the function f is subordinate to or the function is said to be superordinate to f in U and we write f(z)(z), if there exists a Schwarz function ω in U with ω(0)=0 and |ω(z)|<1, such that f(z)=(ω(z)), zU. If is univalent in U, then f(z)(z) iff f(0)=(0) and f(U)(U). (see [7,21]).

    In the concepts and common uses of fractional calculus (see, for example, [14,15] see also [2]; the Riemann-Liouville fractional integral operator of order αC ((α)>0) is one of the most widely used operators (see [29]) given by:

    (Iα0+f)(x)=1Γ(α)x0(xμ)α1f(μ)dμ(x>0;(α)>0) (1.3)

    applying the well-known (Euler's) Gamma function Γ(α). The Erd élyi-Kober fractional integral operator of order αC((α)>0) is an interesting alternative to the Riemann-Liouville operator Iα0+, defined by:

    (Iα0+;σ,ηf)(x)=σxσ(α+η)Γ(α)x0μσ(η+1)1(xσμσ)α1f(μ)dμ (1.4)
    (x>0;(α)>0),

    which corresponds essentially to (1.3) when σ1=η=0, since

    (Iα0+;1,0f)(x)=xα(Iα0+f)(x)(x>0;(α)>0).

    Mainly motivated by the special case of the definition (1.4) when x=σ=1, η=ν1 and α=ρν, here, we take a look at the integral operator p(ν,ρ,μ) with fA(p) by (see [11])

    p(ν,ρ;)f(z)=Γ(ρ+p)Γ(ν+p)Γ(ρν)10μν1(1μ)ρν1f(zμ)dμ
    (>0;ν,ρR;ρ>ν>p;pN).

    Evaluating (Euler's) Gamma function by using the Eulerian Beta-function integral as following:

    B(α,β):={10μα1(1μ)β1dμ(min{(α),(β)}>0)Γ(α)Γ(β)Γ(α+β)(α,βCZ0),

    we readily find that

    p(ν,ρ;)f(z)={zp+Γ(ρ+p)Γ(ν+p)υ=p+1Γ(ν+υ)Γ(ρ+υ)aυzυ(ρ>ν)f(z)(ρ=ν). (1.5)

    It is readily to obtain from (1.5) that

    z(p(ν,ρ;)f(z))=(ν+p)(p(ν+1,ρ;)f(z))ν(p(ν,ρ;)f(z)). (1.6)

    The integral operator p(ν,ρ;)f(z) should be noted as a generalization of several other integral operators previously discussed for example,

    (ⅰ) If we set p=1, we get ˜I(ν,ρ;)f(z) defined by Ŕaina and Sharma ([22] with m=0);

    (ⅱ) If we set ν=β,ρ=β+1 and  =1, we obtain βpf(z)(β>p) it was presented by Saitoh et al.[24];

    (ⅲ) If we set ν=β,ρ=α+βδ+1, =1, we obtain α,δβ,pf(z)(δ>0; αδ1; β>p) it was presented by Aouf et al. [4];

    (ⅳ) If we put ν=β,ρ=α+β, =1, we get Qαβ,pf(z)(α0;β>p) it was investigated by Liu and Owa [18];

    (ⅴ) If we put p=1, ν=β,ρ=α+β, =1, we obtain αβf(z)(α0;β>1) it was introduced by Jung et al. [13];

    (ⅵ) If we put p=1, ν=α1, ρ=β1, =1, we obtain L(α,β)f(z)(α,βCZ0,Z0={0,1,2,...}) which was defined by Carlson and Shaffer [8];

    (ⅶ) If we put p=1, ν=ν1, ρ=j, =1 we obtain Iν,jf(z)(ν>0;j1) it was investigated by Choi et al. [10];

    (ⅷ) If we put p=1, ν=α,ρ=0, =1, we obtain Dαf(z)(α>1) which was defined by Ruscheweyh [23];

    (ⅸ) If we put p=1, ν=1, ρ=m, =1, we obtain Imf(z)(mN0) which was introduced by Noor [21];

    (ⅹ) If we set p=1, ν=β,ρ=β+1, =1 we obtain βf(z) which was studied by Bernadi [5];

    (ⅹⅰ) If we set p=1, ν=1, ρ=2, =1 we get f(z) which was defined by Libera [17].

    We state various definition and lemmas which are essential to obtain our results.

    Definition 1. ([20], Definition 2, p.817) We denote by Q the set of the functions f that are holomorphic and univalent on ¯UE(f), where

    E(f)={ζ:ζU  and  limzζf(z)=},

    and satisfy f(ζ)0 for ζUE(f).

    Lemma 1. ([12]; see also ([19], Theorem 3.1.6, p.71)) Assume that h(z) is convex (univalent) function in U with h(0)=1, and let φ(z)H, is analytic in U. If

    φ(z)+1γzφ(z)h(z)(zU),

    where γ0 and Re(γ)0. Then

    φ(z)Ψ(z)=γzγz0tγ1h(t)dth(z)(zU),

    and Ψ(z) is the best dominant.

    Lemma 2. ([26]; Lemma 2.2, p.3) Suppose that q is convex function in U and let  ψC with ϰC=C{0} with

    Re(1+zq(z)q(z))>max{0;Reψϰ},zU.

    If λ(z) is analytic in U, and

    ψλ(z)+ϰzλ(z)ψq(z)+ϰzq(z),

    therefore λ(z)q(z), and q is the best dominant.

    Lemma 3. ([20]; Theorem 8, p.822) Assume that q is convex univalent in U and suppose δC, with Re(δ)>0. If λH[q(0),1]Q and λ(z)+δzλ(z) is univalent in U, then

    q(z)+δzq(z)λ(z)+δzλ(z),

    implies

    q(z)λ(z)     (zU)

    and q is the best subordinant.

    For a,ϱ,c and c(cZ0) real or complex number the Gaussian hypergeometric function is given by

    2F1(a,ϱ;c;z)=1+aϱc.z1!+a(a+1)ϱ(ϱ+1)c(c+1).z22!+....

    The previous series totally converges for zU to a function analytical in U (see, for details, ([30], Chapter 14)) see also [19].

    Lemma 4. For a,ϱ and c (cZ0), real or complex parameters,

    10tϱ1(1t)cϱ1(1zt)xdt=Γ(ϱ)Γ(ca)Γ(c)2F1(a,ϱ;c;z)(Re(c)>Re(ϱ)>0); (2.1)
    2F1(a,ϱ;c;z)=2F1(ϱ,a;c;z); (2.2)
    2F1(a,ϱ;c;z)=(1z)a2F1(a,cϱ;c;zz1); (2.3)
    2F1(1,1;2;azaz+1)=(1+az)ln(1+az)az; (2.4)
    2F1(1,1;3;azaz+1)=2(1+az)az(1ln(1+az)az). (2.5)

    Throughout the sequel, we assume unless otherwise indicated 1D<C1, δ>0, >0, ν,ρR, ν>p, pN and (ρj)0. We shall now prove the subordination results stated below:

    Theorem 1. Let 0j<p, 0<r1 and for fA(p) assume that

    (p(ν,ρ;)f(z))(j)zpj0,    zU, (3.1)

    whenever δ(0,+)N. Let define the function Φj by

    Φj(z)=(1α)((p(ν,ρ;)f(z))(j)zpj)δ+α(p(ν+1,ρ;)f(z))(j)zpj((p(ν,ρ;)f(z))(j)zpj)δ1,

    such that the powers are all the principal ones, i.e., log1 = 0. Whether

    Φj(z)[p!(pj)!]δ(1+Cz1+Dz )r, (3.2)

    then

    ((p(ν,ρ;)f(z))(j)zpj)δ[p!(pj)!]δp(z), (3.3)

    where

    p(z)={(CD)ri0(r)ii!(CDC)i(1+Dz)i 2F1(i,1;1+δ(ν+p)α;Dz1+Dz)(D0);2F1(r,δ(ν+p)α;1+δ(ν+p)α;Cz)                                     (D=0),

    and [p!(pj)!]δp(z) is the best dominant of (3.3). Moreover, there are

    ((p(ν,ρ;)f(z))(j)zpj)δ>[p!(pj)!]δζ,     zU, (3.4)

    where ζ is given by:

    ζ={(CD)ri0(r)ii!(CDC)i(1D)i 2F1(i,1;1+δ(ν+p)α;DD1)(D0);2F1(r,δ(ν+p)α;1+δ(ν+p)α;C)                                     (D=0),

    then (3.4) is the best possible.

    Proof. Let

    ϕ(z)=((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δ,   (zU). (3.5)

    It is observed that the function ϕ(z)H, which is analytic in U and ϕ(0)=1. Differentiating (3.5) with respect to z, applying the given equation, the hypothesis (3.2), and the knowing that

    z(p(ν,ρ;)f(z))(j+1)=(ν+p)(p(ν+1,ρ;)f(z))(j)(ν+j)(p(ν,ρ;)f(z))(j)   (0j<p), (3.6)

    we get

    ϕ(z)+zϕ(z)δ(ν+p)α(1+Cz1+Dz )r=q(z)     (zU).

    We can verify that the above equation q(z) is analytic and convex in U as following

    Re(1+zq(z)q(z))=1+(1r)(11+Cz)+(1+r)(11+Dz)>1+1r1+|C|+1+r1+|D|0   (zU).

    Using Lemma 1, there will be

    ϕ(z)p(z)=δ(ν+p)αzδ(ν+p)αz0tδ(ν+p)α1(1+Ct1+Dt)rdt.

    In order to calculate the integral, we define the integrand in the type

    tδ(ν+p)α1(1+Ct1+Dt)r=tδ(ν+p)α1(CD)r(1CDC+CDt)r,

    using Lemma 4 we obtain

    p(z)=(CD)ri0(r)ii!(CDC)i(1+Dz)i 2F1(i,1;1+δ(ν+p)α;Dz1+Dz)(D0).

    On the other hand if D=0 we have

    p(z)=2F1(r,δ(ν+p)α;1+δ(ν+p)α;Cz),

    where the identities (2.1)–(2.3), were used after changing the variable, respectively. This proof the inequality (3.3).

    Now, we'll verify it

    inf{p(z):|z|<1}=p(1). (3.7)

    Indeed, we have

    (1+Cz1+Dz )r(1Cσ1Dσ)r   (|z|<σ<1).

    Setting

    (s,z)=(1+Csz1+Dsz)r   (0s1; zU)

    and

    dv(s)=δ(ν+p)αsδ(ν+p)α1ds

    where dv(s) is a positive measure on the closed interval [0, 1], we get that

    p(z)=10(s,z)dv(s),

    so that

    p(z)10(1Csσ1Dsσ)rdv(s)=p(σ)   (|z|<σ<1).

    Now, taking σ1 we get the result (3.7). The inequality (3.4) is the best possible since [p!(pj)!]δp(z) is the best dominant of (3.3).

    If we choose j=1 and α=δ=1 in Theorem 1, we get:

    Corollary 1. Let 0<r1. If

    (p(ν+1,ρ;)f(z))zp1p(1+Cz1+Dz )r,

    then

    ((p(ν,ρ;)f(z))zp1)>pζ1,     zU, (3.8)

    where ζ1 is given by:

    ζ1={(CD)ri0(r)ii!(CDC)i(1D)i 2F1(i,1;1+(ν+p);DD1)(D0);2F1(r,(ν+p);1+(ν+p);C)                                     (D=0),

    then (3.8) is the best possible.

    If we choose ν=ρ=0 and  =1 in Theorem 1, we get:

    Corollary 2. Let 0j<p, 0<r1 and as fA(p) assume that

    f(j)(z)zpj0,    zU,

    whenever δ(0,+)N. Let define the function Φj by

    Φj(z)=[1α(1jp)](f(j)(z)zpj)δ+α(zf(j+1)(z)pf(j)(z))(f(j)(z)zpj)δ, (3.9)

    such that the powers are all the principal ones, i.e., log1 = 0. If

    Φj(z)[p!(pj)!]δ(1+Cz1+Dz )r,

    then

    (f(j)(z)zpj)δ[p!(pj)!]δp1(z), (3.10)

    where

    p1(z)={(CD)ri0(r)ii!(CDC)i(1+Dz)i 2F1(i,1;1+δpα;Dz1+Dz)(D0);2F1(r,δpα;1+δpα;Cz)                                     (D=0),

    and [p!(pj)!]δp1(z) is the best dominant of (3.10). Morover, there are

    (f(j)(z)zpj)δ>[p!(pj)!]δζ2,     zU, (3.11)

    where ζ2 is given by

    ζ2={(CD)ri0(r)ii!(CDC)i(1D)i 2F1(i,1;1+δpα;DD1)(D0);2F1(r,δpα;1+δpα;C)                                     (D=0),

    then (3.11) is the best possible.

    If we put δ=1 and  r=1 in Corollary 2, we get:

    Corollary 3. Let 0j<p, and for fA(p) say it

    f(j)(z)zpj0,    zU.

    Let define the function Φj by

    Φj(z)=[(1α(1jp)]f(j)(z)zpj+αf(j+1)(z)pzpj1.

    If

    Φj(z)p!(pj)!1+Cz1+Dz,

    then

    f(j)(z)zpjp!(pj)!p2(z), (3.12)

    where

    p2(z)={CD+(1CD)(1+Dz)1 2F1(1,1;1+pα;Dz1+Dz)(D0);1+pp+αCz,                                                    (D=0),

    and p!(pj)!p2(z) is the best dominant of (3.12). Morover there will be

    (f(j)(z)zpj)>p!(pj)!ζ3,     zU, (3.13)

    where ζ3 is given by:

    ζ3={CD+(1CD)(1D)1 2F1(1,1;1+pα;DD1)(D0);1pp+αC,                                                    (D=0),

    then (3.13) is the best possible.

    For C=1,D=1 and j=1 Corollary 3, leads to the next example:

    Example 1. (i) For fA(p) suppose that

    f(z)zp10,    zU.

    Let define the function Φj by

    Φj(z)=[1(ααp)]f(z)zp1+αf(z)pzp2p1+z1z,

    then

    f(z)zp1p1+z1z, (3.14)

    and

    (f(z)zp1)>pζ4,     zU, (3.15)

    where ζ4 is given by:

    ζ4=1+ 2F1(1,1;p+αα;12),

    then (3.15) is the best possible.

    (ii) For p=α=1, (i) leads to:

    For fA suppose that

    f(z)0,    zU.

    Let define the function Φj by

    Φj(z)=f(z)+zf(z)1+z1z,

    then

    (f(z))>1+2ln2,     zU.

    So the estimate is best possible.

    Theorem 2. Let 0j<p, 0<r1 as for fA(p). Assume that Fα is defined by

    Fα(z)=α(ν+p)(p(ν+1,ρ;)f(z))+(1αα(ν))(p(ν,ρ;)f(z)).  (3.16)

    If

    F(j)α(z)zpj(1α+αp)p!(pj)!(1+Cz1+Dz )r, (3.17)

    then

    (p(ν,ρ;)f(z))(j)zpjp!(pj)!p(z), (3.18)

    where

    p(z)={(CD)ri0(r)ii!(CDC)i(1+Dz)i 2F1(i,1;1+(1α+αp)α;Dz1+Dz)(D0);2F1(r,(1α+αp)α;1+(1α+αp)α;Cz)                                     (D=0),

    and p!(pj)!p(z) is the best dominant of (3.18). Moreover, there will be

    ((p(ν,ρ;)f(z))(j)zpj)>p!(pj)!η,  zU, (3.19)

    where η is given by:

    η={(CD)ri0(r)ii!(CDC)i(1+D)i 2F1(i,1;1+(1α+αp)α;DD1)(D0);2F1(r,(1α+αp)α;1+(1α+αp)α;C)                                     (D=0),

    then (3.19) is the best possible.

    Proof. By using the definition (3.16) and the inequality (3.6), we have

    F(j)α(z)=αz(p(ν,ρ;)f(z))(j+1)+(1α+αj)(p(ν,ρ;)f(z))(j),  (3.20)

    for 0j<p. Putting

    ϕ(z)=(pj)!p!(p(ν,ρ;)f(z))(j)zpj,   (zU), (3.21)

    we have that ϕH. Differentiating (3.21), and using (3.17), (3.20), we get

    ϕ(z)+zϕ(z)(1α+αp)α(1+Cz1+Dz )r     (zU).

    Following the techniques of Theorem 1, we can obtain the remaining part of the proof.

    If we choose j=1 and r=1 in Theorem 2, we get:

    Corollary 4. For fA(p) let the function Fα define by 3.16. If

    Fα(z)zp1p(1α+αp)1+Cz1+Dz ,

    then

    ((p(ν,ρ;)f(z))zp1)>pη1,  zU, (3.22)

    where η1 is given by:

    η1={CD+(1CD)(1D)1 2F1(1,1;1+1α+αpα;DD1)(D0);11α+αp1+αpC                                                         (D=0),

    then (3.22) is the best possible.

    Example 2. If we choose p=C=α=1 and D=1 in Corollary 4, we obtain:

    For

    F(z)=(ν+1)((ν+1,ρ;)f(z))(ν)((ν,ρ;)f(z)).

    If

    F(z)1+z1z,

    then

    (((ν,ρ;)f(z)))>1+2ln2,  zU,

    the result is the best possible.

    Theorem 3. Let 0j<p, 0<r1 as for θ>p assume that Jp,θ:A(p)A(p) defined by

    Jp,θ(f)(z)=p+θzθz0tθ1f(t)dt,    zU. (3.23)

    If

    (p(ν,ρ;)f(z))(j)zpjp!(pj)!(1+Cz1+Dz )r, (3.24)

    then

    (p(ν,ρ;)Jp,θ(f)(z))(j)zpjp!(pj)!p(z), (3.25)

    where

    p(z)={(CD)ri0(r)ii!(CDC)i(1+Dz)i 2F1(i,1;1+θ+p;Dz1+Dz)(D0);2F1(r,θ+p;1+θ+p;Cz)                                     (D=0),

    and p!(pj)!p(z) is the best dominant of (3.25). Moreover, there will be

    ((p(ν,ρ;)Jp,θ(f)(z))(j)zpj)>p!(pj)!β,      zU, (3.26)

    where β is given by:

    β={(CD)ri0(r)ii!(CDC)i(1+D)i 2F1(i,1;1+θ+p;DD1)(D0);2F1(r,θ+p;1+θ+p;C)                                     (D=0),

    then (3.26) is the best possible.

    Proof. Suppose

    ϕ(z)=(pj)!p!(p(ν,ρ;)Jp,θ(f)(z))(j)zpj,   (zU),

    we have that ϕH. Differentiating the above definition, by using (3.24) and

    z(p(ν,ρ;)Jp,θ(f)(z))(j+1)=(θ+p)(p(ν,ρ;)f(z))(j)(θ+j)(p(ν,ρ;)Jp,θ(f)(z))(j)   (0j<p),

    we get

    ϕ(z)+zϕ(z)θ+p(1+Cz1+Dz )r.

    Now, we obtain (3.25) and the inequality (3.26) follow by using the same techniques in Theorem 1.

    If we set j=1 and r=1 in Theorem 3, we get:

    Corollary 5. For θ>p, let the operator Jp,θ:A(p)A(p) defined by (3.25). If

    (p(ν,ρ;)f(z))zp1p1+Cz1+Dz ,

    then

    ((p(ν,ρ;)Jp,θ(f)(z))zp1)>pβ1,     zU, (3.27)

    where β1 is given by:

    β1={CD+(1CD)(1D)1 2F1(1,1;1+θ+p;DD1)(D0);1θ+p1+θ+pC                                                   (D=0),

    then (3.27) is the best possible.

    Example 3. If we choose p=C=θ=1 and D=1 in Corollary 5, we get:

    If

    ((ν,ρ;)f(z))1+z1z,

    then

    (((ν,ρ;)J1,1(f)(z)))>1+4(1ln2),

    the result is the best possible.

    Theorem 4. Let q is univalent function in U, such that q satisfies

    Re(1+zq(z)q(z))>max{0;δ(ν+p)α},  zU. (3.28)

    Let 0j<p, 0<r1 and for fA(p) assume that

    (p(ν,ρ;)f(z))(j)zpj0,    zU,

    whenever δ(0,+)N. Let the function Φj defined by (3.1), and assume that it satisfies:

    [(pj)!p!]δΦj(z)q(z)+αδ(ν+p)zq(z). (3.29)

    Then,

    ((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δq(z), (3.30)

    and q(z) is the best dominant of (3.30).

    Proof. Let ϕ(z) is defined by (3.5), from Theorem 1 we get

    [(pj)!p!]δΦj(z)=ϕ(z)+αδ(ν+p)zϕ(z). (3.31)

    Combining (3.29) and (3.31) we find that

    ϕ(z)+αδ(ν+p)zϕ(z)q(z)+αδ(ν+p)zq(z). (3.32)

    The proof of Theorem 4 follows by using Lemma 2 and (3.32).

    Taking q(z)=(1+Cz1+Dz)r in Theorem 4, we obtain:

    Corollary 6. Suppose that

    Re(1Dz1+Dz+(r1)(CD)z(1+Dz)(1+Cz))>max{0;δ(ν+p)α},  zU.

    Let 0j<p, 0<r1 and for fA(p) satisfies

    (p(ν,ρ;)f(z))(j)zpj0,    zU,

    whenever δ(0,+)N. Let the function Φj defined by (3.1), satisfies:

    [(pj)!p!]δΦj(z)(1+Cz1+Dz )r+αδ(ν+p)(1+Cz1+Dz )rr(CD)z(1+Dz)(1+Cz).

    Then,

    ((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δ(1+Cz1+Dz )r, (3.33)

    so (1+Cz1+Dz)r is the best dominant of (3.33).

    Taking q(z)=1+Cz1+Dz in Theorem 4, we get:

    Corollary 7. Suppose that

    Re(1Dz1+Dz)>max{0;δ(ν+p)α},  zU.

    Let 0j<p, 0<r1 and for fA(p) satisfies

    (p(ν,ρ;)f(z))(j)zpj0,    zU,

    whenever δ(0,+)N. Let the function Φj defined by (3.1), satisfies:

    [(pj)!p!]δΦj(z)1+Cz1+Dz +αδ(ν+p)(CD)z(1+Dz)2.

    Then,

    ((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δ1+Cz1+Dz , (3.34)

    so 1+Cz1+Dz is the best dominant of (3.34).

    If we put ν=ρ=0 and  =1 in Theorem 4, we get:

    Corollary 8. Let q is univalent function in U, such that q satisfies

    Re(1+zq(z)q(z))>max{0;δpα},  zU.

    For fA(p) satisfies

    f(j)(z)zpj0,    zU.

    Let the function Φj defined by (3.9), satisfies:

    [(pj)!p!]δΦj(z)q(z)+αδpzq(z). (3.35)

    Then,

    ((pj)!p!f(j)(z)zpj)δq(z), (3.36)

    so q(z) is the best dominant of (3.36).

    Taking C=1 and D=1 in Corollaries 6 and 7 we get:

    Example 4. (i) For fA(p) assume that

    (p(ν,ρ;)f(z))(j)zpj0,    zU.

    Let the function Φj defined by (3.1), and assume that it satisfies:

    [(pj)!p!]δΦj(z)(1+z1z)r+αδ(ν+p)(1+z1z)r2rz1z2.

    Then,

    ((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δ(1+z1z)r, (3.37)

    so (1+z1z)r is the best dominant of (3.37).

    (ii) For fA(p) say it

    (p(ν,ρ;)f(z))(j)zpj0,    zU.

    Let the function Φj defined by (3.1), and assume that it satisfies:

    [(pj)!p!]δΦj(z)1+z1z+αδ(ν+p)2z1z2.

    Then,

    ((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δ1+z1z, (3.38)

    so 1+z1z is the best dominant of (3.38).

    If we put p=C=α=δ=1, D=1 and j=0 in Corollary 8 we get:

    Example 5. For fA suppose that

    f(z)z0,    zU,

    and

    f(z)(1+z1z)r+(1+z1z)r2rz1z2.

    Then,

    f(z)z(1+z1z)r, (3.39)

    and (1+z1z)r is the best dominant of (3.39).

    Remark 1. For  ν=ρ=0, =p=r=1 and j=0 in Theorem 4, we get the results investigated by Shanmugam et al. ([25], Theorem 3.1).

    Theorem 5. Let 0j<p, and for fA(p) assume that

    (p(ν,ρ;)f(z))(j)zpj0,    zU,

    whenever δ(0,+)N. Suppose that

    ((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δHQ

    such that [(pj)!p!]δΦj(z) is univalent in U, where the function Φj is defined by (3.1). If q is convex (univalent) function in U, and

    q(z)+αδ(ν+p)zq(z)[(pj)!p!]δΦj(z),

    then

    q(z)((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δ, (3.40)

    so q(z) is the best subordinate of (3.40).

    Proof. Let ϕ is defined by (3.5), from (3.31) we get

    q(z)+αδ(ν+p)zq(z)[(pj)!p!]δΦj(z)=ϕ(z)+αδ(ν+p)zϕ(z).

    The proof of Theorem 5 followes by an application of Lemma 3.

    Taking q(z)=(1+Cz1+Dz)r in Theorem 5, we get:

    Corollary 9. Let 0j<p, 0<r1 and for fA(p) assume that

    (p(ν,ρ;)f(z))(j)zpj0,    zU.

    Suppose that

    ((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δHQ

    such that [(pj)!p!]δΦj(z) is univalent in U, where the function Φj is defined by (3.1). If

    (1+Cz1+Dz )r+αδ(ν+p)(1+Cz1+Dz )rr(CD)z(1+Dz)(1+Cz)[(pj)!p!]δΦj(z),

    then

    (1+Cz1+Dz )r((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δ, (3.41)

    so (1+Cz1+Dz)r is the best dominant of (3.41).

    Taking q(z)=1+Cz1+Dz and r=1 in Theorem 5, we get:

    Corollary 10. Let 0j<p, and for fA(p) assume that

    (p(ν,ρ;)f(z))(j)zpj0,    zU,

    whenever δ(0,+)N. Assume that

    ((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δHQ

    such that [(pj)!p!]δΦj(z) is univalent in U, where the function Φj is defined by (3.1). If

    1+Cz1+Dz +αδ(ν+p)(CD)z(1+Dz)2[(pj)!p!]δΦj(z),

    then

    1+Cz1+Dz ((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δ, (3.42)

    so 1+Cz1+Dz is the best dominant of (3.42).

    Combining results of Theorems 4 and 5, we have

    Theorem 6. Let 0j<p, and for fA(p) assume that

    (p(ν,ρ;)f(z))(j)zpj0,    zU.

    Suppose that

    ((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δH[q(0),1]Q

    such that [(pj)!p!]δΦj(z) is univalent in U, where the function Φj is defined by (3.1). Let q1 is convex (univalent) function in U, and assume that q2 is convex in U, that q2 satisfies (3.28). If

    q1(z)+αδ(ν+p)zq1(z)[(pj)!p!]δΦj(z)q2(z)+αδ(ν+p)zq2(z),

    then

    q1(z)((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δq2(z)

    and q1(z) and q2(z) are respectively the best subordinate and best dominant of the above subordination.

    We used the application of higher order derivatives to obtained a number of interesting results concerning differential subordination and superordination relations for the operator p(ν,ρ;)f(z) of multivalent functions analytic in U, the differential subordination outcomes are followed by some special cases and counters examples. Differential sandwich-type results have been obtained. Our results we obtained are new and could help the mathematicians in the field of Geometric Function Theory to solve other special results in this field.

    This research has been funded by Deputy for Research & innovation, Ministry of Education through initiative of institutional funding at university of Ha'il, Saudi Arabia through project number IFP-22155.

    The authors declare no conflict of interest.



    [1] L. A. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [2] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3
    [3] S. K. De, R. Biswas, A. R. Roy, An application of intuitionistic fuzzy sets in medical diagnosis, Fuzzy Set. Syst., 117 (2001), 209–213. https://doi.org/10.1016/S0165-0114(98)00235-8 doi: 10.1016/S0165-0114(98)00235-8
    [4] E. Szmidt, J. Kacprzyk, Intuitionistic fuzzy sets in some medical applications, In: Computational intelligence: theory and applications, Berlin, Heidelberg: Springer, 2001,148–151. http://doi.org/10.1007/3-540-45493-4_19
    [5] B. Davvaz, E. H. Sadrabadi, An application of intuitionistic fuzzy sets in medicine, Int. J. Biomath., 9 (2016), 1650037. https://doi.org/10.1142/S1793524516500376 doi: 10.1142/S1793524516500376
    [6] P. A. Ejegwa, I. M. Adamu, Distances between intuitionistic fuzzy sets of second type with application to diagnostic medicine, Notes on Intuitionistic Fuzzy Sets, 25 (2019), 53–70. http://doi.org/10.7546/nifs.2019.25.3.53-70 doi: 10.7546/nifs.2019.25.3.53-70
    [7] P. A. Ejegwa, C. F. Ajogwu, A. Sarkar, A hybridized correlation coefficient technique and its application in classification process under intuitionistic fuzzy setting, Iran. J. Fuzzy Syst., 20 (2023), 103–120. https://doi.org/10.22111/ijfs.2023.42888.7508 doi: 10.22111/ijfs.2023.42888.7508
    [8] S. Xu, J. Chen, J. Wu, Cluster algorithm for intuitionistic fuzzy sets, Inform. Sciences, 178 (2008), 3775–3790. https://doi.org/10.1016/j.ins.2008.06.008 doi: 10.1016/j.ins.2008.06.008
    [9] P. A. Ejegwa, I. C. Onyeke, N. Kausar, P. Kattel, A new partial correlation coefficient technique based on intuitionistic fuzzy information and its pattern recognition application, Int. J. Intell. Syst., 2023 (2023), 5540085. https://doi.org/10.1155/2023/5540085 doi: 10.1155/2023/5540085
    [10] A. G. Hatzimichailidis, A. G. Papakostas, V. G. Kaburlasos, A novel distance measure of intuitionistic fuzzy sets and its application to pattern recognition problems, Int. J. Intell. Syst., 27 (2012), 396–409. https://doi.org/10.1002/int.21529 doi: 10.1002/int.21529
    [11] P. A. Ejegwa, S. Ahemen, Enhanced intuitionistic fuzzy similarity operator with applications in emergency management and pattern recognition, Granul. Comput., 8 (2023), 361–372. https://doi.org/10.1007/s41066-022-00334-1 doi: 10.1007/s41066-022-00334-1
    [12] W. Wang, X. Xin, Distance measure between intuitionistic fuzzy sets, Pattern Recogn. Lett., 26 (2005), 2063–2069. https://doi.org/10.1016/j.patrec.2005.03.018 doi: 10.1016/j.patrec.2005.03.018
    [13] F. E. Boran, D. Akay, A biparametric similarity measure on intuitionistic fuzzy sets with applications to pattern recognition, Inform. Sciences, 255 (2014), 45–57. https://doi.org/10.1016/j.ins.2013.08.013 doi: 10.1016/j.ins.2013.08.013
    [14] P. A. Ejegwa, J. M. Agbetayo, Similarity-distance decision-making technique and its applications via intuitionistic fuzzy pairs, Journal of Computational and Cognitive Engineering, 2 (2023), 68–74. https://doi.org/10.47852/bonviewJCCE512522514 doi: 10.47852/bonviewJCCE512522514
    [15] Y. Zhou, P. A. Ejegwa, S. E. Johnny, Generalized similarity operator for intuitionistic fuzzy sets and its applications based on recognition principle and multiple criteria decision making technique, Int. J. Comput. Intell. Syst., 16 (2023), 85. https://doi.org/10.1007/s44196-023-00245-2 doi: 10.1007/s44196-023-00245-2
    [16] P. Liu, S. M. Chen, Group decision making based on Heronian aggregation operators of intuitionistic fuzzy numbers, IEEE T. Cybernetics, 47 (2017), 2514–2530. https://doi.org/10.1109/TCYB.2016.2634599 doi: 10.1109/TCYB.2016.2634599
    [17] K. T. Atanassov, Geometrical interpretation of the elements of the intuitionistic fuzzy objects, International Journal Bioautomation 20 (2016), 27–42.
    [18] R. R. Yager, A. M. Abbasov, Pythagorean membership grades, complex numbers and decision making, J. Intell. Fuzzy Syst., 28 (2013), 436–452. https://doi.org/10.1002/int.21584 doi: 10.1002/int.21584
    [19] P. A. Ejegwa, S. Wen, Y. Feng, W. Zhang, J. Liu, A three-way Pythagorean fuzzy correlation coefficient approach and its applications in deciding some real-life problems, Appl. Intell., 53 (2023), 226–237. https://doi.org/10.1007/s10489-022-03415-5 doi: 10.1007/s10489-022-03415-5
    [20] P. A. Ejegwa, S. Wen, Y. Feng, W. Zhang, J. Chen, Some new Pythagorean fuzzy correlation techniques via statistical viewpoint with applications to decision-making problems, J. Intell. Fuzzy Syst., 40 (2021), 9873–9886. https://doi.org/10.3233/JIFS-202469 doi: 10.3233/JIFS-202469
    [21] D. Yan, K. Wu, P. A. Ejegwa, X. Xie, Y. Feng, Pythagorean fuzzy partial correlation measure and its application, Symmetry, 15 (2023), 216. https://doi.org/10.3390/sym15010216 doi: 10.3390/sym15010216
    [22] W. Zeng, D. Li, Q. Yin, Distance and similarity measures of Pythagorean fuzzy sets and their applications to multiple criteria group decision making, J. Intell. Fuzzy Syst., 33 (2018), 2236–2254. https://doi.org/10.1002/int.22027 doi: 10.1002/int.22027
    [23] P. A. Ejegwa, I. C. Onyeke, Some new distance and similarity algorithms for Pythagorean fuzzy sets with application in decision-making problems, In: Handbook of research on advances and applications of fuzzy sets and logic, Pennsylvania: IGI Global Publisher, 2022,192–211. https://doi.org/10.4018/978-1-7998-7979-4.ch008
    [24] X. Zhang, A novel approach based on similarity measure for Pythagorean fuzzy multiple criteria group decision making, J. Intell. Fuzzy Syst., 31 (2016), 593–611. https://doi.org/10.1002/int.21796 doi: 10.1002/int.21796
    [25] K. Wu, P. A. Ejegwa, Y. Feng, I. C. Onyeke, S. E. Johnny, S. Ahemen, Some enhanced distance measuring approaches based on Pythagorean fuzzy information with applications in decision making, Symmetry, 14 (2022), 2669. https://doi.org/10.3390/sym14122669 doi: 10.3390/sym14122669
    [26] P. A. Ejegwa, Y. Feng, S. Tang, J. M. Agbetayo, X. Dai, New Pythagorean fuzzy-based distance operators and their applications in pattern classification and disease diagnostic analysis, Neural Comput. Applic., 35 (2023), 10083–10095. https://doi.org/10.1007/s00521-022-07679-3 doi: 10.1007/s00521-022-07679-3
    [27] P. A. Ejegwa, Modified Zhang and Xu's distance measure of Pythagorean fuzzy sets and its application to pattern recognition problems, Neural Comput. Applic., 32 (2020), 10199–10208. https://doi.org/10.1007/s00521-019-04554-6 doi: 10.1007/s00521-019-04554-6
    [28] D. Li, W. Zeng, Distance measure of Pythagorean fuzzy sets, Int. J. Intell. Syst., 33 (2018), 348–361. https://doi.org/10.1002/int.21934 doi: 10.1002/int.21934
    [29] P. A. Ejegwa, Personnel appointments: A Pythagorean fuzzy sets approach using similarity measure, Journal of Information and Computing Science, 14 (2019), 94–102.
    [30] X. Peng, New similarity measure and distance measure for Pythagorean fuzzy set, Complex Intell. Syst., 5 (2019), 101–111. https://doi.org/10.1007/s40747-018-0084-x doi: 10.1007/s40747-018-0084-x
    [31] P. A. Ejegwa, New similarity measures for Pythagorean fuzzy sets with applications, Int. J. Fuzzy Computations and Modelling, 3 (2020), 75–94. http://doi.org/10.1504/IJFCM.2020.106105 doi: 10.1504/IJFCM.2020.106105
    [32] P. A. Ejegwa, Y. Zhang, H. Li, Y. Feng, Novel measuring techniques with applications in pattern classification and diagnostic process under Pythagorean fuzzy environment, The 2023 International Conference on New Trends in Computational Intelligence, Qingdao, China, 2023, 28–35.
    [33] Y. Yang, Z. S. Chen, Y. H. Chen, K. S. Chin, Interval-valued Pythagorean fuzzy Frank power aggregation operators based on an isomorphic Frank dual triple, Int. J. Comput. Int. Sys., 11 (2018), 1091–1110. https://doi.org/10.2991/ijcis.11.1.83 doi: 10.2991/ijcis.11.1.83
    [34] C. O. Nwokoro, U. G. Inyang, I. J. Eyoh, P. A. Ejegwa, Intuitionistic fuzzy approach for predicting maternal outcomes, In: Fuzzy optimization, decision-making and operations research, Cham: Springer, 2023,399–421. https://doi.org/10.1007/978-3-031-35668-1_18
    [35] P. A. Ejegwa, A. Sarkar, I. C. Onyeke, New methods of computing correlation coefficient based on Pythagorean fuzzy information and their applications in disaster control and diagnostic analysis, In: Fuzzy optimization, decision-making and operations research, Cham: Springer, 2023,473–498. https://doi.org/10.1007/978-3-031-35668-1_21
    [36] S. H. Gurmani, Z. Zhang, R. M. Zulqarnain, An integrated group decision-making technique under interval-valued probabilistic linguistic T-spherical fuzzy information and its application to the selection of cloud storage provider, AIMS Mathematics, 8 (2023), 20223–20253. https://doi.org/10.3934/math.20231031 doi: 10.3934/math.20231031
    [37] S. H. Gurmani, H. Garg, R. M. Zulqarnain, I. Siddique, Selection of unmanned aerial vehicles for precision agriculture using interval-valued q-rung orthopair fuzzy information based TOPSIS method, Int. J. Fuzzy Syst., 25 (2023), 2939–2953. https://doi.org/10.1007/s40815-023-01568-0 doi: 10.1007/s40815-023-01568-0
    [38] S. H. Gurmani, Z. Zhang, R. M. Zulqarnain, S. Askar, An interaction and feedback mechanism-based group decision-making for emergency medical supplies supplier selection using T-spherical fuzzy information, Sci. Rep., 13 (2023), 8726. https://doi.org/10.1038/s41598-023-35909-8 doi: 10.1038/s41598-023-35909-8
    [39] R. R. Yager, Pythagorean membership grades in multicriteria decision making, IEEE T. Fuzzy Syst., 22 (2014), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989 doi: 10.1109/TFUZZ.2013.2278989
    [40] X. L. Zhang, Z. S. Xu, Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets, Int. J. Intell. Syst., 29 (2014), 1061–1078. https://doi.org/10.1002/int.21676 doi: 10.1002/int.21676
    [41] H. Garg, Generalized Pythagorean fuzzy geometric aggregation operators using Einstein t-norm and t-conorm for multicriteria decision making process, Int. J. Intell. Syst., 32 (2017), 597–630. https://doi.org/10.1002/int.21860 doi: 10.1002/int.21860
    [42] L. A. P. Dominguez, L. A. Rodriguez-Picon, A. Alvarado-Iniesta, D. L. Cruz, Z. Xu, MOORA under Pythagorean fuzzy set for multiple criteria decision making, Complexity, 2018 (2018), 2602376. https://doi.org/10.1155/2018/2602376 doi: 10.1155/2018/2602376
    [43] C. Huang, M. Lin, Z. Xu, Pythagorean fuzzy MULTIMOORA method based on distance measure and score function: its application in multicriteria decision making process, Knowl. Inf. Syst., 62 (2020), 4373–4406. https://doi.org/10.1007/s10115-020-01491-y doi: 10.1007/s10115-020-01491-y
    [44] P. Wang, Y. Fu, P. Liu, B. Zhu, F. Wang, D. Pamucar, Evaluation of ecological governance in the Yellow River basin based on uninorm combination weight and MULTIMOORA-Borda method, Expert Syst. Appl., 235 (2024), 121227. https://doi.org/10.1016/j.eswa.2023.121227 doi: 10.1016/j.eswa.2023.121227
    [45] F. Gocer, G. Buyukozkan, A novel extension of Pythagorean fuzzy MULTIMOORA approach for new product development, Heliyon, 9 (2023), e16726. https://doi.org/10.1016/j.heliyon.2023.e16726 doi: 10.1016/j.heliyon.2023.e16726
    [46] M. Akram, A. Khan, U. Ahmad, Extended MULTIMOORA method based on 2-tuple linguistic Pythagorean fuzzy sets for multi-attribute group decision-making, Granul. Comput., 8 (2023), 311–332. https://doi.org/10.1007/s41066-022-00330-5 doi: 10.1007/s41066-022-00330-5
    [47] M. M. Al-Shamiri, R. Ismail, S. M. Qurashi, F. Dilawar, F. A. Shami, Multi-criteria decision-making with novel Pythagorean fuzzy aggregation operators, J. Math., 2023 (2023), 3359858. https://doi.org/10.1155/2023/3359858 doi: 10.1155/2023/3359858
    [48] W. Wang, Y. Feng, Pythagorean fuzzy multi-attribute decision making approach with incomplete weight information, Procedia Computer Science, 221 (2023), 245–252. https://doi.org/10.1016/j.procs.2023.07.034 doi: 10.1016/j.procs.2023.07.034
    [49] R. Chaurasiya, D. Jain, Hybrid MCDM method on Pythagorean fuzzy set and its application, Decision Making: Applications in Management and Engineering, 6 (2023), 379–398. https://doi.org/10.31181/dmame0306102022c doi: 10.31181/dmame0306102022c
    [50] G. Wei, Y. Wei, Similarity measures of Pythagorean fuzzy sets based on cosine function and their applications, Int. J. Intell. Syst., 33 (2018), 634–652. https://doi.org/10.1002/int.21965 doi: 10.1002/int.21965
    [51] Z. Hussain, M. S. Yang, Distance and similarity measures of Pythagorean fuzzy sets based on the Hausdorff metric with application to fuzzy TOPSIS, Int. J. Intell. Syst., 34 (2019), 2633–2654. https://doi.org/10.1002/int.22169 doi: 10.1002/int.22169
    [52] Q. Zhang, J. Hu, J. Feng, A. Liu, Y. Li, New similarity measures of Pythagorean fuzzy sets and their applications, IEEE Access, 7 (2019), 138192–138202. https://doi.org/10.1109/ACCESS.2019.2942766 doi: 10.1109/ACCESS.2019.2942766
    [53] R. Verma, J. M. Merigo, On generalized similarity measures for Pythagorean fuzzy sets and their applications to multiple attribute decision-making, Int. J. Intell. Syst., 34 (2019), 2556–2583. https://doi.org/10.1002/int.22160 doi: 10.1002/int.22160
    [54] M. Sowmiya, A. S. A. Mary, Tangent similarity measures of Pythagorean fuzzy sets, International Journal of Research Publication Review, 2 (2021), 456–462.
    [55] P. Wang, R. Dang, P. Liu, D. Pamucar, Attitude-and cost-driven consistency optimization model for decision-making with probabilistic linguistic preference relation, Comput. Ind. Eng., 186 (2023), 109748. https://doi.org/10.1016/j.cie.2023.109748 doi: 10.1016/j.cie.2023.109748
    [56] P. Wang, P. Liu, F. Chiclana, Multi-stage consistency optimization algorithm for decision making with incomplete probabilistic linguistic preference relation, Inform. Sciences, 556 (2021), 361–388. https://doi.org/10.1016/j.ins.2020.10.004 doi: 10.1016/j.ins.2020.10.004
    [57] I. C. Onyeke, P. A. Ejegwa, Modified Senapati and Yager's Fermatean fuzzy distance and its application in students' course placement in tertiary institution, In: Real life applications of multiple criteria decision making techniques in fuzzy domain, Singapore: Springer, 2023,237–253. https://doi.org/10.1007/978-981-19-4929-6_11
    [58] Y. Yang, Z. S. Chen, R. M. Rodríguez, W. Pedrycz, K. S. Chin, Novel fusion strategies for continuous interval-valued q-rung orthopair fuzzy information: A case study in quality assessment of SmartWatch appearance design, Int. J. Mach. Learn. Cyber., 13 (2022), 609–632. https://doi.org/10.1007/s13042-020-01269-2 doi: 10.1007/s13042-020-01269-2
    [59] P. A. Ejegwa, New q-rung orthopair fuzzy distance-similarity operators with applications in investment analysis, pattern recognition, clustering analysis, and selection of robot for smart manufacturing, Soft Comput., 2023 (2023), 1. https://doi.org/10.1007/s00500-023-08799-1 doi: 10.1007/s00500-023-08799-1
  • This article has been cited by:

    1. Jian Sun, Xin Liu, Yang Zhang, Quaternion Tensor Completion via QR Decomposition and Nuclear Norm Minimization, 2024, 1070-5325, 10.1002/nla.2608
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1996) PDF downloads(68) Cited by(11)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog