This paper aimed to address the issue of potential noise or measurement errors in component-based systems by utilizing separable detecting arrays (SDAs) to identify interaction faults and assess whether the number of faulty interactions exceeded a predefined threshold. In this paper, we established a comprehensive lower bound on the size of SDAs and explored an equivalence between optimum SDAs and orthogonal arrays with specific properties. By leveraging this equivalence, numerous optimum SDAs were derived from known results of orthogonal arrays. Additionally, optimum SDAs constructed from difference matrices (DMs) possessing the 'super-simple' property were presented. Several infinite classes of such DMs were provided. Specifically, the existence of super-simple DMs with four rows was fully determined. Our study's findings offer practical implications for improving the reliability and accuracy of fault detection in component-based systems.
Citation: Ce Shi, Tatsuhiro Tsuchiya, Chengmin Wang. Separable detecting arrays[J]. AIMS Mathematics, 2024, 9(12): 34806-34826. doi: 10.3934/math.20241657
[1] | Saad Ihsan Butt, Erhan Set, Saba Yousaf, Thabet Abdeljawad, Wasfi Shatanawi . Generalized integral inequalities for ABK-fractional integral operators. AIMS Mathematics, 2021, 6(9): 10164-10191. doi: 10.3934/math.2021589 |
[2] | Haoliang Fu, Muhammad Shoaib Saleem, Waqas Nazeer, Mamoona Ghafoor, Peigen Li . On Hermite-Hadamard type inequalities for n-polynomial convex stochastic processes. AIMS Mathematics, 2021, 6(6): 6322-6339. doi: 10.3934/math.2021371 |
[3] | Tekin Toplu, Mahir Kadakal, İmdat İşcan . On n-Polynomial convexity and some related inequalities. AIMS Mathematics, 2020, 5(2): 1304-1318. doi: 10.3934/math.2020089 |
[4] | Bandar Bin-Mohsin, Muhammad Uzair Awan, Muhammad Zakria Javed, Sadia Talib, Hüseyin Budak, Muhammad Aslam Noor, Khalida Inayat Noor . On some classical integral inequalities in the setting of new post quantum integrals. AIMS Mathematics, 2023, 8(1): 1995-2017. doi: 10.3934/math.2023103 |
[5] | Soubhagya Kumar Sahoo, Fahd Jarad, Bibhakar Kodamasingh, Artion Kashuri . Hermite-Hadamard type inclusions via generalized Atangana-Baleanu fractional operator with application. AIMS Mathematics, 2022, 7(7): 12303-12321. doi: 10.3934/math.2022683 |
[6] | M. Emin Özdemir, Saad I. Butt, Bahtiyar Bayraktar, Jamshed Nasir . Several integral inequalities for (α, s,m)-convex functions. AIMS Mathematics, 2020, 5(4): 3906-3921. doi: 10.3934/math.2020253 |
[7] | Sarah Elahi, Muhammad Aslam Noor . Integral inequalities for hyperbolic type preinvex functions. AIMS Mathematics, 2021, 6(9): 10313-10326. doi: 10.3934/math.2021597 |
[8] | Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441 |
[9] | Hong Yang, Shahid Qaisar, Arslan Munir, Muhammad Naeem . New inequalities via Caputo-Fabrizio integral operator with applications. AIMS Mathematics, 2023, 8(8): 19391-19412. doi: 10.3934/math.2023989 |
[10] | Muhammad Samraiz, Kanwal Saeed, Saima Naheed, Gauhar Rahman, Kamsing Nonlaopon . On inequalities of Hermite-Hadamard type via n-polynomial exponential type s-convex functions. AIMS Mathematics, 2022, 7(8): 14282-14298. doi: 10.3934/math.2022787 |
This paper aimed to address the issue of potential noise or measurement errors in component-based systems by utilizing separable detecting arrays (SDAs) to identify interaction faults and assess whether the number of faulty interactions exceeded a predefined threshold. In this paper, we established a comprehensive lower bound on the size of SDAs and explored an equivalence between optimum SDAs and orthogonal arrays with specific properties. By leveraging this equivalence, numerous optimum SDAs were derived from known results of orthogonal arrays. Additionally, optimum SDAs constructed from difference matrices (DMs) possessing the 'super-simple' property were presented. Several infinite classes of such DMs were provided. Specifically, the existence of super-simple DMs with four rows was fully determined. Our study's findings offer practical implications for improving the reliability and accuracy of fault detection in component-based systems.
The famous Young's inequality, as a classical result, state that: if a,b>0 and t∈[0,1], then
atb1−t≤ta+(1−t)b | (1.1) |
with equality if and only if a=b. Let p,q>1 such that 1/p+1/q=1. The inequality (1.1) can be written as
ab≤app+bqq | (1.2) |
for any a,b≥0. In this form, the inequality (1.2) was used to prove the celebrated Hölder inequality. One of the most important inequalities of analysis is Hölder's inequality. It contributes wide area of pure and applied mathematics and plays a key role in resolving many problems in social science and cultural science as well as in natural science.
Theorem 1 (Hölder inequality for integrals [11]). Let p>1 and 1/p+1/q=1. If f and g are real functions defined on [a,b] and if |f|p,|g|q are integrable functions on [a,b] then
∫ba|f(x)g(x)|dx≤(∫ba|f(x)|pdx)1/p(∫ba|g(x)|qdx)1/q, | (1.3) |
with equality holding if and only if A|f(x)|p=B|g(x)|q almost everywhere, where A and B are constants.
Theorem 2 (Hölder inequality for sums [11]). Let a=(a1,...,an) and b=(b1,...,bn) be two positive n-tuples and p,q>1 such that 1/p+1/q=1. Then we have
n∑k=1akbk≤(n∑k=1apk)1/p(n∑k=1bqk)1/q. | (1.4) |
Equality hold in (1.4) if and only if ap and bq are proportional.
In [10], İşcan gave new improvements for integral ans sum forms of the Hölder inequality as follow:
Theorem 3. Let p>1 and 1p+1q=1. If f and g are real functions defined on interval [a,b] and if |f|p, |g|q are integrable functions on [a,b] then
∫ba|f(x)g(x)|dx≤1b−a{(∫ba(b−x)|f(x)|pdx)1p(∫ba(b−x)|g(x)|qdx)1q+(∫ba(x−a)|f(x)|pdx)1p(∫ba(x−a)|g(x)|qdx)1q} | (1.5) |
Theorem 4. Let a=(a1,...,an) and b=(b1,...,bn) be two positive n-tuples and p,q>1 such that 1/p+1/q=1. Then
n∑k=1akbk≤1n{(n∑k=1kapk)1/p(n∑k=1kbqk)1/q+(n∑k=1(n−k)apk)1/p(n∑k=1(n−k)bqk)1/q}. | (1.6) |
Let E be a nonempty set and L be a linear class of real valued functions on E having the following properties
L1: If f,g∈L then (αf+βg)∈L for all α,β∈R;
L2: 1∈L, that is if f(t)=1,t∈E, then f∈L;
We also consider positive isotonic linear functionals A:L→R is a functional satisfying the following properties:
A1: A(αf+βg)=αA(f)+β A(g) for f,g∈L and α,β∈R;
A2: If f∈L, f(t)≥0 on E then A(f)≥0.
Isotonic, that is, order-preserving, linear functionals are natural objects in analysis which enjoy a number of convenient properties. Functional versions of well-known inequalities and related results could be found in [1,2,3,4,5,6,7,8,9,11,12].
Example 1. i.) If E=[a,b]⊆R and L=L[a,b], then
A(f)=∫baf(t)dt |
is an isotonic linear functional.
ii.)If E=[a,b]×[c,d]⊆R2 and L=L([a,b]×[c,d]), then
A(f)=∫ba∫dcf(x,y)dxdy |
is an isotonic linear functional.
iii.)If (E,Σ,μ) is a measure space with μ positive measure on E and L=L(μ) then
A(f)=∫Efdμ |
is an isotonic linear functional.
iv.)If E is a subset of the natural numbers N with all pk≥0, then A(f)=∑k∈Epkfk is an isotonic linear functional. For example; If E={1,2,...,n} and f:E→R,f(k)=ak, then A(f)=∑nk=1ak is an isotonic linear functional. If E={1,2,...,n}×{1,2,...,m} and f:E→R,f(k,l)=ak,l, then A(f)=∑nk=1∑ml=1ak,l is an isotonic linear functional.
Theorem 5 (Hölder's inequality for isotonic functionals [13]). Let L satisfy conditions L1, L2, and A satisfy conditions A1, A2 on a base set E. Let p>1 and p−1+q−1=1. If w,f,g≥0 on E and wfp,wgq,wfg∈L then we have
A(wfg)≤A1/p(wfp)A1/q(wgq). | (2.1) |
In the case 0<p<1 and A(wgq)>0 (or p<0 and A(wfp)>0), the inequality in (2.1) is reversed.
Remark 1. i.) If we choose E=[a,b]⊆R, L=L[a,b], w=1 on E and A(f)=∫ba|f(t)|dt in the Theorem 5, then the inequality (2.1) reduce the inequality (1.3).
ii.) If we choose E={1,2,...,n}, w=1 on E, f:E→[0,∞),f(k)=ak, and A(f)=∑nk=1ak in the Theorem 5, then the inequality (2.1) reduce the inequality (1.4).
iii.) If we choose E=[a,b]×[c,d],L=L(E), w=1 on E and A(f)=∫ba∫dc|f(x,y)|dxdy in the Theorem 5, then the inequality (2.1) reduce the following inequality for double integrals:
∫ba∫dc|f(x,y)||g(x,y)|dxdy≤(∫ba∫dc|f(x,y)|pdx)1/p(∫ba∫dc|g(x,y)|qdx)1/q. |
The aim of this paper is to give a new general improvement of Hölder inequality for isotonic linear functional. As applications, this new inequality will be rewritten for several important particular cases of isotonic linear functionals. Also, we give an application to show that improvement is hold for double integrals.
Theorem 6. Let L satisfy conditions L1, L2, and A satisfy conditions A1, A2 on a base set E. Let p>1 and p−1+q−1=1. If α,β,w,f,g≥0 on E, αwfg,βwfg,αwfp,αwgq,βwfp,βwgq,wfg∈L and α+β=1 on E, then we have
i.)
A(wfg)≤A1/p(αwfp)A1/q(αwgq)+A1/p(βwfq)A1/q(βwgq) | (3.1) |
ii.)
A1/p(αwfp)A1/q(αwgq)+A1/p(βwfp)A1/q(βwgq)≤A1/p(wfp)A1/q(wgq). | (3.2) |
Proof. ⅰ.) By using of Hölder inequality for isotonic functionals in (2.1) and linearity of A, it is easily seen that
A(wfg)=A(αwfg+βwfg)=A(αwfg)+A(βwfg)≤A1/p(αwfp)A1/q(αwgq)+A1/p(βwfp)A1/q(βwgq). |
ⅱ.) Firstly, we assume that A1/p(wfp)A1/q(wgq)≠0. then
A1/p(αwfp)A1/q(αwgq)+A1/p(βwfp)A1/q(βwgq)A1/p(wfp)A1/q(wgq)=(A(αwfp)A(wfp))1/p(A(αwgq)A(wgq))1/q+(A(βwfp)A(wfp))1/p(A(βwgq)A(wgq))1/q, |
By the inequality (1.1) and linearity of A, we have
A1/p(αwfp)A1/q(αwgq)+A1/p(βwfp)A1/q(βwgq)A1/p(wfp)A1/q(wgq)≤1p[A(αwfp)A(wfp)+A(βwfp)A(wfp)]+1q[A(αwgq)A(wgq)+A(βwgq)A(wgq)]=1. |
Finally, suppose that A1/p(wfp)A1/q(wgq)=0. Then A1/p(wfp)=0 or A1/q(wgq)=0, i.e. A(wfp)=0 or A(wgq)=0. We assume that A(wfp)=0. Then by using linearity of A we have,
0=A(wfp)=A(αwfp+βwfp)=A(αwfp)+A(βwfp). |
Since A(αwf),A(βwf)≥0, we get A(αwfp)=0 and A(βwfp)=0. From here, it follows that
A1/p(αwfp)A1/q(αwgq)+A1/p(βwfp)A1/q(βwgq)=0≤0=A1/p(wfp)A1/q(wgq). |
In case of A(wgq)=0, the proof is done similarly. This completes the proof.
Remark 2. The inequality (3.2) shows that the inequality (3.1) is better than the inequality (2.1).
If we take w=1 on E in the Theorem 6, then we can give the following corollary:
Corollary 1. Let L satisfy conditions L1, L2, and A satisfy conditions A1, A2 on a base set E. Let p>1 and p−1+q−1=1. If α,β,f,g≥0 on E, αfg,βfg,αfp,αgq,βfp,βgq,fg∈L and α+β=1 on E, then we have
i.)
A(fg)≤A1/p(αfp)A1/q(αgq)+A1/p(βfq)A1/q(βgq) | (3.3) |
ii.)
A1/p(αfp)A1/q(αgq)+A1/p(βfp)A1/q(βgq)≤A1/p(fp)A1/q(gq). |
Remark 3. i.) If we choose E=[a,b]⊆R, L=L[a,b], α(t)=b−tb−a,β(t)=t−ab−a on E and A(f)=∫ba|f(t)|dt in the Corollary 1, then the inequality (3.3) reduce the inequality (1.5).
ii.) If we choose E={1,2,...,n}, α(k)=kn,β(k)=n−kn on E, f:E→[0,∞),f(k)=ak, and A(f)=∑nk=1ak in the Theorem1, then the inequality (3.3) reduce the inequality (1.6).
We can give more general form of the Theorem 6 as follows:
Theorem 7. Let L satisfy conditions L1, L2, and A satisfy conditions A1, A2 on a base set E. Let p>1 and p−1+q−1=1. If αi,w,f,g≥0 on E, αiwfg,αiwfp,αiwgq,wfg∈L,i=1,2,...,m, and ∑mi=1αi=1 on E, then we have
i.)
A(wfg)≤m∑i=1A1/p(αiwfp)A1/q(αiwgq) |
ii.)
m∑i=1A1/p(αiwfp)A1/q(αiwgq)≤A1/p(wfp)A1/q(wgq). |
Proof. The proof can be easily done similarly to the proof of Theorem 6.
If we take w=1 on E in the Theorem 6, then we can give the following corollary:
Corollary 2. Let L satisfy conditions L1, L2, and A satisfy conditions A1, A2 on a base set E. Let p>1 and p−1+q−1=1. If αi,f,g≥0 on E, αifg,αifp,αigq,fg∈L,i=1,2,...,m, and ∑mi=1αi=1 on E, then we have
i.)
A(fg)≤m∑i=1A1/p(αifp)A1/q(αigq) | (3.4) |
ii.)
m∑i=1A1/p(αifp)A1/q(αigq)≤A1/p(fp)A1/q(gq). |
Corollary 3 (Improvement of Hölder inequality for double integrals). Let p,q>1 and 1/p+1/q=1. If f and g are real functions defined on E=[a,b]×[c,d] and if |f|p,|g|q∈L(E) then
∫ba∫dc|f(x,y)||g(x,y)|dxdy≤4∑i=1(∫ba∫dcαi(x,y)|f(x,y)|pdx)1/p(∫ba∫dcαi(x,y)|g(x,y)|qdx)1/q, | (3.5) |
where α1(x,y)=(b−x)(d−y)(b−a)(d−c),α2(x,y)=(b−x)(y−c)(b−a)(d−c),α3(x,y)=(x−a)(y−c)(b−a)(d−c),,α4(x,y)=(x−a)(d−y)(b−a)(d−c) on E
Proof. If we choose E=[a,b]×[c,d]⊆R2, L=L(E), α1(x,y)=(b−x)(d−y)(b−a)(d−c),α2(x,y)=(b−x)(y−c)(b−a)(d−c),α3(x,y)=(x−a)(y−c)(b−a)(d−c),α4(x,y)=(x−a)(d−y)(b−a)(d−c) on E and A(f)=∫ba∫dc|f(x,y)|dxdy in the Corollary 1, then we get the inequality (3.5).
Corollary 4. Let (ak,l) and (bk,l) be two tuples of positive numbers and p,q>1 such that 1/p+1/q=1. Then we have
n∑k=1m∑l=1ak,lbk,l≤4∑i=1(n∑k=1m∑l=1αi(k,l)apk,l)1/p(n∑k=1m∑l=1αi(k,l)bqk,l)1/q, | (3.6) |
where α1(k,l)=klnm,α2(k,l)=(n−k)lnm,α3(k,l)=(n−k)(m−l)nm,α4(k,l)=k(m−l)nm on E.
Proof. If we choose E={1,2,...,n}×{1,2,...,m}, α1(k,l)=klnm,α2(k,l)=(n−k)lnm,α3(k,l)=(n−k)(m−l)nm,α4(k,l)=k(m−l)nm on E, f:E→[0,∞),f(k,l)=ak,l, and A(f)=∑nk=1∑ml=1ak,l in the Theorem1, then we get the inequality (3.6).
In [14], Sarıkaya et al. gave the following lemma for obtain main results.
Lemma 1. Let f:Δ⊆R2→R be a partial differentiable mapping on Δ=[a,b]×[c,d] in R2with a<b and c<d. If ∂2f∂t∂s∈L(Δ), then the following equality holds:
f(a,c)+f(a,d)+f(b,c)+f(b,d)4−1(b−a)(d−c)∫ba∫dcf(x,y)dxdy−12[1b−a∫ba[f(x,c)+f(x,d)]dx+1d−c∫dc[f(a,y)+f(b,y)]dy]=(b−a)(d−c)4∫10∫10(1−2t)(1−2s)∂2f∂t∂s(ta+(1−t)b,sc+(1−s)d)dtds. |
By using this equality and Hölder integral inequality for double integrals, Sar\i kaya et al. obtained the following inequality:
Theorem 8. Let f:Δ⊆R2→R be a partial differentiable mapping on Δ=[a,b]×[c,d] in R2with a<b and c<d. If |∂2f∂t∂s|q,q>1, is convex function on the co-ordinates on Δ, then one has the inequalities:
|f(a,c)+f(a,d)+f(b,c)+f(b,d)4−1(b−a)(d−c)∫ba∫dcf(x,y)dxdy−A|≤(b−a)(d−c)4(p+1)2/p[|fst(a,c)|q+|fst(a,d)|q+|fst(b,c)|q+|fst(b,d)|q4]1/q, | (4.1) |
where
A=12[1b−a∫ba[f(x,c)+f(x,d)]dx+1d−c∫dc[f(a,y)+f(b,y)]dy], |
1/p+1/q=1 and fst=∂2f∂t∂s.
If Theorem 8 are resulted again by using the inequality (3.5), then we get the following result:
Theorem 9. Let f:Δ⊆R2→R be a partial differentiable mapping on Δ=[a,b]×[c,d] in R2with a<b and c<d. If |∂2f∂t∂s|q,q>1, is convex function on the co-ordinates on Δ, then one has the inequalities:
|f(a,c)+f(a,d)+f(b,c)+f(b,d)4−1(b−a)(d−c)∫ba∫dcf(x,y)dxdy−A|≤(b−a)(d−c)41+1/p(p+1)2/p{[4|fst(a,c)|q+2|fst(a,d)|q+2|fst(b,c)|q+|fst(b,d)|q36]1/q+[2|fst(a,c)|q+|fst(a,d)|q+4|fst(b,c)|q+2|fst(b,d)|q36]1/q+[2|fst(a,c)|q+4|fst(a,d)|q+|fst(b,c)|q+2|fst(b,d)|q36]1/q+[|fst(a,c)|q+2|fst(a,d)|q+2|fst(b,c)|q+4|fst(b,d)|q36]1/q}, | (4.2) |
where
A=12[1b−a∫ba[f(x,c)+f(x,d)]dx+1d−c∫dc[f(a,y)+f(b,y)]dy], |
1/p+1/q=1 and fst=∂2f∂t∂s.
Proof. Using Lemma 1 and the inequality (3.5), we find
|f(a,c)+f(a,d)+f(b,c)+f(b,d)4−1(b−a)(d−c)∫ba∫dcf(x,y)dxdy−A|≤(b−a)(d−c)4∫10∫10|1−2t||1−2s||fst(ta+(1−t)b,sc+(1−s))|dtds≤(b−a)(d−c)4{(∫10∫10ts|1−2t|p|1−2s|pdtds)1/p×(∫10∫10ts|fst(ta+(1−t)b,sc+(1−s))|qdtds)1/q+(∫10∫10t(1−s)|1−2t|p|1−2s|pdtds)1/p×(∫10∫10t(1−s)|fst(ta+(1−t)b,sc+(1−s))|qdtds)1/q+(∫10∫10(1−t)s|1−2t|p|1−2s|pdtds)1/p×(∫10∫10(1−t)s|fst(ta+(1−t)b,sc+(1−s))|qdtds)1/q+(∫10∫10(1−t)(1−s)|1−2t|p|1−2s|pdtds)1/p×(∫10∫10(1−t)(1−s)|fst(ta+(1−t)b,sc+(1−s))|qdtds)1/q}. | (4.3) |
Since |fst|q is convex function on the co-ordinates on Δ, we have for all t,s∈[0,1]
|fst(ta+(1−t)b,sc+(1−s))|q≤ts|fst(a,c)|q+t(1−s)|fst(a,d)|q+(1−t)s|fst(a,c)|q+(1−t)(1−s)|fst(a,c)|q | (4.4) |
for all t,s∈[0,1]. Further since
∫10∫10ts|1−2t|p|1−2s|pdtds=∫10∫10t(1−s)|1−2t|p|1−2s|pdtds=∫10∫10(1−t)s|1−2t|p|1−2s|pdtds | (4.5) |
=∫10∫10(1−t)(1−s)|1−2t|p|1−2s|pdtds=14(p+1)2, | (4.6) |
a combination of (4.3) - (4.5) immediately gives the required inequality (4.2).
Remark 4. Since η:[0,∞)→R,η(x)=xs,0<s≤1, is a concave function, for all u,v≥0 we have
η(u+v2)=(u+v2)s≥η(u)+η(v)2=us+vs2. |
From here, we get
I={[4|fst(a,c)|q+2|fst(a,d)|q+2|fst(b,c)|q+|fst(b,d)|q36]1/q+[2|fst(a,c)|q+|fst(a,d)|q+4|fst(b,c)|q+2|fst(b,d)|q36]1/q+[2|fst(a,c)|q+4|fst(a,d)|q+|fst(b,c)|q+2|fst(b,d)|q36]1/q+[|fst(a,c)|q+2|fst(a,d)|q+2|fst(b,c)|q+4|fst(b,d)|q36]1/q}≤2{[6|fst(a,c)|q+3|fst(a,d)|q+6|fst(b,c)|q+3|fst(b,d)|q72]1/q+[3|fst(a,c)|q+6|fst(a,d)|q+3|fst(b,c)|q+6|fst(b,d)|q72]1/q} |
≤4{[|fst(a,c)|q+|fst(a,d)|q+|fst(b,c)|q+|fst(b,d)|q16]1/q |
Thus we obtain
(b−a)(d−c)41+1/p(p+1)2/pI≤(b−a)(d−c)41+1/p(p+1)2/p4{[|fst(a,c)|q+|fst(a,d)|q+|fst(b,c)|q+|fst(b,d)|q16]1/q}≤(b−a)(d−c)4(p+1)2/p{[|fst(a,c)|q+|fst(a,d)|q+|fst(b,c)|q+|fst(b,d)|q4]1/q}. |
This shows that the inequality (4.2) is better than the inequality (4.1).
The aim of this paper is to give a new general improvement of Hölder inequality via isotonic linear functional. An important feature of the new inequality obtained here is that many existing inequalities related to the Hölder inequality can be improved. As applications, this new inequality will be rewritten for several important particular cases of isotonic linear functionals. Also, we give an application to show that improvement is hold for double integrals. Similar method can be applied to the different type of convex functions.
This research didn't receive any funding.
The author declares no conflicts of interest in this paper.
[1] |
R. Bose, K. Bush, Orthogonal arrays of strength two and three, Ann. Math. Statist., 23 (1952), 508–524. https://doi.org/10.1214/aoms/1177729331 doi: 10.1214/aoms/1177729331
![]() |
[2] |
M. Buratti, Recursive constructions for difference matrices and relative difference families, J. Comb. Des., 6 (1998), 165–182. https://doi.org/10.1002/(sici)1520-6610(1998)6:3<165::aid-jcd1>3.0.co;2-d doi: 10.1002/(sici)1520-6610(1998)6:3<165::aid-jcd1>3.0.co;2-d
![]() |
[3] |
Y. Chang, C. Colbourn, A. Gowty, D. Horsley, J. Zhou, New bounds on the maximum size of Sperner partition systems, Eur. J. Combin., 90 (2020), 103165. https://doi.org/10.1016/j.ejc.2020.103165 doi: 10.1016/j.ejc.2020.103165
![]() |
[4] |
M. Chateauneuf, C. Colbourn, D. Kreher, Covering arrays of strength three, Des. Codes Cryptogr., 16 (1999), 235–242. https://doi.org/10.1023/A:1008379710317 doi: 10.1023/A:1008379710317
![]() |
[5] |
M. Chateauneuf, D. Kreher, On the state of strength three covering arrays, J. Comb. Des., 10 (2002), 217–238. https://doi.org/10.1002/jcd.10002 doi: 10.1002/jcd.10002
![]() |
[6] | Y. Chen, Constructions of optimal detecting arrays of degree 5 and strength 2, M.Sc Thesis, Soochow University, 2011. |
[7] |
C. Colbourn, Strength two covering arrays: existence tables and projection, Discrete Math., 308 (2008), 772–786. https://doi.org/10.1016/j.disc.2007.07.050 doi: 10.1016/j.disc.2007.07.050
![]() |
[8] | C. Colbourn, CRC handbook of combinatorial designs, New York: CRC Press, 1996. https://doi.org/10.1201/9781003040897 |
[9] |
C. Colbourn, S. Martirosyan, T. Trung, R. Walker Ⅱ, Roux-type constructions for covering arrays of strengths three and four, Des. Codes Cryptogr., 41 (2006), 33–57. https://doi.org/10.1007/s10623-006-0020-8 doi: 10.1007/s10623-006-0020-8
![]() |
[10] |
C. Colbourn, D. McClary, Locating and detecting arrays for interaction faults, J. Comb. Optim., 15 (2008), 17–48. https://doi.org/10.1007/s10878-007-9082-4 doi: 10.1007/s10878-007-9082-4
![]() |
[11] | C. Colbourn, V. Syrotiuk, Detecting arrays for main effects, In: Algebraic informatics, Cham: Springer, 2019,112–123. https://doi.org/10.1007/978-3-030-21363-3_10 |
[12] | C. Colbourn, V. Syrotiuk, Detecting arrays for effects of single factor, In: European congress of mathematics, Berlin: EMS Press, 2023,693–718. https://doi.org/10.4171/8ecm/19 |
[13] |
D. Drake, Partial λ-geometries and generalized Hadamard matrices over groups, Can. J. Math., 31 (1979), 617–627. https://doi.org/10.4153/CJM-1979-062-1 doi: 10.4153/CJM-1979-062-1
![]() |
[14] |
A. El-Mesady, Y. Hamed, K. Abualnaja, A novel application on mutually orthogonal graph squares and graph-orthogonal arrays, AIMS Mathematics, 7 (2022), 7349–7373. https://doi.org/10.3934/math.2022410 doi: 10.3934/math.2022410
![]() |
[15] |
G. Ge, On (g,4;1)-difference matrices, Discrete Math., 301 (2005), 164–174. https://doi.org/10.1016/j.disc.2005.07.004 doi: 10.1016/j.disc.2005.07.004
![]() |
[16] |
A. Gowty, D. Horsley, More constructions for Sperner partition systems, J. Comb. Des., 29 (2021), 579–606. https://doi.org/10.1002/jcd.21780 doi: 10.1002/jcd.21780
![]() |
[17] |
S. Hartman, On simple and supersimple transversal designs, J. Comb. Des., 8 (2000), 311–320. https://doi.org/10.1002/1520-6610(2000)8:5<311::aid-jcd1>3.0.co;2-1 doi: 10.1002/1520-6610(2000)8:5<311::aid-jcd1>3.0.co;2-1
![]() |
[18] |
A. Hartman, L. Raskin, Problems and algorithms for covering arrays, Discrete Math., 284 (2004), 149–156. https://doi.org/10.1016/j.disc.2003.11.029 doi: 10.1016/j.disc.2003.11.029
![]() |
[19] |
A. Hedayat, J. Stufken, G. Su, On difference schemes and orthogonal arrays of strength t, J. Stat. Plan. Infer., 56 (1996), 307–324. https://doi.org/10.1016/s0378-3758(96)00026-2 doi: 10.1016/s0378-3758(96)00026-2
![]() |
[20] |
M. Higazy, A. El-Mesady, M. Mohamed, On graph-orthogonal arrays by mutually orthogonal graph squares, Symmetry, 12 (2020), 1895. https://doi.org/10.3390/sym12111895 doi: 10.3390/sym12111895
![]() |
[21] | A. Hedayat, N. Sloane, J. Stufken, Orthogonal array: theory and applications, New York: Springer, 1999. http://dx.doi.org/10.1007/978-1-4612-1478-6 |
[22] |
L. Ji, J. Yin, Constructions of new orthogonal arrays and covering arrays of strength three, J. Comb. Theory A, 117 (2010), 236–247. https://doi.org/10.1016/j.jcta.2009.06.002 doi: 10.1016/j.jcta.2009.06.002
![]() |
[23] |
L. Jiang, C. Shi, A construction of variable strength covering arrays, Acta Math. Appl. Sin. Engl. Ser., 37 (2021), 240–250. https://doi.org/10.1007/s10255-021-1006-z doi: 10.1007/s10255-021-1006-z
![]() |
[24] | D. Kuhn, R. Kacker, Y. Lei, Introduction to combinatorial testing, Boca Raton: Chapman & Hall/CRC, 2013. |
[25] |
D. Kuhn, M. Reilly, An investigation of the applicability of design of experiments to software testing, Proceedings of 27th Annual NASA Goddard/IEEE Software Engineering Workshop, 2002, 91–95. https://doi.org/10.1109/sew.2002.1199454 doi: 10.1109/sew.2002.1199454
![]() |
[26] |
D. Kuhn, D. Wallace, A. Gallo, Software fault interactions and implications for software testing, IEEE T. Software Eng., 30 (2004), 418–421. https://doi.org/10.1109/TSE.2004.24 doi: 10.1109/TSE.2004.24
![]() |
[27] |
P. Li, K. Meagher, Sperner partition systems, J. Comb. Des., 21 (2013), 267–279. https://doi.org/10.1002/jcd.21330 doi: 10.1002/jcd.21330
![]() |
[28] |
K. Meagher, L. Moura, B. Stevens, A Sperner-type theorem for set-partition systems, Electron. J. Combin., 12 (2005), 20. https://doi.org/10.37236/1987 doi: 10.37236/1987
![]() |
[29] |
C. Nie, H. Leung, A survey of combinatorial testing, ACM Comput. Surv., 43 (2011), 11. https://doi.org/10.1145/1883612.1883618 doi: 10.1145/1883612.1883618
![]() |
[30] |
R. Pan, Y. Chang, A note on difference matrices over non-cyclic finite abelian groups, Discrete Math., 339 (2016), 822–830. https://doi.org/10.1016/j.disc.2015.10.028 doi: 10.1016/j.disc.2015.10.028
![]() |
[31] |
K. Sarkar, C. Colbourn, Two-stage algorithms for covering array construction, J. Comb. Des., 27 (2019), 475–505. https://doi.org/10.1002/jcd.21657 doi: 10.1002/jcd.21657
![]() |
[32] |
E. Seiden, On the problem of construction of orthogonal arrays, Ann. Math. Statist., 25 (1954), 151–156. https://doi.org/10.1214/aoms/1177728855 doi: 10.1214/aoms/1177728855
![]() |
[33] | S. Seidel, K. Sarkar, C. Colbourn, V. Syrotiuk, Separating interaction effects using locating and detecting arrays, In: Combinatorial algorithms, Cham: Springer, 2018,349–360. https://doi.org/10.1007/978-3-319-94667-2_29 |
[34] |
C. Shi, Optimum super-simple mixed covering arrays of type a1bk−1, Acta Math. Sin.-English Ser., 33 (2017), 153–164. https://doi.org/10.1007/s10114-017-5684-7 doi: 10.1007/s10114-017-5684-7
![]() |
[35] |
C. Shi, L. Jiang, A. Tao, Consecutive detecting arrays for interaction faults, Graph. Combinator., 36 (2020), 1203–1218. https://doi.org/10.1007/s00373-020-02176-7 doi: 10.1007/s00373-020-02176-7
![]() |
[36] |
C. Shi, Y. Tang, J. Yin, The equivalence between optimal detecting arrays and super-simple OAs, Des. Codes Cryptogr., 62 (2012), 131–142. https://doi.org/10.1007/s10623-011-9498-9 doi: 10.1007/s10623-011-9498-9
![]() |
[37] |
C. Shi, Y. Tang, J. Yin, Optimum mixed level detecting arrays, Ann. Statist., 42 (2014), 1546–1563. https://doi.org/10.1214/14-AOS1228 doi: 10.1214/14-AOS1228
![]() |
[38] | C. Shi, A. Tao, Consecutive detecting arrays from m-sequence, IAENG International Journal of Applied Mathematics, 50 (2020), 80–86. |
[39] |
C. Shi, C. Wang, Optimum detecting arrays for independent interaction faults, Acta Math. Sin.-English Ser., 32 (2016), 199–212. https://doi.org/10.1007/s10114-016-5049-7 doi: 10.1007/s10114-016-5049-7
![]() |
[40] |
C. Shi, J. Yin, Existence of super-simple OAλ(3,5,v)'s, Des. Codes Cryptogr., 72 (2014), 369–380. https://doi.org/10.1007/s10623-012-9771-6 doi: 10.1007/s10623-012-9771-6
![]() |
[41] |
Y. Tang, J. Yin, Detecting arrays and their optimality, Acta. Math. Sin.-English Ser., 27 (2011), 2309–2318. https://doi.org/10.1007/s10114-011-0184-7 doi: 10.1007/s10114-011-0184-7
![]() |
[42] |
G. Tzanakis, L. Moura, D. Panario, B. Stevens, Covering arrays from m-sequences and character sums, Des. Codes Cryptogr., 85 (2017), 437–456. https://doi.org/10.1007/s10623-016-0316-2 doi: 10.1007/s10623-016-0316-2
![]() |
[43] |
Y. Zang, G. Chen, K. Chen, Z. Tian, Further results on 2-uniform states arising from Irredundant orthogonal arrays, Adv. Math. Commun., 16 (2022), 231–247. https://doi.org/10.3934/amc.2020109 doi: 10.3934/amc.2020109
![]() |
1. | Ludmila Nikolova, Lars-Erik Persson, Sanja Varošanec, 2025, Chapter 2, 978-3-031-83371-7, 31, 10.1007/978-3-031-83372-4_2 |