Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Multicomponent thermodynamics with instabilities and diffuse interfaces fluids

  • Received: 30 March 2024 Revised: 05 June 2024 Accepted: 13 June 2024 Published: 06 September 2024
  • MSC : 80A17, 76B45, 35Q35

  • We investigated the mathematical structure of Gibbsian multicomponent thermodynamics with instabilities. We analyzed the construction of such thermodynamics from a pressure law using ideal gases as the low density limit. The fluid mixtures were allowed to have mechanically and chemically unstable states that were excluded in previous work on supercritical fluids, and the Soave-Redlich-Kwong cubic equation of state was specifically considered. We also investigated the mathematical structure of extended thermodynamics in the presence of cohesive forces—capillary effects—for a simplified diffuse interface fluid model. The thermodynamic formalism was validated by comparison with experimental data for mixtures of ethane and nitrogen. Very good agreement with experimental data was obtained for specific heats, multiphase equilibrium, and critical points, and we also analyzed the structure of strained jets of ethane.

    Citation: Vincent Giovangigli, Yoann Le Calvez, Guillaume Ribert. Multicomponent thermodynamics with instabilities and diffuse interfaces fluids[J]. AIMS Mathematics, 2024, 9(9): 25979-26034. doi: 10.3934/math.20241270

    Related Papers:

    [1] Van Thi Hong Ho, Hanh Thi Thuy Doan, Ha Thanh Vo, Thanh Thi Nguyen, Chi Thi Nguyen, Chinh Ngoc Dao, Dzung Trung Le, Trang Gia Hoang, Nga Thi Hang Nguyen, Ngoc Hoan Le, Gai Thi Tran, Duc Trong Nguyen . Effects of teaching approaches on science subject choice toward STEM career orientation of Vietnamese students. STEM Education, 2025, 5(3): 498-514. doi: 10.3934/steme.2025024
    [2] Rrezart Prebreza, Bleona Beqiraj, Besart Prebreza, Arianit Krypa, Marigona Krypa . Factors influencing the lower number of women in STEM compared to men: A case study from Kosovo. STEM Education, 2025, 5(1): 19-40. doi: 10.3934/steme.2025002
    [3] Ibrahim Khalil, Amirah AL Zahrani, Bakri Awaji, Mohammed Mohsen . Teachers' perceptions of teaching mathematics topics based on STEM educational philosophy: A sequential explanatory design. STEM Education, 2024, 4(4): 421-444. doi: 10.3934/steme.2024023
    [4] Dragana Martinovic, Marina Milner-Bolotin . Examination of modelling in K-12 STEM teacher education: Connecting theory with practice. STEM Education, 2021, 1(4): 279-298. doi: 10.3934/steme.2021018
    [5] Rommel AlAli, Wardat Yousef . Enhancing student motivation and achievement in science classrooms through STEM education. STEM Education, 2024, 4(3): 183-198. doi: 10.3934/steme.2024012
    [6] Yicong Zhang, Yanan Lu, Xianqing Bao, Feng-Kuang Chiang . Impact of participation in the World Robot Olympiad on K-12 robotics education from the coach's perspective. STEM Education, 2022, 2(1): 37-46. doi: 10.3934/steme.2022002
    [7] Ping Chen, Aminuddin Bin Hassan, Firdaus Mohamad Hamzah, Sallar Salam Murad, Heng Wu . Impact of gender role stereotypes on STEM academic performance among high school girls: Mediating effects of educational aspirations. STEM Education, 2025, 5(4): 617-642. doi: 10.3934/steme.2025029
    [8] Usman Ghani, Xuesong Zhai, Riaz Ahmad . Mathematics skills and STEM multidisciplinary literacy: Role of learning capacity. STEM Education, 2021, 1(2): 104-113. doi: 10.3934/steme.2021008
    [9] Hyunkyung Kwon, Yujin Lee . A meta-analysis of STEM project-based learning on creativity. STEM Education, 2025, 5(2): 275-290. doi: 10.3934/steme.2025014
    [10] Yujuan Li, Robert N. Hibbard, Peter L. A. Sercombe, Amanda L. Kelk, Cheng-Yuan Xu . Inspiring and engaging high school students with science and technology education in regional Australia. STEM Education, 2021, 1(2): 114-126. doi: 10.3934/steme.2021009
  • We investigated the mathematical structure of Gibbsian multicomponent thermodynamics with instabilities. We analyzed the construction of such thermodynamics from a pressure law using ideal gases as the low density limit. The fluid mixtures were allowed to have mechanically and chemically unstable states that were excluded in previous work on supercritical fluids, and the Soave-Redlich-Kwong cubic equation of state was specifically considered. We also investigated the mathematical structure of extended thermodynamics in the presence of cohesive forces—capillary effects—for a simplified diffuse interface fluid model. The thermodynamic formalism was validated by comparison with experimental data for mixtures of ethane and nitrogen. Very good agreement with experimental data was obtained for specific heats, multiphase equilibrium, and critical points, and we also analyzed the structure of strained jets of ethane.



    The concept of embedded tensors initially emerged in the research on gauged supergravity theory [1]. Using embedding tensors, the N=8 supersymmetric gauge theories as well as the Bagger-Lambert theory of multiple M2-branes were investigated in [2]. See [3,4,5] and the references therein for a great deal of literature on embedding tensors and related tensor hierarchies. In [6], the authors first observed the mathematical essence behind the embedding tensor and proved that the embedding tensor naturally produced Leibniz algebra. In the application of physics, they observed that in the construction of the corresponding gauge theory, they focused more on Leibniz algebra than on embedding tensor.

    In [7], Sheng et al. considered cohomology, deformations, and homotopy theory for embedding tensors and Lie-Leibniz triples. Later on, the deformation and cohomology theory of embedding tensors on 3-Lie algebras were extensively elaborated in [8]. Tang and Sheng [9] first proposed the concept of a nonabelian embedding tensor on Lie algebras, which is a nonabelian generalization of the embedding tensors, and gave the algebraic structures behind the nonabelian embedding tensors as Leibniz-Lie algebras. This generalization for embedding tensors on associative algebras has been previously explored in [10,11], where they are referred to as average operators with any nonzero weights. Moreover, the nonabelian embedding tensor on Lie algebras has been extended to the Hom setting in [12].

    On the other hand, Filippov [13] first introduced the concepts of 3-Lie algebras and, more generally, n-Lie algebras (also called Filippov algebras). Over recent years, the study and application of 3-Lie algebras have expanded significantly across the realms of mathematics and physics, including string theory, Nambu mechanics [14], and M2-branes [15,16]. Further research on 3-Lie algebras could be found in [17,18,19] and references cited therein.

    Drawing inspiration from Tang and Sheng's [9] terminology of nonabelian embedding tensors and recognizing the significance of 3-Lie algebras, cohomology, and deformation theories, this paper primarily investigates the nonabelian embedding tensors on 3-Lie algebras, along with their fundamental algebraic structures, cohomology, and deformations.

    This paper is organized as follows: Section 2 first recalls some basic notions of 3-Lie algebras and 3-Leibniz algebras. Then we introduce the coherent action of a 3-Lie algebra on another 3-Lie algebra and the notion of nonabelian embedding tensors on 3-Lie algebras with respect to a coherent action. In Section 3, the concept of 3-Leibniz-Lie algebra is presented as the fundamental algebraic structure for a nonabelian embedding tensor on the 3-Lie algebra. Naturally, a 3-Leibniz-Lie algebra induces a 3-Leibniz algebra. Subsequently, we study 3-Leibniz-Lie algebras induced by Leibniz-Lie algebras. In Section 4, the cohomology theory of nonabelian embedding tensors on 3-Lie algebras is introduced. As an application, we characterize the infinitesimal deformation using the first cohomology group.

    All vector spaces and algebras considered in this paper are on the field K with the characteristic of 0.

    This section recalls some basic notions of 3-Lie algebras and 3-Leibniz algebras. After that, we introduce the coherent action of a 3-Lie algebra on another 3-Lie algebra, and we introduce the concept of nonabelian embedding tensors on 3-Lie algebras by its coherent action as a nonabelian generalization of embedding tensors on 3-Lie algebras [8].

    Definition 2.1. (see [13]) A 3-Lie algebra is a pair (L,[,,]L) consisting of a vector space L and a skew-symmetric ternary operation [,,]L:3LL such that

    [l1,l2,[l3,l4,l5]L]L=[[l1,l2,l3]L,l4,l5]L+[l3,[l1,l2,l4]L,l5]L+[l3,l4,[l1,l2,l5]L]L, (2.1)

    for all liL,1i5.

    A homomorphism between two 3-Lie algebras (L1,[,,]L1) and (L2,[,,]L2) is a linear map f:L1L2 that satisfies f([l1,l2,l3]L1)=[f(l1),f(l2),f(l3)]L2, for all l1,l2,l3L1.

    Definition 2.2. 1) (see [20]) A representation of a 3-Lie algebra (L,[,,]L) on a vector space H is a skew-symmetric linear map ρ:2LEnd(H), such that

    ρ([l1,l2,l3]L,l4)=ρ(l2,l3)ρ(l1,l4)+ρ(l3,l1)ρ(l2,l4)+ρ(l1,l2)ρ(l3,l4), (2.2)
    ρ(l1,l2)ρ(l3,l4)=ρ(l3,l4)ρ(l1,l2)+ρ([l1,l2,l3]L,l4)+ρ(l3,[l1,l2,l4]L), (2.3)

    for all l1,l2,l3,l4L. We also denote a representation of L on H by (H;ρ).

    2) A coherent action of a 3-Lie algebra (L,[,,]L) on another 3-Lie algebra (H,[,,]H) is defined by a skew-symmetric linear map ρ:2LDer(H) that satisfies Eqs (2.2) and (2.3), along with the condition that

    [ρ(l1,l2)h1,h2,h3]H=0, (2.4)

    for all l1,l2L and h1,h2,h3H. We denote a coherent action of L on H by (H,[,,]H;ρ).

    Note that Eq (2.4) and ρ(l1,l2)Der(H) imply that

    ρ(l1,l2)[h1,h2,h3]H=0. (2.5)

    Example 2.3. Let (H,[,,]H) be a 3-Lie algebra. Define ad:2HDer(H) by

    ad(h1,h2)h:=[h1,h2,h]H, for all h1,h2,hH.

    Then (H;ad) is a representation of (H,[,,]H), which is called the adjoint representation. Furthermore, if the ad satisfies

    [ad(h1,h2)h1,h2,h3]H=0, for allh1,h2,h3H,

    then (H,[,,]H;ad) is a coherent adjoint action of (H,[,,]H).

    Definition 2.4. (see [21]) A 3-Leibniz algebra is a vector space L together with a ternary operation [,,]L:LLLL such that

    [l1,l2,[l3,l4,l5]L]L=[[l1,l2,l3]L,l4,l5]L+[l3,[l1,l2,l4]L,l5]L+[l3,l4,[l1,l2,l5]L]L,

    for all liL,1i5.

    Proposition 2.5. Let (L,[,,]L) and (H,[,,]H) be two 3-Lie algebras, and let ρ be a coherent action of L on H. Then, LH is a 3-Leibniz algebra under the following map:

    [l1+h1,l2+h2,l3+h3]ρ:=[l1,l2,l3]L+ρ(l1,l2)h3+[h1,h2,h3]H,

    for all l1,l2,l3L and h1,h2,h3H. This 3-Leibniz algebra (LH,[,,]ρ) is called the nonabelian hemisemidirect product 3-Leibniz algebra, which is denoted by LρH.

    Proof. For any l1,l2,l3,l4,l5L and h1,h2,h3,h4,h5H, by Eqs (2.1)–(2.5), we have

    [l1+h1,l2+h2,[l3+h3,l4+h4,l5+h5]ρ]ρ[[l1+h1,l2+h2,l3+h3]ρ,l4+h4,l5+h5]ρ[l3+h3,[l1+h1,l2+h2,l4+h4]ρ,l5+h5]ρ[l3+h3,l4+h4,[l1+h1,l2+h2,l5+h5]ρ]ρ=[l1,l2,[l3,l4,l5]L]L+ρ(l1,l2)ρ(l3,l4)h5+ρ(l1,l2)[h3,h4,h5]H+[h1,h2,ρ(l3,l4)h5]H+[h1,h2,[h3,h4,h5]H]H[[l1,l2,l3]L,l4,l5]Lρ([l1,l2,l3]L,l4)h5[ρ(l1,l2)h3,h4,h5]H[[h1,h2,h3]H,h4,h5]H[l3,[l1,l2,l4]L,l5]Lρ(l3,[l1,l2,l4]L)h5[h3,ρ(l1,l2)h4,h5]H[h3,[h1,h2,h4]H,h5]H[l3,l4,[l1,l2,l5]L]Lρ(l3,l4)ρ(l1,l2)h5ρ(l3,l4)[h1,h2,h5]H[h3,h4,ρ(l1,l2)h5]H[h3,h4,[h1,h2,h5]H]H=[h1,h2,ρ(l3,l4)h5]Hρ(l3,l4)[h1,h2,h5]H=0.

    Thus, (LH,[,,]ρ) is a 3-Leibniz algebra.

    Definition 2.6. 1) A nonabelian embedding tensor on a 3-algebra (L,[,,]L) with respect to a coherent action (H,[,,]H;ρ) is a linear map Λ:HL that satisfies the following equation:

    [Λh1,Λh2,Λh3]L=Λ(ρ(Λh1,Λh2)h3+[h1,h2,h3]H), (2.6)

    for all h1,h2,h3H.

    2) A nonabelian embedding tensor 3-Lie algebra is a triple (H,L,Λ) consisting of a 3-Lie algebra (L,[,,]L), a coherent action (H,[,,]H;ρ) of L and a nonabelian embedding tensor Λ:HL. We denote a nonabelian embedding tensor 3-Lie algebra (H,L,Λ) by the notation HΛL.

    3) Let HΛ1L and HΛ2L be two nonabelian embedding tensor 3-Lie algebras. Then, a homomorphism from HΛ1L to HΛ2L consists of two 3-Lie algebras homomorphisms fL:LL and fH:HH, which satisfy the following equations:

    Λ2fH=fLΛ1, (2.7)
    fH(ρ(l1,l2)h)=ρ(fL(l1),fL(l2))fH(h), (2.8)

    for all l1,l2L and hH. Furthermore, if fL and fH are nondegenerate, (fL,fH) is called an isomorphism from HΛ1L to HΛ2L.

    Remark 2.7. If (H,[,,]H) is an abelian 3-Lie algebra, then we can get that Λ is an embedding tensor on 3-Lie algebra (see [8]). In addition, If ρ=0, then Λ is a 3-Lie algebra homomorphism from H to L.

    Example 2.8. Let H be a 4-dimensional linear space spanned by α1,α2,α3 and α4. We define a skew-symmetric ternary operation [,,]H:3HH by

    [α1,α2,α3]H=α4.

    Then (H,[,,]H) is a 3-Lie algebra. It is obvious that (H,[,,]H;ad) is a coherent adjoint action of (H,[,,]H). Moreover,

    Λ=(1000010000000000)

    is a nonabelian embedding tensor on (H,[,,]H).

    Next, we use graphs to describe nonabelian embedding tensors on 3-Lie algebras.

    Theorem 2.9. A linear map Λ:HL is a nonabelian embedding tensor on a 3-Lie algebra (L,[,,]L) with respect to the coherent action (H,[,,]H;ρ) if and only if the graph Gr(Λ)={Λh+h|hH} forms a subalgebra of the nonabelian hemisemidirect product 3-Leibniz algebra LρH.

    Proof. Let Λ:HL be a linear map. Then, for any h1,h2,h3H, we have

    [Λh1+h1,Λh2+h2,Λh3+h3]ρ=[Λh1,Λh2,Λh3]L+ρ(Λh1,Λh2)h3+[h1,h2,h3]H,

    Thus, the graph Gr(Λ)={Λh+h|hH} is a subalgebra of the nonabelian hemisemidirect product 3-Leibniz algebra LρH if and only if Λ satisfies Eq (2.6), which implies that Λ is a nonabelian embedding tensor on L with respect to the coherent action (H,[,,]H;ρ).

    Because H and Gr(Λ) are isomorphic as linear spaces, there is an induced 3-Leibniz algebra structure on H.

    Corollary 2.10. Let HΛL be a nonabelian embedding tensor 3-Lie algebra. If a linear map [,,]Λ:3HH is given by

    [h1,h2,h3]Λ=ρ(Λh1,Λh2)h3+[h1,h2,h3]H, (2.9)

    for all h1,h2,h3H, then (H,[,,]Λ) is a 3-Leibniz algebra. Moreover, Λ is a homomorphism from the 3-Leibniz algebra (H,[,,]Λ) to the 3-Lie algebra (L,[,,]L). This 3-Leibniz algebra (H,[,,]Λ) is called the descendent 3-Leibniz algebra.

    Proposition 2.11. Let (fL,fH) be a homomorphism from HΛ1L to HΛ2L. Then fH is a homomorphism of descendent 3-Leibniz algebra from (H,[,,]Λ1) to (H,[,,]Λ2).

    Proof. For any h1,h2,h3H, by Eqs (2.7)–(2.9), we have

    fH([h1,h2,h3]Λ1)=fH(ρ(Λ1h1,Λ1h2)h3+[h1,h2,h3]H)=ρ(fL(Λ1h1),fL(Λ1h2))fH(h3)+fH([h1,h2,h3]H)=ρ(Λ2fL(h1),Λ2fL(h2))fH(h3)+[fH(h1),fH(h2),fH(h3)]H=[fH(h1),fH(h2),fH(h3)]Λ2.

    The proof is finished.

    In this section, we present the concept of the 3-Leibniz-Lie algebra, which serves as the fundamental algebraic framework for the nonabelian embedding tensor 3-Lie algebra. Then we study 3-Leibniz-Lie algebras induced by Leibniz-Lie algebras.

    Definition 3.1. A 3-Leibniz-Lie algebra (H,[,,]H,{,,}H) encompasses a 3-Lie algebra (H,[,,]H) and a ternary operation {,,}H:3HH, which satisfies the following equations:

    {h1,h2,h3}H={h2,h1,h3}H, (3.1)
    {h1,h2,{h3,h4,h5}H}H={{h1,h2,h3}H,h4,h5}H+{h3,{h1,h2,h4}H,h5}H+{h3,h4,{h1,h2,h5}H}H+{[h1,h2,h3]H,h4,h5}H+{h3,[h1,h2,h4]H,h5}H, (3.2)
    {h1,h2,[h3,h4,h5]H}H=[{h1,h2,h3}H,h4,h5]H=0, (3.3)

    for all h1,h2,h3,h4,h5H.

    A homomorphism between two 3-Leibniz-Lie algebras (H1,[,,]H1,{,,}H1) and (H2,[,,]H2,{,,}H2) is a 3-Lie algebra homomorphism f:(H1,[,,]H1)(H2,[,,]H2) such that f({h1,h2,h3}H1)={f(h1),f(h2),f(h3)}H2, for all h1,h2,h3H1.

    Remark 3.2. A 3-Lie algebra (H,[,,]H) naturally constitutes a 3-Leibniz-Lie algebra provided that the underlying ternary operation {h1,h2,h3}H=0, for all h1,h2,h3H.

    Example 3.3. Let (H,[,,]H) be a 4-dimensional 3-Lie algebra given in Example 2.8. We define a nonzero operation {,,}H:3HH by

    {α1,α2,α3}H={α2,α1,α3}H=α4.

    Then (H,[,,]H,{,,}H) is a 3-Leibniz-Lie algebra.

    The subsequent theorem demonstrates that a 3-Leibniz-Lie algebra inherently gives rise to a 3-Leibniz algebra.

    Theorem 3.4. Let (H,[,,]H,{,,}H) be a 3-Leibniz-Lie algebra. Then the ternary operation ,,H:3HH, defined as

    h1,h2,h3H:=[h1,h2,h3]H+{h1,h2,h3}H, (3.4)

    for all h1,h2,h3H, establishes a 3-Leibniz algebra structure on H. This structure is denoted by (H,,,H) and is referred to as the subadjacent 3-Leibniz algebra.

    Proof. For any h1,h2,h3,h4,h5H, according to (H,[,,]H) is a 3-Lie algebra and Eqs (3.2)–(3.4), we have

    h1,h2,h3,h4,h5HHh1,h2,h3H,h4,h5Hh3,h1,h2,h4H,h5Hh3,h4,h1,h2,h5HH=[h1,h2,[h3,h4,h5]H]H+[h1,h2,{h3,h4,h5}H]H+{h1,h2,[h3,h4,h5]H}H+{h1,h2,{h3,h4,h5}H}H[[h1,h2,h3]H,h4,h5]H[{h1,h2,h3}H,h4,h5]H{[h1,h2,h3]H,h4,h5}H{{h1,h2,h3}H,h4,h5}H[h3,[h1,h2,h4]H,h5]H[h3,{h1,h2,h4}H,h5]H{h3,[h1,h2,h4]H,h5}H{h3,{h1,h2,h4}H,h5}H[h3,h4,[h1,h2,h5]H]H[h3,h4,{h1,h2,h5}H]H{h3,h4,[h1,h2,h5]H}H{h3,h4,{h1,h2,h5}H}H={h1,h2,{h3,h4,h5}H}H{[h1,h2,h3]H,h4,h5}H{{h1,h2,h3}H,h4,h5}H{h3,[h1,h2,h4]H,h5}H{h3,{h1,h2,h4}H,h5}H{h3,h4,{h1,h2,h5}H}H=0.

    Hence, (H,,,H) is a 3-Leibniz algebra.

    The following theorem shows that a nonabelian embedding tensor 3-Lie algebra induces a 3-Leibniz-Lie algebra.

    Theorem 3.5. Let HΛL be a nonabelian embedding tensor 3-Lie algebra. Then (H,[,,]H,{,,}Λ) is a 3-Leibniz-Lie algebra, where

    {h1,h2,h3}Λ:=ρ(Λh1,Λh2)h3, (3.5)

    for all h1,h2,h3H.

    Proof. For any h1,h2,h3,h4,h5H, by Eqs (2.3), (2.6), and (3.5), we have

    {h1,h2,h3}Λ=ρ(Λh1,Λh2)h3=ρ(Λh2,Λh1)h3={h2,h1,h3}Λ,{{h1,h2,h3}Λ,h4,h5}Λ+{h3,{h1,h2,h4}Λ,h5}Λ+{h3,h4,{h1,h2,h5}Λ}Λ+{[h1,h2,h3]H,h4,h5}Λ+{h3,[h1,h2,h4]H,h5}Λ{h1,h2,{h3,h4,h5}Λ}Λ=ρ(Λρ(Λh1,Λh2)h3,Λh4)h5+ρ(Λh3,Λρ(Λh1,Λh2)h4)h5+ρ(Λh3,Λh4)ρ(Λh1,Λh2)h5+ρ(Λ[h1,h2,h3]H,Λh4)h5+ρ(Λh3,Λ[h1,h2,h4]H)h5ρ(Λh1,Λh2)ρ(Λh3,Λh4)h5=ρ(Λρ(Λh1,Λh2)h3,Λh4)h5+ρ(Λh3,Λρ(Λh1,Λh2)h4)h5+ρ(Λh3,Λh4)ρ(Λh1,Λh2)h5+ρ([Λh1,Λh2,Λh3]LΛρ(Λh1,Λh2)h3,Λh4)h5+ρ(Λh3,[Λh1,Λh2,Λh4]LΛρ(Λh1,Λh2)h4)h5ρ(Λh1,Λh2)ρ(Λh3,Λh4)h5=ρ(Λh3,Λh4)ρ(Λh1,Λh2)h5+ρ([Λh1,Λh2,Λh3]L,Λh4)h5+ρ(Λh3,[Λh1,Λh2,Λh4]L)h5ρ(Λh1,Λh2)ρ(Λh3,Λh4)h5=0.

    Furthermore, by Eqs (2.4), (2.5), and (3.5), we have

    [{h1,h2,h3}Λ,h4,h5]H=[ρ(Λh1,Λh2)h3,h4,h5]H=0,{h1,h2,[h3,h4,h5]H}Λ=ρ(Λh1,Λh2)[h3,h4,h5]H=0.

    Thus, (H,[,,]H,{,,}Λ) is a 3-Leibniz-Lie algebra.

    Proposition 3.6. Let (fL,fH) be a homomorphism from HΛ1L to HΛ2L. Then fH is a homomorphism of 3-Leibniz-Lie algebras from (H,[,,]H,{,,}Λ1) to (H,[,,]H,{,,}Λ2).

    Proof. For any h1,h2,h3H, by Eqs (2.7), (2.8), and (3.5), we have

    fH({h1,h2,h3}Λ1)=fH(ρ(Λ1h1,Λ1h2)h3)=ρ(fL(Λ1h1),fL(Λ1h2))fH(h3)=ρ(Λ2fH(h1),Λ2fH(h2))fH(h3)={fH(h1),fH(h2),fH(h3)}Λ2.

    The proof is finished.

    Motivated by the construction of 3-Lie algebras from Lie algebras [17], at the end of this section, we investigate 3-Leibniz-Lie algebras induced by Leibniz-Lie algebras.

    Definition 3.7. (see [9]) A Leibniz-Lie algebra (H,[,]H,) encompasses a Lie algebra (H,[,]H) and a binary operation ⊳:HHH, ensuring that

    h1(h2h3)=(h1h2)h3+h2(h1h3)+[h1,h2]Hh3,h1[h2,h3]H=[h1h2,h3]H=0,

    for all h1,h2,h3H.

    Theorem 3.8. Let (H,[,]H,) be a Leibniz-Lie algebra, and let ςH be a trace map, which is a linear map that satisfies the following conditions:

    ς([h1,h2]H)=0,ς(h1h2)=0,for allh1,h2H.

    Define two ternary operations by

    [h1,h2,h3]Hς=ς(h1)[h2,h3]H+ς(h2)[h3,h1]H+ς(h3)[h1,h2]H,{h1,h2,h3}Hς=ς(h1)h2h3ς(h2)h1h3,for allh1,h2,h3H.

    Then (H,[,,]Hς,{,,}Hς) is a 3-Leibniz-Lie algebra.

    Proof. First, we know from [17] that (H,[,,]Hς) is a 3-Lie algebra. Next, for any h1,h2,h3,h4,h5H, we have

    {h1,h2,h3}Hς=ς(h1)h2h3ς(h2)h1h3=(ς(h2)h1h3ς(h1)h2h3)={h2,h1,h3}Hς

    and

    {{h1,h2,h3}Hς,h4,h5}Hς+{h3,{h1,h2,h4}Hς,h5}Hς+{h3,h4,{h1,h2,h5}Hς}Hς+{[h1,h2,h3]Hς,h4,h5}Hς+{h3,[h1,h2,h4]Hς,h5}Hς{h1,h2,{h3,h4,h5}Hς}Hς=ς(h1)ς(h2h3)h4h5ς(h4)ς(h1)(h2h3)h5ς(h2)ς(h1h3)h4h5+ς(h4)ς(h2)(h1h3)h5+ς(h3)ς(h1)(h2h4)h5ς(h1)ς(h2h4)h3h5ς(h3)ς(h2)(h1h4)h5+ς(h2)ς(h1h4)h3h5+ς(h1)ς(h3)h4(h2h5)ς(h1)ς(h4)h3(h2h5)ς(h2)ς(h3)h4(h1h5)+ς(h2)ς(h4)h3(h1h5)+ς(h1)ς([h2,h3]H)h4h5ς(h4)ς(h1)[h2,h3]Hh5+ς(h2)ς([h3,h1]H)h4h5ς(h4)ς(h2)[h3,h1]Hh5+ς(h3)ς([h1,h2]H)h4h5ς(h4)ς(h3)[h1,h2]Hh5+ς(h3)ς(h1)[h2,h4]Hh5ς(h1)ς([h2,h4]H)h3h5+ς(h3)ς(h2)[h4,h1]Hh5ς(h2)ς([h4,h1]H)h3h5+ς(h3)ς(h4)[h1,h2]Hh5ς(h4)ς([h1,h2]H)h3h5ς(h1)ς(h3)h2(h4h5)+ς(h2)ς(h3)h1(h4h5)+ς(h1)ς(h4)h2(h3h5)ς(h2)ς(h4)h1(h3h5)=ς(h4)ς(h1)(h2h3)h5+ς(h4)ς(h2)(h1h3)h5+ς(h3)ς(h1)(h2h4)h5ς(h3)ς(h2)(h1h4)h5+ς(h1)ς(h3)h4(h2h5)ς(h1)ς(h4)h3(h2h5)ς(h2)ς(h3)h4(h1h5)+ς(h2)ς(h4)h3(h1h5)ς(h4)ς(h1)[h2,h3]Hh5ς(h4)ς(h2)[h3,h1]Hh5+ς(h3)ς(h1)[h2,h4]Hh5+ς(h3)ς(h2)[h4,h1]Hh5ς(h1)ς(h3)h2(h4h5)+ς(h2)ς(h3)h1(h4h5)+ς(h1)ς(h4)h2(h3h5)ς(h2)ς(h4)h1(h3h5)=0.

    Similarly, we obtain

    {h1,h2,[h3,h4,h5]Hς}Hς=ς(h1)ς(h3)h2[h4,h5]Hς(h2)ς(h3)h1[h4,h5]H+ς(h1)ς(h4)h2[h5,h3]Hς(h2)ς(h4)h1[h5,h3]H+ς(h1)ς(h5)h2[h3,h4]Hς(h2)ς(h5)h1[h3,h4]H=0

    and

    [{h1,h2,h3}Hς,h4,h5]Hς=ς(h1)ς(h2h3)[h4,h5]H+ς(h4)ς(h1)[h5,h2h3]H+ς(h5)ς(h1)[h2h3,h4]Hς(h2)ς(h1h3)[h4,h5]Hς(h4)ς(h2)[h5,h1h3]Hς(h5)ς(h2)[h1h3,h4]H=0.

    Hence Eqs (3.1)–(3.3) hold and we complete the proof.

    In this section, we revisit fundamental results pertaining to the representations and cohomologies of 3-Leibniz algebras. We construct a representation of the descendent 3-Leibniz algebra (H,[,,]Λ) on the vector space L and define the cohomologies of a nonabelian embedding tensor on 3-Lie algebras. As an application, we characterize the infinitesimal deformation using the first cohomology group.

    Definition 4.1. (see [22]) A representation of the 3-Leibniz algebra (H,[,,]H) is a vector space V equipped with 3 actions

    l:HHVV,m:HVHV,r:VHHV,

    satisfying for any a1,a2,a3,a4,a5H and uV

    l(a1,a2,l(a3,a4,u))=l([a1,a2,a3]H,a4,u)+l(a3,[a1,a2,a4]H,u)+l(a3,a4,l(a1,a2,u)), (4.1)
    l(a1,a2,m(a3,u,a5))=m([a1,a2,a3]H,u,a5)+m(a3,l(a1,a2,u),a5)+m(a3,u,[a1,a2,a5]H), (4.2)
    l(a1,a2,r(u,a4,a5))=r(l(a1,a2,u),a4,a5)+r(u,[a1,a2,a4]H,a5)+r(u,a4,[a1,a2,a5]H), (4.3)
    m(a1,u,[a3,a4,a5]H)=r(m(a1,u,a3),a4,a5)+m(a3,m(a1,u,a4),a5)+l(a3,a4,m(a1,u,a5)), (4.4)
    r(u,a2,[a3,a4,a5]H)=r(r(u,a2,a3),a4,a5)+m(a3,r(u,a2,a4),a5)+l(a3,a4,r(u,a2,a5)). (4.5)

    For n1, denote the n-cochains of 3-Leibniz algebra (H,[,,]H) with coefficients in a representation (V;l,m,r) by

    Cn3Leib(H,V)=Hom(n12H2HH,V).

    The coboundary map δ:Cn3Leib(H,V)Cn+13Leib(H,V), for Ai=aibi2H,1in and cH, as

    (δφ)(A1,A2,,An,c)=1j<kn(1)jφ(A1,,^Aj,,Ak1,ak[aj,bj,bk]H+[aj,bj,ak]Hbk,,An,c)+nj=1(1)jφ(A1,,^Aj,,An,[aj,bj,c]H)+nj=1(1)j+1l(Aj,φ(A1,,^Aj,,An,c))+(1)n+1(m(an,φ(A1,,An1,bn),c)+r(φ(A1,,An1,an),bn,c)).

    It was proved in [23,24] that δ2=0. Therefore, (+n=1Cn3Leib(H,V),δ) is a cochain complex.

    Let HΛL be a nonabelian embedding tensor 3-Lie algebra. By Corollary 2.10, (H,[,,]Λ) is a 3-Leibniz algebra. Next we give a representation of (H,[,,]Λ) on L.

    Lemma 4.2. With the above notations. Define 3 actions

    lΛ:HHLL,mΛ:HLHL,rΛ:LHHL,

    by

    lΛ(h1,h2,l)=[Λh1,Λh2,l]L,mΛ(h1,l,h2)=[Λh1,l,Λh2]LΛρ(Λh1,l)h2,rΛ(l,h1,h2)=[l,Λh1,Λh2]LΛρ(l,Λh1)h2,

    for all h1,h2H,lL. Then (L;lΛ,mΛ,rΛ) is a representation of the descendent 3-Leibniz algebra (H,[,,]Λ).

    Proof. For any h1,h2,h3,h4,h5H and lL, by Eqs (2.1), (2.3)–(2.6), and (2.9), we have

    lΛ(h1,h2,lΛ(h3,h4,l))lΛ([h1,h2,h3]Λ,h4,l)lΛ(h3,[h1,h2,h4]Λ,l)lΛ(h3,h4,lΛ(h1,h2,l))=[Λh1,Λh2,[Λh3,Λh4,l]L]L[[Λh1,Λh2,Λh3]L,Λh4,l]L[Λh3,[Λh1,Λh2,Λh4]L,l]L[Λh3,Λh4,[Λh1,Λh2,l]L]L=0

    and

    lΛ(h1,h2,mΛ(h3,l,h5))mΛ([h1,h2,h3]Λ,l,h5)mΛ(h3,lΛ(h1,h2,l),h5)mΛ(h3,l,[h1,h2,h5]Λ)=[Λh1,Λh2,[Λh3,l,Λh5]L]L[Λh1,Λh2,Λρ(Λh3,l)h5]L[[Λh1,Λh2,Λh3]L,l,Λh5]L+Λρ([Λh1,Λh2,Λh3]L,l)h5[Λh3,[Λh1,Λh2,l]L,Λh5]L+Λρ(Λh3,[Λh1,Λh2,l]L)h5[Λh3,l,[Λh1,Λh2,Λh5]L]L+Λρ(Λh3,l)ρ(Λh1,Λh2)h5+Λρ(Λh3,l)[h1,h2,h5]H=[Λh1,Λh2,Λρ(Λh3,l)h5]L+Λρ([Λh1,Λh2,Λh3]L,l)h5+Λρ(Λh3,[Λh1,Λh2,l]L)h5+Λρ(Λh3,l)ρ(Λh1,Λh2)h5+Λρ(Λh3,l)[h1,h2,h5]H=Λ(ρ(Λh1,Λh2)ρ(Λh3,l)h5+[h1,h2,ρ(Λh3,l)h5]H)+Λρ(Λh1,Λh2)ρ(Λh3,l)h5+Λρ(Λh3,l)[h1,h2,h5]H=Λ[h1,h2,ρ(Λh3,l)h5]H+Λρ(Λh3,l)[h1,h2,h5]H=0,

    which imply that Eqs (4.1) and (4.2) hold. Similarly, we can prove that Eqs (4.3)–(4.5) are true. The proof is finished.

    Proposition 4.3. Let HΛ1L and HΛ2L be two nonabelian embedding tensor 3-Lie algebras and (fL,fH) a homomorphism from HΛ1L to HΛ2L. Then the induced representation (L;lΛ1,mΛ1,rΛ1) of the descendent 3-Leibniz algebra (H,[,,]Λ1) and the induced representation (L;lΛ2,mΛ2,rΛ2) of the descendent 3-Leibniz algebra (H,[,,]Λ2) satisfying the following equations:

    fL(lΛ1(h1,h2,l))=lΛ2(fH(h1),fH(h2),fL(l)), (4.6)
    fL(mΛ1(h1,l,h2))=mΛ2(fH(h1),fL(l),fH(h2)), (4.7)
    fL(rΛ1(l,h1,h2))=rΛ2(fL(l),fH(h1),fH(h2)), (4.8)

    for all h1,h2H,lL. In other words, the following diagrams commute:

    Proof. For any h1,h2H,lL, by Eqs (2.7) and (2.8), we have

    fL(lΛ1(h1,h2,l))=fL([Λ1h1,Λ1h2,l]L)=[fL(Λ1h1),fL(Λ1h2),fL(l)]L=[Λ2fH(h1),Λ2fH(h2),fL(l)]L=lΛ2(fH(h1),fH(h2),fL(l)),fL(mΛ1(h1,l,h2))=fL([Λ1h1,l,Λ1h2]LΛ1ρ(Λ1h1,l)h2)=[fL(Λ1h1),fL(l),fL(Λ1h2)]LfL(Λ1ρ(Λ1h1,l)h2)=[Λ2fH(h1),fL(l),Λ2fH(h2)]LΛ2fH(ρ(Λ1h1,l)h2)=[Λ2fH(h1),fL(l),Λ2fH(h2)]LΛ2ρ(Λ2fH(h1),fL(l))fH(h2)=mΛ2(fH(h1),fL(l),fH(h2)).

    And the other equation is similar to provable.

    For n1, let δΛ:Cn3Leib(H,L)Cn+13Leib(H,L) be the coboundary operator of the 3-Leibniz algebra (H,[,,]Λ) with coefficients in the representation (L;lΛ,mΛ,rΛ). More precisely, for all ϕCn3Leib(H,L),Hi=uivi2H,1in and wH, we have

    (δΛϕ)(H1,H2,,Hn,w)=1j<kn(1)jϕ(H1,,^Hj,,Hk1,uk[uj,vj,vk]Λ+[uj,vj,uk]Λvk,,Hn,w)+nj=1(1)jϕ(H1,,^Hj,,Hn,[uj,vj,w]Λ)+nj=1(1)j+1lΛ(Hj,ϕ(H1,,^Hj,,Hn,w))+(1)n+1(mΛ(un,ϕ(H1,,Hn1,vn),w)+rΛ(ϕ(H1,,Hn1,un),vn,w)).

    In particular, for ϕC13Leib(H,L):=Hom(H,L) and u1,v1,wH, we have

    (δΛϕ)(u1,v1,w)=ϕ([u1,v1,w]Λ)+lΛ(u1,v1,ϕ(w))+mΛ(u1,ϕ(v1),w)+rΛ(ϕ(u1),v1,w)=ϕ([u1,v1,w]Λ)+[Λu1,Λv1,ϕ(w)]L+[Λu1,ϕ(v1),Λw]LΛρ(Λu1,ϕ(v1))w+[ϕ(u1),Λv1,Λw]LΛρ(ϕ(u1),Λv1)w.

    For any (a1,a2)C03Leib(H,L):=2L, we define δΛ:C03Leib(H,L)C13Leib(H,L),(a1,a2)δΛ(a1,a2) by

    δΛ(a1,a2)u=Λρ(a1,a2)u[a1,a2,Λu]L,uH.

    Proposition 4.4. Let HΛL be a nonabelian embedding tensor 3-Lie algebra. Then δΛ(δΛ(a1,a2))=0, that is, the composition C03Leib(H,L)δΛC13Leib(H,L)δΛC23Leib(H,L) is the zero map.

    Proof. For any u1,v1,wV, by Eqs (2.1)–(2.6) and (2.9) we have

    δΛ(δΛ(a1,a2))(u1,v1,w)=δΛ(a1,a2)([u1,v1,w]Λ)+[Λu1,Λv1,δΛ(a1,a2)(w)]L+[Λu1,δΛ(a1,a2)(v1),Λw]LΛρ(Λu1,δΛ(a1,a2)(v1))w+[δΛ(a1,a2)(u1),Λv1,Λw]LΛρ(δΛ(a1,a2)(u1),Λv1)w=Λρ(a1,a2)[u1,v1,w]Λ+[a1,a2,[Λu1,Λv1,Λw]L]L+[Λu1,Λv1,Λρ(a1,a2)w]L[Λu1,Λv1,[a1,a2,Λw]L]L+[Λu1,Λρ(a1,a2)v1,Λw]L[Λu1,[a1,a2,Λv1]L,Λw]LΛρ(Λu1,Λρ(a1,a2)v1)w+Λρ(Λu1,[a1,a2,Λv1]L)w+[Λρ(a1,a2)u1,Λv1,Λw]L[[a1,a2,Λu1]L,Λv1,Λw]LΛρ(Λρ(a1,a2)u1,Λv1)w+Λρ([a1,a2,Λu1]L,Λv1)w=Λρ(a1,a2)ρ(Λu1,Λv1)wΛρ(a1,a2)[u1,v1,w]H+Λρ(Λu1,Λv1)ρ(a1,a2)w+Λ[u1,v1,ρ(a1,a2)w]H+Λρ(Λu1,Λρ(a1,a2)v1)w+Λ[u1,ρ(a1,a2)v1,w]HΛρ(Λu1,Λρ(a1,a2)v1)w+Λρ(Λu1,[a1,a2,Λv1]L)w+Λ(Λρ(a1,a2)u1,Λv1)w+Λ[ρ(a1,a2)u1,v1,w]HΛρ(Λρ(a1,a2)u1,Λv1)w+Λρ([a1,a2,Λu1]L,Λv1)w=Λρ(a1,a2)ρ(Λu1,Λv1)w+Λρ(Λu1,Λv1)ρ(a1,a2)w+Λρ(Λu1,Λρ(a1,a2)v1)wΛρ(Λu1,Λρ(a1,a2)v1)w+Λρ(Λu1,[a1,a2,Λv1]L)w+Λ(Λρ(a1,a2)u1,Λv1)wΛρ(Λρ(a1,a2)u1,Λv1)w+Λρ([a1,a2,Λu1]L,Λv1)w=Λρ(a1,a2)ρ(Λu1,Λv1)w+Λρ(Λu1,Λv1)ρ(a1,a2)w+Λρ(Λu1,[a1,a2,Λv1]L)w+Λρ([a1,a2,Λu1]L,Λv1)w=0.

    Therefore, we deduce that δΛ(δΛ(a1,a2))=0.

    Now we develop the cohomology theory of a nonabelian embedding tensor Λ on the 3-Lie algebra (L,[,,]L) with respect to the coherent action (H,[,,]H;ρ).

    For n0, define the set of n-cochains of Λ by CnΛ(H,L):=Cn3Leib(H,L). Then (n=0CnΛ(H,L),δΛ) is a cochain complex.

    For n1, we denote the set of n-cocycles by ZnΛ(H,L), the set of n-coboundaries by BnΛ(H,L), and the n-th cohomology group of the nonabelian embedding tensor Λ by

    HHnΛ(H,L)=ZnΛ(H,L)BnΛ(H,L).

    Proposition 4.5. Let HΛ1L and HΛ2L be two nonabelian embedding tensor 3-Lie algebras and let (fL,fH) be a homomorphism from HΛ1L to HΛ2L in which fH is invertible. We define a map Ψ:CnΛ1(H,L)CnΛ2(H,L) by

    Ψ(ϕ)(H1,H2,,Hn1,w)=fL(ϕ(f1H(u1)f1H(v1),,f1H(un1)f1H(vn1),f1H(w))),

    for all ϕCnΛ1(H,L),Hi=uivi2H,1in1, and wH. Then Ψ:(Cn+1Λ1(H,L),δΛ1)(Cn+1Λ2(H,L),δΛ2) is a cochain map.

    That is, the following diagram commutes:

    Consequently, it induces a homomorphism Ψ from the cohomology group HHn+1Λ1(H,L) to HHn+1Λ2(H,L).

    Proof. For any ϕCnΛ1(H,L),Hi=uivi2H,1in, and wH, by Eqs (4.6)–(4.8) and Proposition 2.11, we have

    (δΛ2Ψ(ϕ))(H1,H2,,Hn,w)=1j<kn(1)jΨ(ϕ)(H1,,^Hj,,Hk1,uk[uj,vj,vk]Λ2+[uj,vj,uk]Λ2vk,,Hn,w)+nj=1(1)jΨ(ϕ)(H1,,^Hj,,Hn,[uj,vj,w]Λ2)+nj=1(1)j+1lΛ2(Hj,Ψ(ϕ)(H1,,^Hj,,Hn,w))+(1)n+1mΛ2(un,Ψ(ϕ)(H1,,Hn1,vn),w)+(1)n+1rΛ2(Ψ(ϕ)(H1,,Hn1,un),vn,w)=1j<kn(1)jfL(ϕ(f1H(u1)f1H(v1),,^Hj,,f1H(uk1)f1H(vk1),f1H(uk)f1H([uj,vj,vk]Λ2)+f1H([uj,vj,uk]Λ2)f1H(vk),,f1H(un)f1H(vn),f1H(w)))+nj=1(1)jfL(ϕ(f1H(u1)f1H(v1),,^Hj,,f1H(un)f1H(vn),f1H([uj,vj,w]Λ2)))+nj=1(1)j+1lΛ2(Hj,fL(ϕ(f1H(u1)f1H(v1),,^Hj,,f1H(un)f1H(vn),f1H(w))))+(1)n+1mΛ2(un,fL(ϕ(f1H(u1)f1H(v1),,f1H(un1)f1H(vn1),f1H(vn))),w)+(1)n+1rΛ2(fL(ϕ(f1H(u1)f1H(v1),,f1H(un1)f1H(vn1),f1H(un))),vn,w)=fL(1j<kn(1)jϕ(f1H(u1)f1H(v1),,^Hj,,f1H(uk1)f1H(vk1),f1H(uk)[f1H(uj),f1H(vj),f1H(vk)]Λ1+[f1H(uj),f1H(vj),f1H(uk)]Λ1f1H(vk),,f1H(un)f1H(vn),f1H(w))+nj=1(1)jϕ(f1H(u1)f1H(v1),,^Hj,,f1H(un)f1H(vn),[f1H(uj),f1H(vj),f1H(w)]Λ1)+nj=1(1)j+1lΛ1(f1H(uj),f1H(vj),ϕ(f1H(u1)f1H(v1),,^Hj,,f1H(un)f1H(vn),f1H(w)))+(1)n+1mΛ1(f1H(un),ϕ(f1H(u1),f1H(v1),,f1H(un1)f1H(vn1),f1H(vn)),f1H(w))+(1)n+1rΛ1(ϕ(f1H(u1)f1H(v1),,f1H(un1)f1H(vn1),f1H(un)),f1H(vn),f1H(w)))=fL(δΛ1ϕ)(f1H(u1)f1H(v1),,f1H(un)f1H(vn),f1H(w))=Ψ(δΛ1ϕ)(H1,H2,,Hn,w).

    Hence, Ψ is a cochain map and induces a cohomology group homomorphism Ψ:HHn+1Λ1(H,L) HHn+1Λ2(H,L).

    At the conclusion of this section, we employ the well-established cohomology theory to describe the infinitesimal deformations of nonabelian embedding tensors on 3-Lie algebras.

    Definition 4.6. Let Λ:HL be a nonabelian embedding tensor on a 3-Lie algebra (L,[,,]L) with respect to a coherent action (H,[,,]H;ρ). An infinitesimal deformation of Λ is a nonabelian embedding tensor of the form Λt=Λ+tΛ1, where t is a parameter with t2=0.

    Let Λt=Λ+tΛ1 be an infinitesimal deformation of Λ, then we have

    [Λtu1,Λtu2,Λtu3]L=Λtρ(Λtu1,Λtu2)u3+Λt[u1,u2,u3]H,

    for all u1,u2,u3H. Therefore, we obtain the following equation:

    [Λ1u1,Λu2,Λu3]L+[Λu1,Λ1u2,Λu3]L+[Λu1,Λu2,Λ1u3]L=Λ1ρ(Λu1,Λu2)u3+Λρ(Λ1u1,Λu2)u3+Λρ(Λu1,Λ1u2)u3+Λ1[u1,u2,u3]H. (4.9)

    It follows from Eq (4.9) that Λ1C1Λ(H,L) is a 1-cocycle in the cohomology complex of Λ. Thus the cohomology class of Λ1 defines an element in HH1Λ(H,L).

    Let Λt=Λ+tΛ1 and Λt=Λ+tΛ1 be two infinitesimal deformations of Λ. They are said to be equivalent if there exists a1a22L such that the pair (idL+tad(a1,a2),idH+tρ(a1,a2)) is a homomorphism from HΛtL to HΛtL. That is, the following conditions must hold:

    1) The maps idL+tad(a1,a2):LL and idH+tρ(a1,a2):HH are two 3-Lie algebra homomorphisms,

    2) The pair (idL+tad(a1,a2),idH+tρ(a1,a2)) satisfies:

    (idH+tρ(a1,a2))(ρ(a,b)u)=ρ((idL+tad(a1,a2))a,(idL+tad(a1,a2))b)(idH+tρ(a1,a2))(u),(Λ+tΛ1)(idH+tρ(a1,a2))(u)=(idL+tad(a1,a2))((Λ+tΛ1)u), (4.10)

    for all a,bL,uH. It is easy to see that Eq (4.10) gives rise to

    Λ1uΛ1u=Λρ(a1,a2)u[a1,a2,Λu]=δΛ(a1,a2)uC1Λ(H,L).

    This shows that Λ1 and Λ1 are cohomologous. Thus, their cohomology classes are the same in HH1Λ(H,L).

    Conversely, any 1-cocycle Λ1 gives rise to the infinitesimal deformation Λ+tΛ1. Furthermore, we have arrived at the following result.

    Theorem 4.7. Let Λ:HL be a nonabelian embedding tensor on (L,[,,]L) with respect to (H,[,,]H;ρ). Then, there exists a bijection between the set of all equivalence classes of infinitesimal deformations of Λ and the first cohomology group HH1Λ(H,L).

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This research is supported by the National Natural Science Foundation of China (Grant No. 12361005) and the Universities Key Laboratory of System Modeling and Data Mining in Guizhou Province (Grant No. 2023013).

    The authors declare there is no conflicts of interest.



    [1] E. A. Guggenheim, Thermodynamics, Amsterdam: North Holland, 1962.
    [2] N. Z. Shapiro, L. S. Shapley, Mass action law and the Gibbs free energy function, SIAM J. Appl. Math., 13 (1965), 353–375. https://doi.org/10.1137/0113020 doi: 10.1137/0113020
    [3] R. Aris, Prolegomena to the rational analysis of systems of chemical reactions, Archiv. Rat. Mech. Anal., 19 (1965), 81–99. https://doi.org/10.1007/BF00282276 doi: 10.1007/BF00282276
    [4] C. Truesdell, Rational thermodynamics, New York: McGraw-Hill, 1969. https://doi.org/10.1007/978-1-4612-5206-1
    [5] F. J. Krambeck, The mathematical structure of chemical kinetics, Arch. Rational Mech. Anal., 38 (1970), 317–347. https://doi.org/10.1007/BF00251527 doi: 10.1007/BF00251527
    [6] J. Pousin, Modélisation et analyse numérique de couches limites Réactives d'air, Doctorat es Sciences, Ecole Polytechnique Fédérale de Lausanne, 1993.
    [7] P. Helluy, H. Mathis, Pressure laws and fast Legendre transform, Math. Mod. Meth. Appl. S., 21 (2010), 745–775. https://doi.org/10.1142/S0218202511005209 doi: 10.1142/S0218202511005209
    [8] V. Giovangigli, Multicomponent flow modeling, Boston: Birkhaüser, 1999. https://doi.org/10.1007/978-1-4612-1580-6
    [9] V. Giovangigli, L. Matuszewski, Supercritical fluid thermodynamics from equations of state, Phys. D, 241 (2012), 649–670. https://doi.org/10.1016/j.physd.2011.12.002 doi: 10.1016/j.physd.2011.12.002
    [10] K. O. Friedrichs, P. D. Lax, Systems of conservation laws with a convex extension, P. Natl. Acad. Sci. USA, 68 (1971), 1686–1688. https://doi.org/10.1073/pnas.68.8.1686 doi: 10.1073/pnas.68.8.1686
    [11] T. Ruggeri, Thermodynamics and symmetric hyperbolic systems, Rend. Semin. Mat. U. Torino, 1988,167–183.
    [12] E. Godlevski, P. A. Raviart, Numerical approximation of hyperbolic systems of conservation laws, New York: Springer, 118 (1996). https://doi.org/10.1007/978-1-4612-0713-9
    [13] C. Dafermos, Hyperbolic conservation laws in continuum physics, Heidelberg: Springer, 2000. https://doi.org/10.1007/978-3-662-22019-1
    [14] A. I. Vol'pert, S. I. Hudjaev, On the Cauchy problem for composite systems of nonlinear differential equations, Math. USSR Sbornik, 16 (1972), 517–544. https://doi.org/10.1070/sm1972v016n04abeh001438 doi: 10.1070/sm1972v016n04abeh001438
    [15] S. Kawashima, Y. Shizuta, On the normal form of the symmetric hyperbolic-parabolic systems associated with the conservation laws, Tôhoku Math. J., 40 (1988), 449–464. https://doi.org/10.2748/tmj/1178227986 doi: 10.2748/tmj/1178227986
    [16] V. Giovangigli, M. Massot, Asymptotic stability of equilibrium states for multicomponent reactive flows, Math. Mod. Meth. Appl. S., 8 (1998), 251–297. https://doi.org/10.1142/S0218202598000123 doi: 10.1142/S0218202598000123
    [17] V. Giovangigli, M. Massot, Entropic structure of multicomponent reactive flows with partial equilibrium reduced chemistry, Math. Method. Appl. Sci., 27 (2004), 739–768. https://doi.org/10.1002/mma.429 doi: 10.1002/mma.429
    [18] V. Giovangigli, L. Matuszewski, Mathematical modeling of supercritical multicomponent reactive fluids, Math. Mod. Meth. Appl. S., 23 (2013), 2193–2251. https://doi.org/10.1142/S0218202513500309 doi: 10.1142/S0218202513500309
    [19] V. Giovangigli, W. A. Yong, Asymptotic stability and relaxation for fast chemistry fluids, Nonlinear Anal., 159 (2017), 208–263. https://doi.org/10.1016/j.na.2017.02.025 doi: 10.1016/j.na.2017.02.025
    [20] J. D. V. der Waals, Thermodynamische theorie der capillariteit in de onderstelling van continue Dichtheidsverandering, J. Müller, 20 (1979), 197–244. https://doi.org/10.1007/BF01011513 doi: 10.1007/BF01011513
    [21] J. D. V. der Waals, Thermodynamisch theorie der kapillariät unter voraussetzung stetiger dichteanderung, Z. Phys. Chem., 13 (1894), 657–725.
    [22] D. J. Korteweg, Sur la Forme que Prennent les Equations du Mouvement Fluide si l'on tient Compte de Forces Capillaires Causées par les Variations de Densité Considérables mais Continues et sur la Théorie de la Capillarité dans l'Hypothèse d'une Variations Continue de la Densité, Arch. Neerl. Sci. Exactes, 6 (1901), 1–20. Available from: https://archive.org/details/archivesnerland261901laha/page/n17/mode/2up.
    [23] J. E. Dunn, J. Serrin, On the thermomechanics of interstitial working, Arch. Ration. Mech. An., 133 (1985), 95–133. https://doi.org/10.1007/BF00250907 doi: 10.1007/BF00250907
    [24] P. G. de Gennes, Wetting: Statics and dynamics, Rev. Mod. Phys., 57 (1985), 827–863. https://doi.org/10.1103/RevModPhys.57.827 doi: 10.1103/RevModPhys.57.827
    [25] J. S. Rowlinson, B. Widom, Molecular theory of capillarity, Courier Corporation, 2013.
    [26] [annurev.fluid.30.1.139] D. M. Anderson, G. B. McFadden, A. A. Wheeler, Diffuse interface methods in fluid mechanics, Annu. Rev. Fluid Mech., 30 (1998), 139–165. https://doi.org/10.1146/annurev.fluid.30.1.139 doi: 10.1146/annurev.fluid.30.1.139
    [27] D. Jamet, Diffuse interface models in fluid mechanics, GdR CNRS Documentation, see Pmc. Polytechnique, 2001.
    [28] D. Jamet, O. Lebaigue, N. Coutris, J. M. Delhaye, The second gradient method for the direct numerical simulation of liquid-vapor flows with phase change, J. Comput. Phys., 169 (2001), 624–651. https://doi.org/10.1006/jcph.2000.6692 doi: 10.1006/jcph.2000.6692
    [29] P. Gaillard, V. Giovangigli, L. Matuszewski, A diffuse interface lox/hydrogen transcritical flame model, Combust. Theor. Model., 20 (2016), 486–520. https://doi.org/10.1080/13647830.2016.1150518 doi: 10.1080/13647830.2016.1150518
    [30] P. Gaillard, V. Giovangigli, L. Matuszewski, Erratum for a diffuse interface lox/hydrogen transcritical flame model. Available from: https://hal.science/hal-04198003.
    [31] D. Nayigizente, S. Ducruix, T. Schmitt, Development of an interface thickening method for the direct numerical simulation of compressible liquid-vapor flows in the framework of the second gradient theory, Phys. Fluids, 33 (2021), 052119. https://doi.org/10.1063/5.0048715 doi: 10.1063/5.0048715
    [32] Y. Le Calvez, Modélisation mathématique et simulation numériques des mélanges fluides avec interfaces diffuses, PhD thesis, (in preparation), 2024.
    [33] S. Gavrilyuk, S. Shugrin, Media with equations of state that depend on derivatives, J. Appl. Mech. Techn. Ph.+, 37 (1996), 177–189. https://doi.org/10.1007/BF02382423 doi: 10.1007/BF02382423
    [34] Y. Rocard, Equations hydrodynamiques avec termes capillaires, Théorie de la tension superficielle, J. Phys. Radium, 4 (1933), 533–548. https://doi.org/10.1051/jphysrad:01933004010053300 doi: 10.1051/jphysrad:01933004010053300
    [35] P. Barbante, A. Frezzotti, A comparison of models for the evaporation of a Lennard-Jones fluid, Eur. J. Mech. B-Fluid., 64 (2017), 69–80. https://doi.org/10.1016/j.euromechflu.2017.01.020 doi: 10.1016/j.euromechflu.2017.01.020
    [36] V. Giovangigli, Kinetic derivation of diffuse-interface fluid models, Phys. Rev. E, 102 (2020), 012110. https://doi.org/10.1103/PhysRevE.102.012110 doi: 10.1103/PhysRevE.102.012110
    [37] J. W. Cahn, J. E. Hilliard, Free energy of a non uniform system Ⅰ, Interfacial free energy, J. Chem. Phys., 28 (1958), 258–267. https://doi.org/10.1063/1.1744102 doi: 10.1063/1.1744102
    [38] J. W. Cahn, J. E. Hilliard, Free energy of a non uniform system Ⅱ, thermodynamic basis, J. Chem. Phys., 30 (1959), 1121–1124. https://doi.org/10.1063/1.1730145 doi: 10.1063/1.1730145
    [39] F. Falk, Cahn-Hilliard theory and irreversible thermodynamics, J. Non-Equil. Thermody., 17 (1992), 53–65. https://doi.org/10.1515/jnet.1992.17.1.53 doi: 10.1515/jnet.1992.17.1.53
    [40] J. Kim, J. Lowengrub, Phase field modeling and simulation of three-phase flows, Inter. Free Boundary, 7 (2005), 435–466. https://doi.org/10.4171/IFB/132 doi: 10.4171/IFB/132
    [41] H. W. Alt, The entropy principle for interfaces, fluids and solids, Adv. Math. Sci. Appl., 19 (2009), 585–663.
    [42] H. Abels, H. Garcke, G. Grün, Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities, Math. Mod. Meth. Appl. S., 22 (2012), 1150013. https://doi.org/10.1142/S0218202511500138 doi: 10.1142/S0218202511500138
    [43] Z. Guo, P. Lin, A thermodynamically consistent phase-field model for two-phase flows with thermocapillarity effects, J. Fluid Mech., 766 (2015), 226–271. https://doi.org/10.1017/jfm.2014.696 doi: 10.1017/jfm.2014.696
    [44] V. Giovangigli, Kinetic derivation of Cahn-Hilliard fluid models, Phys. Rev. E, 104 (2021), 054109. https://doi.org/10.1103/PhysRevE.104.054109 doi: 10.1103/PhysRevE.104.054109
    [45] H. G. Lee, J. Yang, S. Kim, J. Kim, Modeling and simulation of droplet evaporation using a modified Cahn-Hilliard equation, Appl. Math. Comput., 390 (2021), 125591. https://doi.org/10.1016/j.amc.2020.125591 doi: 10.1016/j.amc.2020.125591
    [46] C. Wang, S. M. Wise, A thermodynamically-consistent phase field crystal model of solidification with heat flux, J. Math. Study, 55 (2022), 337–357. https://doi.org/10.4208/jms.v55n4.22.01 doi: 10.4208/jms.v55n4.22.01
    [47] F. Wang, H. Zhang, Y. Wu, B. Nestler, A thermodynamically consistent diffuse interface model for the wetting phenomenon of miscible and immiscible ternary fluids, J. Fluid Mech., 970 (2023), A17. https://doi.org/10.1017/jfm.2023.561 doi: 10.1017/jfm.2023.561
    [48] H. Zhang, F. Wang, B. Nestler, Multi-component electro-hydro-thermodynamic model with phase-field method. Ⅰ. Dielectric, J. Comput. Phys., 505 (2024), 112907. https://doi.org/10.1016/j.jcp.2024.112907 doi: 10.1016/j.jcp.2024.112907
    [49] A. Miranville, The Cahn-Hilliard equation: Recent advances and applications, CBMS-NSF Regional Conference Series in Applied Mathematics 95, Philadelphia: Society for Industrial and Applied Mathematics (SIAM), 2019. https://doi.org/10.1137/1.9781611975925
    [50] E. Bretin, S. Masnou, E. Oudet, Phase-field approximations of the Willmore functional and flow, Numer. Math., 131 (2015), 115–171. https://doi.org/10.1007/s00211-014-0683-4 doi: 10.1007/s00211-014-0683-4
    [51] E. Benilov, The multicomponent diffuse-interface model and its application to water/air interfaces, J. Fluid Mech., 954 (2023), A41. https://doi.org/10.1017/jfm.2022.1032 doi: 10.1017/jfm.2022.1032
    [52] M. Dressler, B. Edwards, C. Öttinger, Macroscopic thermodynamics of flowing polymeric liquids, Rheol. Acta, 38 (1999), 117–136. https://doi.org/10.1007/s003970050162 doi: 10.1007/s003970050162
    [53] D. Bruno, V. Giovangigli, Relaxation of internal temperature and volume viscosity, Phys. Fluids, 23 (2011), 093104. https://doi.org/10.1063/1.3640083 doi: 10.1063/1.3640083
    [54] E. V. Kustova, E. A. Nagnibeda, On a correct description of a multi-temperature dissociating CO2 flow, Chem. Phys., 321 (2006), 293–310. https://doi.org/10.1016/j.chemphys.2005.08.026 doi: 10.1016/j.chemphys.2005.08.026
    [55] R. H. Fowler, Statistical mechanics, Cambridge: Cambridge University Press, 1936.
    [56] J. H. Ferziger, H. G. Kaper, Mathematical theory of transport processes in gases, Amsterdam: North Holland, 1972.
    [57] J. Keizer, Statistical thermodynamics of nonequilibrium processes, New York: Springer-Verlag, 1987. https://doi.org/10.1007/978-1-4612-1054-2
    [58] K. Laasonen, S. Wonczak, R. Strey, A. Laaksonena, Molecular dynamics simulations of gas-liquid nucleation of Lennard-Jones fluid, J. Chem. Phys., 113 (2000), 9741–9747. https://doi.org/10.1063/1.1322082 doi: 10.1063/1.1322082
    [59] S. Chen, G. D. Doolen, Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech., 30 (1998), 329–364. https://doi.org/10.1146/annurev.fluid.30.1.329 doi: 10.1146/annurev.fluid.30.1.329
    [60] S. R. de Groot, P. Mazur, Non-equilibrium thermodynamics, Mineola: Dover publications, 1984.
    [61] C. Öttinger, Beyond equilibrium thermodynamics, Hoboken: John Wiley and Sons, 2005. https://doi.org/10.1002/0471727903
    [62] L. J. Gillespie, Equilibrium pressures of individual gases in mixtures and the mass-action law for gases, J. Am. Chem. Soc., 47 (1925), 305–312. https://doi.org/10.1021/ja01679a003 doi: 10.1021/ja01679a003
    [63] M. Benedict, G. B. Webb, L. C. Rubin, An empirical equation for thermodynamic properties of light hydrocarbons and their mixtures, J. Chem. Phys., 8 (1940), 334–345. https://doi.org/10.1063/1.1750658 doi: 10.1063/1.1750658
    [64] J. A. Beattie, The computation of the thermodynamic properties of real gases and mixtures of real gases, Chem. Rev., 18 (1948), 141–192. https://doi.org/10.1021/cr60137a010 doi: 10.1021/cr60137a010
    [65] O. Redlich, J. N. S. Kwong, On the thermodynamics of solutions. V. An equation of state. Fugacities of gaseous solutions, Chem. Rev., 44 (1949), 233–244. https://doi.org/10.1021/cr60137a013 doi: 10.1021/cr60137a013
    [66] [/10.1016/0009-2509(72)80096-4] G. S. Soave, Equilibrium constants from a modified Redlich-Kwong equation of state, Chem. Eng. Sci., 27 (1972), 157–172. https://doi.org/10.1016/0009-2509(72)80096-4 doi: 10.1016/0009-2509(72)80096-4
    [67] G. S. Soave, An effective modification of the Benedict-Webb-Rubin equation of state, Fluid Phase Equilbr., 164 (1999), 157–172. https://doi.org/10.1016/S0378-3812(99)00252-6 doi: 10.1016/S0378-3812(99)00252-6
    [68] D. Y. Peng, D. B. Robinson, A new two-constant equation of state, Ind. Eng. Chem. Fundam., 15 (1976), 59–64. https://doi.org/10.1021/i160057a011 doi: 10.1021/i160057a011
    [69] M. S. Graboski, T. E. Daubert, A modified Soave equation of state for phase equilibrium calculations. 3. Systems containing hydrogen, Ind. Eng. Chem. Process. Dev. Des., 18 (1979), 300–306. https://doi.org/10.1021/i260070a022 doi: 10.1021/i260070a022
    [70] E. D. Ozokwelu, J. H. Erbar, An improved Soave-Redlich-Kwong equation of state, Chem. Eng. Commun., 52 (1987), 9–19. https://doi.org/10.1080/00986448708911854 doi: 10.1080/00986448708911854
    [71] K. G. Harstad, R. S. Miller, J. Bellan, Efficient high pressure state equations, AICHE J., 43 (1997), 1605–1610. https://doi.org/10.1002/aic.690430624 doi: 10.1002/aic.690430624
    [72] A. Congiunti, C. Bruno, E. Giacomazzi, Supercritical combustion properties, 11th Aerospace Sciences Meeting and Exhibit, AIAA-2003-478, 2003. https://doi.org/10.2514/6.2003-478
    [73] P. Colonna, P. Silva, Dense gas thermodynamic properties of single and multicomponent fluids for fluid dynamics simulations, J. Fluid Eng., 125 (2003), 414–427. https://doi.org/10.1115/1.1567306 doi: 10.1115/1.1567306
    [74] W. A. C. Marín, U. E. G. Aconcha, J. D. O. Arango, Comparison of different cubic equations of state and combination rules for predicting residual chemical potential of binary and ternary Lennard-Jones mixtures: Solid-supercritical fluid phase equilibria, Fluid Phase Equilibr., 234 (2005), 42–50. https://doi.org/10.1016/j.fluid.2005.05.014 doi: 10.1016/j.fluid.2005.05.014
    [75] W. A. C. Marín, J. D. O. Arango, U. E. G. Aconcha, C. P. S. Tavera, Thermodynamic derivative properties and densities for hyperbaric gas condensates: SRK equation of state predictions versus Monte Carlo data, Fluid Phase Equilibr., 253 (2007), 147–154. https://doi.org/10.1016/j.fluid.2007.02.004 doi: 10.1016/j.fluid.2007.02.004
    [76] A. M. Saur, F. Behrendt, E. U. Franck, Calculation of high pressure counterflow diffusion flame up to 3000 bar, Ber. Bunsenges Phys. Chem., 97 (1993), 900–908. https://doi.org/10.1002/bbpc.19930970710 doi: 10.1002/bbpc.19930970710
    [77] H. Meng, V. Yang, A unified treatment of general fluid thermodynamics and its application to a preconditioning scheme, J. Comput. Phys., 189 (2003), 277–304. https://doi.org/10.1016/S0021-9991(03)00211-0 doi: 10.1016/S0021-9991(03)00211-0
    [78] J. C. Oefelein, Thermophysical characteristics of shear-coaxial LOX-H2 flames at supercritical pressure, P. Combust. Inst., 30 (2005), 2929–2937. https://doi.org/10.1016/j.proci.2004.08.212 doi: 10.1016/j.proci.2004.08.212
    [79] G. Ribert, N. Zong, V. Yang, L. Pons, N. Darabiha, S. Candel, Counterflow diffusion flames of general fluids: Oxygen/hydrogen mixtures, Combust. Flame, 154 (2008), 319–330. https://doi.org/10.1016/j.combustflame.2008.04.023 doi: 10.1016/j.combustflame.2008.04.023
    [80] V. Giovangigli, L. Matuszewski, F. Dupoirieux, Detailed modeling of planar transcritical H2-O2-N2 flames, Combust. Theor. Model., 15 (2011), 141–182. https://doi.org/10.1080/13647830.2010.527016 doi: 10.1080/13647830.2010.527016
    [81] P. Gaillard, V. Giovangigli, L. Matuszewski, Nonmixing layers, Phys. Rev. Fluids, 1 (2016), 084001. https://doi.org/10.1103/PhysRevFluids.1.084001
    [82] S. Gavrilyuk, H. Gouin, Symmetric form of governing equations for capillary fluids, arXiv Preprint, 2008. https://doi.org/10.48550/arXiv.0802.1670
    [83] S. B. Gavage, R. Danchin, L. Mazet, D. Jamet, Structure of Korteweg models and stability of diffuse interfaces, Interface. Free Bound., 7 (2005), 371–414. https://doi.org/10.4171/IFB/130 doi: 10.4171/IFB/130
    [84] D. Bresch, F. Couderc, P. Noble, J. P. Vila, A generalization of the quantum Bohm identity: Hyperbolic CFL condition for Euler-Korteweg equations, C. R. Math. Acad. Sci. Paris, 354 (2008), 39–43. http://dx.doi.org/10.1016/j.crma.2015.09.020 doi: 10.1016/j.crma.2015.09.020
    [85] D. Bresch, V. Giovangigli, E. Zatorska, Two-velocity hydrodynamics in fluid mechanics: Part Ⅰ Well posedness for zero Mach number systems, J. Math. Pure. Appl., 104 (2015), 762–800. https://doi.org/10.1016/j.matpur.2015.05.003 doi: 10.1016/j.matpur.2015.05.003
    [86] M. Kotschote, Dynamics of compressible non-isothermal fluids of new-newtonian Korteweg type, SIAM J. Math. Anal., 44 (2012), 74–101. https://doi.org/10.1137/110821202 doi: 10.1137/110821202
    [87] V. Giovangigli, Y. Le Calvez, F. Nabet, Symmetrization and local existence of strong solutions for diffuse interface fluid models, J. Math. Fluid Mech., 25 (2023), 82. https://doi.org/10.1007/s00021-023-00825-4 doi: 10.1007/s00021-023-00825-4
    [88] M. R. Marcelin, Sur la mécanique des phénomènes irréversibles, C. R. Acad. Sci. Paris, 1910, 1052–1055.
    [89] M. R. Marcelin, Contribution à l'étude de la cinétique physico-chimique, Thèses de la Faculté des Sciences de Paris, 1914.
    [90] A. Ern, V. Giovangigli, The Kinetic equilibrium regime, Phys. A, 260 (1998), 49–72. https://doi.org/10.1016/S0378-4371(98)00303-3 doi: 10.1016/S0378-4371(98)00303-3
    [91] V. Giovangigli, Solutions for models of chemically reacting mixtures, Handbook of Mathematical Analysis in Mechanics of Viscous Fluids, Yoshikazu Giga and Antonín Novotný Editors, Springer-Verlag, 2018, 2979–3030. https://doi.org/10.1007/978-3-319-10151-4
    [92] L. Pons, N. Darabiha, S. Candel, G. Ribert, V. Yang, Mass transfer and combustion in transcritical non-premixed counterflows, Combust. Theor. Model., 13 (2009), 57–81. https://doi.org/10.1080/13647830802368821 doi: 10.1080/13647830802368821
    [93] V. Giovangigli, L. Matuszewski, Numerical simulation of transcritical strained laminar flames, Combust. Flame, 159 (2012), 2829–2840. https://doi.org/10.1016/j.combustflame.2012.05.011 doi: 10.1016/j.combustflame.2012.05.011
    [94] R. J. Kee, F. M. Rupley, J. A. Miller, Chemkin Ⅱ: A Fortran chemical kinetics package for the analysis of gas phase chemical kinetics, Livermore: Sandia National Lab. (SNL-CA), 1989. https://doi.org/10.2172/5681118
    [95] D. G. Goodwin, R. L. Speth, H. K. Moffat, B. W. Weber, Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes, Zenodo, 2018. https://doi.org/10.5281/zenodo.4527812
    [96] P. Deuflhard, Newton methods for nonlinear problems, Berlin: Springer, 2004.
    [97] H. B. Keller, Numerical Solution of bifurcation and nonlinear eigenvalue problems, Appl. Bifurcat. Theory, 1977,359–384.
    [98] M. D. Smooke, Solution of burner stabilized premixed laminar flames by boundary value methods, J. Comput. Phys., 48 (1982), 72–105. https://doi.org/10.1016/0021-9991(82)90036-5 doi: 10.1016/0021-9991(82)90036-5
    [99] M. D. Smooke, The computation of laminar flames, P. Combust. Inst., 34 (2013), 65–98. https://doi.org/10.1016/j.proci.2012.09.005 doi: 10.1016/j.proci.2012.09.005
    [100] E. S. Oran, J. P. Boris, Numerical simulation of reactive flows, Cambridge: Cambridge University Press, 2001.
    [101] V. Giovangigli, M. D. Smooke, Adaptive continuation algorithms with application to combustion problems, Appl. Numer. Math., 5 (1989), 305–331. https://doi.org/10.1016/0168-9274(89)90013-5 doi: 10.1016/0168-9274(89)90013-5
    [102] V. Giovangigli, N. Darabiha, Vector computers and complex chemistry combustion, Mathematical Modeling in Combustion and Related Topics, C. Brauner and C. S. Lainé Eds., Dordrecht: Springer Netherlands, 140 (1988), 491–503. https://doi.org/10.1007/978-94-009-2770-4
    [103] A. Ern, V. Giovangigli, Optimized transport algorithms for flame codes, Combust. Sci. Tech., 118 (1996), 387–395. https://doi.org/10.1080/00102209608951988 doi: 10.1080/00102209608951988
    [104] L. Matuszewski, Modélisation et simulation numérique des phénomènes de combustion en régime supercritique, PhD Thesis, University Paris, 2011.
    [105] A. Ern, V. Giovangigli, Projected iterative algorithms with application to multicomponent transport, Linear Algebra Appl., 250 (1997), 289–315. https://doi.org/10.1016/0024-3795(95)00502-1 doi: 10.1016/0024-3795(95)00502-1
    [106] V. Giovangigli, Multicomponent transport algorithms for partially ionized plasmas, J. Comput. Phys., 229 (2010), 4117–4142. https://doi.org/10.1016/j.jcp.2010.02.001 doi: 10.1016/j.jcp.2010.02.001
    [107] V. Giovangigli, Mass conservation and singular multicomponent diffusion algorithms, Impact Comput. Sci. Eng., 2 (1990), 73–97. https://doi.org/10.1016/0899-8248(90)90004-T doi: 10.1016/0899-8248(90)90004-T
    [108] V. Giovangigli, Convergent iterative methods for multicomponent diffusion, Impact Comput. Sci. Eng., 3 (1991), 244–276. https://doi.org/10.1016/0899-8248(91)90010-R doi: 10.1016/0899-8248(91)90010-R
    [109] A. Ern, V. Giovangigli, Multicomponent transport algorithms, Lecture Notes in Physics, Monograph m24, Heidelberg: Springer-Verlag, 1994. https://doi.org/10.1007/978-3-540-48650-3
    [110] A. Ern, V. Giovangigli, The structure of transport linear systems in Dilute isotropic gas mixtures, Phys. Rev. E, 53 (1996), 485–492. https://doi.org/10.1103/PhysRevE.53.485 doi: 10.1103/PhysRevE.53.485
    [111] A. Ern, V. Giovangigli, Thermal diffusion effects in hydrogen-air and methane-air flames, Combust. Theor. Model., 2 (1998), 349–372. https://doi.org/10.1088/1364-7830/2/4/001 doi: 10.1088/1364-7830/2/4/001
    [112] P. H. Van Konynenburg, R. L. Scott, Critical lines and phase equilibria in binary van der waals mixtures, Philos. T. R. Soc., 298 (1980), 495–540. https://doi.org/10.1098/rsta.1980.0266 doi: 10.1098/rsta.1980.0266
    [113] J. M. Prausnitz, R. N. Lichtenthaler, E. G. de Avezo, Molecular thermodynamics of fluid-phase equilibria, Pearson Education, 1999.
    [114] J. F. Ely, H. J. Hanley, Prediction of transport properties. 2. Thermal conductivity of pure fluids and mixtures, Indus. Eng. Chem. Fundat., 22 (1983), 90–97. https://doi.org/10.1021/i100009a016 doi: 10.1021/i100009a016
    [115] T. H. Chung, M. Ajlan, L. L. Lee, K. E. Starling, Generalized multiparameter correlation for nonpolar and polar fluid transport properties, Ind. Eng. Chem. Res., 27 (1988), 671–679. https://doi.org/10.1021/ie00076a024 doi: 10.1021/ie00076a024
    [116] V. I. Kurochkin, S. F. Makarenko, G. A. Tirskii, Transport coefficients and the Onsager relations in the kinetic theory of dense gas mixtures, J. Appl. Mech. Tech. Ph.+, 25 (1984), 218–225. https://doi.org/10.1007/BF00910464 doi: 10.1007/BF00910464
    [117] R. J. Kee, F. M. Rupley, J. A. Miller, The Chemkin thermodynamic data base, SANDIA National Laboratories Report, 1987. https://doi.org/10.2172/7073290
    [118] M. W. Chase Jr, NIST-JANAF thermochemical tables, 4 Eds., J. Phys. Chem. Ref. Data, 1998.
    [119] B. J. McBride, M. J. Zehe, S. Gordon, NASA Glenn coefficients for calculating thermodynamic properties of individual species, National Aeronautics and Space Administration, John H. Glenn Research Center at Lewis Field, 2002.
    [120] H. Lin, Y. Y. Duan, Q. Min, Gradient theory modeling of surface tension for pure fluids and binary mixtures, Fluid Phase Equilibr., 254 (2007), 75–90. https://doi.org/10.1016/j.fluid.2007.02.013 doi: 10.1016/j.fluid.2007.02.013
    [121] B. A. Younglove, Thermophysical properties of fluids I, Argon, ethylene, parahydrogen, nitrogen, nitrogen trifluoride, and oxygen, J. Phys. Chem. Ref. Data, 11 (1982).
    [122] B. A. Younglove, J. F. Ely, Thermophysical properties of fluids. Ⅱ. Methane, ethane, propane, isobutane, and normal butane, J. Phys. Chem. Ref. Data, 16 (1987), 577–798.
    [123] M. K. Gupta, G. C. Gardner, M. J. Hegarty, A. J. Kidnay, Liquid-vapor equilibria for the N+2CH+4C2H6 System from 260 to 280 K, J. Chem. Eng. Data, 25 (1980), 313–318. https://doi.org/10.1021/je60087a016 doi: 10.1021/je60087a016
    [124] B. E. Eakin, R. T. Ellington, D. C. Gami, Physical-chemical properties of Ethane-Nitrogen mixtures, Institute of Gas Technology, 1955.
    [125] R. Stryjek, P. S. Chappelear, R. Kobayashi, Low-temperature vapor-liquid equilibria of Nitrogen-Ethane system, J. Chem. Eng. Data, 19 (1974), 340–343. https://doi.org/10.1021/je60063a024 doi: 10.1021/je60063a024
    [126] K. D. Wisotzki, G. M. Schneider, Fluid phase equilibria of the binary systems N+2 Ethane and N+2 Pentane Between 88 K and 313 K and Pressures up to 200 MPa, Ber. Bunsenges. Phys. Chem., 89 (1985), 21–25. https://doi.org/10.1002/bbpc.19850890106 doi: 10.1002/bbpc.19850890106
    [127] M. L. Japas, E. U. Franck, High pressure phase equilibria and PVT-data of the water-oxygen system including water-air to 673 K and 250 MPa, Ber. Bunsenges. Phys. Chem., 89 (1985), 1268–1275. https://doi.org/10.1002/bbpc.19850891206 doi: 10.1002/bbpc.19850891206
    [128] D. Y. Peng, D. B. Robinson, A rigorous method for predicting the critical properties of multicomponent systems from an equation of state, AICHE J., 23 (1977), 137–144. https://doi.org/10.1002/aic.690230202 doi: 10.1002/aic.690230202
    [129] A. Mielke, A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems, Nonlinearity, 24 (2011), 1329–1346. https://doi.org/10.1088/0951-7715/24/4/016 doi: 10.1088/0951-7715/24/4/016
    [130] M. Liero, A. Mielke, Gradient structures and geodesic convexity for reaction-diffusion systems, Philos. T. R. Soc., A371 (2013), 20120346. https://doi.org/10.1098/rsta.2012.0346 doi: 10.1098/rsta.2012.0346
    [131] L. Dong, C. Wang, S. M. Wise, Z. Zhang, A positivity-preserving, energy stable scheme for a ternary Cahn-Hilliard system with the singular interfacial parameters, J. Comput. Phys., 442 (2021), 110451. https://doi.org/10.1016/j.jcp.2021.110451 doi: 10.1016/j.jcp.2021.110451
  • This article has been cited by:

    1. Halyna V. Tkachuk, Pavlo V. Merzlykin, Ivan I. Donchev, STEM project design in computer microelectronics education, 2025, 2833-5473, 10.55056/cte.929
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1057) PDF downloads(73) Cited by(0)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog