Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Investigation of more solitary waves solutions of the stochastics Benjamin-Bona-Mahony equation under beta operator

  • Received: 27 June 2024 Revised: 28 August 2024 Accepted: 09 September 2024 Published: 23 September 2024
  • MSC : 35C05, 35C07, 35C08

  • This study explores the stochastic Benjamin-Bona-Mahony (BBM) equation with a beta derivative (BD), thereby incorporating multiplicative noise in the Itô sense. We derive various analytical soliton solutions for these equations utilizing two distinct expansion methods: the GG+G+A-expansion and the modified GG2-expansion techniques, both within the framework of beta derivatives. A fractional multistep transformation is employed to convert the equations into nonlinear forms with respect to an independent variable. After performing an algebraic manipulation, the solutions are trigonometric and hyperbolic trigonometric functions. Our analysis demonstrates that the wave behavior is influenced by the fractional-order derivative in the proposed equations, thus providing deeper insights into the wave composition as the fractional order either increases or decreases. Additionally, we explore the effect of white noise on the propagation of the waves solutions. This study underscores the computational robustness and adaptability of the proposed approach to investigate various phenomena in the physical sciences and engineering.

    Citation: Abdelkader Moumen, Khaled A. Aldwoah, Muntasir Suhail, Alwaleed Kamel, Hicham Saber, Manel Hleili, Sayed Saifullah. Investigation of more solitary waves solutions of the stochastics Benjamin-Bona-Mahony equation under beta operator[J]. AIMS Mathematics, 2024, 9(10): 27403-27417. doi: 10.3934/math.20241331

    Related Papers:

    [1] Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Maher Nour, Mostafa Zahri . Stabilization of a viscoelastic wave equation with boundary damping and variable exponents: Theoretical and numerical study. AIMS Mathematics, 2022, 7(8): 15370-15401. doi: 10.3934/math.2022842
    [2] Mohammad M. Al-Gharabli, Adel M. Al-Mahdi, Mohammad Kafini . Global existence and new decay results of a viscoelastic wave equation with variable exponent and logarithmic nonlinearities. AIMS Mathematics, 2021, 6(9): 10105-10129. doi: 10.3934/math.2021587
    [3] Mohammad Kafini, Mohammad M. Al-Gharabli, Adel M. Al-Mahdi . Existence and stability results of nonlinear swelling equations with logarithmic source terms. AIMS Mathematics, 2024, 9(5): 12825-12851. doi: 10.3934/math.2024627
    [4] Qian Li . General and optimal decay rates for a viscoelastic wave equation with strong damping. AIMS Mathematics, 2022, 7(10): 18282-18296. doi: 10.3934/math.20221006
    [5] Adel M. Al-Mahdi . The coupling system of Kirchhoff and Euler-Bernoulli plates with logarithmic source terms: Strong damping versus weak damping of variable-exponent type. AIMS Mathematics, 2023, 8(11): 27439-27459. doi: 10.3934/math.20231404
    [6] Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Nasser-Eddine Tatar . On a nonlinear system of plate equations with variable exponent nonlinearity and logarithmic source terms: Existence and stability results. AIMS Mathematics, 2023, 8(9): 19971-19992. doi: 10.3934/math.20231018
    [7] Salim A. Messaoudi, Mohammad M. Al-Gharabli, Adel M. Al-Mahdi, Mohammed A. Al-Osta . A coupled system of Laplacian and bi-Laplacian equations with nonlinear dampings and source terms of variable-exponents nonlinearities: Existence, uniqueness, blow-up and a large-time asymptotic behavior. AIMS Mathematics, 2023, 8(4): 7933-7966. doi: 10.3934/math.2023400
    [8] Abdelbaki Choucha, Salah Boulaaras, Asma Alharbi . Global existence and asymptotic behavior for a viscoelastic Kirchhoff equation with a logarithmic nonlinearity, distributed delay and Balakrishnan-Taylor damping terms. AIMS Mathematics, 2022, 7(3): 4517-4539. doi: 10.3934/math.2022252
    [9] Zayd Hajjej, Sun-Hye Park . Asymptotic stability of a quasi-linear viscoelastic Kirchhoff plate equation with logarithmic source and time delay. AIMS Mathematics, 2023, 8(10): 24087-24115. doi: 10.3934/math.20231228
    [10] Qian Li, Yanyuan Xing . General and optimal decay rates for a system of wave equations with damping and a coupled source term. AIMS Mathematics, 2024, 9(10): 29404-29424. doi: 10.3934/math.20241425
  • This study explores the stochastic Benjamin-Bona-Mahony (BBM) equation with a beta derivative (BD), thereby incorporating multiplicative noise in the Itô sense. We derive various analytical soliton solutions for these equations utilizing two distinct expansion methods: the GG+G+A-expansion and the modified GG2-expansion techniques, both within the framework of beta derivatives. A fractional multistep transformation is employed to convert the equations into nonlinear forms with respect to an independent variable. After performing an algebraic manipulation, the solutions are trigonometric and hyperbolic trigonometric functions. Our analysis demonstrates that the wave behavior is influenced by the fractional-order derivative in the proposed equations, thus providing deeper insights into the wave composition as the fractional order either increases or decreases. Additionally, we explore the effect of white noise on the propagation of the waves solutions. This study underscores the computational robustness and adaptability of the proposed approach to investigate various phenomena in the physical sciences and engineering.



    In this work we are concerned with the decay rate of the following problem with nonlinear damping of variable exponent

    {utt(x,t)Δu(x,t)+α(t)[ut(x,t)+ut(x,t)|ut|m(x)2(x,t)]=0,inΩ×(0,T),u=0,onΩ×(0,T),u(x,0)=u0(x),ut(x,0)=u1(x),inΩ, (1.1)

    where T>0 and Ω is a bounded domain of Rn(n1). The functions u0, u1 are initial data and the variable exponent m()C(¯Ω) is a given functions satisfying

    1<m1m(x)m2<2, (1.2)

    where

    m1:=infxΩm(x),   m2:=supxΩm(x),   2={2nn2,ifn3,,ifn<3,

    and also satisfies the log-Hölder continuity condition:

    |m(x)m(y)|Alog|xy|, (1.3)

    for x,yΩ, with |xy|<δ, A>0 and 0<δ<1. The function α:[0,)(0,) is a bounded nonincreasing C1function and

    α0>0  such that  α(t)α0, t0. (1.4)

    Problems with variable exponents appear as a direct consequence of the advancement of science and technology. Many physical and engineering models require more sophisticated mathematical functional spaces to be studied and well understood. For example, in fluid dynamics, the electrorheological fluids (smart fluids) have the property that the viscosity changes when exposed to an electrical field. More examples are found in studying models of the image processing and filtration processes through a porous media. The Lebesgue and Sobolev spaces with variable exponents proved to be efficient tools to study such problems. More details on applications of these problems can be found in ([1,2,3]).

    A lot of papers in the literature dealt with stabilization of wave equations with different types of nonlinearities such as linear, polynomial and logarithmic. For instance, the following problem was studied by Nakao [4].

    uttΔu+|ut|m2ut+|u|p2u=0,  in  Ω×(0,),

    where m,p>2 and Ω Rn (n1) is a bounded domain. He showed that, with Dirichlet-boundary conditions, the problem has a unique global weak solution if 2p2(n1)/(n2), n3 and a global unique strong solution if p>2(n1)/(n2), n3. In both cases, he proved that the energy of the solution decays algebraically if m>2 and decays exponentially if m=2. Benaissa and Messaoudi [5] considered

    uttΔu+a(1+|ut|m2)ut=|u|p2u, in   Ω×(0,),

    where m,p>2 and showed, for small initial data in an appropriate function space, that the problem has a global weak solution which decays exponentially even if m>2. We also mention here the work of Mustafa and Messaoudi [6], where they considered

    uttΔu+α(t)g(ut)=0,  in  Ω×(0,),

    and established an explicit and general decay rate result, without imposing any restrictive growth assumption on the frictional damping term.

    As we mentioned earlier, modern technology and engineering required the use of variable exponents nonlinearities and the Lebesgue and Sobolev spaces with variable exponents as well. In this regard, we mention the work of Ghegal et al. [7] where, in a bounded domain, the following equation is considered

    uttΔu+|ut|m()2ut=|u|p()2u,  in   Ω×(0,).

    Under suitable conditions on the initial data and the variable exponents, the authors used stable-set method to prove a global existence result. Then, by applying an integral inequality due to Komornik, they obtained the stability result. More results can be found in ([8,9,10]).

    Hyperbolic problems involving variable-exponent nonlinearities with delay are also considered. For instance, Kafini and Messaoudi [11] studied the problem

    uttΔu+μ1|ut|m(x)2ut+μ2|ut|m(x)2(tτ)ut(tτ)=bu|u|p(x)2.

    For b>0, they established a global nonexistence result under suitable conditions on μ1,μ2,m(),p() and the initial data. While, for b=0, they obtained a decay result which is of either polynomial or exponential type depending on the nature of m().

    Recently, Messaoudi in [12] considered the problem

    uttdiv(|u|r()2u)Δut+|ut|m()2ut=0,    Ω×(0,T),

    and established several decay results depending on the nature of variable exponents r() and m(). See [13,14,15,16,17], for more results on the local existence and blow up for some problems with variable exponent nonlinearities.

    Fractional derivatives have been also influenced by variable orders. One can see variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications as in [18]. Analyzing a variable-order time-fractional wave equation, which models, e.g., the vibration of a membrane in a viscoelastic environment examined in [19]. See also[20,21,22] for more details.

    In our work, we aim to study the nonlinear wave Eq (1.1) with nonlinear feedback having a variable exponent m(x) and a time-dependent coefficient α(t). We establish a decay result of an exponential and polynomial type under specific conditions on both m() and α(t) and the initial data. This paper consists of three sections in addition to the introduction. In Section 2, we recall the basic definitions of the variable exponent Lebesgue spaces Lp()(Ω), the Sobolev spaces W1,p()(Ω), as well as some of their properties. Section 3 is devoted to the existence and uniqueness of a weak global solution. In the last section, we show the decay result.

    In this section, we present some materials needed for the statement and the proof of our results. In what follows, we give definitions and properties related to Lebesgue and Sobolev spaces with variable exponents, see [23,24] for more details.

    Let Ω be a domain of Rn with n2 and p:Ω[1,] be a measurable function. The Lebesgue space Lp()(Ω) with a variable exponent p() is defined by

    Lp()(Ω)={v:ΩR; measurable such that ϱp()(λv)<+, for some λ>0},

    where

    ϱp()(v):=Ω|v(x)|p(x)dx.

    The Luxembourg-type norm is given by

    vp():=inf{λ>0:Ω|v(x)λ|p(x)dx1}.

    The space Lp()(Ω), equipped with the above norm, is a Banach space.

    Lemma 2.1. (Hölder's inequality) Let p,q,s1 be measurable functions defined on Ω suchthat

    1s(y)=1p(y)+1q(y),  for a.e.yΩ.

    If fLp()(Ω) and gLq()(Ω), then fgLs()(Ω) and

    fgs()2fp()gq().

    Lemma 2.2. If p:Ω[1,) is a measurable function and1p1p(x)p2<, then

    min{vp1p(),vp2p()}ϱp()(v)max{vp1p(),vp2p()},

    fora.e. xΩ and for any vLp()(Ω).

    Lemma 2.3. [12] If p:Ω[1,) is a measurable function and 1p1p(x)p2<, then

    Ω|v(x)|p(x)dxvp1p1+vp2p2,     vLp()(Ω).

    The variable-exponent Sobolev space W1,p()(Ω) is defined as

    W1,p()(Ω)={vLp()(Ω) such that v exists and |v|Lp()(Ω)}.

    This space is a Banach space with respect to the norm

    vW1,p()(Ω)=vp()+vp().

    Suppose p() satisfies (1.3). Then the space W1,p()0(Ω) is defined to be the closure of C0(Ω) in W1,p()(Ω). The definition of the space W1,p()0(Ω) is usually different from the constant exponent case. However, under condition (1.3) both definitions coincide. The dual space of W1,p()0(Ω) is W1,p()0(Ω) defined in the same way as in the classical Sobolev spaces, where

    1p()+1p()=1.

    Lemma 2.4. (Poincaré's inequality) Let Ω be a bounded domain of Rn and p() satisfies (1.2) and (1.3), then

    vp()Cvp(),for allvW1,p()0(Ω),

    where C is a positive constant depends on p() and Ω. In particular, the space W1,p()0(Ω) has an equivalent norm given by

    vW1,p()0(Ω)=vp().

    Lemma 2.5. If p:¯Ω[1,) is continuous and 

    2p1p(x)p22nn2, n3,

    then the embedding H1(Ω)Lp()(Ω) is continuous and compact.

    Lemma 2.6. [27] Let E:R+R+ be a nonincreasing function and ϕ:R+R be an increasing C1 -function satisfying

    ϕ(0)=0 and ϕ(t)+  as   t+.

    Assume further, that there exist q0, A>0 such that

    SEq+1(t)ϕ(t)dtAE(S),  S>0.

    Then, t  0,

    E(t)CE(0)(1+ϕ(t))1/q,ifq>0,E(t)CE(0)eωϕ(t),ifq=0,

    where C and ω are positive constants independent of the initial energy E(0).

    Definition 2.7. Given the initial data (u0,u1)H10(Ω)×L2(Ω), a function u defined on Ω×(0,T) is called a weak solution of problem (1.1) if

    uL((0,T);H10(Ω)),utL((0,T);L2(Ω))Lm()(Ω×(0,T))

    and it verifies the variational equation

    utt,w+(u,w)+α(t)[(ut,w)+(|ut|m(x)2ut,w)]=0,  wC0(Ω).

    We introduce the energy functional associated to problem (1.1) as

    E(t):=12||ut||22+12||u||22,   t0. (2.1)

    Lemma 2.8. Let u be the solution of (1.1). Then, 

    E(t)=α(t)Ω(|ut|2+|ut|m(x))dx0, t0. (2.2)

    Proof. Multiplying Eq (1.1) by ut and integrating over Ω, the result follows.

    Remark 2.9. In the sequel, we use C to denote a generic constant which may differ from one place to another.

    The following theorem states our existence and uniqueness results, which are the main focus of this section.

    Theorem 3.1. Assume that the variable exponent m() satisfies conditions (1.2) and (1.3). Then, for any initial data u0H10(Ω),u1L2(Ω), problem (1.1)admits a unique global weak solution.

    Proof. To prove the existence of a weak solution to (1.1), we make use of the Galerkin approximation method. For that reason we assume {vj}j1 is an orthogonal basis for H10(Ω) and orthonormal in L2(Ω). We find a solution of the form

    uk(x,t)=kj=1ajk(t)vj(x),   ajk(t)=uk(t),vj,

    to the approximate problem

    (uktt,vj)+(uk,vj)+α(t)[(ukt,vj)+(|ukt|m()2ukt,vj)]=0, (3.1)

    where

    uk(x,0)=uk0(x)=kj=1(uk0,vj)vju0  strongly in H10(Ω),ukt(x,0)=uk1(x)=kj=1(uk1,vj)vju1  strongly in L2(Ω). (3.2)

    This system, by the standard ODE theory has a unique solution guaranteed on [0,tk), 0<tkT. Next, we need to show that this solution can be extended to the maximal interval [0,T), k1 and for any T>0.

    Replace vj by ukt in (3.1) to get

    ddt[ukt22+uk22]+2α(t)[ukt22+Ω|ukt|m()dx]=0,

    and integrate over (0,t) for t(0,tk) to arrive at

    ukt22+uk22+2t0α(s)[ukt(s)22+Ω|ukt|m()(s)dx]ds=uk122+uk022C,  k1. (3.3)

    Hence, the solution can be extended to [0,T), for any given T>0.

    Using (1.4), we arrive at

    ukt22+uk22+2α0t0[ukt(s)22+Ω|ukt|m()(s)dx]dsC,

    where we can conclude that

    uk is bounded in L((0,T);H10(Ω))
    ukt is bounded in L((0,T);L2(Ω))
    ukt is bounded in Lm()(Ω×(0,T)).

    Therefore, we can extract subsequences, still denoted by uk and ukt, such that

    uku weakly star in L((0,T);H10(Ω))
    uktut weakly star in L((0,T);L2(Ω)).

    As ukt is bounded in Lm()(Ω×(0,T)), then |ukt|m()2ukt is bounded in Lm()m()1(Ω×(0,T)). Hence,

    |ukt|m()2uktψ    weakly in    Lm()m()1(Ω×(0,T)).

    To show that ψ=|ut|m()2ut, we integrate (3.1) over (0,t) to get, j=1,...,k,

    ΩuktvjdxΩuk1vjdx+t0Ωukvjdx+t0α(s)Ω(ukt(s)+|ukt|m()2ukt(s))vjdxds=0.

    Now, letting k+ and differentiating the latter result with respect to t gives

    ddtΩutvdx+Ωuvdx+α(t)Ω(ut+ψ)vdx=0,   vH10(Ω). (3.4)

    Hence,

    uttΔu+α(t)(ut+ψ)=0,    in  D(Ω×(0,T)).

    If we define

    χk=2T0α(t)Ω(|ukt|m()2ukt|v|m()2v)(uktv)dxdt, vLm()((0,T);H10(Ω)),

    and

    A(v)=|v|m()2v,

    then we have

    χk=2T0α(t)Ω(A(ukt)A(v))(uktv)dxdt0, vLm()((0,T);H10(Ω)).

    Using Eq (3.3), we get

    χk=uk122+uk022Ω(|ukt(T)|2+|uk(T)|2)dx2T0α(t)Ω|ukt|2dxdt2T0α(t)ΩA(ukt)vdxdt2T0α(t)ΩA(v)(uktv)dxdt.

    As k+,

    0limsupkχku122+u022Ω(|ut(T)|2+|u(T)|2)dx2T0α(t)Ω|ut|2dxdt2T0α(t)Ωψvdxdt2T0α(t)ΩA(v)(utv)dxdt. (3.5)

    Integration of (3.4) over (0,T) after replacing v by ut give

    Ω|ut(T)|2dx+Ω|u(T)|2dxu122u022+2T0α(t)Ω(|ut|2+ψut)dxdt=0. (3.6)

    Adding (3.5) and (3.6) give

    0limsupkχk2T0α(t)Ωψutdxdt2T0α(t)Ωψvdxdt2T0α(t)ΩA(v)(utv)dxdt=2T0α(t)Ω(ψA(v))(utv)dxdt,   vLm()((0,T);H10(Ω)).

    Thus, by the density of H10(Ω) in Lm()(Ω) we have

    T0Ω(ψA(v))(utv)dxdt0,   vLm()(Ω×(0,T)).

    If we let v=λw+ut for wLm()(Ω×(0,T)) then

    T0Ω(ψA(λw+ut))wdxdt0,   wLm()(Ω×(0,T)).

    As 0<λ0, we have,

    T0Ω(ψA(ut))wdxdt0,   wLm()(Ω×(0,T)).

    Similarly, if 0>λ0, we have,

    T0Ω(ψA(ut))wdxdt0,   wLm()(Ω×(0,T)).

    This implies that ψ=A(ut)=|ut|m()2ut.

    To handle the initial conditions, we use Lions' Lemma [25], to obtain, up to a subsequence, that

    uku in C([0,T];L2(Ω)).

    Therefore, uk(,0) makes sense and uk(,0)u(,0) in L2(Ω). Also, by density we have

    uk(,0)=uk0u0  in  H10(Ω),

    hence u(,0)=u0.

    For the other condition, as in [26], we obtain from (3.1) and for any jk and ϕC0(0,T),

    T0Ωuktvj(x)ϕ(t)dxdt=T0Ωukvj(x)ϕ(t)dxdt+T0α(t)Ω(ukt+|ukt|m()2ukt)vj(x)ϕ(t)dxdt.

    As k+, we obtain that, for all vH10(Ω),

    T0Ωutv(x)ϕ(t)dxdt=T0Δuα(t)(ut+|ut|m()2ut),v(x)ϕ(t)dt.

    This implies that

    uttLm()m()1([0,T);H1(Ω)),

    and u solves the equation

    uttΔu+α(t)(ut+|ut|m()2ut)=0.

    Therefore,

    utC([0,T);H1(Ω)),

    where ukt(,0) makes sense and ukt(,0)ut(,0) in H1(Ω). But we have

    ukt(,0)=uk1u1  in  L2(Ω).

    So ut(,0)=u1.

    To prove the uniqueness, we assume u and v are two solutions of (3.1). Then w=uv satisfies the following problem

    {wttΔw+α(t)(wt+|ut|m()2ut|vt|m()2vt)=0inΩ×(0,T),w=0,onΩ×(0,T),w(x,0)=w0(x),wt(x,0)=w1(x),inΩ.

    Multiply the equation by wt and integrate over Ω, to obtain

    12ddt[Ω(|wt|2+|w|2)dx]+α(t)Ω[|wt|2+(|ut|m()2ut|vt|m()2vt)(utvt)]dx=0.

    Integration over (0,t), to get

    Ω(|wt|2+|w|2)dx+2t0α(t)Ω[|wt|2+(|ut|m()2ut|vt|m()2vt)(utvt)]dxdt=0.

    Using the fact that

    (|a|m()2a|b|m()2b)(ab)0, a,bR  and a.e xΩ,

    we obtain

    Ω(|wt|2+|w|2)dx=0.

    This implies that w=C=0, since w=0 on Ω. Hence, the uniqueness. This completes the proof of Theorem 3.1.

    Theorem 4.1. Let (u0,u1)H10(Ω)×L2(Ω) be given. Assume that 0α(τ)dτ= and m()C(¯Ω) that satisfies 

    2m1m(x)m2<2.

     Then, the solution energy (2.1) satisfies, for two positive constants k1,k2,

    E(t)k1ek2t0α(s)ds,t0. (4.1)

    Proof. Multiply (1.1) by αuEq(t) and integrate over Ω×(s,T), 0<s<T, to obtain

    TsαEq(t)Ω(uuttuΔu+α(uut+uut|ut|m(x)2))dxdt=0,

    which gives

    TsαEq(t)Ω(ddt(uut)u2t+|u|2+α(uut+uut|ut|m(x)2))dxdt=0, (4.2)

    for q0 to be specified later.

    Recalling the fact that Ω(|u|2+u2t)dx=2E(t) and using the relation

    ddt(αEq(t)Ωuutdx)=αEq(t)Ωuutdx+qαEq1(t)E(t)Ωuutdx+αEq(t)ddtΩuutdx,

    equation (4.2) becomes

    2TsαEq+1(t)dt=Tsddt(αEq(t)Ωuutdx)Tsα2Eq(t)Ωuutdxdt+qTsαEq1(t)E(t)Ωuutdxdt+TsαEq(t)Ωuutdxdt+2TsαEq(t)Ωu2tdxdtTsα2Eq(t)Ωuut(x,t)|ut|m(x)2dxdt. (4.3)

    The first term in the right side of (4.3) is estimated, using Poincaré's inequality, (2.2) and the fact that

    Ωuutdx12Ω(|u|2+u2t)dxCΩ(|u|2+u2t)dxCE(t),

    to have

    |Tsddt(αEq(t)Ωuutdx)dt|C[α(s)Eq+1(s)+α(T)Eq+1(T)]Cα(0)Eq(0)E(s)CE(s). (4.4)

    Using Young's inequality, the second term leads to

    |Tsα2Eq(t)Ωuutdxdt|TsEq(t)[δCα(t)Ω|u|2dx+C4δα(t)Ωu2tdx]dtδCTsαEq+1(t)dtC4δTsEq(t)E(t)dt,  δ>0.

    Taking δ=1/2C, we get

    |Tsα2Eq(t)Ωuutdxdt|12TsαEq+1(t)dt+CE(s). (4.5)

    Similar to the first term, we have

    |qTsαEq1(t)E(t)Ωuutdxdt|CTsEq(t)E(t)dtCEq+1(s)CE(s). (4.6)

    The fourth term:

    |Tsα(t)Eq(t)Ωuutdxdt|CTs|α(t)|Eq+1(t)dtCEq+1(s)Ts|α(t)|dtCEq+1(s)α(s)CE(s). (4.7)

    The fifth term:

    2TsαEq(t)Ωu2tdxdt2TsEq(t)E(t)dtCEq+1(s)CE(s). (4.8)

    The last term in the right-hand side of (4.3) is handled by using Young's inequality with

    a(x)=m(x)m(x)1 and a(x)=m(x).

    So, for a.e. xΩ, ε>0, and

    cε(x)=ε1m(x)(m(x))m(x)(m(x)1)m(x)1,

    we have

    |Tsα2Eq(t)Ωuut|ut|m(x)2dxdt|CTsαEq(t)[εΩ|u(t)|m(x)dx+Ωcε(x)|ut(t)|m(x)dx]dtCTsαEq(t)[ε(Ω|u(t)|m1dx+Ω|u(t)|m2dx)+Ωcε(x)|ut(t)|m(x)dx]dtCTsαEq(t)[ε(||u(t)||m12+||u(t)||m22)+Ωcε(x)|ut(t)|m(x)dx]dtCTsαEq(t)[ε(Em12(t)+Em22(t))+Ωcε(x)|ut(t)|m(x)dx]dtεCEm121(0)TsαEq+1(t)dt+CTsαEq(t)Ωcε(x)|ut(t)|m(x)dxdt. (4.9)

    If we fix ε=1/2CEm121(0), noting that cε(x) is bounded since m(x) is bounded, then (4.9) becomes

    |Tsα2Eq(t)Ωuut|ut|m(x)2dxdt|12TsαEq+1(t)dtcTsEq(t)E(t)dt12TsαEq+1(t)dt+CE(s). (4.10)

    Combining (4.3)(4.10) and taking T we arrive at

    sαEq+1(t)dtCE(s).

    Therefore, (4.1) is established by the virtue of Lemma 2.6 for q=0 and ϕ(t)=t0α(s)ds.

    Example 1. If we take α(t)=1 and m(x)=2 then we have ϕ(t)=t and hence, for two positive constants k1,k2,

    E(t)k1ek2t, t0.

    The next theorem handles the case: 1<m1<2.

    Theorem 4.2. (Polynomial Decay) Let (u0,u1)H10(Ω)×L2(Ω) be given. Assume that 0α(τ)dτ= and m()C(¯Ω) and satisfies (1.2). Assume further that m1<2. Then, the solution energy (1.1) satisfies, for some positive constant K,

    E(t)K(1+t0α(τ)dτ)1m12m1 t0. (4.11)

    Proof. We follow the same steps in the proof of the previous theorem. But we have to re-estimate the last term in (4.3). For this purpose, we define

    Ω1={xΩ | m(x)<2}  and  Ω2={xΩ | m(x)2}.

    Thus,

    Ωuut|ut|m(x)2dx=Ω1uut|ut|m(x)2dx+Ω2uut|ut|m(x)2dx.

    Then we use Young's inequality and Poincaré's inequality, to get

    |Ω1uut|ut|m(x)2dx|δCΩ|u|2dx+14δΩ1|ut|2m(x)2dx. (4.12)

    In order to estimate the last term of (4.12), we define

    m3:=supxΩ1m(x)2.

    Then Hölder's inequality and the embedding give

    |αΩ1uut|ut|m(x)2dx|δCΩ|u|2dx+α4δ[Ω1|ut|2m12dx+Ω1|ut|2m32dx]δCΩ|u|2dx+Cα4δ[(Ω1|ut|2dx)m11+(Ω1|ut|2dx)m31]δCΩ|u|2dx+Cα4δ[(Ω|ut|2dx)m11+(Ω|ut|2dx)m31]δCΩ|u|2dx+Cα4δ[1+(Ω|ut|2dx)m3m1](Ω|ut|2dx)m11δCΩ|u|2dx+C4δ[1+(2E(0))m3m1](E(t))m11δCΩ|u|2dx+C4δ(E(t))m11. (4.13)

    Thus,

    |Tsα2Eq(t)Ω1uut|ut|m(x)2dxdt|δCTsαEq+1(t)dt+cδTsαEq(t)(E(t))m11dt. (4.14)

    Using Young's inequality, we obtain for any λ>0,

    Eq(t)(E(t))m11λ(E(t))q2m1+cλ(E(t)).

    If we let q+1=q2m1 hence q=2m1m11, then (4.14) implies that

    |Tsα2Eq(t)Ω1uut|ut|m(x)2dxdt|δCTsαEq+1(t)dt+λcδTsαEq+1(t)dt+cδcλTsα(E(t))dt.

    Then we choose δ=1/4C. After δ is fixed, we choose λ=1/4cδ to obtain

    |Tsα2Eq(t)Ω1uut|ut|m(x)2dxdt|12TsαEq+1(t)dt+CE(s). (4.15)

    Now over Ω2, we follow the same steps as in (4.9) to conclude that

    |Tsα2Eq(t)Ω2uut|ut|m(x)2dxdt|12TsαEq+1(t)dt+CE(s). (4.16)

    Combining (4.15) and (4.16), give

    |Tsα2Eq(t)Ωuut|ut|m(x)2dxdt|TsαEq+1(t)dt+CE(s). (4.17)

    Consequently, from (4.3)(4.8) and (4.17), we have

    TsαEq+1(t)dtCE(s).

    If we let T, then from Lemma 2.6 with ϕ(t)=t0α(τ)dτ and q=2m1m11>0, we arrive for some K>0,

    E(t)K(1+t0α(τ)dτ)1m12m1.

    This completes the proof.

    Example 2. If we take Ω=(0,1), α(t)=2+t1+t and m(x)=212+x, then we have ϕ(t)=t+ln(1+t), m1=3/2 and

    E(t)K(1+t+ln(1+t))1, t0,

    for a positive constant K.

    In this paper, we have shown that the time varying coefficient appears in the problem has a direct effect in well posednesss and the decay rates. In fact, we investigated the nonlinear wave Eq (1.1) with nonlinear feedback having a variable exponent m(x) and a time-dependent coefficient α(t). We established a decay result of an exponential and polynomial type under specific conditions on both m() and α(t) and the initial data.

    The authors would like to express their sincere thanks to King Fahd University of Petroleum and Minerals (KFUPM)/Interdisciplinary Research Center (IRC) for Construction and Building Materials for its support. This work has been funded by KFUPM under Project # SB191048.

    The authors declare that there is no conflict of interest regarding the publication of this paper.



    [1] M. Bilal, U. Younas, J. Ren, Dynamics of exact soliton solutions in the double‐chain model of deoxyribonucleic acid, Math. Method. Appl. Sci., 44 (2021), 13357–13375. https://doi.org/10.1002/mma.7631 doi: 10.1002/mma.7631
    [2] S. Javeed, K. S. Alimgeer, S. Nawaz, A. Waheed, M. Suleman, D. Baleanu, et al., Soliton solutions of mathematical physics models using the exponential function technique, Symmetry, 12 (2020), 176. https://doi.org/10.3390/sym12010176 doi: 10.3390/sym12010176
    [3] İ. Yalçınkaya, H. Ahmad, O. Tasbozan, A. Kurt, Soliton solutions for time fractional ocean engineering models with Beta derivative, J. Ocean Eng. Sci., 7 (2022), 444–448. https://doi.org/10.1016/j.joes.2021.09.015 { doi: 10.1016/j.joes.2021.09.015
    [4] X. Yang, Z. Wang, Z. Zhang, Solitons and lump waves to the elliptic cylindrical Kadomtsev–Petviashvili equation, Commun. Nonlinear Sci., 131 (2024), 107837. https://doi.org/10.1016/j.cnsns.2024.107837 doi: 10.1016/j.cnsns.2024.107837
    [5] X. Yang, Z. Wang, Z. Zhang, Generation of anomalously scattered lumps via lump chains degeneration within the Mel'nikov equation, Nonlinear Dyn., 111 (2023), 15293–15307. https://doi.org/10.1007/s11071-023-08615-3 doi: 10.1007/s11071-023-08615-3
    [6] X. Yang, Z. Wang, Z. Zhang, Decay mode ripple waves within the (3+1)‑dimensional Kadomtsev–Petviashvili equation, Math. Method. Appl. Sci., 47 (2024), 10444–10461. https://doi.org/10.1002/mma.10132 doi: 10.1002/mma.10132
    [7] X. Yang, Z. Zhang, A. Wazwaz, Z. Wang, A direct method for generating rogue wave solutions to the (3+1)-dimensional Korteweg-de Vries Benjamin-Bona-Mahony equation, Phys. Lett. A, 449 (2022), 128355. https://doi.org/10.1016/j.physleta.2022.128355 doi: 10.1016/j.physleta.2022.128355
    [8] X. Yin, L. Xu, L. Yang, Evolution and interaction of soliton solutions of Rossby waves in geophysical fluid mechanics, Nonlinear Dyn., 111 (2023), 12433–12445. https://doi.org/10.1007/s11071-023-08424-8 doi: 10.1007/s11071-023-08424-8
    [9] N. Cao, X. Yin, S. Bai, L. Xu, Breather wave, lump type and interaction solutions for a high dimensional evolution model, Chaos Soliton. Fract., 172 (2023), 113505. https://doi.org/10.1016/j.chaos.2023.113505 doi: 10.1016/j.chaos.2023.113505
    [10] L. Xu, X. Yin, N. Cao, S. Bai, Multi-soliton solutions of a variable coefficient Schrödinger equation derived from vorticity equation, Nonlinear Dyn., 112 (2024), 2197–2208. https://doi.org/10.1007/s11071-023-09158-3 doi: 10.1007/s11071-023-09158-3
    [11] Y. Kai, J. Ji, Z. Yin, Study of the generalization of regularized long-wave equation, Nonlinear Dyn., 107 (2022), 2745–2752. https://doi.org/10.1007/s11071-021-07115-6 doi: 10.1007/s11071-021-07115-6
    [12] Y. Kai, Z. Yin, Linear structure and soliton molecules of Sharma-Tasso-Olver-Burgers equation, Phys. Lett. A, 452 (2022), 128430. https://doi.org/10.1016/j.physleta.2022.128430 doi: 10.1016/j.physleta.2022.128430
    [13] C. Zhu, M. Al-Dossari, S. Rezapour, S. Shateyi, On the exact soliton solutions and different wave structures to the modified Schrödinger's equation, Results Phys., 54 (2023), 107037. https://doi.org/10.1016/j.rinp.2023.107037 doi: 10.1016/j.rinp.2023.107037
    [14] C. Zhu, M. Al-Dossari, S. Rezapour, S. A. M. Alsallami, B. Gunay, Bifurcations, chaotic behavior, and optical solutions for the complex Ginzburg–Landau equation, Results Phys., 59 (2024), 107601. https://doi.org/10.1016/j.rinp.2024.107601 doi: 10.1016/j.rinp.2024.107601
    [15] C. Zhu, M. Al-Dossari, S. Rezapour, B. Gunay, On the exact soliton solutions and different wave structures to the (2+1) dimensional Chaffee–Infante equation, Results Phys., 57 (2024), 107431. https://doi.org/10.1016/j.rinp.2024.107431 doi: 10.1016/j.rinp.2024.107431
    [16] C. Zhu, M. Al-Dossari, S. Rezapour, S. Shateyi, B. Gunay, Analytical optical solutions to the nonlinear Zakharov system via logarithmic transformation, Results Phys., 56 (2024), 107298. https://doi.org/10.1016/j.rinp.2023.107298 doi: 10.1016/j.rinp.2023.107298
    [17] S. Ahmad, A. Ullah, S. Ahmad, S. Saifullah, A. Shokri, Periodic solitons of Davey Stewartson Kadomtsev Petviashvili equation in (4+1)-dimension, Results Phys., 50 (2023), 106547. https://doi.org/10.1016/j.rinp.2023.106547 doi: 10.1016/j.rinp.2023.106547
    [18] S. Khaliq, S. Ahmad, A. Ullah, H. Ahmad, S. Saifullah, T. A. Nofal, New waves solutions of the (2+1)-dimensional generalized Hirota–Satsuma–Ito equation using a novel expansion method, Results Phys., 50 (2023), 106450}. https://doi.org/10.1016/j.rinp.2023.106450 doi: 10.1016/j.rinp.2023.106450
    [19] M. Z. Baber, N. Ahmed, C. Xu, M. S. Iqbal, T. A. Sulaiman, A computational scheme and its comparison with optical soliton solutions for the stochastic Chen–Lee–Liu equation with sensitivity analysis, Mod. Phys. Lett. B, 2024, 2450376. https://doi.org/10.1142/S0217984924503767
    [20] C. Xu, Y. Pang, Z. Liu, J. Shen, M. Liao, P. Li, Insights into COVID-19 stochastic modelling with effects of various transmission rates: Simulations with real statistical data from UK, Australia, Spain, and India, Phys. Scr., 99 (2024), 025218. https://doi.org/10.1088/1402-4896/ad186c doi: 10.1088/1402-4896/ad186c
    [21] R. P. King, Applications of stochastic differential equations to chemical-engineering problems-an introductory review, Chem. Eng. Commun., 1 (1974), 221–237. https://doi.org/10.1080/00986447408960433 doi: 10.1080/00986447408960433
    [22] I. Samir, H. M. Ahmed, Retrieval of solitons and other wave solutions for stochastic nonlinear Schrödinger equation with non-local nonlinearity using the improved modified extended tanh-function method, J. Opt., 2024. https://doi.org/10.1007/s12596-024-01776-3
    [23] S. Ahmad, S. F. Aldosary, M. A. Khan, Stochastic solitons of a short-wave intermediate dispersive variable (SIdV) equation, AIMS Mathematics, 9 (2024), 10717–10733. https://doi.org/10.3934/math.2024523 doi: 10.3934/math.2024523
    [24] H. Ur Rehman, A. U. Awan, S. M. Eldin, I. Iqbal, Study of optical stochastic solitons of Biswas-Arshed equation with multiplicative noise, AIMS Mathematics, 8 (2023), 21606–21621. https://doi.org/10.3934/math.20231101 doi: 10.3934/math.20231101
    [25] A. Secer, Stochastic optical solitons with multiplicative white noise via Itô calculus, Optik, 268 (2022), 169831. https://doi.org/10.1016/j.ijleo.2022.169831 doi: 10.1016/j.ijleo.2022.169831
    [26] H. Ur Rehman, I. Iqbal, H. Zulfiqar, D. Gholami, H. Rezazadeh, Stochastic soliton solutions of conformable nonlinear stochastic systems processed with multiplicative noise, Phys. Lett. A, 486 (2023), 129100. https://doi.org/10.1016/j.physleta.2023.129100 doi: 10.1016/j.physleta.2023.129100
    [27] C. Xu, Y. Zhao, J. Lin, Y. Pang, Z. Liu, J. Shen, et al., Bifurcation investigation and control scheme of fractional neural networks owning multiple delays, Comp. Appl. Math., 43 (2024), 186. https://doi.org/10.1007/s40314-024-02718-2 doi: 10.1007/s40314-024-02718-2
    [28] C. Xu, M. Farman, A. Shehzad, Analysis and chaotic behavior of a fish farming model with singular and non-singular kernel, Int. J. Biomath., 2023, 2350105. https://doi.org/10.1142/S179352452350105X
    [29] C. Xu, M. Farman, Z. Liu, Y. Pang, Numerical approximation and analysis of epidemic model with constant proportional Caputo operator, Fractals, 32 (2024), 2440014. https://doi.org/10.1142/S0218348X24400140 doi: 10.1142/S0218348X24400140
    [30] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional calculus: Models and numerical methods, World Scientific, 2012. https://doi.org/10.1142/8180
    [31] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85.
    [32] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, 2016, arXiv: 1602.03408. https://doi.org/10.48550/arXiv.1602.03408
    [33] A. Atangana, D. Baleanu, A. Alsaedi, Analysis of time-fractional Hunter-Saxton equation: A model of neumatic liquid crystal, Open Phys., 14 (2016), 145–149. https://doi.org/10.1515/phys-2016-0010 doi: 10.1515/phys-2016-0010
    [34] A. Yusuf, M. Inc, A. I. Aliyu, D. Baleanu, Optical solitons possessing beta derivative of the Chen-Lee-Liu equation in optical fibers, Front. Phys., 7 (2019), 34. https://doi.org/10.3389/fphy.2019.00034 doi: 10.3389/fphy.2019.00034
    [35] Y. Gurefe, The generalized Kudryashov method for the nonlinear fractional partial differential equations with the beta-derivative, Rev. Mex. Fís., 66 (2020), 771–781. https://doi.org/10.31349/RevMexFis.66.771 doi: 10.31349/RevMexFis.66.771
    [36] H. Ahmad, M. N. Alam, M. A. Rahim, M. F. Alotaibi, M. Omri, The unified technique for the nonlinear time-fractional model with the beta-derivative, Results Phys., 29 (2021), 104785. https://doi.org/10.1016/j.rinp.2021.104785 doi: 10.1016/j.rinp.2021.104785
    [37] K. J. Wang, Variational principle and diverse wave structures of the modified Benjamin-Bona-Mahony equation arising in the optical illusions field, Axioms, 11 (2022), 445. https://doi.org/10.3390/axioms11090445 doi: 10.3390/axioms11090445
    [38] Q. Liu, Y. Zhou, K. Li, S. Zhang, Application of the dynamical system method and the deep learning method to solve the new (3+1)-dimensional fractional modified Benjamin–Bona–Mahony equation, Nonlinear Dyn., 110 (2022), 3737–3750. https://doi.org/10.1007/s11071-022-07803-x doi: 10.1007/s11071-022-07803-x
    [39] M. Shakeel, Attaullah, E. R. El-Zahar, N. A. Shah, J. D. Chung, Generalized exp-function method to find closed form solutions of nonlinear dispersive modified Benjamin–Bona–Mahony equation defined by seismic sea waves, Mathematics, 10 (2022), 1026. https://doi.org/10.3390/math10071026 doi: 10.3390/math10071026
    [40] A. Elmandouh, E. Fadhal, Bifurcation of Exact Solutions for the Space-Fractional Stochastic Modified Benjamin–Bona–Mahony Equation, Fractal Fract., 6 (2022), 718. https://doi.org/10.3390/fractalfract6120718 doi: 10.3390/fractalfract6120718
    [41] Sirendaoreji, Novel solitary and periodic wave solutions of the Benjamin–Bona–Mahony equation via the Weierstrass elliptic function method, Int. J. Appl. Comput. Math., 8 (2022), 223. https://doi.org/10.1007/s40819-022-01441-y doi: 10.1007/s40819-022-01441-y
    [42] F. M. Al-Askar, C. Cesarano, W. W. Mohammed, The influence of white noise and the beta derivative on the solutions of the BBM equation, Axioms, 12 (2023), 447. https://doi.org/10.3390/axioms12050447 doi: 10.3390/axioms12050447
  • This article has been cited by:

    1. Mohammad Kafini, Jamilu Hashim Hassan, Adel M. Al-Mahdi, Jamal H. Al-Smail, Existence and blow up time estimate for a nonlinear Cauchy problem with variable exponents: theory and numerics, 2023, 0020-7160, 1, 10.1080/00207160.2023.2176196
    2. Sun‐Hye Park, Jum‐Ran Kang, Stability analysis for wave equations with variable exponents and acoustic boundary conditions, 2024, 47, 0170-4214, 14476, 10.1002/mma.10285
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(960) PDF downloads(44) Cited by(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog