Research article

A high-accuracy conservative numerical scheme for the generalized nonlinear Schrödinger equation with wave operator

  • Received: 26 June 2024 Revised: 08 August 2024 Accepted: 14 August 2024 Published: 23 September 2024
  • MSC : 65N06, 65N12

  • In this article, we establish a novel high-order energy-preserving numerical approximation scheme to study the initial and periodic boundary problem of the generalized nonlinear Schrödinger equation with wave operator, which is proposed by the finite difference method. The scheme is of fourth-order accuracy in space and second-order one in time. The conservation property of energy as well as a priori estimate are described. The convergence of the proposed scheme is discussed in detail by using the energy method. Some comparisons have been made between the proposed method and the others. Numerical examples are presented to illustrate the validity and accuracy of the method.

    Citation: Xintian Pan. A high-accuracy conservative numerical scheme for the generalized nonlinear Schrödinger equation with wave operator[J]. AIMS Mathematics, 2024, 9(10): 27388-27402. doi: 10.3934/math.20241330

    Related Papers:

    [1] Dongjie Gao, Peiguo Zhang, Longqin Wang, Zhenlong Dai, Yonglei Fang . A novel high-order symmetric and energy-preserving continuous-stage Runge-Kutta-Nyström Fourier pseudo-spectral scheme for solving the two-dimensional nonlinear wave equation. AIMS Mathematics, 2025, 10(3): 6764-6787. doi: 10.3934/math.2025310
    [2] Shanshan Wang . Split-step quintic B-spline collocation methods for nonlinear Schrödinger equations. AIMS Mathematics, 2023, 8(8): 19794-19815. doi: 10.3934/math.20231009
    [3] Yayun Fu, Mengyue Shi . A conservative exponential integrators method for fractional conservative differential equations. AIMS Mathematics, 2023, 8(8): 19067-19082. doi: 10.3934/math.2023973
    [4] Haoran Sun, Siyu Huang, Mingyang Zhou, Yilun Li, Zhifeng Weng . A numerical investigation of nonlinear Schrödinger equation using barycentric interpolation collocation method. AIMS Mathematics, 2023, 8(1): 361-381. doi: 10.3934/math.2023017
    [5] Qasem M. Tawhari . Advanced analytical techniques for fractional Schrödinger and Korteweg-de Vries equations. AIMS Mathematics, 2025, 10(5): 11708-11731. doi: 10.3934/math.2025530
    [6] Tingting Ma, Yuehua He . An efficient linearly-implicit energy-preserving scheme with fast solver for the fractional nonlinear wave equation. AIMS Mathematics, 2023, 8(11): 26574-26589. doi: 10.3934/math.20231358
    [7] Qian Zhang, Ai Ke . Bifurcations and exact solutions of generalized nonlinear Schrödinger equation. AIMS Mathematics, 2025, 10(3): 5158-5172. doi: 10.3934/math.2025237
    [8] Jiadong Qiu, Danfu Han, Hao Zhou . A general conservative eighth-order compact finite difference scheme for the coupled Schrödinger-KdV equations. AIMS Mathematics, 2023, 8(5): 10596-10618. doi: 10.3934/math.2023538
    [9] Taghread Ghannam Alharbi, Abdulghani Alharbi . Traveling-wave and numerical investigations to nonlinear equations via modern computational techniques. AIMS Mathematics, 2024, 9(5): 12188-12210. doi: 10.3934/math.2024595
    [10] Xumei Zhang, Junying Cao . A high order numerical method for solving Caputo nonlinear fractional ordinary differential equations. AIMS Mathematics, 2021, 6(12): 13187-13209. doi: 10.3934/math.2021762
  • In this article, we establish a novel high-order energy-preserving numerical approximation scheme to study the initial and periodic boundary problem of the generalized nonlinear Schrödinger equation with wave operator, which is proposed by the finite difference method. The scheme is of fourth-order accuracy in space and second-order one in time. The conservation property of energy as well as a priori estimate are described. The convergence of the proposed scheme is discussed in detail by using the energy method. Some comparisons have been made between the proposed method and the others. Numerical examples are presented to illustrate the validity and accuracy of the method.



    In [1], Matsunchi proposed the generalized nonlinear Schrödinger equation (NLSE) with wave operator, which reads:

    uttuxx+γutxiαutiθux+λu+β|u|2u=0, (1.1)

    where γ, α, θ, λ, and β are real constants, i2=1, xR and 0<t<T, which describes the nonlinear interaction between two quasi-monochromatic waves. The nonlinear Schrödinger equation has many important applications in different fields as a vital mathematics model, such as Langmuir wave envelope approximation in plasma physics [2], water waves, and bimolecular dynamics [3,4], nonlinear topics [5,6], and references therein.

    To solve the Eq (1.1), we set it up in a compact subset [xl,xr] [7]. Then, the initial and periodic boundary conditions are added as follows:

    u(x,t)|t=0=u0(x),ut(x,t)|t=0=u1(x),x[xl,xr], (1.2)
    u(x,t)=u(x+(xrxl),t),0tT. (1.3)

    There is the energy-conserved property of (1.1)–(1.3) [8]:

    E(t)=||ut||2L2+||ux||2L2+λ||u||2L2+β2xrxl|u|4dx+iθxrxluˉuxdx=E(0). (1.4)

    In terms of numerical study, Wang and Kong et al. [8] considered the multi-symplectic preserving integrator for the Schrödinger equation with wave operator. Moreover, in the paper, the authors discussed mainly the conservative properties, without the necessary convergence analysis of the scheme. In the case of θ=γ=λ=0, Guo and Liang[9] developed a nonconservative implicit difference scheme to solve the NLSE with a wave operator; Zhang [10] proposed an explicit conservative difference scheme that was conditionally stable for it. In [11], several unconditionally stable conservative schemes were shown. However, the above-mentioned schemes were all of second-order accuracy in space. Furthermore, Li and Zhang [12] designed a conservative scheme of (1.1). But the scheme is nonlinear implicit, so it is not suitable for parallel computation because it needs heavy iterative calculations.

    Recently, high-accuracy computational methods have been attracted by many researchers. In recent works, the high-order accuracy approximation methods were proposed to study the Klein–Gordon equation[13], the Schrödinger equation[14,15], the Klein–Gordon–Schrödinger equation[16,17], nonlinear wave equations[18], respectively. In addition, for wide and interesting topics covered, the numerical studies should also be recalled in the literatures. Hu [19] presented compact conservative schemes for the coupled nonlinear Schrödinger system. Dehghan et al. [20,21] studied the high-order solution for Sine–Gordon equation, heat and advection–diffusion equations of one dimension, respectively. Later, this team [22,23] solved the NLSE with constant and variable coefficients, and 2D Rayleigh–Stokes problem by compact finite difference method. In [24], an efficient and compact finite difference scheme is developed for the Klein–Gordon–Zakharov equation. In [25], the NLSE was solved by Fourier pseudo-spectral method. Especially in [26,27,28], some efficient linearly implicit and high-order energy-preserving schemes were proposed for Hamiltonian systems, and monotonicity-preserving ones for wave equations. These useful methods inspire us to establish an efficient numerical method for the generalized NLSE with wave operator. In this article, a novel energy-preserving approximation scheme is designed to solve (1.1)–(1.3) with the following advantages: The scheme is high accuracy, unconditionally stable, and convergent, whose theoretical accuracy is O(τ2+h4); the scheme preserves the physical conservative property of the original system; and the proposed method is linearized, which significantly reduces the computational cost compared with the nonlinear one.

    The outline of this article is as follows: In Section 2, a linearized high-accuracy energy-preserving scheme for (1.1) is described. The simulation of conservative property and error estimates of the scheme are shown in Section 3. In Section 4, we prove the convergence of the scheme. In Section 5, several useful numerical examples are given to test the theoretical results.

    In this section, we define the solution domain ˉΩ={(x,t)|x[xl,xr],t[0,T]}, which is covered by the uniform grid ˉΩh×τ={(xj,tn)|xj=xl+jh,tn=nτ,0jM,0nN}, where h=xrxlM is spatial step, τ=TN is temporal step. Denote Unju(xj,tn). Denote discrete grid function ω={ωnj;j=0,1,2,,M,n=0,1,2,,N} on ˉΩh×τ. Define:

    δtωnj=ωn+1jωnjτ,δˉtωnj=ωnjωn1jτ,δˆtωnj=ωn+1jωn1j2τ,δxωnj=ωnj+1ωnjh,
    δˆxωnj=ωnj+1ωnj12h,δˉxωnj=ωnjωnj1h,δ¨xωnj=ωnj+2ωnj24h.

    In the article, the constant C is general positive and independent of mesh parameters h and τ at different circumstances.

    According to the operators above, the high-accuracy linearized energy-preserving scheme for (1.1)–(1.3) is derived:

    δtδˉtUnj12[43δxδˉx(Un+1j+Un1j)13δˆxδˆx(Un+1j+Un1j)]+γ(43δˆxδˆtUnj13δ¨xδˆtUnj)iαδˆtUnjiθ2[43δˆx(Un+12j+Un12j)13δ¨x(Un+12j+Un12j)]+12λ(Un+1j+Un1j)+12β|Unj|2(Un+1j+Un1j)=0, (2.1)
    U0j=u0(xj),δˆtU0j=u1(xj), (2.2)
    Unj=Unj+M, (2.3)

    where vn+12j=vn+1j+vnj2.

    Assume that n=0 is valid for (2.1). Applying (2.2), we have

    2τ2(U1ju0τu1)[43δxδˉx(U1jτu1)13δˆxδˆx(U1jτu1)]+γ(43δˆxu113δ¨xu1)iαu1iθ2[43δˆx(U1j+u0τu1)13δ¨x(U1j+u0τu1)]+λ(U1jτu1)+β|u0|2(U1jτu1)=0. (2.4)

    Let Z0h={V|V=(Vn0,Vn1,,VnM1)T,Vn0=VnM,Vn1=vnM1,Vn2=VnM2}. For ϕ,φZ0h, define:

    (ϕ,φ)=hM1j=0ϕnj¯φnj,(δxϕ,δxφ)l=hM1j=0δxϕnjδx¯φnj,||ϕ||2=(ϕ,ϕ),||δxϕ||=(δxϕ,δxϕ)l,||ϕ||=max0jM1|ϕnj|,||δ¨xϕ||=(δ¨xϕn,δ¨xϕn)l.

    Next, we discuss the conservative property and error estimate of (2.1)–(2.4).

    Lemma 3.1. [29] V,WZ0h, we obtain

    (δxW,V)=(W,δˉxV),(δˆxW,V)=(W,δˆxV),(δ¨xW,V)=(W,δ¨xV).

    Then one has

    (δˆxW,W)=0,(δ¨xW,W)=0,(δxδˉxW,W)=||δxW||2,(δˆxδˆxW,W)=||δˆxW||2,(δ¨xδ¨xW,W)=||δ¨xW||2.

    Lemma 3.2. [30] For any grid function VZ0h, there is

    ||δ¨xV||2||δˆxV||2||δxV||2.

    Lemma 3.3.[31] For VZ0h, we obtain

    ||V||xrxl2||δxV||.

    Theorem 3.1. The difference scheme (2.1) inherits the property of energy conservation of the original system (1.1)–(1.3):

    En=||δtUn||2+23(||δxUn+1||2+||δxUn||2)16(||δˆxUn+1||2+||δˆxUn||2)+23θIm[M1j=0(Un+12j+1¯Un+12j¯Un+12j+1Un+12j)]112θIm[M1j=0(¯Un+12j+2Un+12j)Un+12j+2¯Un+12j]+12λ(||Un+1||2+||Un||2)+12β||Un||2||Un+1||2=En1==E0. (3.1)

    Proof. By Lemma 3.1, do the inner product of (2.1) with δtUn+δtUn1. Then take the real part:

    1τ(||δtUn||2||δtUn1||2)+23τ(||δxUn+1||2||δxUn1||2)16τ(||δˆxUn+1||2||δˆxUn1||2)Re(iαδˆtUn,δtUn+δtUn1)+θIm(23δˆx(Un+12+Un12),δtUn+δtUn1)θIm(16δ¨x(Un+12+Un12),δtUn+δtUn1)+12τλ(||Un+1||2||Un1||2)+12τβ||Un||2(||Un+1||2||Un1||2)=0. (3.2)

    Noting that

    Re(iαδˆtUn,δtUn+δtUn1)=α2Im(δtUn+δtUn1,δtUn+δtUn1)=0. (3.3)

    By using (2.3), we obtain

    Im[(23δˆx(Un+12+Un12),δtUn+δtUn1)]=Im[23h12hτM1j=0(Un+12j+1Un+12j1+Un12j+1Un12j1)¯Un+1jUn1j]=13τIm[M1j=0(Un+12j+1Un+12j1+Un12j+1Un12j1)(¯Un+1j¯Un1j)]=23τIm{M1j=0[(Un+12j+1+Un12j+1)(Un+12j1+Un12j1)](¯Un+12j¯Un12j)}=23τIm{M1j=0[(¯¯Un+12j+1Un+12j¯Un+12j+1Un+12j)+(¯Un12j+1Un12j¯¯Un12j+1Un12j)[(¯¯Un+12j+1Un12j+¯Un+12j+1Un12j)+(¯Un+12jUn12j+1+¯¯Un+12jUn12j+1)]}=23τ{Im[M1j=0(Un+12j+1¯Un+12j¯Un+12j+1Un+12j)]Im[M1j=0(Un12j+1¯Un12j¯Un12j+1Un12j)]}. (3.4)

    Similarly, we obtain

    Im[(16δ¨x(Un+12+Un12),δtUn+δtUn1)]=112τ{Im[M1j=0(Un+12j+2¯Un+12j¯Un+12j+2Un+12j)]Im[M1j=0(Un12j+2¯Un12j¯Un12j+2Un12j)]}. (3.5)

    Substituting (3.3)–(3.5) into (3.2). Let

    En=||δtUn||2+23(||δxUn+1||2+||δxUn||2)16(||δˆxUn+1||2+||δˆxUn||2)+23θIm[M1j=0(Un+12j+1¯Un+12j¯Un+12j+1Un+12j)]112θIm[M1j=0(¯Un+12j+2Un+12j)Un+12j+2¯Un+12j]+12λ(||Un+1||2+||Un||2)+12β||Un||2||Un+1||2,

    which implies (3.1).

    Lemma 3.4. Assume that u0H1per[xl,xr], then the solution of (1.1)–(1.3) is estimated:

    ||ut||L2C,||u||L2C,||ux||L2C,||u||LC.

    Proof. It follows from (1.4) that

    ||ut||2L2+||ux||2L2+λ||u||2L2C+|iθxrxluˉuxdx|C+12|θ|(||u||2L2+||ux||2L2). (3.6)

    For the parameters λ and θ that satisfy 112|θ|>0 and λ12|θ|>0, we obtain

    ||ut||L2C,||u||L2C,||ux||L2C. (3.7)

    Thus, ||u||LC follows by Sobolev inequality.

    Theorem 3.2. For the scheme of (2.1), its solution satisfies the following estimation: ||δtUn||C,||Un||C,||δxUn||C, ||Un||C.

    Proof. From (3.1), we obtain

    ||δtUn||2+23(||δxUn+1||2+||δxUnx||2)16(||δˆxUn+1||2+||δˆxUnx||2)+12λ(||Un+1||2+||Un||2)C+23|θIm[M1j=0(Un+12j+1¯Un+12j¯Un+12j+1Un+12j)]|+112|θIm[M1j=0(¯Un+12j+2Un+12jUn+12j+2¯Un+12j)]|. (3.8)

    For UnZ0h, we have

    M1j=0(Un+12j1¯Un+12j+¯Un+12j+1Un+12j)=0,M1j=0(¯Un+12j2Un+12j+Un+12j+2¯Un+12j)=0. (3.9)

    Thus

    23|θIm[M1j=0(Un+12j+1¯Un+12j¯Un+12j+1Un+12j)]|=23h|θIm[hM1j=0(Un+12j+1¯Un+12jUn+12j1¯Un+12j+Un+12j1¯Un+12j¯Un+12j+1Un+12j)]|=43|θIm[hM1j=0¯Un+12jδˆxUn+12j]||θ|3(Un+12+Un2+δˆxUn+12+δˆxUn2). (3.10)

    Similarly, we obtain

    112|θIm[M1j=0(¯Un+12j+2Un+12jUn+12j+2¯Un+12j)]||θ|12(Un+12+Un2+δ¨xUn+12+δ¨xUn2). (3.11)

    This, together with (3.10), (3.8), and Lemma 3.2, gives the following:

    ||δtUn||2+(12512|θ|)(||δxUn+1||2+||δxUnx||2)+(12λ512|θ|)(||Un+1||2+||Un||2)C. (3.12)

    For λ and θ that satisfy 12512|θ|>0 and 12λ512|θ|>0, we have

    ||δtUn||C,||δxUn||C,||Un||C. (3.13)

    It follows from Lemma 3.3 that

    ||Un||C. (3.14)

    Let ωnj=u(xj,tn). Together with (2.4), the truncation error of (2.1)–(2.3) is defined:

    rnj=δtδˉtωnj12[43δxδˉx(ωn+1j+ωn1j)13δˆxδˆx(ωn+1j+ωn1j)]+γ(43δˆxδˆtωnj13δ¨xδˆtωnj)iαδˆtωnjiθ2[43δˆx(ωn+12j+ωn12j)13δ¨x(ωn+12j+ωn12j)]+12λ(ωn+1j+ωn1j)+12β|ωnj|2(ωn+1j+ωn1j), (4.1)
    σ0j=2τ2(ω1ju0τu1)[43δxδˉx(ω1jτu1)13δˆxδˆx(ω1jτu1)]+γ(43δˆxu113δ¨xu1)iαu1iθ2[43δˆx(ω1j+u0τu1)13δ¨x(ω1j+u0τu1)]+λ(ω1jτu1)+β|u0|2(ω1jτu1), (4.2)
    ω0j=u0(xj), (4.3)
    ωnj=ωnj+M. (4.4)

    Applying Taylor expansion, there is |rn|+|σ0|=O(τ2+h4).

    Next, we shall carry out the convergence analysis of the present scheme.

    Lemma 4.1. [32] Suppose that the mesh function {vn,n=1,2,,N;Nτ=T} satisfies the inequality

    vnvn1Bτvn+Cτvn1+Anτ,

    the constants B, C, and An are nonnegative. Thus

    ||vn||(v0+τNk=1Ak)e2(B+C)T,

    where, τ small enough stafies (B+C)τN12N(N>1).

    Theorem 4.1. Suppose that u(x,t)C6,3x,t. The numerical solution Un of the finite difference scheme (2.1)–(2.3) is convergent to the solution of (1.1)–(1.3) in the |||| norm with the convergent rate O(τ2+h4).

    Proof. Let enj=ωnjUnj. From (4.1)–(4.4) and (2.1)–(2.4), we have

    rnj=δtδˉtenj12[43δxδˉx(en+1j+en1j)13δˆxδˆx(en+1j+en1j)]+γ(43δˆxδˆtenj13δ¨xδˆtenj)iαδˆtenjiθ2[43δˆx(en+12j+en12j)13δ¨x(en+12j+en12j)]+12λ(en+1j+en1j)+12β|ωnj|2(ωn+1j+ωn1j)12β|Unj|2(Un+1j+Un1j), (4.5)
    σ0j=2τ2e1j(43δxδˉxe1j13δˆxδˆxe1j)iθ2(43δˆxe1j13δ¨xe1j)+λe1j+β|u0|2e1j, (4.6)
    e0j=0, (4.7)
    enj=enj+M. (4.8)

    Multiply both sides of (4.5) with δten+δˉten. Take the real parts:

    (rn,δten+δˉten)=1τ(||δten||2||δten1||2)+23τ(||δxen+1||2||δxen1||2)16τ(||δˆxen+1||2||δˆxen1||2)Re(iαδˆten,δten+δˉten)+θIm(23δˆx(en+12+en12),δten+δˉten)θIm(16δ¨x(en+12+en12),δten+δˉten)+12τλ(||en+1||2||en1||2)+Re(P,δten+δˉten), (4.9)

    where

    P=12β|ωn|2(ωn+1+ωn1)12β|Un|2(Un+1+Un1).

    Computing the fifth, sixth, and last terms on the right-hand side of (4.9), we have

    Im(23δˆx(en+12+en12),δten+δˉten)C(||δˆxen+1||2+||δˆxen||2+||δˆxen1||2+||δten||2+||δten1||2), (4.10)
    Im[(16δ¨x(en+12+en12),δten+δˉten)]C(||δ¨xen+1||2+||δ¨xen||2+||δ¨xen1||2+||δten||2+||δten1||2), (4.11)
    Re(P,δten+δˉten)=(12β|ωn|2(en+1j+en1)+12β(|ωn|2|Un|2)(Un+1+Un1),δten+δˉten)=12β(|ωn|2(en+1+en1),δten+δˉten)+12β((|ωn|2|Un|2)(Un+1+Un1),δten+δˉten). (4.12)

    In addition, we have

    (12β(|ωn|2(en+1+en1),δten+δˉten)C(||en||2+||en+1||2+||δten1||2+||δten||2), (4.13)
    (12β(|ωn|2|Un|2)(Un+1+Un1),δten+δˉten)=β2((ωn¯en+en¯Un)(Un+1+Un1),δten+δˉten)C(||en||2+||δten||2+||δten1||2), (4.14)

    and

    Re(iαδˆten,δten+δˉten)=0, (4.15)
    (rn,δten+δˉten)||rn||2+12(||δten||2+||δten1||2). (4.16)

    It follows from (4.9)–(4.16) that

    1τ(||δten||2||δten1||2)+23τ(||δxen+1||2||δxen1||2)16τ(||δˆxen+1||2||δˆxen1||2)+12τλ(||en+1||2||en1||2)||rn||2+C(||δˆxen+1||2+||δˆxen||2+||δˆxen1||2+||δ¨xen+1||2+||δ¨xen||2+||δ¨xen1||2+||en+1||2+||en||2+||δten||2+||δten1||2) (4.17)

    Let Φn=||δten||2+12(||δxen+1||2+||δxen||2)+λ2(||en+1||2+||en||2). By Lemma 3.3, (4.17) can be rewritten as follows:

    ΦnΦn1τ||rn||2+Cτ(Φn+Φn1). (4.18)

    Using Lemma 4.1 yields

    Φn(Φ0+Tsup1nN||rn||2)eCT. (4.19)

    In (4.6), multiplying e1 yields

    (σ0,e1)=2τ2||e1||2+43||δxe1||213||δˆxe1||2+λ||e1||2+β|u0|2||e1||2. (4.20)

    According to Lemma 3.2, (4.20) together with |σ0|=O(τ2+h4), (σ0,e1)12(||σ0||2+||e1||2), and τ small enough gives

    ||e1||O(τ2+h4),||δxe1||O(τ2+h4). (4.21)

    Consequently

    Φ0=[O(τ2+h4)]2. (4.22)

    It follows from (4.19) that

    Φn[O(τ2+h4)]2. (4.23)

    Thus

    ||en||O(τ2+h4),||δxen||O(τ2+h4). (4.24)

    From Lemma 3.3, we obtain

    ||en||O(τ2+h4). (4.25)

    In this section, numerical tests are given to verify the theoretical analysis of the different solutions. To test the space accuracy of the scheme, we denote

    Ern=||ωnUn||,Order=log[Ern(h2,τ4)/Ern(h,τ)]/log2.

    Consider the initial and periodic boundary problems:

    uttuxx+utx+i(ut+ux)+3u=0, (5.1)
    u(x,0)=u0(x),ut(x,0)=u1(x), (5.2)
    u(x,t)=u(x+(xrxl),t). (5.3)

    The exact periodic solution of (5.1)–(5.3) is known as:

    u(x,t)=exp[i(x3t)]. (5.4)

    In computations, we take xl=0,xr=2π, and T=10. Setting t=0, u0(x) and u1(x) are derived from (5.4). Wang and Kong proposed a second-order accuracy MI scheme to study (5.1)–(5.3) [8]. The MI scheme and the presented scheme are denoted as Schemes I and II, respectively. In view of all the schemes having 2-order accuracy in time, we mainly consider the accuracy in space in the tests. The comparison between Scheme I and II is provided in Table 1 and Figure 1. Table 1 includes the errors, convergence order, and CPU time of both schemes. From Table 1 and Figure 1, it is clear that our method is much better than the other in [8]. Table 1 also demonstrates the present scheme (2.1)–(2.4) is fourth-accuracy in space. In view that the discrete energy is complex, the imaginary and real parts of the conservative property of En for Scheme II have been shown in Figure 2 under the temporal τ=1640 and the spatial h=pi40, respectively. Figure 2 shows that the scheme (2.1) inherits the energy-conservative property very well, which the original problem possesses.

    Table 1.  The comparison of errors, convergence order of Un, and CPU time at t=10 for I and II under different h and τ.
    (h,τ) (pi10,140) (pi20,1160) (pi40,1640) (pi80,12560) (pi160,110240)
    Ern-I 6.76685e-2 1.93801e-2 4.99825e-3 1.25930e-3 3.19763e-4
    Order-I - 1.86860 1.96911 1.99225 1.98450
    CPU time-I 0.20 s 0.75 s 6.04 s 70.72 s 1238.64 s
    Ern-II 3.27958e-2 2.05709e-3 1.28647e-4 8.04211e-6 4.83896e-7
    Order-II - 3.99285 3.99877 3.99958 4.07670
    CPU time-II 0.19 s 0.69 s 5.26 s 64.60 s 1008.52 s

     | Show Table
    DownLoad: CSV
    Figure 1.  The comparison of maximum errors for Scheme I and II under mesh step h=π20,τ=1160 for (I) and (II), respectively.
    Figure 2.  Discrete energy En of the scheme (2.1) for Case 5.1: imaginary parts (a) and real parts (b).

    The initial value problem of (1.1)–(1.3):

    uttuxx+iut2|u|2u=0, (5.5)
    u(x,0)=g0(x),ut(x,0)=g1(x). (5.6)

    In experiments, g0(x)=Asech(Kx), g1(x)=ivAsech(Kx) are chosen with the parameters A=|K|, and v=12(1±14K2) [33]. We take K=13, v=12(114K2). The comparisons of convergence order, CPU time, and the errors in the norm are shown in Table 2 under different spatial h and temporal τ. The values of En are shown in Table 3. Both Tables 2 and 3 all demonstrate the accuracy and effectiveness of the present scheme in this article.

    Table 2.  Comparison of errors, spatial convergent order of Un, and CPU time at t=10 for I and II.
    (h,τ) (25,15) (15,120) (110,180) (120,1320)
    Ern-I 1.04175e-1 4.34497e-2 1.27546e-2 3.33003e-3
    Order-I - 1.54875 1.84570 1.95709
    CPU time-I 1.29 s 5.01 s 32.70 s 335.08 s
    Ern-II 1.17183e-2 7.39682e-4 4.63126e-5 2.89571e-6
    Order-II - 3.98024 3.99643 3.99919
    CPU time-II 1.24 s 4.30 s 30.29 s 314.94 s

     | Show Table
    DownLoad: CSV
    Table 3.  The values En of the present scheme (2.1) at various times t under (h,τ)=(0.05,0.003125).
    t En t En
    1 0.48301878398221 2 0.48301878401443
    3 0.48301878402789 4 0.48301878402025
    5 0.48301878399478 6 0.48301878395885
    7 0.48301878392179 8 0.48301878389250
    9 0.48301878387798 10 0.48301878388164

     | Show Table
    DownLoad: CSV

    In this paper, an attempt was made to design a novel energy-conserved numerical scheme to solve the initial and periodic boundary problem of the generalized nonlinear Schrödinger equation with a wave operator. The proposed scheme possesses the following merits: Coupling with the Richardson extrapolation, the scheme is linear, of high accuracy O(h4+τ2), and without any restrictions of mesh steps; the presented scheme is energy-conserved and inherits the conservative property that the original system possesses. The convergence analysis of the scheme is discussed in detail. Numerical tests further illustrate the effectiveness of the scheme.

    This work is supported by the Natural Science Foundation of China (No.11401438), A Project of Shandong Province Higher Educational Science and Technology Program (No. J15LI56), The Doctoral Research Foundation of WFU (2019BS01).

    The author declares no conflict of interest.



    [1] K. Matsunchi, Nonlinear interactions of counter-travelling waves, J. Phys. Soc. Jpn., 48 (1980), 1746–1754. https://doi.org/10.1143/JPSJ.48.1746 doi: 10.1143/JPSJ.48.1746
    [2] L. Bergé, T. Colin, A singular perturbation problem for an envelope equation in plasma physics, Physica D, 84 (1995), 437–459. https://doi.org/10.1016/0167-2789(94)00242-i doi: 10.1016/0167-2789(94)00242-i
    [3] M. Holzleitner, A. Kostenko, G. Teschl, Dispersion estimates for spherical Schrödinger equations: the effect of boundary conditions, Opusc. Math., 36 (2016), 769–786. https://doi.org/10.7494/OpMath.2016.36.6.769 doi: 10.7494/OpMath.2016.36.6.769
    [4] J. X. Xin, Modeling light bullets with the two-dimensional sine-Gordon equation, Physica D, 135 (2000), 345–368. https://doi.org/10.1016/s0167-2789(99)00128-1 doi: 10.1016/s0167-2789(99)00128-1
    [5] S. Machihara, K. Nakanishi, T. Ozawa, Nonrelativistic limit in the energy space for nonlinear Klein-Gordon equations, Math. Ann., 322 (2002), 603–621. https://doi.org/10.1007/s002080200008 doi: 10.1007/s002080200008
    [6] T. Saanouni, Global well-posedness of some high-order focusing semilinear evolution equations with exponential nonlinearity, Adv. Nonlinear Anal., 7 (2017), 67–84. https://doi.org/10.1515/anona-2015-0108 doi: 10.1515/anona-2015-0108
    [7] A. Biswas, H. Triki, M. Labidi, Bright and dark solutions of Rosenau-Kawahara equation with power law nonlinearty, Phys. Wave Phen., 19 (2011), 24–29. https://doi.org/10.3103/S1541308X11010067 doi: 10.3103/S1541308X11010067
    [8] L. Wang, L. Kong, L. Zhang, W. Zhou, X. Zheng, Multi-symplectic preserving integrator for the Schrödinger equation with wave operator, Appl. Math. Model., 39 (2015), 6817–6829. https://doi.org/10.1016/j.apm.2015.01.068 doi: 10.1016/j.apm.2015.01.068
    [9] B. Guo, H. Liang, On the problem of numerical calculation for a class of the system of nonlinear Schrödinger equations with wave operator, (Chinese), Journal on Numerica Methods and Computer Applications, 4 (1983), 176–182. https://doi.org/10.12288/szjs.1983.3.176 doi: 10.12288/szjs.1983.3.176
    [10] L. Zhang, Q. Chang, A conservative numerical scheme for a class of nonlinear Schrödinger equation with wave operator, Appl. Math. Comput., 145 (2003), 603–612. https://doi.org/10.1016/s0096-3003(02)00842-1 doi: 10.1016/s0096-3003(02)00842-1
    [11] T.-C. Wang, L.-M. Zhang, Analysis of some new conservative schemes for nonlinear Schrödinger equation with wave operator, Appl. Math. Comput., 182 (2006), 1780–1794. https://doi.org/10.1016/j.amc.2006.06.015 doi: 10.1016/j.amc.2006.06.015
    [12] X. Li, L. Zhang, S. Wang, A compact finite difference scheme for the nonlinear Schrödinger equation with wave operator, Appl. Math. Comput., 219 (2012), 3187–3197. https://doi.org/10.1016/j.amc.2012.09.051 doi: 10.1016/j.amc.2012.09.051
    [13] M. Dehghan, A. Mohebbi, Z. Asgari, Fourth-order compact solution of the nonlinear Klein-Gordon equation, Numer. Algor., 52 (2009), 523–540. https://doi.org/10.1007/s11075-009-9296-x doi: 10.1007/s11075-009-9296-x
    [14] T. Wang, B. Guo, Unconditional convergence of two conservative compact difference schemes for nonlinear Schrödinger equation in one dimension, (Chinese), Scientia Sinica Mathematica, 41 (2011), 207–233. https://doi.org/10.1360/012010-846 doi: 10.1360/012010-846
    [15] X. Li, Y. Gong, L. Zhang, Two novel classes of linear high-order structure-preserving schemes for the generalized nonlinear Schrödinger equation, Appl. Math. Lett., 104 (2020), 106273. https://doi.org/10.1016/j.aml.2020.106273 doi: 10.1016/j.aml.2020.106273
    [16] T. Wang, Optimal point-wise error estimate of a compact difference scheme for the Klein-Gordon-Schrödinger equation, J. Math. Anal. Appl., 412 (2014), 155–167. https://doi.org/10.1016/j.jmaa.2013.10.038 doi: 10.1016/j.jmaa.2013.10.038
    [17] X. Pan, L. Zhang, High-order linear compact conservative method for the nonlinear Schrodinger equation coupled with the nonlinear Klein-Gordon equation, Nonlinear Anal. Theor., 92 (2013), 108–118. https://doi.org/10.1016/j.na.2013.07.003 doi: 10.1016/j.na.2013.07.003
    [18] D. Li, W. Sun, Linearly implicit and high-order energy-conserving schemes for nonlinear wave equations, J. Sci. Comput., 83 (2020), 65. https://doi.org/10.1007/s10915-020-01245-6 doi: 10.1007/s10915-020-01245-6
    [19] X. Hu, L. Zhang, Conservative compact difference schemes for the coupled nonlinear Schrödinger system, Numer. Method. Part. Differ. Equ., 30 (2014), 749–772. https://doi.org/10.1002/num.21826 doi: 10.1002/num.21826
    [20] A. Mohebbi, M. Dehghan, High-order solution of one-dimensional Sine-Gordon equation using compact finite difference and DIRKN methods, Math. Comput. Model., 51 (2010), 537–549. https://doi.org/10.1016/j.mcm.2009.11.015 doi: 10.1016/j.mcm.2009.11.015
    [21] A. Mohebbi, M. Dehghan, High-order compact solution of the one-dimensional heat and advection-diffusion equations, Appl. Math. Model., 34 (2010), 3071–3084. https://doi.org/10.1016/j.apm.2010.01.013 doi: 10.1016/j.apm.2010.01.013
    [22] M. Dehghan, A. Taleei, A compact split-step finite difference method for solving the nonlinear Schrödinger equations with constant and variable coefficients, Comput. Phys. Commun., 181 (2010), 43–51. https://doi.org/10.1016/j.cpc.2009.08.015 doi: 10.1016/j.cpc.2009.08.015
    [23] A. Mohebbi, M. Abbaszadeh, M. Dehghan, Compact finite difference scheme and RBF meshless approach for solving 2D Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivatives, Comput. Method. Appl. Mech. Eng., 264 (2013), 163–177. https://doi.org/10.1016/j.cma.2013.05.012 doi: 10.1016/j.cma.2013.05.012
    [24] T. Wang, L. Zhang, Y. Jiang, Convergence of an efficient and compact finite difference scheme for the Klein-Gordon-Zakharov equation, Appl. Math. Comput., 221 (2013), 433–443. https://doi.org/10.1016/j.amc.2013.06.059 doi: 10.1016/j.amc.2013.06.059
    [25] T. Wang, J. Wang, B. Guo, Two completely explicit and unconditionally convergent Fourier pseudo-spectral methods for solving the nonlinear Schrödinger equation, J. Comput. Phys., 404 (2020), 109116. https://doi.org/10.1016/j.jcp.2019.109116 doi: 10.1016/j.jcp.2019.109116
    [26] D. Li, X. Li, Relaxation exponential Rosenbrock-type methods for oscillatory Hamiltonian systems, SIAM J. Sci. Comput., 45 (2023), A2886–A2911. https://doi.org/10.1137/22M1511345 doi: 10.1137/22M1511345
    [27] D. Li, X. Li, Z. Zhang, Linearly implicit and high-order energy-preserving relaxation schemes for highly oscillatory Hamiltonian systems, J. Comput. Phys., 477 (2023), 111925. https://doi.org/10.1016/j.jcp.2023.111925 doi: 10.1016/j.jcp.2023.111925
    [28] D. Li, X. Li, Z. Zhang, Implicit-explicit relaxation Runge-Kutta methods: construction, analysis and applications to PDEs, Math. Comp., 92 (2023), 117–146. https://doi.org/10.1090/mcom/3766 doi: 10.1090/mcom/3766
    [29] A. Ghiloufi, M. Rahmeni, K. Omrani, Convergence of two conservative high-order accurate difference schemes for the generalized Rosenau-Kawahara-RLW equation, Eng. Comput., 36 (2020), 617–632. https://doi.org/10.1007/s00366-019-00719-y doi: 10.1007/s00366-019-00719-y
    [30] K. Zheng, J. Hu, High-order conservative Crank-Nicolson scheme for regularized long wave equation, Adv. Differ. Equ., 2013 (2013), 287. https://doi.org/10.1186/1687-1847-2013-287 doi: 10.1186/1687-1847-2013-287
    [31] A. Samarskii, V. Andreev, Difference methods for elliptic equations, (Chinese), Beijing: Science Press, 1984.
    [32] Y. Zhou, Application of discrete functional analysis to the finite difference method, Beijing: International Academic Publishers, 1990.
    [33] J. Wang, Multisymplectic Fourier pseudospectral method for the nonlinear Schrödinger equations with wave operator, J. Comp. Math., 25 (2007), 31–48.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(872) PDF downloads(45) Cited by(0)

Figures and Tables

Figures(2)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog