
The biharmonic equation/eigenvalue problem is one of the fundamental model problems in mathematics and physics and has wide applications. In this paper, for the biharmonic eigenvalue problem, based on the work of Gudi [Numer. Methods Partial Differ. Equ., 27 (2011), 315-328], we study the a posteriori error estimates of the approximate eigenpairs obtained by the Ciarlet-Raviart mixed finite element method. We prove the reliability and efficiency of the error estimator of the approximate eigenfunction and analyze the reliability of the error estimator of the approximate eigenvalues. We also implement the adaptive calculation and exhibit the numerical experiments which show that our method is efficient and can get an approximate solution with high accuracy.
Citation: Jinhua Feng, Shixi Wang, Hai Bi, Yidu Yang. The a posteriori error estimates of the Ciarlet-Raviart mixed finite element method for the biharmonic eigenvalue problem[J]. AIMS Mathematics, 2024, 9(2): 3332-3348. doi: 10.3934/math.2024163
[1] | Ling Zhu . Completely monotonic integer degrees for a class of special functions. AIMS Mathematics, 2020, 5(4): 3456-3471. doi: 10.3934/math.2020224 |
[2] | Chuan-Yu Cai, Qiu-Ying Zhang, Ti-Ren Huang . Properties of generalized (p,q)-elliptic integrals and generalized (p,q)-Hersch-Pfluger distortion function. AIMS Mathematics, 2023, 8(12): 31198-31216. doi: 10.3934/math.20231597 |
[3] | Wissem Jedidi, Hristo S. Sendov, Shen Shan . Classes of completely monotone and Bernstein functions defined by convexity properties of their spectral measures. AIMS Mathematics, 2024, 9(5): 11372-11395. doi: 10.3934/math.2024558 |
[4] | Fei Wang, Bai-Ni Guo, Feng Qi . Monotonicity and inequalities related to complete elliptic integrals of the second kind. AIMS Mathematics, 2020, 5(3): 2732-2742. doi: 10.3934/math.2020176 |
[5] | Xi-Fan Huang, Miao-Kun Wang, Hao Shao, Yi-Fan Zhao, Yu-Ming Chu . Monotonicity properties and bounds for the complete p-elliptic integrals. AIMS Mathematics, 2020, 5(6): 7071-7086. doi: 10.3934/math.2020453 |
[6] | Khaled Mehrez, Abdulaziz Alenazi . Bounds for certain function related to the incomplete Fox-Wright function. AIMS Mathematics, 2024, 9(7): 19070-19088. doi: 10.3934/math.2024929 |
[7] | Li Xu, Lu Chen, Ti-Ren Huang . Monotonicity, convexity and inequalities involving zero-balanced Gaussian hypergeometric function. AIMS Mathematics, 2022, 7(7): 12471-12482. doi: 10.3934/math.2022692 |
[8] | Feng Qi, Kottakkaran Sooppy Nisar, Gauhar Rahman . Convexity and inequalities related to extended beta and confluent hypergeometric functions. AIMS Mathematics, 2019, 4(5): 1499-1507. doi: 10.3934/math.2019.5.1499 |
[9] | Moquddsa Zahra, Dina Abuzaid, Ghulam Farid, Kamsing Nonlaopon . On Hadamard inequalities for refined convex functions via strictly monotone functions. AIMS Mathematics, 2022, 7(11): 20043-20057. doi: 10.3934/math.20221096 |
[10] | Xifeng Wang, Senlin Guo . Some conditions for sequences to be minimal completely monotonic. AIMS Mathematics, 2023, 8(4): 9832-9839. doi: 10.3934/math.2023496 |
The biharmonic equation/eigenvalue problem is one of the fundamental model problems in mathematics and physics and has wide applications. In this paper, for the biharmonic eigenvalue problem, based on the work of Gudi [Numer. Methods Partial Differ. Equ., 27 (2011), 315-328], we study the a posteriori error estimates of the approximate eigenpairs obtained by the Ciarlet-Raviart mixed finite element method. We prove the reliability and efficiency of the error estimator of the approximate eigenfunction and analyze the reliability of the error estimator of the approximate eigenvalues. We also implement the adaptive calculation and exhibit the numerical experiments which show that our method is efficient and can get an approximate solution with high accuracy.
This paper considers the following heteroscedastic model:
Yi=f(Xi)Ui+g(Xi),i∈{1,⋯,n}. | (1.1) |
In this equation, g(x) is a known mean function, and the variance function r(x)(r(x):=f2(x)) is unknown. Both the mean function g(x) and variance function r(x) are defined on [0,1]. The random variables U1,…,Un are independent and identically distributed (i.i.d.) with E[Ui]=0 and V[Ui]=1. Furthermore, the random variable Xi is independent of Ui for any i∈{1,⋯,n}. The purpose of this paper is to estimate the mth derivative functions r(m)(x)(m∈N) from the observed data (X1,Y1),⋯,(Xn,Yn) by a wavelet method.
Heteroscedastic models are widely used in economics, engineering, biology, physical sciences and so on; see Box [1], Carroll and Ruppert [2], Härdle and Tsybakov [3], Fan and Yao [4], Quevedo and Vining [5] and Amerise [6]. For the above estimation model (1.1), the most popular method is the kernel method. Many important and interesting results of kernel estimators have been obtained by Wang et al. [7], Kulik and Wichelhaus [8] and Shen et al. [9]. However, the optimal bandwidth parameter of the kernel estimator is not easily obtained in some cases, especially when the function has some sharp spikes. Because of the good local properties in both time and frequency domains, the wavelet method has been widely used in nonparametric estimation problems; see Donoho and Johnstone [10], Cai [11], Nason et al. [12], Cai and Zhou [13], Abry and Didier [14] and Li and Zhang [15]. For the estimation problem (1.1), Kulik and Raimondo [16] studied the adaptive properties of warped wavelet nonlinear approximations over a wide range of Besov scales. Zhou et al. [17] developed wavelet estimators for detecting and estimating jumps and cusps in the mean function. Palanisamy and Ravichandran [18] proposed a data-driven estimator by applying wavelet thresholding along with the technique of sparse representation. The asymptotic normality for wavelet estimators of variance function under α−mixing condition was obtained by Ding and Chen [19].
In this paper, we focus on nonparametric estimation of the derivative function r(m)(x) of the variance function r(x). It is well known that derivative estimation plays an important and useful role in many practical applications (Woltring [20], Zhou and Wolfe, [21], Chacón and Duong [22], Wei et al.[23]). For the estimation model (1.1), a linear wavelet estimator and an adaptive nonlinear wavelet estimator for the derivative function r(m)(x) are constructed. Moreover, the convergence rates over L˜p(1≤˜p<∞) risk of two wavelet estimators are proved in Besov space Bsp,q(R) with some mild conditions. Finally, numerical experiments are carried out, where an automatic selection method is used to obtain the best parameters of two wavelet estimators. According to the simulation study, both wavelet estimators can efficiently estimate the derivative function. Furthermore, the nonlinear wavelet estimator shows better performance than the linear estimator.
This paper considers wavelet estimations of a derivative function in Besov space. Now, we first introduce some basic concepts of wavelets. Let ϕ be an orthonormal scaling function, and the corresponding wavelet function is denoted by ψ. It is well known that {ϕτ,k:=2τ/2ϕ(2τx−k),ψj,k:=2j/2ψ(2jx−k),j≥τ,k∈Z} forms an orthonormal basis of L2(R). This paper uses the Daubechies wavelet, which has a compactly support. Then, for any integer j∗, a function h(x)∈L2([0,1]) can be expanded into a wavelet series as
h(x)=∑k∈Λj∗αj∗,kϕj∗,k(x)+∞∑j=j∗∑k∈Λjβj,kψj,k(x),x∈[0,1]. | (1.2) |
In this equation, Λj={0,1,…,2j−1}, αj∗,k=⟨h,ϕj∗,k⟩[0,1] and βj,k=⟨h,ψj,k⟩[0,1].
Lemma 1.1. Let a scaling function ϕ be t-regular (i.e., ϕ∈Ct and |Dαϕ(x)|≤c(1+|x|2)−l for each l∈Z and α=0,1,…,t). If {αk}∈lp and 1≤p≤∞, there exist c2≥c1>0 such that
c12j(12−1p)‖(αk)‖p≤‖∑k∈Λjαk2j2ϕ(2jx−k)‖p≤c22j(12−1p)‖(αk)‖p. |
Besov spaces contain many classical function spaces, such as the well known Sobolev and Hölder spaces. The following lemma gives an important equivalent definition of a Besov space. More details about wavelets and Besov spaces can be found in Meyer [24] and Härdle et al. [25].
Lemma 1.2. Let ϕ be t-regular and h∈Lp([0,1]). Then, for p,q∈[1,∞) and 0<s<t, the following assertions are equivalent:
(i) h∈Bsp,q([0,1]);
(ii) {2js‖h−Pjh‖p}∈lq;
(iii) {2j(s−1p+12)‖βj,k‖p}∈lq.
The Besov norm of h can be defined by
‖h‖Bsp,q=‖(ατ,k)‖p+‖(2j(s−1p+12)‖βj,k‖p)j≥τ‖q, |
where ‖βj,k‖pp=∑k∈Λj|βj,k|p.
In this section, we will construct our wavelet estimators, and give the main theorem of this paper. The main theorem shows the convergence rates of wavelet estimators under some mild assumptions. Now, we first give the technical assumptions of the estimation model (1.1) in the following.
A1: The variance function r:[0,1]→R is bounded.
A2: For any i∈{0,…,m−1}, variance function r satisfies r(i)(0)=r(i)(1)=0.
A3: The mean function g:[0,1]→R is bounded and known.
A4: The random variable X satisfies X∼U([0,1]).
A5: The random variable U has a moment of order 2˜p(˜p≥1).
In the above assumptions, A1 and A3 are conventional conditions for nonparametric estimations. The condition A2 is used to prove the unbiasedness of the following wavelet estimators. In addition, A4 and A5 are technique assumptions, which will be used in Lemmas 4.3 and 4.5.
According to the model (1.1), our linear wavelet estimator is constructed by
ˆrlinn(x):=∑k∈Λj∗ˆαj∗,kϕj∗,k(x). | (2.1) |
In this definition, the scale parameter j∗ will be given in the following main theorem, and
ˆαj,k:=1nn∑i=1Y2i(−1)mϕ(m)j,k(Xi)−∫10g2(x)(−1)mϕ(m)j,k(x)dx. | (2.2) |
More importantly, it should be pointed out that this linear wavelet estimator is an unbiased estimator of the derivative function r(m)(x) by Lemma 4.1 and the properties of wavelets.
On the other hand, a nonlinear wavelet estimator is defined by
ˆrnonn(x):=∑k∈Λj∗ˆαj∗,kϕj∗,k(x)+j1∑j=j∗ˆβj,kI{|ˆβj,k|≥κtn}ψj,k(x). | (2.3) |
In this equation, IA denotes the indicator function over an event A, tn=2mj√lnn/n,
ˆβj,k:=1nn∑i=1(Y2i(−1)mψ(m)j,k(Xi)−wj,k)I{|Y2i(−1)mψ(m)j,k(Xi)−wj,k|≤ρn}, | (2.4) |
ρn=2mj√n/lnn, and wj,k=∫10g2(x)(−1)mψ(m)j,k(x)dx. The positive integer j∗ and j1 will also be given in our main theorem, and the constant κ will be chosen in Lemma 4.5. In addition, we adopt the following symbol: x+:=max{x,0}. A≲B denotes A≤cB for some constant c>0; A≳B means B≲A; A∼B stands for both A≲B and B≲A.
In this position, the convergence rates of two wavelet estimators are given in the following main theorem.
Main theorem For the estimation model (1.1) with the assumptions A1-A5, r(m)(x)∈Bsp,q([0,1])(p,q∈[1,∞), s>0) and 1≤˜p<∞, if {p>˜p≥1,s>0} or {1≤p≤˜p,s>1/p}.
(a) the linear wavelet estimator ˆrlinn(x) with s′=s−(1p−1˜p)+ and 2j∗∼n12s′+2m+1 satisfies
E[‖ˆrlinn(x)−r(m)(x)‖˜p˜p]≲n−˜ps′2s′+2m+1. | (2.5) |
(b) the nonlinear wavelet estimator ˆrnonn(x) with 2j∗∼n12t+2m+1 (t>s) and 2j1∼(nlnn)12m+1 satisfies
E[‖ˆrnonn(x)−r(m)(x)‖˜p˜p]≲(lnn)˜p−1(lnnn)˜pδ, | (2.6) |
where
δ=min{s2s+2m+1,s−1/p+1/˜p2(s−1/p)+2m+1}={s2s+2m+1p>˜p(2m+1)2s+2m+1s−1/p+1/˜p2(s−1/p)+2m+1p≤˜p(2m+1)2s+2m+1. |
Remark 1. Note that n−s˜p2s+1(n−(s−1/p+1/˜p)˜p2(s−1/p)+1) is the optimal convergence rate over L˜p(1≤˜p<+∞) risk for nonparametric wavelet estimations (Donoho et al. [26]). The linear wavelet estimator can obtain the optimal convergence rate when p>˜p≥1 and m=0.
Remark 2. When m=0, this derivative estimation problem reduces to the classical variance function estimation. Then, the convergence rates of the nonlinear wavelet estimator are same as the optimal convergence rates of nonparametric wavelet estimation up to a lnn factor in all cases.
Remark 3. According to main theorem (a) and the definition of the linear wavelet estimator, it is easy to see that the construction of the linear wavelet estimator depends on the smooth parameter s of the unknown derivative function r(m)(x), which means that the linear estimator is not adaptive. Compared with the linear estimator, the nonlinear wavelet estimator only depends on the observed data and the sample size. Hence, the nonlinear estimator is adaptive. More importantly, the nonlinear wavelet estimator has a better convergence rate than the linear estimator in the case of p≤˜p.
In order to illustrate the empirical performance of the proposed estimators, we produce a numerical illustration using an adaptive selection method, which is used to obtain the best parameters of the wavelet estimators. For the problem (1.1), we choose three common functions, HeaviSine, Corner and Spikes, as the mean function g(x); see Figure 1. Those functions are usually used in wavelet literature. On the other hand, we choose the function f(x) by f1(x)=3(4x−2)2e−(4x−2)2, f2(x)=sin(2πsinπx) and f3(x)=−(2x−1)2+1, respectively. In addition, we assume that the random variable U satisfies U∼N[0,1]. The aim of this paper is to estimate the derivative function r(m)(x) of the variance function r(x)(r=f2) by the observed data (X1,Y1),…,(Xn,Yn). In this section, we adopt r1(x)=[f1(x)]2, r2(x)=[f2(x)]2 and r3(x)=[f3(x)]2. For the sake of simplicity, our simulation study focuses on the derivative function r′(x)(m=1) and r(x)(m=0) by the observed data (X1,Y1),…,(Xn,Yn)(n=4096). Furthermore, we use the mean square error (MSE(ˆr(x),r(x))=1nn∑i=1(ˆr(Xi)−r(Xi))2) and the average magnitude of error (AME(ˆr(x),r(x))=1nn∑i=1|ˆr(Xi)−r(Xi)|) to evaluate the performances of the wavelet estimators separately.
For the linear and nonlinear wavelet estimators, the scale parameter j∗ and threshold value λ(λ=κtn) play important roles in the function estimation problem. In order to obtain the optimal scale parameter and threshold value of wavelet estimators, this section uses the two-fold cross validation (2FCV) approach (Nason [27], Navarro and Saumard [28]). During the first example of simulation study, we choose HeaviSine as the mean function g(x), and f1(x)=3(4x−2)2e−(4x−2)2. The estimation results of two wavelet estimators are presented by Figure 2. For the optimal scale parameter j∗ of the linear wavelet estimator, we built a collection of j∗ and j∗=1,…,log2(n)−1. The best parameter j∗ is selected by minimizing a 2FCV criterion denoted by 2FCV(j∗); see Figure 2(a). According to Figure 2(a), it is easy to see that the 2FCV(j∗) and MSE both can get the minimum value when j∗=4. For the nonlinear wavelet estimator, the best threshold value λ is also obtained by the 2FCV(λ) criterion in Figure 2(b). Meanwhile, the parameter j∗ is same as the linear estimator, and the parameter j1 is chosen as the maximum scale parameter log2(n)−1. From Figure 2(c) and 2(d), the linear and nonlinear wavelet estimators both can get a good performance with the best scale parameter and threshold value. More importantly, the nonlinear wavelet estimator shows better performance than the linear estimator.
In the following simulation study, more numerical experiments are presented to sufficiently verify the performance of the wavelet method. According to Figures 3–10, the wavelet estimators both can obtain good performances in different cases. Especially, the nonlinear wavelet estimator gets better estimation results than the linear estimator. Also, the MSE and AME of the wavelet estimators in all examples are provided by Table 1. Meanwhile, it is easy to see from Table 1 that the nonlinear wavelet estimators can have better performance than the linear estimators.
HeaviSine | Corner | Spikes | |||||||
r1 | r2 | r3 | r1 | r2 | r3 | r1 | r2 | r3 | |
MSE(ˆrlin,r) | 0.0184 | 0.0073 | 0.0071 | 0.0189 | 0.0075 | 0.0064 | 0.0189 | 0.0069 | 0.0052 |
MSE(ˆrnon,r) | 0.0048 | 0.0068 | 0.0064 | 0.0044 | 0.0070 | 0.0057 | 0.0042 | 0.0061 | 0.0046 |
MSE(ˆr′lin,r′) | 0.7755 | 0.0547 | 0.0676 | 0.7767 | 0.1155 | 0.0737 | 0.7360 | 0.2566 | 0.0655 |
MSE(ˆr′non,r′) | 0.2319 | 0.0573 | 0.0560 | 0.2204 | 0.0644 | 0.0616 | 0.2406 | 0.2868 | 0.0539 |
AME(ˆrlin,r) | 0.0935 | 0.0653 | 0.0652 | 0.0973 | 0.0667 | 0.0615 | 0.0964 | 0.0621 | 0.0550 |
AME(ˆrnon,r) | 0.0506 | 0.0641 | 0.0619 | 0.0486 | 0.0649 | 0.0583 | 0.0430 | 0.0595 | 0.0518 |
AME(ˆr′lin,r′) | 0.6911 | 0.1876 | 0.2348 | 0.7021 | 0.2686 | 0.2451 | 0.6605 | 0.4102 | 0.2320 |
AME(ˆr′non,r′) | 0.3595 | 0.1862 | 0.2125 | 0.3450 | 0.2020 | 0.2229 | 0.3696 | 0.4198 | 0.2095 |
Now, we provide some lemmas for the proof of the main Theorem.
Lemma 4.1. For the model (1.1) with A2 and A4,
E[ˆαj,k]=αj,k, | (4.1) |
E[1nn∑i=1(Y2i(−1)mψ(m)j,k(Xi)−wj,k)]=βj,k. | (4.2) |
Proof. According to the definition of ˆαj,k,
E[ˆαj,k]=E[1nn∑i=1Y2i(−1)mϕ(m)j,k(Xi)−∫10g2(x)(−1)mϕ(m)j,k(x)dx]=1nn∑i=1E[Y2i(−1)mϕ(m)j,k(Xi)]−∫10g2(x)(−1)mϕ(m)j,k(x)dx=E[Y21(−1)mϕ(m)j,k(X1)]−∫10g2(x)(−1)mϕ(m)j,k(x)dx=E[r(X1)U21(−1)mϕ(m)j,k(X1)]+2E[f(X1)U1g(X1)(−1)mϕ(m)j,k(X1)]+E[g2(X1)(−1)mϕ(m)j,k(X1)]−∫10g2(x)(−1)mϕ(m)j,k(x)dx. |
Then, it follows from A4 that
E[g2(X1)(−1)mϕ(m)j,k(X1)]=∫10g2(x)(−1)mϕ(m)j,k(x)dx. |
Using the assumption of independence between Ui and Xi,
E[r(X1)U21(−1)mϕ(m)j,k(X1)]=E[U21]E[r(X1)(−1)mϕ(m)j,k(X1)], |
E[f(X1)U1g(X1)(−1)mϕ(m)j,k(X1)]=E[U1]E[f(X1)g(X1)(−1)mϕ(m)j,k(X1)]. |
Meanwhile, the conditions V[U1]=1 and E[U1]=0 imply E[U21]=1. Hence, one gets
E[ˆαj,k]=E[r(X1)(−1)mϕ(m)j,k(X1)]=∫10r(x)(−1)mϕ(m)j,k(x)dx=(−1)m∫10r(x)ϕ(m)j,k(x)dx=∫10r(m)(x)ϕj,k(x)dx=αj,k |
by the assumption A2.
On the other hand, one takes ψ instead of ϕ, and wj,k instead of ∫10g2(x)(−1)mϕ(m)j,k(x)dx. The second equation will be proved by the similar mathematical arguments.
Lemma 4.2. (Rosenthal's inequality) Let X1,…,Xn be independent random variables such that E[Xi]=0 and E[|Xi|p]<∞. Then,
E[|n∑i=1Xi|p]≲{n∑i=1E[|Xi|p]+(n∑i=1E[|Xi|2])p2, p > 2 ,(n∑i=1E[|Xi|2])p2,1≤p≤2. |
Lemma 4.3. For the model (1.1) with A1–A5, 2j≤n and 1≤˜p<∞,
E[|ˆαj,k−αj,k|˜p]≲n−˜p22˜pmj, | (4.3) |
E[|ˆβj,k−βj,k|˜p]≲(lnnn)−˜p22˜pmj. | (4.4) |
Proof. By (4.1) and the independence of random variables Xi and Ui, one has
|ˆαj,k−αj,k|=|1nn∑i=1Y2i(−1)mϕ(m)j,k(Xi)−∫10g2(x)(−1)mϕ(m)j,k(x)dx−E[ˆαj,k]|=1n|n∑i=1(Y2i(−1)mϕ(m)j,k(Xi)−E[Y2i(−1)mϕ(m)j,k(Xi)])|=1n|n∑i=1Ai|. |
In this above equation, Ai:=Y2i(−1)mϕ(m)j,k(Xi)−E[Y2i(−1)mϕ(m)j,k(Xi)].
According to the definition of Ai, one knows that E[Ai]=0 and
E[|Ai|˜p]=E[|Y2i(−1)mϕ(m)j,k(Xi)−E[Y2i(−1)mϕ(m)j,k(Xi)]|˜p]≲E[|Y2i(−1)mϕ(m)j,k(Xi)|˜p]≲E[|(r(X1)U21+g2(X1))(−1)mϕ(m)j,k(Xi)|˜p]≲E[U2˜p1]E[|r(X1)ϕ(m)j,k(Xi)|˜p]+E[|g2(X1)ϕ(m)j,k(Xi)|˜p]. |
The assumption A5 shows E[U2˜p1]≲1. Furthermore, it follows from A1 and A3 that
E[U2˜p1]E[|r(X1)ϕ(m)j,k(X1)|˜p]≲E[|ϕ(m)j,k(X1)|˜p],E[g2˜p(X1)|ϕ(m)j,k(X1)|˜p]≲E[|ϕ(m)j,k(X1)|˜p]. |
In addition, and the properties of wavelet functions imply that
E[|ϕ(m)j,k(Xi)|˜p]=∫10|ϕ(m)j,k(x)|˜pdx=2j(˜p/2+m˜p−1)∫10|ϕ(m)(2jx−k)|˜pd(2jx−k)=2j(˜p/2+m˜p−1)||ϕ(m)||˜p˜p≲2j(˜p/2+m˜p−1). |
Hence,
E[|Ai|˜p]≲2j(˜p/2+m˜p−1). |
Especially in ˜p=2, E[|Ai|2]≲22mj.
Using Rosenthal's inequality and 2j≤n,
E[|ˆαj,k−αj,k|˜p]=1n˜pE[|n∑i=1Ai|˜p]≲{1n˜p(n∑i=1E[|Ai|˜p]+(n∑i=1E[|Ai|2])˜p2),˜p>2,1n˜p(n∑i=1E[|Ai|2])˜p2,1≤˜p≤2,≲{1n˜p(n⋅2j(˜p2+m˜p−1)+(n⋅22mj)˜p2),˜p>2,1n˜p(n⋅22mj)˜p2,1≤˜p≤2,≲n−˜p22˜pmj. |
Then, the first inequality is proved.
For the second inequality, note that
βj,k=E[1nn∑i=1(Y2i(−1)mψ(m)j,k(Xi)−wj,k)]=1nn∑i=1E[(Y2i(−1)mψ(m)j,k(Xi)−∫10g2(x)(−1)mψ(m)j,k(x)dx)]=1nn∑i=1E[Ki] |
with (4.2) and Ki:=Y2i(−1)mψ(m)j,k(Xi)−∫10g2(x)(−1)mψ(m)j,k(x)dx.
Let Bi:=KiI{|Ki|≤ρn}−E[KiI{|Ki|≤ρn}]. Then, by the definition of ˆβj,k in (2.4),
|ˆβj,k−βj,k|=|1nn∑i=1KiI{|Ki|≤ρn}−βj,k|≤1n|n∑i=1Bi|+1nn∑i=1E[|Ki|I{|Ki|>ρn}]. | (4.5) |
Similar to the arguments of Ai, it is easy to see that E[Bi]=0 and
E[|Bi|˜p]≲E[|KiI{|Ki|≤ρn}|˜p]≲E[|Ki|˜p]≲2j(˜p2+m˜p−1). |
Especially in the case of ˜p=2, one can obtain E[|Bi|2]≲22mj. On the other hand,
E[|Ki|I{|Ki|>ρn}]≲E[|Ki|⋅|Ki|ρn]=E[K21]ρn≲22mjρn=tn=2mj√lnnn. | (4.6) |
According to Rosenthal's inequality and 2j≤n,
E[|ˆβj,k−βj,k|˜p]≲1n˜pE[|n∑i=1Bi|˜p]+(tn)˜p≲{1n˜p(n∑i=1E[|Bi|˜p]+(n∑i=1E[|Bi|2])˜p2)+(tn)˜p,˜p>2,1n˜p(n∑i=1E[|Bi|2])˜p2+(tn)˜p,1≤˜p≤2,≲{1n˜p(n⋅2j(˜p2+m˜p−1)+(n⋅22mj)˜p2)+(lnnn)−˜p2⋅2˜pmj,˜p>2,1n˜p(n⋅22mj)˜p2+(lnnn)−˜p2⋅2˜pmj,1≤˜p≤2,≲(lnnn)−˜p22˜pmj. |
Then, the second inequality is proved.
Lemma 4.4. (Bernstein's inequality) Let X1,…,Xn be independent random variables such that E[Xi]=0, |Xi|<M and E[|Xi|2]:=σ2. Then, for each ν>0
P(1n|n∑i=1Xi|≥ν)≤2exp{−nν22(σ2+νM/3)}. |
Lemma 4.5. For the model (1.1) with A1–A5 and 1≤˜p<+∞, there exists a constant κ>1 such that
P(|ˆβj,k−βj,k|≥κtn)≲n−˜p. | (4.7) |
Proof. According to (4.5), one gets Ki=Y2i(−1)mψ(m)j,k(Xi)−∫10g2(x)(−1)mψ(m)j,k(x)dx, Bi=KiI{|Ki|≤ρn}−E[KiI{|Ki|≤ρn}] and
|ˆβj,k−βj,k|≤1n|n∑i=1Bi|+1nn∑i=1E[|Ki|I{|Ki|>ρn}]. |
Meanwhile, (4.6) shows that there exists c>0 such that E[|Ki|I{|Ki|>ρn}]≤ctn. Furthermore, the following conclusion is true.
{|ˆβj,k−βj,k,u|≥κtn}⊆{[1n|n∑i=1Bi|+1nn∑i=1E(|Ki|I{|Ki|>ρn})]≥κtn}⊆{1n|n∑i=1Bi|≥(κ−c)tn}. |
Note that the definition of Bi implies that |Bi|≲ρn and E[Bi]=0. Using the arguments of Lemma 4.3, E[B2i]:=σ2≲22mj. Furthermore, by Bernstein's inequality,
P(1n|n∑i=1Bi|≥(κ−c)tn)≲exp{−n(κ−c)2tn22(σ2+(κ−c)tnρn/3)}≲exp{−n(κ−c)222mj⋅lnnn2(22mj+(κ−c)⋅22mj/3)}=exp{−(lnn)(κ−c)22(1+(κ−c)/3)}=n−(κ−c)22(1+(κ−c)/3). |
Then, one can choose large enough κ such that
P(|ˆβj,k−βj,k|≥κtn)≲n−(κ−c)22(1+(κ−c)/3)≲n−˜p. |
Proof of (a): Note that
‖ˆrlinn(x)−r(m)(x)‖˜p˜p≲‖ˆrlinn(x)−Pj∗r(m)(x)‖˜p˜p+‖Pj∗r(m)(x)−r(m)(x)‖˜p˜p |
Hence,
E[‖ˆrlinn(x)−r(m)(x)‖˜p˜p]≲E[‖ˆrlinn(x)−Pj∗r(m)(x)‖˜p˜p]+‖Pj∗r(m)(x)−r(m)(x)‖˜p˜p. | (4.8) |
◼ The stochastic term E[‖ˆrlinn(x)−Pj∗r(m)(x)‖˜p˜p].
It follows from Lemma 1.1 that
E[‖ˆrlinn(x)−Pj∗r(m)(x)‖˜p˜p]=E[‖∑k∈Λj∗(ˆαj∗,k−αj∗,k)ϕj∗,k(x)‖˜p˜p]∼2j∗(12−1˜p)˜p∑k∈Λj∗E[|ˆαj∗,k−αj∗,k|˜p]. |
Then, according to (4.3), |Λj∗|∼2j∗ and 2j∗∼n12s′+2m+1, one gets
E[‖ˆrlinn(x)−Pj∗r(m)(x)‖˜p˜p]∼2j∗˜p2(2m+1)⋅n−˜p2∼n−˜ps′2s′+2m+1. | (4.9) |
◼ The bias term ‖Pj∗r(m)(x)−r(m)(x)‖˜p˜p.
When p>˜p≥1, s′=s−(1p−1˜p)+=s. Using Hölder inequality, Lemma 1.2 and r(m)∈Bsp,q([0,1]),
‖Pj∗r(m)(x)−r(m)(x)‖˜p˜p≲‖Pj∗r(m)(x)−r(m)(x)‖˜pp≲2−j∗˜ps=2−j∗˜ps′∼n−˜ps′2s′+2m+1. |
When 1≤p≤˜p and s>1p, one knows that Bsp,q([0,1])⊆Bs′˜p,∞([0,1]) and
‖Pj∗r(m)(x)−r(m)(x)‖˜p˜p≲2−j∗˜ps′∼n−˜ps′2s′+2m+1. |
Hence, the following inequality holds in both cases.
‖Pj∗r(m)(x)−r(m)(x)‖˜p˜p≲n−˜ps′2s′+2m+1. | (4.10) |
Finally, the results (4.8)–(4.10) show
E[‖ˆrlinn(x)−r(m)(x)‖˜p˜p]≲n−˜ps′2s′+2m+1. |
Proof of (b): By the definitions of ˆrlinn(x) and ˆrnonn(x), one has
‖ˆrnonn(x)−r(m)(x)‖˜p˜p≲‖ˆrlinn(x)−Pj∗r(m)(x)‖˜p˜p+‖r(m)(x)−Pj1+1r(m)(x)‖˜p˜p+‖j1∑j=j∗∑k∈Λj(ˆβj,kI{|ˆβj,k|≥κtn}−βj,k)ψj,k(x)‖˜p˜p. |
Furthermore,
E[‖ˆrnonn(x)−r(m)(x)‖˜p˜p]≲T1+T2+Q. | (4.11) |
In this above inequality,
T1:=E[‖ˆrlinn(x)−Pj∗r(m)(x)‖˜p˜p],T2:=‖r(m)(x)−Pj1+1r(m)(x)‖˜p˜p,Q:=E[‖j1∑j=j∗∑k∈Λj(ˆβj,kI{|ˆβj,k|≥κtn}−βj,k)ψj,k(x)‖˜p˜p]. |
◼ For T1. According to (4.9) and 2j∗∼n12t+2m+1 (t>s),
T1∼2j∗˜p2(2m+1)⋅n−˜p2∼n−˜pt2t+2m+1<n−˜ps2s+2m+1≤n−˜pδ. | (4.12) |
◼ For T2. Using similar mathematical arguments as (4.10), when p>˜p≥1, one can obtain T2:=‖r(m)(x)−Pj1+1r(m)(x)‖˜p˜p≲2−j1˜ps. This with 2j1∼(nlnn)12m+1 leads to
T2≲2−j1˜ps<(lnnn)˜ps2m+1≤(lnnn)˜ps2s+2m+1≤(lnnn)˜pδ. |
On the other hand, when 1≤p≤˜p and s>1p, one has Bsp,q([0,1])⊆Bs−1p+1˜p˜p,∞([0,1]) and
T2≲2−j1˜p(s−1/p+1/˜p)∼(lnnn)˜p(s−1/p+1/˜p)2m+1<(lnnn)˜p(s−1/p+1/˜p)2(s−1/p)+2m+1≤(lnnn)˜pδ. |
Therefore, for each 1≤˜p<∞,
T2≲(lnnn)˜pδ. | (4.13) |
◼ For Q. According to Hölder inequality and Lemma 1.1,
Q≲(j1−j∗+1)˜p−1j1∑j=j∗E[‖∑k∈Λj(ˆβj,kI{|ˆβj,k|≥κtn}−βj,k)ψj,k(x)‖˜p˜p]≲(j1−j∗+1)˜p−1j1∑j=j∗2j(12−1˜p)˜p∑k∈ΛjE[|ˆβj,kI{|ˆβj,k|≥κtn}−βj,k|˜p]. |
Note that
|ˆβj,kI{|ˆβj,k|≥κtn}−βj,k|˜p=|ˆβj,k−βj,k|˜pI{|ˆβj,k|≥κtn,|βj,k|<κtn2}+|ˆβj,k−βj,k|˜pI{|ˆβj,k|≥κtn,|βj,k|≥κtn2}+|βj,k|˜pI{|ˆβj,k|<κtn,|βj,k|>2κtn}+|βj,k|˜pI{|ˆβj,k|<κtn,|βj,k|≤2κtn}. |
Meanwhile,
{|ˆβj,k|≥κtn,|βj,k|<κtn2}⊆{|ˆβj,k−βj,k|>κtn2},{|ˆβj,k|<κtn,|βj,k|>2κtn}⊆{|ˆβj,k−βj,k|>κtn}⊆{|ˆβj,k−βj,k|>κtn2}. |
Then, Q can be decomposed as
Q≲(j1−j∗+1)˜p−1(Q1+Q2+Q3), | (4.14) |
where
Q1:=j1∑j=j∗2j(12−1˜p)˜p∑k∈ΛjE[|ˆβj,k−βj,k|˜pI{|ˆβj,k−βj,k|>κtn2}],Q2:=j1∑j=j∗2j(12−1˜p)˜p∑k∈ΛjE[|ˆβj,k−βj,k|˜pI{|βj,k|≥κtn2}],Q3:=j1∑j=j∗2j(12−1˜p)˜p∑k∈Λj|βj,k|˜pI{|βj,k|≤2κtn}. |
◼ For Q1. It follows from the Hölder inequality that
E[|ˆβj,k−βj,k|˜pI{|ˆβj,k−βj,k|>κtn2}]≤(E[|ˆβj,k−βj,k|2˜p])12[P(|ˆβj,k−βj,k|>κtn2)]12. |
By Lemma 4.3, one gets
E[|ˆβj,k−βj,k|2˜p]≲(lnnn)−˜p⋅22˜pmj. |
This with Lemma 4.5, |Λj|∼2j and {2^{{j_1}}}\sim \left(\frac{n}{{\ln n}}\right)^{\frac{1}{2m+1}} shows that
\begin{align} Q_{1} \lesssim \sum\limits_{j = {j_*}}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}}2^{j} \cdot \left( \frac{\ln n}{n}\right) ^{\frac{\tilde{p}}{2}} 2^{\tilde{p} mj} \cdot n^{-\frac{\tilde{p}}{2}} \lesssim n^{-\frac{\tilde{p}}{2}} < n^{-\tilde{p} \delta}. \end{align} | (4.15) |
\blacksquare For {Q_2} . One defines
{2^{j'}} \sim \left(\frac{n}{\ln n} \right)^{\frac{1}{{2s + 2m+1}}}. |
Clearly, {2^{{j_*}}}\sim{n^{\frac{1}{{2t+2m + 1}}}} \left(t > s\right) \le {2^{j'}}\sim \left(\frac{n}{\ln n} \right)^{\frac{1}{{2s + 2m+1}}} < {2^{{j_1}}}\sim \left(\frac{n}{\ln n} \right) ^{\frac{1}{2m+1}} . Furthermore, one rewrites
\begin{align} {Q_2} = \left({\sum\limits_{j = {j_*}}^{j'} { + \sum\limits_{j = j' + 1}^{{j_1}}}}\right) 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _j}}{\rm{E}}\left[|{{{\hat \beta }_{j, k}} - {\beta _{j, k}}}|^{\tilde{p}} {\mathbb{I}_{\{|{{\beta _{j, k}}}|\ge \frac{{\kappa {t_n}}}{2}\}}}\right] : = {Q_{21}} + {Q_{22}}. \end{align} | (4.16) |
\blacksquare For {Q_{21}} . By Lemma 4.3 and {2^{j'}} \sim \left(\frac{n}{\ln n} \right)^{\frac{1}{{2s + 2m+1}}},
\begin{align} {Q_{21}}&: = \sum\limits_{j = {j_*}}^{j'} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _j}} {\rm{E}}\left[|{{{\hat \beta }_{j, k}} - {\beta _{j, k}}}|^{\tilde{p}} {\mathbb{I}_{\{|{{\beta _{j, k}}}|\ge \frac{{\kappa {t_n}}}{2}\}}}\right]\\ &\le \sum\limits_{j = {j_*}}^{j'} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _j}} {\rm{E}}\left[|{{{\hat \beta }_{j, k}} - {\beta _{j, k}}}|^{\tilde{p}} \right] \lesssim \left( \frac{\ln n}{n}\right)^{\frac{\tilde{p}}{2}} \sum\limits_{j = {j_*}}^{j'} 2^{j(2m+1) \frac{\tilde{p}}{2}}\\ &\lesssim \left( \frac{\ln n}{n}\right)^{\frac{\tilde{p}}{2}} 2^{j'(2m+1) \frac{\tilde{p}}{2}} \sim \left( \frac{\ln n}{n}\right)^{\frac{{\tilde{p}}s}{{2s + 2m+1}}} \le \left( \frac{\ln n}{n}\right)^{\tilde{p} \delta}. \end{align} | (4.17) |
\blacksquare For {Q_{22}} . Using Lemma 4.3, one has
\begin{align*} {Q_{22}}&: = \sum\limits_{j = j' + 1}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _j}} {\rm{E}}\left[|{{{\hat \beta }_{j, k}} - {\beta _{j, k}}}|^{\tilde{p}} {\mathbb{I}_{\{|{{\beta _{j, k}}}|\ge \frac{{\kappa {t_n}}}{2}\}}}\right]\\ &\lesssim \left( \frac{\ln n}{n}\right)^{\frac{\tilde{p}}{2}} \sum\limits_{j = j' + 1}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}+\tilde{p}mj} \sum\limits_{k \in {\mit\Lambda _j}} {\mathbb{I}_{\{|{{\beta _{j, k}}}|\ge \frac{{\kappa {t_n}}}{2}\}}}. \end{align*} |
When p > \tilde{p} \ge 1 , by the Hölder inequality, {t_n} = 2^{mj}\sqrt{{\ln n}/n} , {2^{j'}}\sim\left(\frac{n}{\ln n} \right)^{\frac{1}{{2s + 2m+1}}} and Lemma 1.2, one can obtain that
\begin{align} {Q_{22}} &\lesssim \left( \frac{\ln n}{n}\right)^{\frac{\tilde{p}}{2}} \sum\limits_{j = j' + 1}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}+\tilde{p}mj} \sum\limits_{k \in {\mit\Lambda _j}} \left( \dfrac{|{{\beta _{j, k}}}|}{\frac{{\kappa {t_n}}}{2}}\right) ^{\tilde{p}}\\ &\lesssim \sum\limits_{j = j' + 1}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _j}} {|\beta _{j, k}|^{\tilde{p}}} = \sum\limits_{j = j' + 1}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \left\| \beta _{j, k} \right\| ^{\tilde{p}}_{\tilde{p}}\\ &\le \sum\limits_{j = j' + 1}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \cdot 2^{j(1-\frac{\tilde{p}}{p})}\left\| \beta _{j, k} \right\| ^{\tilde{p}}_{p}\\ & \lesssim \sum\limits_{j = j' + 1}^{{j_1}} 2^{-j\tilde{p}s} \lesssim 2^{-j'\tilde{p}s} \sim \left( \frac{\ln n}{n}\right)^{\frac{{\tilde{p}}s}{{2s + 2m+1}}} \le \left( \frac{\ln n}{n}\right)^{\tilde{p} \delta}. \end{align} | (4.18) |
When 1\leq p\leq\tilde{p} , it follows from Lemma 1.2 that
\begin{align} {Q_{22}} &\lesssim \left( \frac{\ln n}{n}\right)^{\frac{\tilde{p}}{2}} \sum\limits_{j = j' + 1}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}+\tilde{p}mj} \sum\limits_{k \in {\mit\Lambda _j}} \left( \dfrac{|{{\beta _{j, k}}}|}{\frac{{\kappa {t_n}}}{2}}\right) ^{p}\\ &\lesssim \left( \frac{\ln n}{n}\right)^{\frac{\tilde{p}-p}{2}} \sum\limits_{j = j' + 1}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}+j(\tilde{p}-p)m} \left\| \beta _{j, k} \right\|^{p}_{p}\\ &\le \left( \frac{\ln n}{n}\right)^{\frac{\tilde{p}-p}{2}} \sum\limits_{j = j' + 1}^{{j_1}} 2^{-j(sp+\frac{p}{2}-\frac{\tilde{p}}{2}-(\tilde{p}-p)m)}. \end{align} | (4.19) |
Take
\epsilon : = sp-\dfrac{\tilde{p}-p}{2} (2m+1). |
Then, (4.19) can be rewritten as
\begin{align} {Q_{22}} \lesssim \left( \frac{\ln n}{n}\right)^{\frac{\tilde{p}-p}{2}} \sum\limits_{j = j' + 1}^{{j_1}} 2^{-j \epsilon}. \end{align} | (4.20) |
When \epsilon > 0 holds if and only if p > \frac{\tilde{p}(2m+1)}{2s+2m+1} , \delta = \frac{s}{2s+2m+1} and
\begin{align} {Q_{22}} \lesssim \left( \frac{\ln n}{n}\right)^{\frac{\tilde{p}-p}{2}} 2^{-j' \epsilon} \sim \left( \frac{\ln n}{n}\right)^{\frac{{\tilde{p}}s}{{2s + 2m+1}}} = \left( \frac{\ln n}{n}\right)^{\tilde{p} \delta}. \end{align} | (4.21) |
When \epsilon\le0 holds if and only if p \leq \frac{\tilde{p}(2m+1)}{2s+2m+1} , \delta = \frac{s-1/p+1 / \tilde{p}}{2(s-1 /p)+2m+1} . Define
2^{j''} \sim \left( \frac{n}{\ln n}\right) ^{\frac{\delta}{s-1/p+1/\tilde{p}}} = \left( \frac{n}{\ln n}\right) ^{\frac{1}{2(s-1/p)+2m+1}} , |
and obviously, {2^{j'}} \sim \left(\frac{n}{\ln n} \right)^{\frac{1}{{2s + 2m+1}}} < 2^{j''} \sim \left(\frac{n}{\ln n}\right) ^{\frac{\delta}{s-1/p+1/\tilde{p}}} < {2^{{j_1}}}\sim \left(\frac{n}{\ln n} \right) ^{\frac{1}{2m+1}} . Furthermore, one rewrites
\begin{align} \begin{split} {Q_{22}} & = \left({\sum\limits_{j = {j' + 1}}^{j''} + \sum\limits_{j = j'' + 1}^{{j_1}}}\right) 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _j}} {\rm{E}}\left[|{{{\hat \beta }_{j, k}} - {\beta _{j, k}}}|^{\tilde{p}} {\mathbb{I}_{\{|{{\beta _{j, k}}}|\ge \frac{{\kappa {t_n}}}{2}\}}}\right]\\ & : = {Q_{221}} + {Q_{222}}. \end{split} \end{align} | (4.22) |
For {Q_{221}} . Note that \frac{\tilde{p}-p}{2}+\frac{\delta \epsilon }{s-1/p+1 /\tilde{p}} = \tilde{p} \delta in the case of \epsilon\le0 . Then, by the same arguments of (4.20), one gets
\begin{align} {Q_{221}} \lesssim \left( \frac{\ln n}{n}\right)^{\frac{\tilde{p}-p}{2}} \sum\limits_{j = {j' + 1}}^{j''} 2^{-j\epsilon} \lesssim \left( \frac{\ln n}{n}\right)^{\frac{\tilde{p}-p}{2}} 2^{-{j''}\epsilon} \sim \left( \frac{\ln n}{n}\right)^{\tilde{p} \delta}. \end{align} | (4.23) |
For {Q_{222}} . The conditions 1\leq p\leq\tilde{p} and s > 1/p imply B_{p, q}^s({{[0, 1]}}) \subset B_{\tilde{p}, q}^{s-\frac{1}{p}+\frac{1}{\tilde{p}}}({{[0, 1]}}) . Similar to (4.18), one obtains
\begin{align} {Q_{222}} &\lesssim \left( \frac{\ln n}{n}\right)^{\frac{\tilde{p}}{2}} \sum\limits_{j = j'' + 1}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}+\tilde{p}mj} \sum\limits_{k \in {\mit\Lambda _j}} \left( \dfrac{|{{\beta _{j, k}}}|}{\frac{{\kappa {t_n}}}{2}}\right) ^{\tilde{p}}\\ &\lesssim \sum\limits_{j = j'' + 1}^{j_1} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \left\|{\beta _{j, k}} \right\| ^{\tilde{p}}_{\tilde{p}} \lesssim \sum\limits_{j = j'' + 1}^{j_1} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \cdot 2^{-j(s-\frac{1}{\tilde{p}}+\frac{1}{2}){\tilde{p}}}\\ &\lesssim 2^{-j'' (s-{\frac{1}{p}+\frac{1}{\tilde{p}}})\tilde{p}} \sim \left( \frac{\ln n}{n}\right)^{\tilde{p}\delta}. \end{align} | (4.24) |
Combining (4.18), (4.21), (4.23) and (4.24),
{Q_{22}}\lesssim \left( \frac{\ln n}{n}\right)^{\tilde{p}\delta}. |
This with (4.16) and (4.17) shows that
\begin{align} {Q_{2}}\lesssim \left( \frac{\ln n}{n}\right)^{\tilde{p} \delta}. \end{align} | (4.25) |
\blacksquare For {Q_3} . According to the definition of {2^{j'}} , one can write
\begin{align*} {Q_3} = \left({\sum\limits_{j = {j_*}}^{j'} + \sum\limits_{j = j'+1}^{{j_1}}}\right) 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _j}} |{\beta _{j, k}}|^{\tilde{p}} {\mathbb{I}_{\{|{{\beta _{j, k}}}|\le 2\kappa {t_n}\}}}: = {Q_{31}} + {Q_{32}}. \end{align*} |
\blacksquare For {Q_{31}} . It is easy to see that
\begin{align*} \begin{split} {Q_{31}}&: = \sum\limits_{j = {j_*}}^{j'} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _j}} |{\beta _{j, k}}|^{\tilde{p}} {\mathbb{I}_{\{|{{\beta _{j, k}}}|\le 2\kappa {t_n}\}}} \le \sum\limits_{j = {j_*}}^{j'} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _j}} \left( 2\kappa {t_n}\right) ^{\tilde{p}} \\ &\lesssim \left( \frac{\ln n}{n}\right)^{\frac{\tilde{p}}{2}} \cdot 2^{(2m+1)j'\frac{\tilde{p}}{2}} \sim \left( \frac{\ln n}{n}\right)^{\frac{{\tilde{p}}s}{{2s + 2m+1}}} \le \left( \frac{\ln n}{n}\right)^{\tilde{p} \delta}. \end{split} \end{align*} |
\blacksquare For {Q_{32}} . One rewrites {Q_{32}} = \sum\limits_{j = j' + 1}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _j}} |{\beta _{j, k}}|^{\tilde{p}} {\mathbb{I}_{\{|{{\beta _{j, k}}}|\le 2\kappa {t_n}\}}} . When p > \tilde{p}\ge1 , using the Hölder inequality and Lemma 1.2,
\begin{align*} {Q_{32}} \le \sum\limits_{j = j' + 1}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _j}} |{\beta _{j, k}}|^{\tilde{p}} \lesssim 2^{-j'\tilde{p}s} \sim \left( \frac{\ln n}{n}\right)^{\frac{{\tilde{p}}s}{{2s + 2m+1}}} \le \left( \frac{\ln n}{n}\right)^{\tilde{p} \delta}. \end{align*} |
When 1\leq p\leq\tilde{p} , one has
\begin{align*} \begin{split} {Q_{32}} & \le \sum\limits_{j = j' + 1}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _j}} |{\beta _{j, k}}|^{\tilde{p}} \left( \frac{2 \kappa{t_n}}{|\beta _{j, k}|}\right) ^{\tilde{p}-p}\\ &\lesssim \left( \frac{\ln n}{n}\right)^{\frac{\tilde{p}-p}{2}} \sum\limits_{j = j' + 1}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}+j(\tilde{p}-p)m} \left\| \beta _{j, k} \right\|^{p}_{p}\\ &\le \left( \frac{\ln n}{n}\right)^{\frac{\tilde{p}-p}{2}} \sum\limits_{j = j' + 1}^{{j_1}} 2^{-j(sp+\frac{p}{2}-\frac{\tilde{p}}{2}-(\tilde{p}-p)m)}\\ & = \left( \frac{\ln n}{n}\right)^{\frac{\tilde{p}-p}{2}} \sum\limits_{j = j' + 1}^{{j_1}} 2^{-j\epsilon}. \end{split} \end{align*} |
For the case of \epsilon > 0 , one can easily obtain that \delta = \frac{s}{2s+2m+1} and
\begin{align*} {Q_{32}} \lesssim \left(\frac{\ln n}{n}\right)^{\frac{\tilde{p}-p}{2}} 2^{-j' \epsilon} \sim \left( \frac{\ln n}{n}\right)^{\frac{{\tilde{p}}s}{{2s + 2m+1}}} = \left( \frac{\ln n}{n}\right)^{\tilde{p} \delta}. \end{align*} |
When \epsilon \le 0 , \delta = \frac{s-1/p+1 /\tilde{p}}{2(s-1 /p)+2m+1} . Moreover, by the definition of 2^{j''} , one rewrites
\begin{align*} {Q_{32}} = \left({\sum\limits_{j = {j' + 1}}^{j''} + \sum\limits_{j = j'' + 1}^{{j_1}}}\right) 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _j}} |{\beta _{j, k}}|^{\tilde{p}} {\mathbb{I}_{\{|{{\beta _{j, k}}}|\le 2\kappa {t_n}\}}} : = {Q_{321}} + {Q_{322}}. \end{align*} |
Note that
\begin{align*} {Q_{321}} &\lesssim \left(\frac{\ln n}{n}\right)^{\frac{\tilde{p}-p}{2}} \sum\limits_{j = {j' + 1}}^{j''} 2^{-j\epsilon} \lesssim \left(\frac{\ln n}{n}\right)^{\frac{\tilde{p}-p}{2}} 2^{-{j''}\epsilon} \sim \left( \frac{\ln n}{n}\right)^{\tilde{p} \delta}. \end{align*} |
On the other hand, similar to the arguments of (4.24), one has
\begin{align*} \begin{split} {Q_{322}} &\le \sum\limits_{j = j'' + 1}^{j_1} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _j}} |{\beta _{j, k}}|^{\tilde{p}} = \sum\limits_{j = j'' + 1}^{j_1} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \left\|{\beta _{j, k}} \right\| ^{\tilde{p}}_{\tilde{p}} \lesssim \left( \frac{\ln n}{n}\right)^{\tilde{p} \delta}. \end{split} \end{align*} |
Therefore, in all of the above cases,
\begin{align} {Q_{3}}\lesssim \left( \frac{\ln n}{n}\right)^{\tilde{p} \delta}. \end{align} | (4.26) |
Finally, combining the above results (4.14), (4.15), (4.25) and (4.26), one gets
\begin{eqnarray*} Q \lesssim (j_1-j_*+1)^{\tilde{p}-1} \left( \frac{\ln n}{n}\right)^{\tilde{p} \delta} \lesssim (\ln n)^{\tilde{p}-1} \left( \frac{\ln n}{n}\right)^{\tilde{p}\delta}. \end{eqnarray*} |
This with (4.11)–(4.13) shows
{\rm{E}}\left[\left \| \hat r_n^{non}(x)-r^{(m)}(x) \right \|^{\tilde{p}}_{\tilde{p}}\right]\lesssim (\ln n)^{\tilde{p}-1} \left( \frac{\ln n}{n}\right)^{\tilde{p}\delta}. |
This paper considers wavelet estimations of the derivatives r^{(m)}(x) of the variance function r(x) in a heteroscedastic model. The upper bounds over L^{\tilde{p}} (1\leq \tilde{p} < \infty) risk of the wavelet estimators are discussed under some mild assumptions. The results show that the linear wavelet estimator can obtain the optimal convergence rate in the case of p > \tilde{p}\ge1 . When p\leq\tilde{p} , the nonlinear wavelet estimator has a better convergence rate than the linear estimator. Moreover, the nonlinear wavelet estimator is adaptive. Finally, some numerical experiments are presented to verify the good performances of the wavelet estimators.
We would like to thank the reviewers for their valuable comments and suggestions, which helped us to improve the quality of the manuscript. This paper is supported by the Guangxi Natural Science Foundation (No. 2022JJA110008), National Natural Science Foundation of China (No. 12001133), Center for Applied Mathematics of Guangxi (GUET), and Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation.
All authors declare that they have no conflicts of interest.
[1] | P. G. Ciarlet, P. A. Raviart, A mixed finite element method for the biharmonic equation, In: Mathematical aspects of finite elements in partial differential equations, Academic Press, 1974,125–145. https://doi.org/10.1016/B978-0-12-208350-1.50009-1 |
[2] | P. G. Ciarlet, The finite element method for elliptic problems, SIAM, 2002. https://doi.org/10.1137/1.9780898719208 |
[3] | B. Mercier, Numerical solution of the biharmonic problems by mixed finite elements of class C^{0}, Boll. Unione Mat. Ital., 10 (1974), 133–149. |
[4] |
R. Scholz, Interior error estimates for a mixed finite element method, Numer. Funct. Anal. Optim., 1 (1979), 415–429. https://doi.org/10.1080/01630567908816025 doi: 10.1080/01630567908816025
![]() |
[5] | I. Babuška, J. Osborn, J. Pitkäranta, Analysis of mixed methods using mesh dependent norms, Math. Comput., 35 (1980), 1039–1062. |
[6] |
T. Gudi, N. Nataraj, A. K. Pani, Mixed discontinuous Galerkin finite element method for the biharmonic equation, J. Sci. Comput., 37 (2008), 139–161. https://doi.org/10.1007/s10915-008-9200-1 doi: 10.1007/s10915-008-9200-1
![]() |
[7] |
C. G. Xiong, R. Becker, F. S. Luo, X. L. Ma, A priori and a posteriori error analysis for the mixed discontinuous Galerkin finite element approximations of the biharmonic problems, Numer. Methods Partial Differ. Equ., 33 (2017), 318–353. https://doi.org/10.1002/num.22090 doi: 10.1002/num.22090
![]() |
[8] |
I. Babuška, J. Osborn, Eigenvalue problems, Handb. Numer. Anal., 2 (1991), 641–787. https://doi.org/10.1016/S1570-8659(05)80042-0 doi: 10.1016/S1570-8659(05)80042-0
![]() |
[9] | J. G. Sun, A. H. Zhou, Finite element methods for eigenvalue problems, Chapman and Hall/CRC, 2016. https://doi.org/10.1201/9781315372419 |
[10] |
L. Wang, C. G. Xiong, H. B. Wu, F. S. Luo, A priori and a posteriori analysis for discontinuous Galerkin finite element approximations of biharmonic eigenvalue problems, Adv. Comput. Math., 45 (2019), 2623–2646. https://doi.org/10.1007/s10444-019-09689-7 doi: 10.1007/s10444-019-09689-7
![]() |
[11] |
Y. Zhang, H. Bi, Y. D. Yang, The two-grid discretization of Ciarlet-Raviart mixed method for biharmonic eigenvalue problems, Appl. Numer. Math., 138 (2019), 94–113. https://doi.org/10.1016/j.apnum.2018.12.007 doi: 10.1016/j.apnum.2018.12.007
![]() |
[12] |
J. Meng, L. Q. Mei, The optimal order convergence for the lowest order mixed finite element method of the biharmonic eigenvalue problem, J. Comput. Appl. Math., 402 (2022), 113783. https://doi.org/10.1016/j.cam.2021.113783 doi: 10.1016/j.cam.2021.113783
![]() |
[13] | Y. D. Yang, H. Bi, H. Li, J. Y. Han, Mixed methods for the Helmholtz transmission eigenvalues, SIAM J. Sci. Comput., 38 (2016), A1383–A1403. |
[14] |
Y. D. Yang, J. Y. Han, H. Bi, H. Li, Y. Zhang, Mixed methods for the elastic transmission eigenvalue problem, Appl. Math. Comput., 374 (2020), 125081. https://doi.org/10.1016/j.amc.2020.125081 doi: 10.1016/j.amc.2020.125081
![]() |
[15] |
M. Ainsworth, J. T. Oden, A posteriori error estimation in finite element analysis, Comput. Methods Appl. Mech. Eng., 142 (1997), 1–88. https://doi.org/10.1016/S0045-7825(96)01107-3 doi: 10.1016/S0045-7825(96)01107-3
![]() |
[16] | R. Verfürth, A posteriori error estimation techniques for finite element methods, Oxford University Press, 2013. https://doi.org/10.1093/acprof:oso/9780199679423.001.0001 |
[17] |
L. Chamoin, F. Legoll, An introductory review on a posteriori error estimation in finite element computations, SIAM Rev., 65 (2023), 963–1028. https://doi.org/10.1137/21M1464841 doi: 10.1137/21M1464841
![]() |
[18] |
H. Li, Y. D. Yang, C^0IPG adaptive algorithms for the biharmonic eigenvalue problem, Numer. Algorithms, 78 (2018), 553–567. https://doi.org/10.1007/s11075-017-0388-8 doi: 10.1007/s11075-017-0388-8
![]() |
[19] |
J. H. Feng, S. X. Wang, H. Bi, Y. D. Yang, An hp-mixed discontinuous Galerkin method for the biharmonic eigenvalue problem, Appl. Math. Comput., 459 (2023), 127969. https://doi.org/10.1016/j.amc.2023.127969 doi: 10.1016/j.amc.2023.127969
![]() |
[20] | A. Charbonneau, K. Dossou, R. Pierre, A residual-based a posteriori error estimator for the Ciarlet-Raviart formulation of the first biharmonic problem, Numer. Methods Partial Differ. Equ., 13 (1997), 93–111. |
[21] |
T. Gudi, Residual-based a posteriori error estimator for the mixed finite element approximation of the biharmonic equation, Numer. Methods Partial Differ. Equ., 27 (2011), 315–328. https://doi.org/10.1002/num.20524 doi: 10.1002/num.20524
![]() |
[22] | P. Grisvard, Singularities in bondary value problems, Masson and Springer-Verlag, 1992. |
[23] |
H. Blum, R. Rannacher, R. Leis, On the boundary value problem of biharmonic operator on domains with angular corners, Math. Methods Appl. Sci., 2 (1980), 556–581. https://doi.org/10.1002/mma.1670020416 doi: 10.1002/mma.1670020416
![]() |
[24] | S. C. Brenner, L. R. Scott, The mathematical theory of finite element methods, 3 Eds., New York: Springer, 2008. https://doi.org/10.1007/978-0-387-75934-0 |
[25] | S. C. Brenner, C^0 interior penalty methods, In: Frontiers in numerical analysis-Durham 2010, Berlin, Heidelberg: Springer, 2012, 79–147. https://doi.org/10.1007/978-3-642-23914-4_2 |
[26] |
P. E. Bjørstad, B. P. Tjøstheim, High precision solutions of two fourth order eigenvalue problems, Computing, 63 (1999), 97–107. https://doi.org/10.1007/s006070050053 doi: 10.1007/s006070050053
![]() |
[27] | L. Chen, iFEM: an integrated finite element methods package in MATLAB, Technical Report, University of California at Irvine, 2009. |
[28] |
T. Gustafsson, G. D. McBain, scikit-fem: A Python package for finite element assembly, J. Open Source Software, 5 (2020), 2369. https://doi.org/10.21105/joss.02369 doi: 10.21105/joss.02369
![]() |
1. | Feng Qi, Decreasing properties of two ratios defined by three and four polygamma functions, 2022, 360, 1778-3569, 89, 10.5802/crmath.296 | |
2. | Omelsaad Ahfaf, Ahmed Talat, Mansour Mahmoud, Bounds and Completely Monotonicity of Some Functions Involving the Functions ψ′(l) and ψ″(l), 2022, 14, 2073-8994, 1420, 10.3390/sym14071420 | |
3. | Mona Anis, Hanan Almuashi, Mansour Mahmoud, Complete Monotonicity of Functions Related to Trigamma and Tetragamma Functions, 2022, 131, 1526-1506, 263, 10.32604/cmes.2022.016927 | |
4. | Feng Qi, Bounds for completely monotonic degree of a remainder for an asymptotic expansion of the trigamma function, 2021, 28, 2576-5299, 314, 10.1080/25765299.2021.1962060 | |
5. | Xifeng Wang, Senlin Guo, Some conditions for sequences to be minimal completely monotonic, 2023, 8, 2473-6988, 9832, 10.3934/math.2023496 | |
6. | Ye Shuang, Bai-Ni Guo, Feng Qi, Logarithmic convexity and increasing property of the Bernoulli numbers and their ratios, 2021, 115, 1578-7303, 10.1007/s13398-021-01071-x | |
7. | Jian Cao, Wen-Hui Li, Da-Wei Niu, Feng Qi, Jiao-Lian Zhao, A Brief Survey and an Analytic Generalization of the Catalan Numbers and Their Integral Representations, 2023, 11, 2227-7390, 1870, 10.3390/math11081870 | |
8. | Feng Qi, 2023, Chapter 23, 978-981-19-8053-4, 401, 10.1007/978-981-19-8054-1_23 | |
9. | Feng Qi, Ravi Prakash Agarwal, Several Functions Originating from Fisher–Rao Geometry of Dirichlet Distributions and Involving Polygamma Functions, 2023, 12, 2227-7390, 44, 10.3390/math12010044 | |
10. | Hesham Moustafa, Waad Al Sayed, Some New Bounds for Bateman’s G-Function in Terms of the Digamma Function, 2025, 17, 2073-8994, 563, 10.3390/sym17040563 | |
11. | Waad Al Sayed, Hesham Moustafa, Some New Inequalities for the Gamma and Polygamma Functions, 2025, 17, 2073-8994, 595, 10.3390/sym17040595 |
HeaviSine | Corner | Spikes | |||||||
r_{1} | r_{2} | r_{3} | r_{1} | r_{2} | r_{3} | r_{1} | r_{2} | r_{3} | |
MSE(\hat r^{lin}, r) | 0.0184 | 0.0073 | 0.0071 | 0.0189 | 0.0075 | 0.0064 | 0.0189 | 0.0069 | 0.0052 |
MSE(\hat r^{non}, r) | 0.0048 | 0.0068 | 0.0064 | 0.0044 | 0.0070 | 0.0057 | 0.0042 | 0.0061 | 0.0046 |
MSE(\hat r'^{lin}, r') | 0.7755 | 0.0547 | 0.0676 | 0.7767 | 0.1155 | 0.0737 | 0.7360 | 0.2566 | 0.0655 |
MSE(\hat r'^{non}, r') | 0.2319 | 0.0573 | 0.0560 | 0.2204 | 0.0644 | 0.0616 | 0.2406 | 0.2868 | 0.0539 |
AME(\hat r^{lin}, r) | 0.0935 | 0.0653 | 0.0652 | 0.0973 | 0.0667 | 0.0615 | 0.0964 | 0.0621 | 0.0550 |
AME(\hat r^{non}, r) | 0.0506 | 0.0641 | 0.0619 | 0.0486 | 0.0649 | 0.0583 | 0.0430 | 0.0595 | 0.0518 |
AME(\hat r'^{lin}, r') | 0.6911 | 0.1876 | 0.2348 | 0.7021 | 0.2686 | 0.2451 | 0.6605 | 0.4102 | 0.2320 |
AME(\hat r'^{non}, r') | 0.3595 | 0.1862 | 0.2125 | 0.3450 | 0.2020 | 0.2229 | 0.3696 | 0.4198 | 0.2095 |
HeaviSine | Corner | Spikes | |||||||
r_{1} | r_{2} | r_{3} | r_{1} | r_{2} | r_{3} | r_{1} | r_{2} | r_{3} | |
MSE(\hat r^{lin}, r) | 0.0184 | 0.0073 | 0.0071 | 0.0189 | 0.0075 | 0.0064 | 0.0189 | 0.0069 | 0.0052 |
MSE(\hat r^{non}, r) | 0.0048 | 0.0068 | 0.0064 | 0.0044 | 0.0070 | 0.0057 | 0.0042 | 0.0061 | 0.0046 |
MSE(\hat r'^{lin}, r') | 0.7755 | 0.0547 | 0.0676 | 0.7767 | 0.1155 | 0.0737 | 0.7360 | 0.2566 | 0.0655 |
MSE(\hat r'^{non}, r') | 0.2319 | 0.0573 | 0.0560 | 0.2204 | 0.0644 | 0.0616 | 0.2406 | 0.2868 | 0.0539 |
AME(\hat r^{lin}, r) | 0.0935 | 0.0653 | 0.0652 | 0.0973 | 0.0667 | 0.0615 | 0.0964 | 0.0621 | 0.0550 |
AME(\hat r^{non}, r) | 0.0506 | 0.0641 | 0.0619 | 0.0486 | 0.0649 | 0.0583 | 0.0430 | 0.0595 | 0.0518 |
AME(\hat r'^{lin}, r') | 0.6911 | 0.1876 | 0.2348 | 0.7021 | 0.2686 | 0.2451 | 0.6605 | 0.4102 | 0.2320 |
AME(\hat r'^{non}, r') | 0.3595 | 0.1862 | 0.2125 | 0.3450 | 0.2020 | 0.2229 | 0.3696 | 0.4198 | 0.2095 |