Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Enhanced dung beetle optimizer for Kriging-assisted time-varying reliability analysis

  • During the engineering structure's operation, the mechanical structure's performance and loading will change with time, so the parameter uncertainty and structural reliability will also have dynamic characteristics. The time-varying reliability analysis method can more accurately evaluate structural reliability by fully using this dynamic uncertainty. However, the time-varying reliability analysis was mainly based on the spanning rate method, which was complex and difficult to obtain the final result. Therefore, this study proposed an enhanced dung beetle optimization (EDBO) assisted time-varying reliability analysis method based on the adaptive Kriging model. With the help of the adaptive Kriging model and the EDBO optimization algorithm, the efficiency of the time-varying reliability analysis method was improved. At the same time, to prevent prematurely falling into the local search trap, the method improved the uniformity of the sample by initializing the sample through improved tent chaotic mapping (ITCM). Next, the Gaussian random walk strategy was used to search the updated position, which further improved the accuracy of the reliability analysis results. Finally, the accuracy and effectiveness of the proposed time-varying reliability analysis method were verified by four mechanical structure model examples. From the calculation results, it can be seen that with the help of the new DBO optimization algorithm, the relative error of the proposed reliability analysis results was about 20%~30% lower than that of the traditional reliability analysis method. What's more, the calculation efficiency was higher than that of other reliability analysis methods.

    Citation: Yunhan Ling, Yiqing Shi, Huimin Hou, Lidong Pan, Hao Chen, Peixin Liang, Shiyuan Yang, Peng Nie, Jiahao Han, Debiao Meng. Enhanced dung beetle optimizer for Kriging-assisted time-varying reliability analysis[J]. AIMS Mathematics, 2024, 9(10): 29296-29332. doi: 10.3934/math.20241420

    Related Papers:

    [1] Fengxia Zhang, Ying Li, Jianli Zhao . The semi-tensor product method for special least squares solutions of the complex generalized Sylvester matrix equation. AIMS Mathematics, 2023, 8(3): 5200-5215. doi: 10.3934/math.2023261
    [2] Dong Wang, Ying Li, Wenxv Ding . The least squares Bisymmetric solution of quaternion matrix equation AXB=C. AIMS Mathematics, 2021, 6(12): 13247-13257. doi: 10.3934/math.2021766
    [3] Anli Wei, Ying Li, Wenxv Ding, Jianli Zhao . Three special kinds of least squares solutions for the quaternion generalized Sylvester matrix equation. AIMS Mathematics, 2022, 7(4): 5029-5048. doi: 10.3934/math.2022280
    [4] Wenxv Ding, Ying Li, Anli Wei, Zhihong Liu . Solving reduced biquaternion matrices equation ki=1AiXBi=C with special structure based on semi-tensor product of matrices. AIMS Mathematics, 2022, 7(3): 3258-3276. doi: 10.3934/math.2022181
    [5] Fengxia Zhang, Ying Li, Jianli Zhao . A real representation method for special least squares solutions of the quaternion matrix equation (AXB,DXE)=(C,F). AIMS Mathematics, 2022, 7(8): 14595-14613. doi: 10.3934/math.2022803
    [6] Jin Zhong, Yilin Zhang . Dual group inverses of dual matrices and their applications in solving systems of linear dual equations. AIMS Mathematics, 2022, 7(5): 7606-7624. doi: 10.3934/math.2022427
    [7] Vladislav N. Kovalnogov, Ruslan V. Fedorov, Igor I. Shepelev, Vyacheslav V. Sherkunov, Theodore E. Simos, Spyridon D. Mourtas, Vasilios N. Katsikis . A novel quaternion linear matrix equation solver through zeroing neural networks with applications to acoustic source tracking. AIMS Mathematics, 2023, 8(11): 25966-25989. doi: 10.3934/math.20231323
    [8] Mahmoud S. Mehany, Faizah D. Alanazi . An η-Hermitian solution to a two-sided matrix equation and a system of matrix equations over the skew-field of quaternions. AIMS Mathematics, 2025, 10(4): 7684-7705. doi: 10.3934/math.2025352
    [9] Abdur Rehman, Ivan Kyrchei, Muhammad Zia Ur Rahman, Víctor Leiva, Cecilia Castro . Solvability and algorithm for Sylvester-type quaternion matrix equations with potential applications. AIMS Mathematics, 2024, 9(8): 19967-19996. doi: 10.3934/math.2024974
    [10] Hongjie Jiang, Xiaoji Liu, Caijing Jiang . On the general strong fuzzy solutions of general fuzzy matrix equation involving the Core-EP inverse. AIMS Mathematics, 2022, 7(2): 3221-3238. doi: 10.3934/math.2022178
  • During the engineering structure's operation, the mechanical structure's performance and loading will change with time, so the parameter uncertainty and structural reliability will also have dynamic characteristics. The time-varying reliability analysis method can more accurately evaluate structural reliability by fully using this dynamic uncertainty. However, the time-varying reliability analysis was mainly based on the spanning rate method, which was complex and difficult to obtain the final result. Therefore, this study proposed an enhanced dung beetle optimization (EDBO) assisted time-varying reliability analysis method based on the adaptive Kriging model. With the help of the adaptive Kriging model and the EDBO optimization algorithm, the efficiency of the time-varying reliability analysis method was improved. At the same time, to prevent prematurely falling into the local search trap, the method improved the uniformity of the sample by initializing the sample through improved tent chaotic mapping (ITCM). Next, the Gaussian random walk strategy was used to search the updated position, which further improved the accuracy of the reliability analysis results. Finally, the accuracy and effectiveness of the proposed time-varying reliability analysis method were verified by four mechanical structure model examples. From the calculation results, it can be seen that with the help of the new DBO optimization algorithm, the relative error of the proposed reliability analysis results was about 20%~30% lower than that of the traditional reliability analysis method. What's more, the calculation efficiency was higher than that of other reliability analysis methods.



    Let H(U) be the class of analytic functions in the open unit disc U={zC:|z|<1} and let H[a,υ] be the subclass of H(U) including form-specific functions

    f(z)=a+aυzυ+aυ+1zυ+1+(aC),

    we denote by H=H[1,1].

    Also, A(p) should denote the class of multivalent analytic functions in U, with the power series expansion of the type:

    f(z)=zp+υ=p+1aυzυ(pN={1,2,3,..}). (1.1)

    Upon differentiating j-times for each one of the (1.1) we obtain:

    f(j)(z)=δ(p,j)zpj+υ=p+1δ(υ,j)aυzυjzU,δ(p,j)=p!(pj)!       (pN, jN0=N{0}, pj). (1.2)

    Numerous mathematicians, for instance, have looked at higher order derivatives of multivalent functions (see [1,3,6,9,16,27,28,31]).

    For f,H, the function f is subordinate to or the function is said to be superordinate to f in U and we write f(z)(z), if there exists a Schwarz function ω in U with ω(0)=0 and |ω(z)|<1, such that f(z)=(ω(z)), zU. If is univalent in U, then f(z)(z) iff f(0)=(0) and f(U)(U). (see [7,21]).

    In the concepts and common uses of fractional calculus (see, for example, [14,15] see also [2]; the Riemann-Liouville fractional integral operator of order αC ((α)>0) is one of the most widely used operators (see [29]) given by:

    (Iα0+f)(x)=1Γ(α)x0(xμ)α1f(μ)dμ(x>0;(α)>0) (1.3)

    applying the well-known (Euler's) Gamma function Γ(α). The Erd élyi-Kober fractional integral operator of order αC((α)>0) is an interesting alternative to the Riemann-Liouville operator Iα0+, defined by:

    (Iα0+;σ,ηf)(x)=σxσ(α+η)Γ(α)x0μσ(η+1)1(xσμσ)α1f(μ)dμ (1.4)
    (x>0;(α)>0),

    which corresponds essentially to (1.3) when σ1=η=0, since

    (Iα0+;1,0f)(x)=xα(Iα0+f)(x)(x>0;(α)>0).

    Mainly motivated by the special case of the definition (1.4) when x=σ=1, η=ν1 and α=ρν, here, we take a look at the integral operator p(ν,ρ,μ) with fA(p) by (see [11])

    p(ν,ρ;)f(z)=Γ(ρ+p)Γ(ν+p)Γ(ρν)10μν1(1μ)ρν1f(zμ)dμ
    (>0;ν,ρR;ρ>ν>p;pN).

    Evaluating (Euler's) Gamma function by using the Eulerian Beta-function integral as following:

    B(α,β):={10μα1(1μ)β1dμ(min{(α),(β)}>0)Γ(α)Γ(β)Γ(α+β)(α,βCZ0),

    we readily find that

    p(ν,ρ;)f(z)={zp+Γ(ρ+p)Γ(ν+p)υ=p+1Γ(ν+υ)Γ(ρ+υ)aυzυ(ρ>ν)f(z)(ρ=ν). (1.5)

    It is readily to obtain from (1.5) that

    z(p(ν,ρ;)f(z))=(ν+p)(p(ν+1,ρ;)f(z))ν(p(ν,ρ;)f(z)). (1.6)

    The integral operator p(ν,ρ;)f(z) should be noted as a generalization of several other integral operators previously discussed for example,

    (ⅰ) If we set p=1, we get ˜I(ν,ρ;)f(z) defined by Ŕaina and Sharma ([22] with m=0);

    (ⅱ) If we set ν=β,ρ=β+1 and  =1, we obtain βpf(z)(β>p) it was presented by Saitoh et al.[24];

    (ⅲ) If we set ν=β,ρ=α+βδ+1, =1, we obtain α,δβ,pf(z)(δ>0; αδ1; β>p) it was presented by Aouf et al. [4];

    (ⅳ) If we put ν=β,ρ=α+β, =1, we get Qαβ,pf(z)(α0;β>p) it was investigated by Liu and Owa [18];

    (ⅴ) If we put p=1, ν=β,ρ=α+β, =1, we obtain αβf(z)(α0;β>1) it was introduced by Jung et al. [13];

    (ⅵ) If we put p=1, ν=α1, ρ=β1, =1, we obtain L(α,β)f(z)(α,βCZ0,Z0={0,1,2,...}) which was defined by Carlson and Shaffer [8];

    (ⅶ) If we put p=1, ν=ν1, ρ=j, =1 we obtain Iν,jf(z)(ν>0;j1) it was investigated by Choi et al. [10];

    (ⅷ) If we put p=1, ν=α,ρ=0, =1, we obtain Dαf(z)(α>1) which was defined by Ruscheweyh [23];

    (ⅸ) If we put p=1, ν=1, ρ=m, =1, we obtain Imf(z)(mN0) which was introduced by Noor [21];

    (ⅹ) If we set p=1, ν=β,ρ=β+1, =1 we obtain βf(z) which was studied by Bernadi [5];

    (ⅹⅰ) If we set p=1, ν=1, ρ=2, =1 we get f(z) which was defined by Libera [17].

    We state various definition and lemmas which are essential to obtain our results.

    Definition 1. ([20], Definition 2, p.817) We denote by Q the set of the functions f that are holomorphic and univalent on ¯UE(f), where

    E(f)={ζ:ζU  and  limzζf(z)=},

    and satisfy f(ζ)0 for ζUE(f).

    Lemma 1. ([12]; see also ([19], Theorem 3.1.6, p.71)) Assume that h(z) is convex (univalent) function in U with h(0)=1, and let φ(z)H, is analytic in U. If

    φ(z)+1γzφ(z)h(z)(zU),

    where γ0 and Re(γ)0. Then

    φ(z)Ψ(z)=γzγz0tγ1h(t)dth(z)(zU),

    and Ψ(z) is the best dominant.

    Lemma 2. ([26]; Lemma 2.2, p.3) Suppose that q is convex function in U and let  ψC with ϰC=C{0} with

    Re(1+zq(z)q(z))>max{0;Reψϰ},zU.

    If λ(z) is analytic in U, and

    ψλ(z)+ϰzλ(z)ψq(z)+ϰzq(z),

    therefore λ(z)q(z), and q is the best dominant.

    Lemma 3. ([20]; Theorem 8, p.822) Assume that q is convex univalent in U and suppose δC, with Re(δ)>0. If λH[q(0),1]Q and λ(z)+δzλ(z) is univalent in U, then

    q(z)+δzq(z)λ(z)+δzλ(z),

    implies

    q(z)λ(z)     (zU)

    and q is the best subordinant.

    For a,ϱ,c and c(cZ0) real or complex number the Gaussian hypergeometric function is given by

    2F1(a,ϱ;c;z)=1+aϱc.z1!+a(a+1)ϱ(ϱ+1)c(c+1).z22!+....

    The previous series totally converges for zU to a function analytical in U (see, for details, ([30], Chapter 14)) see also [19].

    Lemma 4. For a,ϱ and c (cZ0), real or complex parameters,

    10tϱ1(1t)cϱ1(1zt)xdt=Γ(ϱ)Γ(ca)Γ(c)2F1(a,ϱ;c;z)(Re(c)>Re(ϱ)>0); (2.1)
    2F1(a,ϱ;c;z)=2F1(ϱ,a;c;z); (2.2)
    2F1(a,ϱ;c;z)=(1z)a2F1(a,cϱ;c;zz1); (2.3)
    2F1(1,1;2;azaz+1)=(1+az)ln(1+az)az; (2.4)
    2F1(1,1;3;azaz+1)=2(1+az)az(1ln(1+az)az). (2.5)

    Throughout the sequel, we assume unless otherwise indicated 1D<C1, δ>0, >0, ν,ρR, ν>p, pN and (ρj)0. We shall now prove the subordination results stated below:

    Theorem 1. Let 0j<p, 0<r1 and for fA(p) assume that

    (p(ν,ρ;)f(z))(j)zpj0,    zU, (3.1)

    whenever δ(0,+)N. Let define the function Φj by

    Φj(z)=(1α)((p(ν,ρ;)f(z))(j)zpj)δ+α(p(ν+1,ρ;)f(z))(j)zpj((p(ν,ρ;)f(z))(j)zpj)δ1,

    such that the powers are all the principal ones, i.e., log1 = 0. Whether

    Φj(z)[p!(pj)!]δ(1+Cz1+Dz )r, (3.2)

    then

    ((p(ν,ρ;)f(z))(j)zpj)δ[p!(pj)!]δp(z), (3.3)

    where

    p(z)={(CD)ri0(r)ii!(CDC)i(1+Dz)i 2F1(i,1;1+δ(ν+p)α;Dz1+Dz)(D0);2F1(r,δ(ν+p)α;1+δ(ν+p)α;Cz)                                     (D=0),

    and [p!(pj)!]δp(z) is the best dominant of (3.3). Moreover, there are

    ((p(ν,ρ;)f(z))(j)zpj)δ>[p!(pj)!]δζ,     zU, (3.4)

    where ζ is given by:

    ζ={(CD)ri0(r)ii!(CDC)i(1D)i 2F1(i,1;1+δ(ν+p)α;DD1)(D0);2F1(r,δ(ν+p)α;1+δ(ν+p)α;C)                                     (D=0),

    then (3.4) is the best possible.

    Proof. Let

    ϕ(z)=((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δ,   (zU). (3.5)

    It is observed that the function ϕ(z)H, which is analytic in U and ϕ(0)=1. Differentiating (3.5) with respect to z, applying the given equation, the hypothesis (3.2), and the knowing that

    z(p(ν,ρ;)f(z))(j+1)=(ν+p)(p(ν+1,ρ;)f(z))(j)(ν+j)(p(ν,ρ;)f(z))(j)   (0j<p), (3.6)

    we get

    ϕ(z)+zϕ(z)δ(ν+p)α(1+Cz1+Dz )r=q(z)     (zU).

    We can verify that the above equation q(z) is analytic and convex in U as following

    Re(1+zq(z)q(z))=1+(1r)(11+Cz)+(1+r)(11+Dz)>1+1r1+|C|+1+r1+|D|0   (zU).

    Using Lemma 1, there will be

    ϕ(z)p(z)=δ(ν+p)αzδ(ν+p)αz0tδ(ν+p)α1(1+Ct1+Dt)rdt.

    In order to calculate the integral, we define the integrand in the type

    tδ(ν+p)α1(1+Ct1+Dt)r=tδ(ν+p)α1(CD)r(1CDC+CDt)r,

    using Lemma 4 we obtain

    p(z)=(CD)ri0(r)ii!(CDC)i(1+Dz)i 2F1(i,1;1+δ(ν+p)α;Dz1+Dz)(D0).

    On the other hand if D=0 we have

    p(z)=2F1(r,δ(ν+p)α;1+δ(ν+p)α;Cz),

    where the identities (2.1)–(2.3), were used after changing the variable, respectively. This proof the inequality (3.3).

    Now, we'll verify it

    inf{p(z):|z|<1}=p(1). (3.7)

    Indeed, we have

    (1+Cz1+Dz )r(1Cσ1Dσ)r   (|z|<σ<1).

    Setting

    (s,z)=(1+Csz1+Dsz)r   (0s1; zU)

    and

    dv(s)=δ(ν+p)αsδ(ν+p)α1ds

    where dv(s) is a positive measure on the closed interval [0, 1], we get that

    p(z)=10(s,z)dv(s),

    so that

    p(z)10(1Csσ1Dsσ)rdv(s)=p(σ)   (|z|<σ<1).

    Now, taking σ1 we get the result (3.7). The inequality (3.4) is the best possible since [p!(pj)!]δp(z) is the best dominant of (3.3).

    If we choose j=1 and α=δ=1 in Theorem 1, we get:

    Corollary 1. Let 0<r1. If

    (p(ν+1,ρ;)f(z))zp1p(1+Cz1+Dz )r,

    then

    ((p(ν,ρ;)f(z))zp1)>pζ1,     zU, (3.8)

    where ζ1 is given by:

    ζ1={(CD)ri0(r)ii!(CDC)i(1D)i 2F1(i,1;1+(ν+p);DD1)(D0);2F1(r,(ν+p);1+(ν+p);C)                                     (D=0),

    then (3.8) is the best possible.

    If we choose ν=ρ=0 and  =1 in Theorem 1, we get:

    Corollary 2. Let 0j<p, 0<r1 and as fA(p) assume that

    f(j)(z)zpj0,    zU,

    whenever δ(0,+)N. Let define the function Φj by

    Φj(z)=[1α(1jp)](f(j)(z)zpj)δ+α(zf(j+1)(z)pf(j)(z))(f(j)(z)zpj)δ, (3.9)

    such that the powers are all the principal ones, i.e., log1 = 0. If

    Φj(z)[p!(pj)!]δ(1+Cz1+Dz )r,

    then

    (f(j)(z)zpj)δ[p!(pj)!]δp1(z), (3.10)

    where

    p1(z)={(CD)ri0(r)ii!(CDC)i(1+Dz)i 2F1(i,1;1+δpα;Dz1+Dz)(D0);2F1(r,δpα;1+δpα;Cz)                                     (D=0),

    and [p!(pj)!]δp1(z) is the best dominant of (3.10). Morover, there are

    (f(j)(z)zpj)δ>[p!(pj)!]δζ2,     zU, (3.11)

    where ζ2 is given by

    ζ2={(CD)ri0(r)ii!(CDC)i(1D)i 2F1(i,1;1+δpα;DD1)(D0);2F1(r,δpα;1+δpα;C)                                     (D=0),

    then (3.11) is the best possible.

    If we put δ=1 and  r=1 in Corollary 2, we get:

    Corollary 3. Let 0j<p, and for fA(p) say it

    f(j)(z)zpj0,    zU.

    Let define the function Φj by

    Φj(z)=[(1α(1jp)]f(j)(z)zpj+αf(j+1)(z)pzpj1.

    If

    Φj(z)p!(pj)!1+Cz1+Dz,

    then

    f(j)(z)zpjp!(pj)!p2(z), (3.12)

    where

    p2(z)={CD+(1CD)(1+Dz)1 2F1(1,1;1+pα;Dz1+Dz)(D0);1+pp+αCz,                                                    (D=0),

    and p!(pj)!p2(z) is the best dominant of (3.12). Morover there will be

    (f(j)(z)zpj)>p!(pj)!ζ3,     zU, (3.13)

    where ζ3 is given by:

    ζ3={CD+(1CD)(1D)1 2F1(1,1;1+pα;DD1)(D0);1pp+αC,                                                    (D=0),

    then (3.13) is the best possible.

    For C=1,D=1 and j=1 Corollary 3, leads to the next example:

    Example 1. (i) For fA(p) suppose that

    f(z)zp10,    zU.

    Let define the function Φj by

    Φj(z)=[1(ααp)]f(z)zp1+αf(z)pzp2p1+z1z,

    then

    f(z)zp1p1+z1z, (3.14)

    and

    (f(z)zp1)>pζ4,     zU, (3.15)

    where ζ4 is given by:

    ζ4=1+ 2F1(1,1;p+αα;12),

    then (3.15) is the best possible.

    (ii) For p=α=1, (i) leads to:

    For fA suppose that

    f(z)0,    zU.

    Let define the function Φj by

    Φj(z)=f(z)+zf(z)1+z1z,

    then

    (f(z))>1+2ln2,     zU.

    So the estimate is best possible.

    Theorem 2. Let 0j<p, 0<r1 as for fA(p). Assume that Fα is defined by

    Fα(z)=α(ν+p)(p(ν+1,ρ;)f(z))+(1αα(ν))(p(ν,ρ;)f(z)).  (3.16)

    If

    F(j)α(z)zpj(1α+αp)p!(pj)!(1+Cz1+Dz )r, (3.17)

    then

    (p(ν,ρ;)f(z))(j)zpjp!(pj)!p(z), (3.18)

    where

    p(z)={(CD)ri0(r)ii!(CDC)i(1+Dz)i 2F1(i,1;1+(1α+αp)α;Dz1+Dz)(D0);2F1(r,(1α+αp)α;1+(1α+αp)α;Cz)                                     (D=0),

    and p!(pj)!p(z) is the best dominant of (3.18). Moreover, there will be

    ((p(ν,ρ;)f(z))(j)zpj)>p!(pj)!η,  zU, (3.19)

    where η is given by:

    η={(CD)ri0(r)ii!(CDC)i(1+D)i 2F1(i,1;1+(1α+αp)α;DD1)(D0);2F1(r,(1α+αp)α;1+(1α+αp)α;C)                                     (D=0),

    then (3.19) is the best possible.

    Proof. By using the definition (3.16) and the inequality (3.6), we have

    F(j)α(z)=αz(p(ν,ρ;)f(z))(j+1)+(1α+αj)(p(ν,ρ;)f(z))(j),  (3.20)

    for 0j<p. Putting

    ϕ(z)=(pj)!p!(p(ν,ρ;)f(z))(j)zpj,   (zU), (3.21)

    we have that ϕH. Differentiating (3.21), and using (3.17), (3.20), we get

    ϕ(z)+zϕ(z)(1α+αp)α(1+Cz1+Dz )r     (zU).

    Following the techniques of Theorem 1, we can obtain the remaining part of the proof.

    If we choose j=1 and r=1 in Theorem 2, we get:

    Corollary 4. For fA(p) let the function Fα define by 3.16. If

    Fα(z)zp1p(1α+αp)1+Cz1+Dz ,

    then

    ((p(ν,ρ;)f(z))zp1)>pη1,  zU, (3.22)

    where η1 is given by:

    η1={CD+(1CD)(1D)1 2F1(1,1;1+1α+αpα;DD1)(D0);11α+αp1+αpC                                                         (D=0),

    then (3.22) is the best possible.

    Example 2. If we choose p=C=α=1 and D=1 in Corollary 4, we obtain:

    For

    F(z)=(ν+1)((ν+1,ρ;)f(z))(ν)((ν,ρ;)f(z)).

    If

    F(z)1+z1z,

    then

    (((ν,ρ;)f(z)))>1+2ln2,  zU,

    the result is the best possible.

    Theorem 3. Let 0j<p, 0<r1 as for θ>p assume that Jp,θ:A(p)A(p) defined by

    Jp,θ(f)(z)=p+θzθz0tθ1f(t)dt,    zU. (3.23)

    If

    (p(ν,ρ;)f(z))(j)zpjp!(pj)!(1+Cz1+Dz )r, (3.24)

    then

    (p(ν,ρ;)Jp,θ(f)(z))(j)zpjp!(pj)!p(z), (3.25)

    where

    p(z)={(CD)ri0(r)ii!(CDC)i(1+Dz)i 2F1(i,1;1+θ+p;Dz1+Dz)(D0);2F1(r,θ+p;1+θ+p;Cz)                                     (D=0),

    and p!(pj)!p(z) is the best dominant of (3.25). Moreover, there will be

    ((p(ν,ρ;)Jp,θ(f)(z))(j)zpj)>p!(pj)!β,      zU, (3.26)

    where β is given by:

    β={(CD)ri0(r)ii!(CDC)i(1+D)i 2F1(i,1;1+θ+p;DD1)(D0);2F1(r,θ+p;1+θ+p;C)                                     (D=0),

    then (3.26) is the best possible.

    Proof. Suppose

    ϕ(z)=(pj)!p!(p(ν,ρ;)Jp,θ(f)(z))(j)zpj,   (zU),

    we have that ϕH. Differentiating the above definition, by using (3.24) and

    z(p(ν,ρ;)Jp,θ(f)(z))(j+1)=(θ+p)(p(ν,ρ;)f(z))(j)(θ+j)(p(ν,ρ;)Jp,θ(f)(z))(j)   (0j<p),

    we get

    ϕ(z)+zϕ(z)θ+p(1+Cz1+Dz )r.

    Now, we obtain (3.25) and the inequality (3.26) follow by using the same techniques in Theorem 1.

    If we set j=1 and r=1 in Theorem 3, we get:

    Corollary 5. For θ>p, let the operator Jp,θ:A(p)A(p) defined by (3.25). If

    (p(ν,ρ;)f(z))zp1p1+Cz1+Dz ,

    then

    ((p(ν,ρ;)Jp,θ(f)(z))zp1)>pβ1,     zU, (3.27)

    where β1 is given by:

    β1={CD+(1CD)(1D)1 2F1(1,1;1+θ+p;DD1)(D0);1θ+p1+θ+pC                                                   (D=0),

    then (3.27) is the best possible.

    Example 3. If we choose p=C=θ=1 and D=1 in Corollary 5, we get:

    If

    ((ν,ρ;)f(z))1+z1z,

    then

    (((ν,ρ;)J1,1(f)(z)))>1+4(1ln2),

    the result is the best possible.

    Theorem 4. Let q is univalent function in U, such that q satisfies

    Re(1+zq(z)q(z))>max{0;δ(ν+p)α},  zU. (3.28)

    Let 0j<p, 0<r1 and for fA(p) assume that

    (p(ν,ρ;)f(z))(j)zpj0,    zU,

    whenever δ(0,+)N. Let the function Φj defined by (3.1), and assume that it satisfies:

    [(pj)!p!]δΦj(z)q(z)+αδ(ν+p)zq(z). (3.29)

    Then,

    ((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δq(z), (3.30)

    and q(z) is the best dominant of (3.30).

    Proof. Let ϕ(z) is defined by (3.5), from Theorem 1 we get

    [(pj)!p!]δΦj(z)=ϕ(z)+αδ(ν+p)zϕ(z). (3.31)

    Combining (3.29) and (3.31) we find that

    ϕ(z)+αδ(ν+p)zϕ(z)q(z)+αδ(ν+p)zq(z). (3.32)

    The proof of Theorem 4 follows by using Lemma 2 and (3.32).

    Taking q(z)=(1+Cz1+Dz)r in Theorem 4, we obtain:

    Corollary 6. Suppose that

    Re(1Dz1+Dz+(r1)(CD)z(1+Dz)(1+Cz))>max{0;δ(ν+p)α},  zU.

    Let 0j<p, 0<r1 and for fA(p) satisfies

    (p(ν,ρ;)f(z))(j)zpj0,    zU,

    whenever δ(0,+)N. Let the function Φj defined by (3.1), satisfies:

    [(pj)!p!]δΦj(z)(1+Cz1+Dz )r+αδ(ν+p)(1+Cz1+Dz )rr(CD)z(1+Dz)(1+Cz).

    Then,

    ((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δ(1+Cz1+Dz )r, (3.33)

    so (1+Cz1+Dz)r is the best dominant of (3.33).

    Taking q(z)=1+Cz1+Dz in Theorem 4, we get:

    Corollary 7. Suppose that

    Re(1Dz1+Dz)>max{0;δ(ν+p)α},  zU.

    Let 0j<p, 0<r1 and for fA(p) satisfies

    (p(ν,ρ;)f(z))(j)zpj0,    zU,

    whenever δ(0,+)N. Let the function Φj defined by (3.1), satisfies:

    [(pj)!p!]δΦj(z)1+Cz1+Dz +αδ(ν+p)(CD)z(1+Dz)2.

    Then,

    ((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δ1+Cz1+Dz , (3.34)

    so 1+Cz1+Dz is the best dominant of (3.34).

    If we put ν=ρ=0 and  =1 in Theorem 4, we get:

    Corollary 8. Let q is univalent function in U, such that q satisfies

    Re(1+zq(z)q(z))>max{0;δpα},  zU.

    For fA(p) satisfies

    f(j)(z)zpj0,    zU.

    Let the function Φj defined by (3.9), satisfies:

    [(pj)!p!]δΦj(z)q(z)+αδpzq(z). (3.35)

    Then,

    ((pj)!p!f(j)(z)zpj)δq(z), (3.36)

    so q(z) is the best dominant of (3.36).

    Taking C=1 and D=1 in Corollaries 6 and 7 we get:

    Example 4. (i) For fA(p) assume that

    (p(ν,ρ;)f(z))(j)zpj0,    zU.

    Let the function Φj defined by (3.1), and assume that it satisfies:

    [(pj)!p!]δΦj(z)(1+z1z)r+αδ(ν+p)(1+z1z)r2rz1z2.

    Then,

    ((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δ(1+z1z)r, (3.37)

    so (1+z1z)r is the best dominant of (3.37).

    (ii) For fA(p) say it

    (p(ν,ρ;)f(z))(j)zpj0,    zU.

    Let the function Φj defined by (3.1), and assume that it satisfies:

    [(pj)!p!]δΦj(z)1+z1z+αδ(ν+p)2z1z2.

    Then,

    ((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δ1+z1z, (3.38)

    so 1+z1z is the best dominant of (3.38).

    If we put p=C=α=δ=1, D=1 and j=0 in Corollary 8 we get:

    Example 5. For fA suppose that

    f(z)z0,    zU,

    and

    f(z)(1+z1z)r+(1+z1z)r2rz1z2.

    Then,

    f(z)z(1+z1z)r, (3.39)

    and (1+z1z)r is the best dominant of (3.39).

    Remark 1. For  ν=ρ=0, =p=r=1 and j=0 in Theorem 4, we get the results investigated by Shanmugam et al. ([25], Theorem 3.1).

    Theorem 5. Let 0j<p, and for fA(p) assume that

    (p(ν,ρ;)f(z))(j)zpj0,    zU,

    whenever δ(0,+)N. Suppose that

    ((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δHQ

    such that [(pj)!p!]δΦj(z) is univalent in U, where the function Φj is defined by (3.1). If q is convex (univalent) function in U, and

    q(z)+αδ(ν+p)zq(z)[(pj)!p!]δΦj(z),

    then

    q(z)((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δ, (3.40)

    so q(z) is the best subordinate of (3.40).

    Proof. Let ϕ is defined by (3.5), from (3.31) we get

    q(z)+αδ(ν+p)zq(z)[(pj)!p!]δΦj(z)=ϕ(z)+αδ(ν+p)zϕ(z).

    The proof of Theorem 5 followes by an application of Lemma 3.

    Taking q(z)=(1+Cz1+Dz)r in Theorem 5, we get:

    Corollary 9. Let 0j<p, 0<r1 and for fA(p) assume that

    (p(ν,ρ;)f(z))(j)zpj0,    zU.

    Suppose that

    ((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δHQ

    such that [(pj)!p!]δΦj(z) is univalent in U, where the function Φj is defined by (3.1). If

    (1+Cz1+Dz )r+αδ(ν+p)(1+Cz1+Dz )rr(CD)z(1+Dz)(1+Cz)[(pj)!p!]δΦj(z),

    then

    (1+Cz1+Dz )r((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δ, (3.41)

    so (1+Cz1+Dz)r is the best dominant of (3.41).

    Taking q(z)=1+Cz1+Dz and r=1 in Theorem 5, we get:

    Corollary 10. Let 0j<p, and for fA(p) assume that

    (p(ν,ρ;)f(z))(j)zpj0,    zU,

    whenever δ(0,+)N. Assume that

    ((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δHQ

    such that [(pj)!p!]δΦj(z) is univalent in U, where the function Φj is defined by (3.1). If

    1+Cz1+Dz +αδ(ν+p)(CD)z(1+Dz)2[(pj)!p!]δΦj(z),

    then

    1+Cz1+Dz ((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δ, (3.42)

    so 1+Cz1+Dz is the best dominant of (3.42).

    Combining results of Theorems 4 and 5, we have

    Theorem 6. Let 0j<p, and for fA(p) assume that

    (p(ν,ρ;)f(z))(j)zpj0,    zU.

    Suppose that

    ((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δH[q(0),1]Q

    such that [(pj)!p!]δΦj(z) is univalent in U, where the function Φj is defined by (3.1). Let q1 is convex (univalent) function in U, and assume that q2 is convex in U, that q2 satisfies (3.28). If

    q1(z)+αδ(ν+p)zq1(z)[(pj)!p!]δΦj(z)q2(z)+αδ(ν+p)zq2(z),

    then

    q1(z)((pj)!p!(p(ν,ρ;)f(z))(j)zpj)δq2(z)

    and q1(z) and q2(z) are respectively the best subordinate and best dominant of the above subordination.

    We used the application of higher order derivatives to obtained a number of interesting results concerning differential subordination and superordination relations for the operator p(ν,ρ;)f(z) of multivalent functions analytic in U, the differential subordination outcomes are followed by some special cases and counters examples. Differential sandwich-type results have been obtained. Our results we obtained are new and could help the mathematicians in the field of Geometric Function Theory to solve other special results in this field.

    This research has been funded by Deputy for Research & innovation, Ministry of Education through initiative of institutional funding at university of Ha'il, Saudi Arabia through project number IFP-22155.

    The authors declare no conflict of interest.



    [1] Q. Ai, J. Huang, S. Du, K. Yang, H. Wang, Comprehensive evaluation of very thin asphalt overlays with different aggregate gradations and asphalt materials based on AHP and TOPSIS, Buildings, 12 (2022), 1149. https://doi.org/10.3390/buildings12081149 doi: 10.3390/buildings12081149
    [2] W. Li, M. Xiao, A. Garg, L. Gao, A new approach to solve uncertain multidisciplinary design optimization based on conditional value at risk, IEEE T. Autom. Sci. Eng., 18 (2021), 356–368. https://doi.org/10.1109/TASE.2020.2999380 doi: 10.1109/TASE.2020.2999380
    [3] D. Meng, S. Yang, C. He, H. Wang, Z. Lv, Y. Guo, et al., Multidisciplinary design optimization of engineering systems under uncertainty: a review, Int. J. Struct. Integr., 13 (2022), 565–593. https://doi.org/10.1108/IJSI-05-2022-0076 doi: 10.1108/IJSI-05-2022-0076
    [4] Q. Zhu, H. Wang, Output feedback stabilization of stochastic feedforward systems with unknown control coefficients and unknown output function, Automatica, 87 (2018), 166–175. https://doi.org/10.1016/j.automatica.2017.10.004 doi: 10.1016/j.automatica.2017.10.004
    [5] D. Meng, Z. Lv, S. Yang, H. Wang, T. Xie, Z. Wang, A time-varying mechanical structure reliability analysis method based on performance degradation, Structures, 34 (2021), 3247–3256. https://doi.org/10.1016/j.istruc.2021.09.085 doi: 10.1016/j.istruc.2021.09.085
    [6] X. Gao, X. Su, H. Qian, X. Pan, Dependence assessment in human reliability analysis under uncertain and dynamic situations, Nucl. Eng. Technol., 54 (2022), 948–958. https://doi.org/10.1016/j.net.2021.09.045 doi: 10.1016/j.net.2021.09.045
    [7] B. Wang, Q. Zhu, S. Li, Stabilization of discrete-time hidden semi-Markov jump linear systems with partly unknown emission probability matrix, IEEE T. Automat. Contr., 69 (2023), 1952–1959. https://doi.org/10.1109/TAC.2023.3272190 doi: 10.1109/TAC.2023.3272190
    [8] K. Liao, Y. Wu, F. Miao, L. Li, Y. Xue, Time-varying reliability analysis of Majiagou landslide based on weakening of hydro-fluctuation belt under wetting-drying cycles, Landslides, 18 (2021), 267–280. https://doi.org/10.1007/s10346-020-01496-2 doi: 10.1007/s10346-020-01496-2
    [9] K. Gao, G. Liu, Novel nonlinear time-varying fatigue reliability analysis based on the probability density evolution method, Int. J. Fatigue, 149 (2021), 106257. https://doi.org/10.1016/j.ijfatigue.2021.106257 doi: 10.1016/j.ijfatigue.2021.106257
    [10] Y. Zhao, Q. Zhu, Stability of highly nonlinear neutral stochastic delay systems with non-random switching signals, Syst. Control Lett., 165 (2022), 105261. https://doi.org/10.1016/j.sysconle.2022.105261 doi: 10.1016/j.sysconle.2022.105261
    [11] S. Yang, Z. He, J. Chai, D. Meng, W. Macek, R. Branco, et al., A novel hybrid adaptive framework for support vector machine-based reliability analysis: A comparative study, Structures, 58 (2023), 105665. https://doi.org/10.1016/j.istruc.2023.105665 doi: 10.1016/j.istruc.2023.105665
    [12] S. Yang, D. Meng, H. Wang, Z. Chen, B. Xu, A comparative study for adaptive surrogate-model-based reliability evaluation method of automobile components, Int. J. Struct. Integr., 14 (2023), 498–519. https://doi.org/10.1108/IJSI-03-2023-0020 doi: 10.1108/IJSI-03-2023-0020
    [13] C. Luo, S. P. Zhu, B. Keshtegar, X. Niu, O. Taylan, An enhanced uniform simulation approach coupled with SVR for efficient structural reliability analysis, Reliab. Eng. Syst. Safe., 237 (2023), 109377. https://doi.org/10.1016/j.ress.2023.109377 doi: 10.1016/j.ress.2023.109377
    [14] D. Zhang, P. Zhou, C. Jiang, M. Yang, X. Han, Q. Li, A stochastic process discretization method combing active learning Kriging model for efficient time-variant reliability analysis, Comput. Method. Appl. M., 384 (2021), 113990. https://doi.org/10.1016/j.cma.2021.113990 doi: 10.1016/j.cma.2021.113990
    [15] Y. Zhao, D. Zhang, M. Yang, F. Wang, X. Han, On efficient time-dependent reliability analysis method through most probable point-oriented Kriging model combined with importance sampling, Struct. Multidisc. Optim., 67 (2024), 6. https://doi.org/10.1007/s00158-023-03721-7 doi: 10.1007/s00158-023-03721-7
    [16] F. Xiao, Generalized quantum evidence theory, Appl. Intell., 53 (2023), 14329–14344. https://doi.org/10.1007/s10489-022-04181-0 doi: 10.1007/s10489-022-04181-0
    [17] C. Luo, S. P. Zhu, B. Keshtegar, X. Niu, O. Taylan, An enhanced uniform simulation approach coupled with SVR for efficient structural reliability analysis, Reliab. Eng. Syst. Safe., 237 (2023), 109377. https://doi.org/10.1016/j.ress.2023.109377 doi: 10.1016/j.ress.2023.109377
    [18] Z. Meng, Q. Qian, M. Xu, B. Yu, A. R. Yıldız, S. Mirjalili, PINN-FORM: A new physics-informed neural network for reliability analysis with partial differential equation, Comput. Method. Appl. M., 414 (2023), 116172. https://doi.org/10.1016/j.cma.2023.116172 doi: 10.1016/j.cma.2023.116172
    [19] F. Kong, H. Ni, Q. Zhu, C. Hu, T. Huang, Fixed-time and predefined-time synchronization of discontinuous neutral-type competitive networks via non-chattering adaptive control strategy, IEEE T. Netw. Sci. Eng., 10 (2023), 3644–3657. https://doi.org/10.1109/TNSE.2023.3271109 doi: 10.1109/TNSE.2023.3271109
    [20] Q. Zhu, Event-triggered sampling problem for exponential stability of stochastic nonlinear delay systems driven by Le´vy processes, IEEE T. Automat. Contr., 2024. https://doi.org/10.1109/TAC.2024.3448128
    [21] D. Meng, S. Yang, A. M. De. Jesus, S. P. Zhu, A novel Kriging-model-assisted reliability-based multidisciplinary design optimization strategy and its application in the offshore wind turbine tower, Renew. Energ., 203 (2023), 407–420. https://doi.org/10.1016/j.renene.2022.12.062 doi: 10.1016/j.renene.2022.12.062
    [22] C. Luo, S. P. Zhu, B. Keshtegar, W. Macek, R. Branco, D. Meng, Active Kriging-based conjugate first-order reliability method for highly efficient structural reliability analysis using resample strategy, Comput. Method. Appl. M., 423 (2024), 116863. https://doi.org/10.1016/j.cma.2024.116863 doi: 10.1016/j.cma.2024.116863
    [23] Y. Xue, Y. Deng, Extending set measures to orthopair fuzzy sets, Int. J. Uncertain. Fuzz., 30 (2022), 63–91. https://doi.org/10.1142/S0218488522500040 doi: 10.1142/S0218488522500040
    [24] W. Peng, Y. F. Li, Y. J. Yang, J. Mi, H. Z. Huang, Bayesian degradation analysis with inverse Gaussian process models under time-varying degradation rates, IEEE T. Reliab., 66 (2017), 84–96. https://doi.org/10.1109/TR.2016.2635149 doi: 10.1109/TR.2016.2635149
    [25] H. V. Dang, R. Trestian, T. Bui-Tien, H. X. Nguyen, Probabilistic method for time-varying reliability analysis of structure via variational Bayesian neural network, Structures, 34 (2021), 3703–3715. https://doi.org/10.1016/j.istruc.2021.09.069 doi: 10.1016/j.istruc.2021.09.069
    [26] C. Jiang, D. Wang, H. Qiu, L. Gao, L. Chen, Z. Yang, An active failure-pursuing Kriging modeling method for time-dependent reliability analysis, Mech. Syst. Signal Pr., 129 (2019), 112–129. https://doi.org/10.1016/j.ymssp.2019.04.034 doi: 10.1016/j.ymssp.2019.04.034
    [27] W. Han, X. Zhang, X. Huang, H. Li, A time-dependent reliability estimation method based on Gaussian process regression, In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2018. https://doi.org/10.1115/DETC2018-86294
    [28] S. Yu, Z. Wang, Y. Li, Time and space-variant system reliability analysis through adaptive Kriging and weighted sampling, Mech. Syst. Signal Pr., 166 (2022), 108443. https://doi.org/10.1016/j.ymssp.2021.108443 doi: 10.1016/j.ymssp.2021.108443
    [29] D. Meng, H. Yang, S. Yang, Y. Zhang, A. M. De. Jesus, J. Correia, et al., Kriging-assisted hybrid reliability design and optimization of offshore wind turbine support structure based on a portfolio allocation strategy, Ocean Eng., 295 (2024), 116842. https://doi.org/10.1016/j.oceaneng.2024.116842 doi: 10.1016/j.oceaneng.2024.116842
    [30] Y. Pang, Y. Wang, X. Lai, S. Zhang, P. Liang, X. Song, Enhanced Kriging leave-one-out cross-validation in improving model estimation and optimization, Comput. Method. Appl. M., 414 (2023), 116194. https://doi.org/10.1016/j.cma.2023.116194 doi: 10.1016/j.cma.2023.116194
    [31] J. Xue, B. Shen, Dung beetle optimizer: A new meta-heuristic algorithm for global optimization, J. Supercomput., 79 (2023), 7305–7336. https://doi.org/10.1007/s11227-022-04959-6 doi: 10.1007/s11227-022-04959-6
    [32] D. Zhang, G. Li, Z. Bie, K. Fan, An analytical method for reliability evaluation of power distribution system with time-varying failure rates, Reliab. Eng. Syst. Safe., 250 (2024), 110290. https://doi.org/10.1016/j.ress.2024.110290 doi: 10.1016/j.ress.2024.110290
    [33] D. Meng, S. Yang, A. M. De. Jesus, T. Fazeres-Ferradosa, S. P. Zhu, A novel hybrid adaptive Kriging and water cycle algorithm for reliability-based design and optimization strategy: Application in offshore wind turbine monopile, Comput. Method. Appl. M., 412 (2023), 116083. https://doi.org/10.1016/j.cma.2023.116083 doi: 10.1016/j.cma.2023.116083
    [34] Z. Yuan, J. Li, H. Yang, B. Zhang, A hybrid whale optimization and particle swarm optimization algorithm, In: 2021 IEEE International Conference on Progress in Informatics and Computing (PIC), 2021,260–264. https://doi.org/10.1109/PIC53636.2021.9687017
    [35] Bilal, M. Pant, H. Zaheer, L. Garcia-Hernandez, A. Abraham, Differential evolution: A review of more than two decades of research, Eng. Appl. Artif. Intel., 90 (2020), 103479. https://doi.org/10.1016/j.engappai.2020.103479 doi: 10.1016/j.engappai.2020.103479
    [36] Y. del. Valle, G. K. Venayagamoorthy, S. Mohagheghi, J. C. Hernandez, R. G. Harley, Particle swarm optimization: basic concepts, variants and applications in power systems, IEEE T. Evolut. Comput., 12 (2008), 171–195. https://doi.org/10.1109/TEVC.2007.896686 doi: 10.1109/TEVC.2007.896686
    [37] S. Yang, H. Wang, Y. Xu, Y. Guo, L. Pan, J, Zhang, et al., A coupled simulated annealing and particle swarm optimization reliability-based design optimization strategy under hybrid uncertainties, Mathematics, 11 (2023), 4790. https://doi.org/10.3390/math11234790 doi: 10.3390/math11234790
    [38] N. Hansen, D. V. Arnold, A. Auger, Evolution strategies, In: Springer Handbook of computational intelligence, 2015,871–898. https://doi.org/10.1007/978-3-662-43505-2_44
    [39] B. Yang, J. Wang, X. Zhang, T. Yu, W. Yao, H. Shu, et al., Comprehensive overview of meta-heuristic algorithm applications on PV cell parameter identification, Energ. Convers. Manage., 208 (2020), 112595. https://doi.org/10.1016/j.enconman.2020.112595 doi: 10.1016/j.enconman.2020.112595
    [40] G. Khanna, S. K. Chaturvedi, S. Soh, Time varying communication networks: Modelling, reliability evaluation and optimization, In: Advances in reliability analysis and its applications, 2020. https://doi.org/10.1007/978-3-030-31375-3_1
    [41] J. Drugowitsch, R. Moreno-Bote, A. Pouget, Optimal decision-making with time-varying evidence reliability, Adv. Neural Inform. Process. Syst., 27 (2014).
    [42] J. H. Holland, Genetic algorithms, Sci. Am., 267 (1992), 66–73.
    [43] S. Mirjalili, A. Lewis, The whale optimization algorithm, Adv. Eng. Softw., 95 (2016), 51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008 doi: 10.1016/j.advengsoft.2016.01.008
    [44] S. P. Zhu, B. Keshtegar, M. E. A. B. Seghier, E. Zio, O. Taylan, Hybrid and enhanced PSO: Novel first order reliability method-based hybrid intelligent approaches, Comput. Method. Appl. M., 393 (2022), 114730. https://doi.org/10.1016/j.cma.2022.114730 doi: 10.1016/j.cma.2022.114730
    [45] R. Poli, J. Kennedy, T. Blackwell, Particle swarm optimization: An overview, Swarm Intell., 1 (2007), 33–57. https://doi.org/10.1007/s11721-007-0002-0 doi: 10.1007/s11721-007-0002-0
    [46] H. Gao, S. Kwong, J. Yang, J. Cao, Particle swarm optimization based on intermediate disturbance strategy algorithm and its application in multi-threshold image segmentation, Inform. Sciences, 250 (2013), 82–112. https://doi.org/10.1016/j.ins.2013.07.005 doi: 10.1016/j.ins.2013.07.005
    [47] M. Pant, H. Zaheer, L. Garcia-Hernandez, A. Abraham, Differential evolution: A review of more than two decades of research, Eng. Appl. Artif. Intel., 90 (2020), 103479. https://doi.org/10.1016/j.engappai.2020.103479 doi: 10.1016/j.engappai.2020.103479
    [48] S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Softw., 69 (2014), 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007 doi: 10.1016/j.advengsoft.2013.12.007
    [49] Z. Dong, Z. Sheng, Y. Zhao, P. Zhi, Robust optimization design method for structural reliability based on active-learning MPA-BP neural network, Int. J. Struct. Integr., 14 (2023), 248–266. https://doi.org/10.1108/IJSI-10-2022-0129 doi: 10.1108/IJSI-10-2022-0129
    [50] D. Meng, H. Yang, S. Yang, Y. Zhang, A. M. De. Jesus, J. Correia, et al., Kriging-assisted hybrid reliability design and optimization of offshore wind turbine support structure based on a portfolio allocation strategy, Ocean Eng., 295 (2024), 116842. https://doi.org/10.1016/j.oceaneng.2024.116842 doi: 10.1016/j.oceaneng.2024.116842
    [51] Z. Zhu, Q. Zhu, Adaptive event-triggered fuzzy control for stochastic highly nonlinear systems with time delay and nontriangular structure interconnections, IEEE T. Fuzzy Syst., 32 (2023), 27–37. https://doi.org/10.1109/TFUZZ.2023.3287869 doi: 10.1109/TFUZZ.2023.3287869
    [52] N. Hansen, D. V. Arnold, A. Auger, Evolution strategies, In: Springer Handbook of computational intelligence, 2015. https://doi.org/10.1007/978-3-662-43505-2_44
    [53] F. Kong, H. Ni, Q. Zhu, C. Hu, T. Huang, Fixed-time and predefined-time synchronization of discontinuous neutral-type competitive networks via non-chattering adaptive control strategy, IEEE T. Netw. Sci. Eng., 10 (2023), 3644–3657. https://doi.org/10.1109/TNSE.2023.3271109 doi: 10.1109/TNSE.2023.3271109
    [54] Z. Wang, P. Wang, A new approach for reliability analysis with time-variant performance characteristics, Reliab. Eng. Syst. Safe., 115 (2013), 70–81. https://doi.org/10.1016/j.ress.2013.02.017 doi: 10.1016/j.ress.2013.02.017
    [55] S. Yang, C. Guo, D. Meng, Y. Guo, Y. Guo, L. Pan, et al., MECSBO: Multi‐strategy enhanced circulatory system based optimisation algorithm for global optimisation and reliability-based design optimisation problems, IET Coll. Intell. Manuf., 6 (2024), e12097. https://doi.org/10.1049/cim2.12097 doi: 10.1049/cim2.12097
    [56] S. Yang, H. Wang, Y. Xu, Y. Guo, L. Pan, J. Zhang, et al., A coupled simulated annealing and particle swarm optimization reliability-based design optimization strategy under hybrid uncertainties, Mathematics, 11 (2023), 4790. https://doi.org/10.3390/math11234790 doi: 10.3390/math11234790
    [57] C. Gong, D. M. Frangopol, An efficient time-dependent reliability method, Struct. Saf., 81 (2019), 101864. https://doi.org/10.1016/j.strusafe.2019.05.001 doi: 10.1016/j.strusafe.2019.05.001
    [58] C. Jiang, X. P. Huang, X. Han, D. Q. Zhang, A time-variant reliability analysis method based on stochastic process discretization, J. Mech. Des., 136 (2014), 091009. https://doi.org/10.1115/1.4027865 doi: 10.1115/1.4027865
    [59] B. Wang, Q. Zhu, S. Li, Stability analysis of discrete-time semi-Markov jump linear systems with time delay, IEEE T. Automat. Control, 68 (2023), 6758–6765. https://doi.org/10.1109/TAC.2023.3240926 doi: 10.1109/TAC.2023.3240926
    [60] F. Li, J. Liu, Y. Yan, J. Rong, J. Yi, A time-variant reliability analysis method based on the stochastic process discretization under random and interval variables, Symmetry, 13 (2021), 568. https://doi.org/10.3390/sym13040568 doi: 10.3390/sym13040568
    [61] H. M. Qian, Y. F. Li, H. Z. Huang, Improved model for computing time-variant reliability based on outcrossing rate, ASCE-ASME J. Risk U. A, 6 (2020), 04020043. https://doi.org/10.1061/AJRUA6.0001090 doi: 10.1061/AJRUA6.0001090
    [62] J. Wang, G. Xu, Y. Li, A. Kareem, AKSE: A novel adaptive Kriging method combining sampling region scheme and error-based stopping criterion for structural reliability analysis, Reliab. Eng. Syst. Safe., 219 (2022), 108214. https://doi.org/10.1016/j.ress.2021.108214 doi: 10.1016/j.ress.2021.108214
    [63] Y. Zhao, L. Wang, H. Wu, H. Chu, C. Yang, Z. Liu, Time‐varying reliability method based on linearized Nataf transform, Qual. Reliab. Eng. Int., 37 (2021), 1922–1938. https://doi.org/10.1002/qre.2836 doi: 10.1002/qre.2836
    [64] H. Liu, J. Cai, Y. S. Ong, An adaptive sampling approach for Kriging metamodeling by maximizing expected prediction error, Comput. Chem. Eng., 106 (2017), 171–182. https://doi.org/10.1016/j.compchemeng.2017.05.025 doi: 10.1016/j.compchemeng.2017.05.025
    [65] S. Yang, D. Meng, Y. Guo, P. Nie, A. M. De. Jesus, A reliability-based design and optimization strategy using a novel MPP searching method for maritime engineering structures, Int. J. Struct. Integr., 14 (2023), 809–826. https://doi.org/10.1108/IJSI-06-2023-0049 doi: 10.1108/IJSI-06-2023-0049
    [66] L. Xin, H. Lai, X. Wang, X. Song, K. Liu, S. Wu, et al., Aerospace structural reliability analysis method based on regular vine copula model with the asymmetric tail correlation, Aerosp. Sci. Technol., 142 (2023), 108670. https://doi.org/10.1016/j.ast.2023.108670 doi: 10.1016/j.ast.2023.108670
    [67] S. Yang, D. Meng, H. Wang, C. Yang, A novel learning function for adaptive surrogate-model-based reliability evaluation, Philos. T. R. Soc. A, 382 (2024), 20220395. https://doi.org/10.1098/rsta.2022.0395 doi: 10.1098/rsta.2022.0395
    [68] D. Meng, S. Yang, H. Yang, A. M. De. Jesus, J. Correia, S. P. Zhu, Intelligent-inspired framework for fatigue reliability evaluation of offshore wind turbine support structures under hybrid uncertainty, Ocean Eng., 307 (2024), 118213. https://doi.org/10.1016/j.oceaneng.2024.118213 doi: 10.1016/j.oceaneng.2024.118213
    [69] Z. Hu, X. Du, First order reliability method for time-variant problems using series expansions, Struct. Multidisc. Optim., 51 (2015), 1–21. https://doi.org/10.1007/s00158-014-1132-9 doi: 10.1007/s00158-014-1132-9
    [70] C. Jiang, X. P. Huang, X. P. Wei, N. Y. Liu, A time-variant reliability analysis method for structural systems based on stochastic process discretization, Int. J. Mech. Mater. Des., 13 (2017), 173–193. https://doi.org/10.1007/s10999-015-9324-z doi: 10.1007/s10999-015-9324-z
    [71] J. N. Fuhg, A. Fau, U. Nackenhorst, State-of-the-art and comparative review of adaptive sampling methods for Kriging, Arch. Computat. Methods Eng., 28 (2021), 2689–2747. https://doi.org/10.1007/s11831-020-09474-6 doi: 10.1007/s11831-020-09474-6
    [72] M. Byrne, M. Dacke, P. Nordström, C. Scholtz, E. Warrant, Visual cues used by ball-rolling dung beetles for orientation, J. Comp. Physiol. A, 189 (2003), 411–418. https://doi.org/10.1007/s00359-003-0415-1 doi: 10.1007/s00359-003-0415-1
    [73] Y. Li, M. Han, Q. Guo, Modified whale optimization algorithm based on tent chaotic mapping and its application in structural optimization, KSCE J. Civ. Eng., 24 (2020), 3703–3713. https://doi.org/10.1007/s12205-020-0504-5 doi: 10.1007/s12205-020-0504-5
    [74] X. Zhang, S. Wen, H. Li, Q. Lu, M. Wu, X. Wang, Chaotic particle swarm optimization algorithm based on Tent mapping, China Mech. Eng., 19 (2008), 0–2094.
    [75] A. G. Hussien, A. A. Heidari, X. Ye, G. Liang, H. Chen, Z. Pan, Boosting whale optimization with evolution strategy and Gaussian random walks: An image segmentation method, Eng. Comput., 39 (2023), 1935–1979. https://doi.org/10.1007/s00366-021-01542-0 doi: 10.1007/s00366-021-01542-0
    [76] Y. Zhang, C. Gong, C. Li, Efficient time-variant reliability analysis through approximating the most probable point trajectory, Struct. Multidisc. Optim., 63 (2021), 289–309. https://doi.org/10.1007/s00158-020-02696-z doi: 10.1007/s00158-020-02696-z
    [77] L. Hawchar, C. P. El. Soueidy, F. Schoefs, Principal component analysis and polynomial chaos expansion for time-variant reliability problems, Reliab. Eng. Syst. Safe., 167 (2017), 406–416. https://doi.org/10.1016/j.ress.2017.06.024 doi: 10.1016/j.ress.2017.06.024
    [78] Z. Hu, X. Du, A sampling approach to extreme value distribution for time-dependent reliability analysis, J. Mech. Des., 135 (2013), 071003. https://doi.org/10.1115/1.4023925 doi: 10.1115/1.4023925
    [79] N. Zou, C. Gong, L. Zhang, Y. Zhang, X. Wang, C. Li, A novel hybrid time-variant reliability analysis method through approximating bound-most-probable point trajectory, Probabilist. Eng. Mech., 75 (2024), 103558. https://doi.org/10.1016/j.probengmech.2023.103558 doi: 10.1016/j.probengmech.2023.103558
  • This article has been cited by:

    1. Jian Sun, Xin Liu, Yang Zhang, Quaternion Tensor Completion via QR Decomposition and Nuclear Norm Minimization, 2024, 1070-5325, 10.1002/nla.2608
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(968) PDF downloads(61) Cited by(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog