The problem of decentralized observer-based event-triggered stabilization for an interconnected fractional-order system subject to stochastic cyber-attacks is studied. To address this issue, the decentralized event-triggered mechanism is proposed for the interconnected fractional-order system, where the event-triggered schemes are designed based on the states of fractional-order observers, and the stochastic attacks are considered both on control inputs and observer outputs. By combining decentralized observers and decentralized event-triggered controllers, we aim to achieve decentralized control with reduced amplifying error and use local signals to improve overall system performance. By utilizing the diffusive representation of the fractional-order system, the interconnected fractional-order system is transformed into an equivalent integer-order one to simplify the analysis and control design. Employing the Lyapunov indirect approach, a sufficient condition is obtained to guarantee the stochastic asymptotically stability of the augmented system. Additionally, by the singular value decomposition technique, the approach of simultaneously computing the decentralized observer gains and controller gains is presented. Finally, a simulation example is provided to validate the theoretical findings.
Citation: Zhaohui Chen, Jie Tan, Yong He, Zhong Cao. Decentralized observer-based event-triggered control for an interconnected fractional-order system with stochastic Cyber-attacks[J]. AIMS Mathematics, 2024, 9(1): 1861-1876. doi: 10.3934/math.2024091
[1] | Abdelkrim Salim, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez . On the nonlocal hybrid (k,φ)-Hilfer inverse problem with delay and anticipation. AIMS Mathematics, 2024, 9(8): 22859-22882. doi: 10.3934/math.20241112 |
[2] | Kangqun Zhang . Existence and uniqueness of positive solution of a nonlinear differential equation with higher order Erdélyi-Kober operators. AIMS Mathematics, 2024, 9(1): 1358-1372. doi: 10.3934/math.2024067 |
[3] | Dumitru Baleanu, Babak Shiri . Nonlinear higher order fractional terminal value problems. AIMS Mathematics, 2022, 7(5): 7489-7506. doi: 10.3934/math.2022420 |
[4] | Yujun Cui, Chunyu Liang, Yumei Zou . Existence and uniqueness of solutions for a class of fractional differential equation with lower-order derivative dependence. AIMS Mathematics, 2025, 10(2): 3797-3818. doi: 10.3934/math.2025176 |
[5] | Dumitru Baleanu, Babak Shiri . Generalized fractional differential equations for past dynamic. AIMS Mathematics, 2022, 7(8): 14394-14418. doi: 10.3934/math.2022793 |
[6] | Qi Wang, Chenxi Xie, Qianqian Deng, Yuting Hu . Controllability results of neutral Caputo fractional functional differential equations. AIMS Mathematics, 2023, 8(12): 30353-30373. doi: 10.3934/math.20231550 |
[7] | Wedad Albalawi, Muhammad Imran Liaqat, Fahim Ud Din, Kottakkaran Sooppy Nisar, Abdel-Haleem Abdel-Aty . Significant results in the pth moment for Hilfer fractional stochastic delay differential equations. AIMS Mathematics, 2025, 10(4): 9852-9881. doi: 10.3934/math.2025451 |
[8] | Jun Moon . The Pontryagin type maximum principle for Caputo fractional optimal control problems with terminal and running state constraints. AIMS Mathematics, 2025, 10(1): 884-920. doi: 10.3934/math.2025042 |
[9] | Wei Zhang, Jifeng Zhang, Jinbo Ni . New Lyapunov-type inequalities for fractional multi-point boundary value problems involving Hilfer-Katugampola fractional derivative. AIMS Mathematics, 2022, 7(1): 1074-1094. doi: 10.3934/math.2022064 |
[10] | Dehong Ji, Weigao Ge . A nonlocal boundary value problems for hybrid ϕ-Caputo fractional integro-differential equations. AIMS Mathematics, 2020, 5(6): 7175-7190. doi: 10.3934/math.2020459 |
The problem of decentralized observer-based event-triggered stabilization for an interconnected fractional-order system subject to stochastic cyber-attacks is studied. To address this issue, the decentralized event-triggered mechanism is proposed for the interconnected fractional-order system, where the event-triggered schemes are designed based on the states of fractional-order observers, and the stochastic attacks are considered both on control inputs and observer outputs. By combining decentralized observers and decentralized event-triggered controllers, we aim to achieve decentralized control with reduced amplifying error and use local signals to improve overall system performance. By utilizing the diffusive representation of the fractional-order system, the interconnected fractional-order system is transformed into an equivalent integer-order one to simplify the analysis and control design. Employing the Lyapunov indirect approach, a sufficient condition is obtained to guarantee the stochastic asymptotically stability of the augmented system. Additionally, by the singular value decomposition technique, the approach of simultaneously computing the decentralized observer gains and controller gains is presented. Finally, a simulation example is provided to validate the theoretical findings.
In 1998, Kahlig and Matkowski [1] proved in particular that every homogeneous bivariable mean M in (0,∞) can be represented in the form
M(x,y)=A(x,y)fM,A(x−yx+y), |
where A is the arithmetic mean and fM,A: (−1,1)⟶(0,2) is a unique single variable function (with the graph laying in a set of a butterfly shape), called an A-index of M.
In this paper we consider Seiffert function f:(0,1)→R which fulfils the following condition
t1+t≤f(t)≤t1−t. |
According to the results of Witkowski [2] we introduce the mean Mf of the form
Mf(x,y)={|x−y|2f(|x−y|x+y)x≠y,xx=y. | (1.1) |
In this paper a mean Mf:R2+⟶R is the function that is symmetric, positively homogeneous and internal in sense [2]. Basic result of Witkowski is correspondence between a mean Mf and Seiffert function f of Mf is given by the following formula
f(t)=tMf(1−t,1+t), | (1.2) |
where
t=|x−y|x+y. | (1.3) |
Therefore, f and Mf form a one-to-one correspondence via (1.1) and (1.2). For this reason, in the following we can rewrite f=:fM.
Throughout this article, we say x≠y, that is, t∈(0,1). For convenience, we note that M1<M2 means M1(x,y)<M2(x,y) holds for two means M1 and M2 with x≠y. Then there is a fact that the inequality fM1(t)>fM2(t) holds if and only if M1<M2. That is to say,
1fM1<1fM2⟺M1<M2. | (1.4) |
The above relationship (1.4) inspires us to ask a question: Can we transform the means inequality problem into the reciprocal inequality problem of the corresponding Seiffert functions? Witkowski [2] answers this question from the perspective of one-to-one correspondence. We find that these two kinds of inequalities are equivalent in similar linear inequalities. We describe this result in Lemma 2.1 as a support of this paper.
As we know, the study of inequalities for mean values has always been a hot topic in the field of inequalities. For example, two common means can be used to define some new means. The recent success in this respect can be seen in references [3,4,5,6,7,8]. In [2], Witkowski introduced the following two new means, one called sine mean
Msin(x,y)={|x−y|2sin(|x−y|x+y)x≠yxx=y, | (1.5) |
and the other called hyperbolic tangent mean
Mtanh(x,y)={|x−y|2tanh(|x−y|x+y)x≠yxx=y. | (1.6) |
Recently, Nowicka and Witkowski [9] determined various optimal bounds for the Msin(x,y) and Mtanh(x,y) by the arithmetic mean A(x,y)=(x+y)/2 and centroidal mean
Ce(x,y)=23x2+xy+y2x+y |
as follows:
Proposition 1.1. The double inequality
(1−α)A+αCe<Msin<(1−β)A+βCe |
holds if and only if α≤ 1/2 and β≥(3/sin1)−3≈0.5652.
Proposition 1.2. The double inequality
(1−α)A+αCe<Mtanh<(1−β)A+βCe |
holds if and only if α≤ (3/tanh1)−3≈0.9391 and β≥1.
Proposition 1.3. The double inequality
(1−α)C−1e+αA−1<M−1sin<(1−β)C−1e+βA−1 |
holds if and only if α≤ 4sin1−3≈0.3659 and β≥1/2.
Proposition 1.4. The double inequality
(1−α)C−1e+αA−1<M−1tanh<(1−β)C−1e+βA−1 |
holds if and only if α≤ 0 and β≥4tanh1−3≈0.0464.
Proposition 1.5. The double inequality
(1−α)A2+αC2e<M2sin<(1−β)A2+βC2e |
holds if and only if α≤ 1/2 and β≥(9cot21)/7≈0.5301.
Proposition 1.6. The double inequality
(1−α)A2+αC2e<M2tanh<(1−β)A2+βC2e |
holds if and only if α≤ (9(coth21−1))/7≈0.9309 and β≥1.
Proposition 1.7. The double inequality
(1−α)C−2e+αA−2<M−2sin<(1−β)C−2e+βA−2 |
holds if and only if α≤(16sin21−9)/7≈0.3327 and β≥1/2.
Proposition 1.8. The double inequality
(1−α)C−2e+αA−2<M−2tanh<(1−β)C−2e+βA−2 |
holds if and only if α≤0 and β≥(16tanh21−9)/7≈0.0401.
In essence, the above results are how the two new means Msin and Mtanh are expressed linearly, harmoniously, squarely, and harmoniously in square by the two classical means Ce(x,y) and A(x,y). In this paper, we study the following two-sided inequalities in exponential form for nonzero number p∈R
(1−αp)Ap+αpCep<Mpsin<(1−βp)Ap+βpCep, | (1.7) |
(1−λp)Ap+λpCep<Mptanh<(1−μp)Ap+μpCep | (1.8) |
in order to reach a broader conclusion including all the above properties. The main conclusions of this paper are as follows:
Theorem 1.1. Let x,y>0, x≠y, p≠0 and
p♣=3cos2+sin2+13sin2−cos2−3≈4.588. |
Then the following are considered.
(i) If p≥p♣, the double inequality
(1−αp)Ap+αpCep<Mpsin<(1−βp)Ap+βpCep | (1.9) |
holds if and only if αp≤3p(1−sinp1)/[(sinp1)(4p−3p)] and βp≥1/2.
(ii) If 0<p≤12/5, the double inequality
(1−αp)Ap+αpCep<Mpsin<(1−βp)Ap+βpCep | (1.10) |
holds if and only if αp≤1/2 and βp≥3p(1−sinp1)/[(sinp1)(4p−3p)].
(iii) If p<0, the double inequality
(1−βp)Ap+βpCep<Mpsin<(1−αp)Ap+αpCep | (1.11) |
holds if and only if αp≤1/2 and βp≥3p(1−sinp1)/[(sinp1)(4p−3p)].
Theorem 1.2. Let x,y>0, x≠y, p≠0 and
p∗=−16cosh2−3cosh4+4sinh2+3cosh4−12sinh2+15≈−3.4776. |
Then the following are considered:
(i) If p>0, the double inequality
(1−λp)Ap+λpCep<Mptanh<(1−μp)Ap+μpCep | (1.12) |
holds if and only if λp≤((coth1)p−1)/((4/3)p−1) and μp≥1.
(ii) If p∗≤p<0,
(1−μp)Ap+μpλpCep<Mptanh<(1−λp)Ap+λpCep | (1.13) |
holds if and only if λp≤((coth1)p−1)/((4/3)p−1) and μp≥1.
We first introduce a theoretical support of this paper.
Lemma 2.1. ([10]) Let K(x,y),R(x,y), and N(x,y) be three means with two positive distinct parameters x and y; fK(t), fR(t), and fN(t) be the corresponding Seiffert functions of the former, ϑ1,ϑ2,θ1,θ2,p∈R, and p≠0. Then
ϑ1Kp(x,y)+ϑ2Np(x,y)≤Rp(x,y)≤θ1Kp(x,y)+θ2Np(x,y) | (2.1) |
⟺ϑ1fpK(t)+ϑ2fpN(t)≤1fpR(t)≤θ1fpK(t)+θ2fpN(t). | (2.2) |
It must be mentioned that the key steps to prove the above results are following:
Mf(u,v)=Mf(λ2xx+y,λ2yx+y)=λMf(2xx+y,2yx+y)=λMf(1−t,1+t)=λtfM(t), | (2.3) |
where
{u=λ2xx+yv=λ2yx+y, 0<x<y, λ>0. |
and 0<t<1,
t=y−xx+y. |
In order to prove the main conclusions, we shall introduce some very suitable methods which are called the monotone form of L'Hospital's rule (see Lemma 2.2) and the criterion for the monotonicity of the quotient of power series (see Lemma 2.3).
Lemma 2.2. ([11,12]) For −∞<a<b<∞, let f,g:[a,b]→R be continuous functions that are differentiable on (a,b), with f(a)=g(a)=0 or f(b)=g(b)=0. Assume that g′(t)≠0 for each x in (a,b). If f′/g′ is increasing (decreasing) on (a,b), then so is f/g.
Lemma 2.3. ([13]) Let an and bn (n=0,1,2,⋅⋅⋅) be real numbers, and let the power series A(x)=∑∞n=0anxn and B(x)=∑∞n=0bnxn be convergent for |x|<R (R≤+∞). If bn>0 for n=0,1,2,⋅⋅⋅, and if εn=an/bn is strictly increasing (or decreasing) for n=0,1,2,⋅⋅⋅, then the function A(x)/B(x) is strictly increasing (or decreasing) on (0,R) (R≤+∞).
Lemma 2.4. ([14,15]) Let B2n be the even-indexed Bernoulli numbers. Then we have the following power series expansions
cotx=1x−∞∑n=122n(2n)!|B2n|x2n−1, 0<|x|<π, | (2.4) |
1sin2x=csc2x=−(cotx)′=1x2+∞∑n=122n(2n−1)(2n)!|B2n|x2n−2, 0<|x|<π. | (2.5) |
Lemma 2.5. ([16,17,18,19,20]) Let B2n the even-indexed Bernoulli numbers, n=1,2,…. Then
22n−1−122n+1−1(2n+2)(2n+1)π2<|B2n+2||B2n|<22n−122n+2−1(2n+2)(2n+1)π2. |
Lemma 2.6. Let l1(t) be defined by
l1(t)=s1(t)r1(t), |
where
s1(t)=6t2+2t4−12sin2t−2t3costsint+6tcostsintsin2t,r1(t)=8t2sin2t+2t4sin2t−6t2−2t4−6sin2t+12tcostsintsin2t. |
Then the double inequality
125<l1(t)<p♣=3cos2+sin2+13sin2−cos2−3≈4.588 | (2.6) |
holds for all t∈(0,1), where the constants 12/5 and (3cos2+sin2+1)/(3sin2−cos2−3)≈4.588 are the best possible in (2.6).
Proof. Since
1l1(t)=r1(t)s1(t), |
and
r1(t)=8t2sin2t+2t4sin2t−6t2−2t4−6sin2t+12tcostsintsin2t=8t2−2t41sin2t−6t21sin2t+2t4+12tcostsint−6=8t2−2t4[1t2+∞∑n=122n(2n−1)(2n)!|B2n|t2n−2]−6t2[1t2+∞∑n=122n(2n−1)(2n)!|B2n|t2n−2]+2t4+12t[1t−∞∑n=122n(2n)!|B2n|t2n−1]−6=23t4−∞∑n=3[22n−1(2n−3)(2n−2)!|B2n−2|+6⋅22n(2n+1)(2n)!|B2n|]t2n=:∞∑n=2ant2n, |
where
a2=23,an=−[22n−1(2n−3)(2n−2)!|B2n−2|+6⋅22n(2n+1)(2n)!|B2n|], n=3,4,…, |
s1(t)=6t2+2t4−12sin2t−2t3costsint+6tcostsintsin2t=6t21sin2t+2t41sin2t+6tcostsint−2t3costsint−12=6t2[1t2+∞∑n=122n(2n−1)(2n)!|B2n|t2n−2]+2t4[1t2+∞∑n=122n(2n−1)(2n)!|B2n|t2n−2]+6t[1t−∞∑n=122n(2n)!|B2n|t2n−1]−2t3[1t−∞∑n=122n(2n)!|B2n|t2n−1]−12=∞∑n=212⋅22n(n−1)(2n)!|B2n|t2n+∞∑n=14n⋅22n(2n)!|B2n|t2n+2=∞∑n=212⋅22n(n−1)(2n)!|B2n|t2n+∞∑n=2(n−1)⋅22n(2n−2)!|B2n−2|t2n=∞∑n=2[12⋅22n(n−1)(2n)!|B2n|+(n−1)⋅22n(2n−2)!|B2n−2|]t2n=85t4+∞∑n=3[12⋅22n(n−1)(2n)!|B2n|+(n−1)⋅22n(2n−2)!|B2n−2|]t2n=:∞∑n=2bnt2n, |
where
b2=85,bn=12⋅22n(n−1)(2n)!|B2n|+(n−1)⋅22n(2n−2)!|B2n−2|>0, n=3,4,…. |
Setting
qn=anbn, n=2,3,…, |
we have
q2=512=0.41667,qn=−22n−1(2n−3)(2n−2)!|B2n−2|+6⋅22n(2n+1)(2n)!|B2n|12⋅22n(n−1)(2n)!|B2n|+(n−1)⋅22n(2n−2)!|B2n−2|, n=3,4,…. |
Here we prove that the sequence {qn}n≥2 decreases monotonously. Obviously, q2>0>q3. We shall prove that for n≥3,
qn>qn+1⟺−22n−1(2n−3)(2n−2)!|B2n−2|+6⋅22n(2n+1)(2n)!|B2n|12⋅22n(n−1)(2n)!|B2n|+(n−1)⋅22n(2n−2)!|B2n−2|>−22n+1(2n−1)(2n)!|B2n|+6⋅22n+2(2n+3)(2n+2)!|B2n+2|12⋅22n+2n(2n+2)!|B2n+2|+n⋅22n+2(2n)!|B2n|⟺22n−1(2n−3)(2n−2)!|B2n−2|+6⋅22n(2n+1)(2n)!|B2n|12⋅22n(n−1)(2n)!|B2n|+(n−1)⋅22n(2n−2)!|B2n−2|<22n+1(2n−1)(2n)!|B2n|+6⋅22n+2(2n+3)(2n+2)!|B2n+2|12⋅22n+2n(2n+2)!|B2n+2|+n⋅22n+2(2n)!|B2n|, |
that is,
2(2n)!(2n−2)!|B2n−2||B2n|+24(4n−3)(2n−2)!(2n+2)!|B2n+2||B2n−2||B2n||B2n|>24(4n−1)((2n)!)2+864(2n)!(2n+2)!|B2n+2||B2n|. | (2.7) |
By Lemma 2.5 we have
2(2n)!(2n−2)!|B2n−2||B2n|+24(4n−3)(2n−2)!(2n+2)!|B2n+2||B2n−2||B2n||B2n|>2(2n)!(2n−2)!22n−122n−2−1π2(2n)(2n−1)+24(4n−3)(2n−2)!(2n+2)!22n−1−122n+1−1(2n+2)(2n+1)π222n−122n−2−1π2(2n)(2n−1)=2π2(2n)!(2n)!22n−122n−2−1+24(4n−3)(2n)!(2n)!22n−1−122n+1−122n−122n−2−1, |
and
24(4n−1)(2n)!2+864(2n)!(2n+2)!|B2n+2||B2n|<24(4n−1)(2n)!2+864(2n)!(2n+2)!22n−122n+2−1(2n+2)(2n+1)π2=24(4n−1)(2n)!2+864(2n)!(2n)!22n−122n+2−11π2. |
So we can complete the prove (2.7) when proving
2π2(2n)!(2n)!22n−122n−2−1+24(4n−3)(2n)!(2n)!22n−1−122n+1−122n−122n−2−1>24(4n−1)((2n)!)2+864(2n)!(2n)!22n−122n+2−11π2 |
or
2π2(22n−1)22n−2−1+24(4n−3)22n−1−122n+1−122n−122n−2−1>24(4n−1)+22n−122n+2−1864π2. |
In fact,
2π2(22n−1)22n−2−1+24(4n−3)22n−1−122n+1−122n−122n−2−1−[24(4n−1)+22n−122n+2−1864π2]=:8H(n)π2(22n+2−1)(22n−4)(22n+1−1), |
where
H(n)=8⋅26n(π+3)(π−3)(π2+3)+2⋅24n(72π2n+60π2−7π4+594)−22n(36π2n+123π2−7π4+1404)+(24π2−π4+432)>0 |
for all n≥3.
So the sequence {qn}n≥2 decreases monotonously. By Lemma 2.3 we obtain that r1(t)/s1(t) is decreasing on (0,1), which means that the function l1(t) is increasing on (0,1). In view of
lim |
the proof of this lemma is complete.
Lemma 2.7. Let l_{2}(t) be defined by
\begin{equation*} l_{2}\left( t\right) = 2\cdot \frac{ 3\cosh 4t-12t^{2}\cosh 2t-4t^{4}\cosh 2t+2 t^{3}\sinh 2t-6t\sinh 2t-3}{ t^{2}\cosh 4t-3\cosh 4t+24t\sinh 2t-25t^{2}- 8t^{4}+3} = :2\frac{ B(t)}{A(t)}, \text{ }0 < t < \infty , \end{equation*} |
where
\begin{eqnarray*} A(t) & = & t^{2}\cosh 4t-3\cosh 4t+24t\sinh 2t-25t^{2}- 8t^{4}+3 , \\ B(t) & = &3\cosh 4t-12t^{2}\cosh 2t-4t^{4}\cosh 2t+2 t^{3}\sinh 2t-6t\sinh 2t-3. \end{eqnarray*} |
Then l_{2}(t) is strictly decreasing on \left(0, \infty \right) .
Proof. Let's take the power series expansions
\begin{equation*} \sinh kt = \sum\limits_{n = 0}^{\infty }\frac{k^{2n+1}}{\left( 2n+1\right) !}t^{2n+1}, \text{ }\cosh kt = \sum\limits_{n = 0}^{\infty }\frac{k^{2n}}{\left( 2n\right) !}t^{2n} \end{equation*} |
into A(t) and B(t) , and get
\begin{equation*} A(t) = \sum\limits_{n = 2}^{\infty }c_{n}t^{2n+2}, \text{ }B(t) = \sum\limits_{n = 2}^{\infty }d_{n}t^{2n+2}, \end{equation*} |
where
\begin{eqnarray*} c_{2} & = &0, \\ c_{n} & = &\left[ \frac{ 2\left( 3n+2n^{2}-23\right) 2^{2n}+48\left( 2n+2\right) }{\left( 2n+2\right) !}\right] 2^{2n}, \text{ } n = 3, 4, \ldots , \\ d_{n} & = &\left[ \frac{48\cdot 2^{2n} -8\left( n+1\right) \left( 5n-n^{2}+2n^{3}+6\right) }{\left( 2n+2\right) !}\right] 2^{2n}, \text{ } n = 2, 3, \ldots , \end{eqnarray*} |
Setting
\begin{equation*} k_{n} = \frac{c_{n}}{d_{n}} = \frac{ 48\left( n+1\right) + 2^{2n}\left( 3n+2n^{2}-23\right) }{ 4\left( 6\cdot 2^{2n}-11n-4n^{2}-n^{3}-2n^{4}-6\right) }, \text{ }n = 2, 3, \ldots , \end{equation*} |
Here we prove that the sequence \{k_{n}\}_{n\geq 2} decreases monotonously. Obviously, k_{2} = 0 < k_{3} . For n\geq 3,
\begin{eqnarray*} k_{n} & < &k_{n+1} \\ &\Longleftrightarrow & \\ &&\frac{ 48\left( n+1\right) + 2^{2n}\left( 3n+2n^{2}-23\right) }{ 4\left( 6\cdot 2^{2n}-11n-4n^{2}-n^{3}-2n^{4}-6\right) } \\ & < &\frac{ 48\left( n+2\right) + 2^{2n+2}\left( 3\left( n+1\right) +2\left( n+1\right) ^{2}-23\right) }{ 4\left( 6\cdot 2^{2n+2}-11\left( n+1\right) -4\left( n+1\right) ^{2}-\left( n+1\right) ^{3}-2\left( n+1\right) ^{4}-6\right) } \\ &\Longleftrightarrow & \\ &&\frac{ 48\left( n+1\right) + 2^{2n}\left( 3n+2n^{2}-23\right) }{ 6\cdot 2^{2n}-11n-4n^{2}-n^{3}-2n^{4}-6} \\ & < & \frac{48n+96+ 2^{2n+2}\left( 7n+2n^{2}-18\right) }{ 6\cdot 2^{2n+2}-30n-19n^{2}-9n^{3}-2n^{4}-24} \end{eqnarray*} |
follows from \Delta (n) > 0 for all n\geq 2 , where
\begin{eqnarray*} \Delta (n) & = &\left( 48n+96+ 2^{2n+2}\left( 7n+2n^{2}-18\right) \right) \left( 6\cdot 2^{2n}-11n-4n^{2}-n^{3}-2n^{4}-6\right) \\ &&-\left( 48\left( n+1\right) + 2^{2n}\left( 3n+2n^{2}-23\right) \right) \left( 6\cdot 2^{2n+2}-30n-19n^{2}-9n^{3}-2n^{4}-24\right) \\ & = & 24\cdot 2^{4n}\left( 4n+5\right) -2^{2n}\left( 858n+367n^{2}+218n^{3}-103n^{4}+40n^{5}+12n^{6}+696\right) \\ &&+1248n+1440n^{2}+1056n^{3}+288 n^{4}+576 \\ & = :&2^{2n}\left[ j(n)2^{2n}- i(n)\right] +w(n) \end{eqnarray*} |
with
\begin{eqnarray*} j(n) & = & 24\left( 4n+5\right) , \\ i(n) & = &858n+367n^{2}+218n^{3}-103n^{4}+40n^{5}+12n^{6}+696, \\ w(n) & = &1248n+1440n^{2}+1056n^{3}+288 n^{4}+576 > 0. \end{eqnarray*} |
We have that \Delta (2) = 5376 > 0 and shall prove that
\begin{eqnarray} j(n)2^{2n}- i(n) & > &0\Longleftrightarrow \\ 2^{2n} & > &\frac{ i(n)}{j(n)} \end{eqnarray} | (2.8) |
holds for all n\geq 3 . Now we use mathematical induction to prove (2.8) . When n = 3 , the left-hand side and right-hand side of (2.8) are 2^{6} = 64 and i(3)/j(3) = 941/17\thickapprox 55.\, 353 , which implies (2.8) holds for n = 3 . Assuming that (2.8) holds for n = m , that is,
\begin{equation} 2^{2m} > \frac{i(m)}{j(m)}. \end{equation} | (2.9) |
Next, we prove that (2.8) is valid for n = m+1 . By (2.9) we have
\begin{equation*} 2^{2\left( m+1\right) } = 4\cdot 2^{2m} > 4\frac{i(m)}{j(m)}, \end{equation*} |
in order to complete the proof of (2.8) it suffices to show that
\begin{equation*} 4\frac{i(m)}{j(m)} > \frac{i(m+1)}{j(m+1)}\Longleftrightarrow 4i(m)j(m+1)-i(m+1)j(m) > 0. \end{equation*} |
In fact,
\begin{eqnarray*} &&4i(m)j(m+1)-i(m+1)j(m) \\ & = & 17\, 280m^{7}+90\, 720m^{6}-60\, 000m^{5}-97\, 176m^{4}+ 1169\, 232m^{3}+2266\, 104m^{2} \\ &&+3581\, 136m+2154\, 816 \\ & = &146\, 337\, 408+234\, 401\, 616\left( m-3\right) +189\, 746\, 328 \left( m-3\right) ^{2}+92\, 580\, 720\left( m-3\right) ^{3} \\ &&+27\, 579\, 624\left( m-3\right) ^{4}+ 4838\, 880\left( m-3\right) ^{5}+453\, 600\left( m-3\right) ^{6}+17\, 280 \left( m-3\right) ^{7} \\ & > &0 \end{eqnarray*} |
for m\geq 3 due to the coefficients of the power square of \left(m-1\right) are positive.
By Lemma 2.3 we get that A(t)/B(t) is strictly increasing on \left(0, \infty \right). So the function l_{2}(x) is strictly decreasing on \left(0, \infty \right) .
The proof of Lemma 2.7 is complete.
Via (1.3) and (1.2) we can obtain
\begin{eqnarray*} f_{\mathbf{A}}(t) & = &t, \\ f_{\mathbf{C}_{e}}(t) & = &\frac{3t}{3+t^{2}}, \\ f_{\mathbf{M}_{\sin }}(t) & = &\sin t, \\ f_{\mathbf{M}_{\tanh }}(t) & = &\tanh t. \end{eqnarray*} |
Then by Lemma 2.1 and \left(2.3\right) we have
\begin{eqnarray*} \alpha _{p} & < &\frac{\mathbf{M}_{\sin }^{p}-\mathbf{A}^{p}}{\mathbf{Ce}^{p}- \mathbf{A}^{p}} < \beta _{p}\Longleftrightarrow \alpha _{p} < \frac{\left( \frac{ 1}{\sin t}\right) ^{p}-\left( \frac{1}{t}\right) ^{p}}{\left( \frac{3+t^{2}}{ 3t}\right) ^{p}-\left( \frac{1}{t}\right) ^{p}} < \beta _{p}, \\ \lambda _{p} & < &\frac{\mathbf{M}_{\tanh }^{p}-\mathbf{A}^{p}}{\mathbf{Ce} ^{p}-\mathbf{A}^{p}} < \mu _{p}\Longleftrightarrow \lambda _{p} < \frac{\left( \frac{1}{\tanh t}\right) ^{p}-\left( \frac{1}{t}\right) ^{p}}{\left( \frac{ 3+t^{2}}{3t}\right) ^{p}-\left( \frac{1}{t}\right) ^{p}} < \mu _{p}. \end{eqnarray*} |
So we turn to the proof of the following two theorems.
Theorem 3.1. Let t\in (0, 1) and
\begin{equation*} p^{\clubsuit } = \frac{3\cos 2+\sin 2+1}{3\sin 2-\cos 2-3}\thickapprox 4.\, 588. \end{equation*} |
Then,
(i) if p\geq p^{\clubsuit } , the double inequality
\begin{equation} \alpha _{p} < \frac{\left( \frac{1}{\sin t}\right) ^{p}-\left( \frac{1}{t} \right) ^{p}}{\left( \frac{3+t^{2}}{3t}\right) ^{p}-\left( \frac{1}{t} \right) ^{p}} < \beta _{p} \end{equation} | (3.1) |
holds if and only if \alpha _{p}\leq 3^{p}\left(1-\sin ^{p}1\right) /\left[\left(\sin ^{p}1\right) \left(4^{p}-3^{p}\right) \right] and \beta _{p}\geq 1/2 ;
(ii) if 0\neq p\leq 12/5 = 2.\, 4 and p\neq 0 the double inequality
\begin{equation} \beta _{p} < \frac{\left( \frac{1}{\sin t}\right) ^{p}-\left( \frac{1}{t} \right) ^{p}}{\left( \frac{3+t^{2}}{3t}\right) ^{p}-\left( \frac{1}{t} \right) ^{p}} < \alpha _{p} \end{equation} | (3.2) |
holds if and only if \alpha _{p}\leq 1/2 and \beta \geq 3^{p}\left(1-\sin ^{p}1\right) /\left[\left(\sin ^{p}1\right) \left(4^{p}-3^{p}\right) \right].
Theorem 3.2. Let t\in (0, 1) and
\begin{equation*} p^{\ast } = -\frac{16\cosh 2-3\cosh 4+4\sinh 2+3}{\cosh 4-12\sinh 2+15} \thickapprox - 3.\, 477\, 6. \end{equation*} |
If 0\neq p\geq - 3.\, 477\, 6 , the double inequality
\begin{equation} \lambda _{p} < \frac{\left( \frac{1}{\tanh t}\right) ^{p}-\left( \frac{1}{t} \right) ^{p}}{\left( \frac{3+t^{2}}{3t}\right) ^{p}-\left( \frac{1}{t} \right) ^{p}} < \mu _{p} \end{equation} | (3.3) |
holds if and only if \lambda _{p}\leq \left(\left(\coth 1\right) ^{p}-1\right) /\left(\left(4/3\right) ^{p}-1\right) and \mu _{p}\geq 1 .
Let
\begin{eqnarray*} F(t) & = &\frac{\left( \frac{1}{\sin t}\right) ^{p}-\left( \frac{1}{t}\right) ^{p}}{\left( \frac{3+t^{2}}{3t}\right) ^{p}-\left( \frac{1}{t}\right) ^{p}} = \frac{\left( \frac{t}{\sin t}\right) ^{p}-1}{\left( \frac{3+t^{2}}{3}\right) ^{p}-1} \\ & = :&\frac{f(t)}{g(t)} = \frac{f(t)-f(0^{+})}{g(t)-g(0^{+})}, \end{eqnarray*} |
where
\begin{eqnarray*} f(t) & = &\left( \frac{t}{\sin t}\right) ^{p}-1, \\ g(t) & = &\left( \frac{3+t^{2}}{3}\right) ^{p}-1. \end{eqnarray*} |
Then
\begin{eqnarray*} f^{\prime }(t) & = & \frac{p}{\sin ^{2}t}\left( \sin t-t\cos t\right) \left( \frac{t}{\sin t}\right) ^{p-1}, \\ g^{\prime }(t) & = & \frac{2}{3}\left( \frac{1}{3}\right) ^{p-1}pt\left( t^{2}+3\right) ^{p-1}, \end{eqnarray*} |
\begin{equation*} \frac{f^{\prime }(t)}{g^{\prime }(t)} = \frac{3^{p}}{2}\frac{1}{ t\sin ^{2}t}\left( \sin t-t\cos t\right) \left( \frac{t}{\left( t^{2}+3\right) \sin t}\right) ^{p-1} , \end{equation*} |
and
\begin{eqnarray*} \left( \frac{f^{\prime }(t)}{g^{\prime }(t)}\right) ^{\prime } & = &\frac{1}{4} \left( \frac{3t}{\left( \sin t\right) \left( t^{2}+3\right) }\right) ^{p} \frac{r_{1}(t)}{t^{3}\sin ^{2}t}\left[ \frac{s_{1}(t)}{r_{1}(t)}-p\right] \\ & = :&\frac{1}{4}\left( \frac{3t}{\left( \sin t\right) \left( t^{2}+3\right) } \right) ^{p}\frac{r_{1}(t)}{t^{3}\sin ^{2}t}\left[ l_{1}(t)-p\right] , \end{eqnarray*} |
where the three functions s_{1}(t) , r_{1}(t) , and l_{1}(t) are shown in Lemma 2.6 .
By Lemma 2.6 we can obtain the following results:
(a) When p\geq \max_{t\in (0, 1)}l_{1}(t) = :p^{\clubsuit } = \left(3\cos 2+\sin 2+1\right) /\left(3\sin 2-\cos 2-3\right) \thickapprox 4.\, 588 ,
\begin{equation*} \left( \frac{f^{\prime }(t)}{g^{\prime }(t)}\right) ^{\prime }\leq 0\Longrightarrow \frac{f^{\prime }(t)}{g^{\prime }(t)}~\text{ is decreasing on }~(0, 1)\text{, } \end{equation*} |
this leads to F(t) = f(t)/g(t) is decreasing on (0, 1) by Lemma 2.1 . In view of
\begin{equation} F(0^{+}) = \frac{1}{2}, \text{ }F(1^{-}) = \frac{3^{p}\left( 1-\sin ^{p}1\right) }{\left( \sin ^{p}1\right) \left( 4^{p}-3^{p}\right) }, \end{equation} | (3.4) |
we have that \left(3.1\right) holds.
(b) When 0\neq p\leq 12/5 = \min_{t\in (0, 1)}l_{1}(t),
\begin{equation*} \left( \frac{f^{\prime }(t)}{g^{\prime }(t)}\right) ^{\prime }\geq 0\Longrightarrow \frac{f^{\prime }(t)}{g^{\prime }(t)}\text{ is increasing on }(0, 1)\text{, } \end{equation*} |
this leads to F(t) = f(t)/g(t) is increasing on (0, 1) by Lemma 2.2 . In view of \left(3.4\right) we have that \left(3.2\right) holds.
The proof of Theorem 3.1 is complete.
Let
\begin{eqnarray*} G(t) & = &\frac{\left( \frac{1}{\tanh t}\right) ^{p}-\left( \frac{1}{t}\right) ^{p}}{\left( \frac{3+t^{2}}{3t}\right) ^{p}-\left( \frac{1}{t}\right) ^{p}} = \frac{\left( \frac{t}{\tanh t}\right) ^{p}-1}{\left( \frac{3+t^{2}}{3} \right) ^{p}-1} \\ & = :&\frac{u(t)}{v(t)} = \frac{u(t)-u(0^{+})}{v(t)-v(0^{+})}. \end{eqnarray*} |
Then
\begin{eqnarray*} u^{\prime }(t) & = & \frac{p}{\tanh ^{2}t}\left( \frac{t}{\tanh t} \right) ^{p-1}\left( t\tanh ^{2}t+\tanh t-t\right) , \\ v^{\prime }(t) & = & \frac{2}{3}pt\left( \frac{t^{2}+3}{3}\right) ^{p-1}, \end{eqnarray*} |
\begin{equation*} \frac{u^{\prime }(t)}{v^{\prime }(t)} = \frac{3}{2}\frac{t\tanh ^{2}t+\tanh t-t }{t\tanh ^{2}t}\left[ \frac{3t}{\left( t^{2}+3\right) \tanh t}\right] ^{p-1} , \end{equation*} |
and
\begin{eqnarray*} \left( \frac{u^{\prime }(t)}{v^{\prime }(t)}\right) ^{\prime } & = &-\frac{1}{ 16}\left[ \frac{3t\cosh t}{\left( 3+t^{2}\right) \sinh t}\right] ^{p}\frac{ A(t)}{t^{3}\cosh ^{2}t\sinh ^{2}t}\left[ p+\frac{2B(t)}{A(t)}\right] \\ & = :&-\frac{1}{16}\left[ \frac{3t\cosh t}{\left( 3+t^{2}\right) \sinh t} \right] ^{p}\frac{A(t)}{t^{3}\cosh ^{2}t\sinh ^{2}t}\left[ p+l_{2}\left( t\right) \right] , \end{eqnarray*} |
where the three functions A(t) , B(t) , and l_{2}(t) are shown in Lemma 2.7 . By Lemma 2.7 we see that l_{2}(x) is strictly decreasing on \left(0, 1\right) . Since
\begin{eqnarray*} \lim\limits_{t\rightarrow 0^{+}}l_{2}(t) & = &\infty , \\ \lim\limits_{t\rightarrow 1^{-}}l_{2}(t) & = &\frac{16\cosh 2-3\cosh 4+4\sinh 2+3}{ \cosh 4-12\sinh 2+15} = :p_{\#}\thickapprox 3.\, 477\, 6, \end{eqnarray*} |
we obtain the following result:
When p\geq \max_{t\in \left(0, 1\right) }\left\{ -l_{2}(t)\right\} = -p_{\#} = :p^{\ast }\thickapprox -3.\, 477\, 6,
\begin{equation*} \left( \frac{u^{\prime }(t)}{v^{\prime }(t)}\right) ^{\prime }\leq 0\Longrightarrow \frac{u^{\prime }(t)}{v^{\prime }(t)}~\text{ is decreasing on }~(0, 1)\text{, } \end{equation*} |
this leads to G(t) = u(t)/v(t) is decreasing on (0, 1) by Lemma 2.2 . Since
\begin{equation*} G(0^{+}) = 1, G(1^{-}) = \frac{\left( \frac{\cosh 1}{\sinh 1}\right) ^{p}-1}{ \left( \frac{4}{3}\right) ^{p}-1}, \end{equation*} |
we have
\begin{equation*} G(1^{-}) < G(t) < G(0^{+}), \end{equation*} |
which completes the proof of Theorem 3.2.
Remark 4.1. Letting p = 1, -1, 2, -2 in Theorems 1.1 and 1.2 respectively, one can obtain Propositions 1.1–1.8.
From Theorems 1.1 and 1.2, we can also get the following important conclusions:
Corollary 4.1. Let x, y > 0 , x\neq y , and
\begin{eqnarray*} p^{\clubsuit } & = &\frac{3\cos 2+\sin 2+1}{3\sin 2-\cos 2-3}\thickapprox 4.\, 588, \\ \alpha & = &\frac{3^{p^{\clubsuit }}\left( 1-\sin ^{p^{\clubsuit }}1\right) }{ \left( \sin ^{p^{\clubsuit }}1\right) \left( 4^{p^{\clubsuit }}-3^{p^{\clubsuit }}\right) }\thickapprox 0.440\, 25, \\ \beta & = &\frac{1}{2}. \end{eqnarray*} |
Then the double inequality
\begin{equation} (1-\alpha )\mathbf{A}^{p^{\clubsuit }}+\alpha \mathbf{Ce}^{p^{\clubsuit }} < \mathbf{M}_{\sin }^{p^{\clubsuit }} < (1-\beta )\mathbf{A}^{p^{\clubsuit }}+\beta \mathbf{Ce}^{p^{\clubsuit }} \end{equation} | (4.1) |
holds, where the constants \alpha and \beta are the best possible in (4.1).
Corollary 4.2. Let x, y > 0 , x\neq y , and
\begin{eqnarray*} \theta & = &\frac{1}{2}, \\ \vartheta & = &\frac{3^{12/5}\left( 1-\sin ^{12/5}1\right) }{\left( \sin ^{12/5}1\right) \left( 4^{12/5}-3^{12/5}\right) }\thickapprox 0.516\, 03. \end{eqnarray*} |
Then the double inequality
\begin{equation} (1-\theta )\mathbf{A}^{12/5}+\theta \mathbf{Ce}^{12/5} < \mathbf{M}_{\sin }^{12/5} < (1-\vartheta )\mathbf{A}^{12/5}+\vartheta \mathbf{Ce}^{12/5} \end{equation} | (4.2) |
holds, where the constants \theta and \vartheta are the best possible in (4.2).
Corollary 4.3. Let x, y > 0 , x\neq y , and
\begin{eqnarray*} p^{\ast } & = &-\frac{16\cosh 2-3\cosh 4+4\sinh 2+3}{\cosh 4-12\sinh 2+15} \thickapprox - 3.\, 477\, 6, \\ \lambda & = &\frac{\left( \coth 1\right) ^{p^{\ast }}-1}{\left( 4/3\right) ^{p^{\ast }}-1}\thickapprox 0.968\, 13, \\ \mu & = &1. \end{eqnarray*} |
Then the double inequality
\begin{equation} (1-\mu)\mathbf{A}^{p^{\ast }}+\mu\mathbf{Ce}^{p^{\ast }} < \mathbf{M}_{\tanh }^{p^{\ast }} < (1-\lambda)\mathbf{A}^{p^{\ast }}+\lambda\mathbf{Ce}^{p^{\ast }} \end{equation} | (4.3) |
holds, where the constants \lambda and \mu are the best possible in (4.3).
In this paper, we have studied exponential type inequalities for \mathbf{M} _{\sin } and \mathbf{M}_{\tanh } in term of \mathbf{A} and \mathbf{Ce} for nonzero number p\in \mathbb{R} :
\begin{eqnarray*} (1-\alpha _{p})\mathbf{A}^{p}+\alpha _{p}\mathbf{Ce}^{p} & < &\mathbf{M}_{\sin }^{p} < (1-\beta _{p})\mathbf{A}^{p}+\beta _{p}\mathbf{Ce}^{p}, \\ (1-\lambda _{p})\mathbf{A}^{p}+\lambda _{p}\mathbf{Ce}^{p} & < &\mathbf{M} _{\tanh }^{p} < (1-\mu _{p})\mathbf{A}^{p}+\mu _{p}\mathbf{Ce}^{p}, \end{eqnarray*} |
obtained a lot of interesting conclusions which include the ones of the previous similar literature. In fact, we can consider similar inequalities for dual means of the two means \mathbf{M}_{\sin } and \mathbf{M}_{\tanh } , and we can replace \mathbf{A} and \mathbf{Ce} by other famous means. Therefore, the content of this research is very extensive.
The authors are grateful to editor and anonymous referees for their careful corrections to and valuable comments on the original version of this paper.
The first author was supported by the National Natural Science Foundation of China (no. 61772025). The second author was supported in part by the Serbian Ministry of Education, Science and Technological Development, under projects ON 174032 and III 44006.
The authors declare that they have no conflict of interest.
[1] | I. Podlubny, Fractional differential equations, In: Mathematics in science and engineering, San Diego: Academic Press, 1999. |
[2] |
N. Laskin, Fractional quantum mechanics, Phys. Rev. E, 62 (2000), 3135–3145. https://doi.org/10.1103/PhysRevE.62.3135 doi: 10.1103/PhysRevE.62.3135
![]() |
[3] |
N. Laskin, Fractional market dynamics, Phys. A, 287 (2000), 482–492. https://doi.org/10.1016/S0378-4371(00)00387-3 doi: 10.1016/S0378-4371(00)00387-3
![]() |
[4] |
V. V. Kulish, J. L. Lage, Application of fractional calculus to fluid mechanic, J. Fluids Eng., 124 (2002), 803–806. https://doi.org/10.1115/1.1478062 doi: 10.1115/1.1478062
![]() |
[5] |
V. Gafiychuk, B. Datsko, V. Meleshko, Mathematical modeling of time fractional reaction-diffusion systems, J. Comput. Appl. Math., 220 (2008), 215–225. https://doi.org/10.1016/j.cam.2007.08.011 doi: 10.1016/j.cam.2007.08.011
![]() |
[6] |
I. Petras, R. L. Magin, Simulation of drug uptake in a two compartmental fractional model for a biological system, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 4588–4595. https://doi.org/10.1016/j.cnsns.2011.02.012 doi: 10.1016/j.cnsns.2011.02.012
![]() |
[7] |
Y. Li, Y. Chen, I. Podlubny, Mittag-Leffler stability of fractional order nonlinear dynamic systems, Automatica, 45 (2009), 1965–1969. https://doi.org/10.1016/j.automatica.2009.04.003 doi: 10.1016/j.automatica.2009.04.003
![]() |
[8] |
Y. Li, Y. Chen, I. Podlubny, Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Comput. Math. Appl., 59 (2010), 1810–1821. https://doi.org/10.1016/j.camwa.2009.08.019 doi: 10.1016/j.camwa.2009.08.019
![]() |
[9] |
Y. Luo, Y. Chen, Fractional order[proportional derivative] controller for a class of fractional order systems, Automatica, 45 (2009), 2446–2450. https://doi.org/10.1016/j.automatica.2009.06.022 doi: 10.1016/j.automatica.2009.06.022
![]() |
[10] |
M. Ghorbani, Robust stabilization criteria of a general form of fractional-order controllers for interval fractional-order plants with complex uncertain parameters, ISA Trans., 129 (2022), 140–151. https://doi.org/10.1016/j.isatra.2022.02.014 doi: 10.1016/j.isatra.2022.02.014
![]() |
[11] |
A. Kumar, S. Pan, Design of fractional order PID controller for load frequency control system with communication delay, ISA Trans., 129 (2022), 138–149. https://doi.org/10.1016/j.isatra.2021.12.033 doi: 10.1016/j.isatra.2021.12.033
![]() |
[12] |
C. Dou, Q. Jia, S. Jin, Z. Bo, Robust controller design for large interconnected power systems with model uncertainties based on wide-area measurement, Electr. Eng., 90 (2008), 265–273. https://doi.org/10.1007/s00202-007-0076-0 doi: 10.1007/s00202-007-0076-0
![]() |
[13] |
X. Zheng, X. Luo, J. Wang, J. Yan, X. Guan, Acceleration-feedback-based finite-time platoon control for interconnected vehicular system, Comput. Electr. Eng., 101 (2022), 108054. https://doi.org/10.1016/j.compeleceng.2022.108054 doi: 10.1016/j.compeleceng.2022.108054
![]() |
[14] |
J. Li, J. Lu, Y. Chen, Robust decentralized control of perturbed fractional-order linear interconnected systems, Comput. Math. Appl., 66 (2013), 844–859. https://doi.org/10.1016/j.camwa.2013.07.001 doi: 10.1016/j.camwa.2013.07.001
![]() |
[15] |
Y. Boukal, M. Darouach, M. Zasadzinski, N. E. Radhy, Large-scale fractional-order systems: Stability analysis and their decentralized functional observers design, IET Control Theory Appl., 12 (2017), 359–367. https://doi.org/10.1049/iet-cta.2017.0264 doi: 10.1049/iet-cta.2017.0264
![]() |
[16] |
V. Nithya, R. Sakthivel, F. Alzahrani, Y. Ma, Decentralized fault-tolerant resilient control for fractional-order interconnected systems with input saturation, Int. J. Control Auto. Syst., 17 (2019), 2895–2905. https://doi.org/10.1007/s12555-018-0865-4 doi: 10.1007/s12555-018-0865-4
![]() |
[17] |
Z. Chen, J. Cheng, J. Tan, Z. Cao, Decentralized finite-time control for linear interconnected fractional-order systems with input saturation, J. Franklin Inst., 357 (2020), 6137–6153. https://doi.org/10.1016/j.jfranklin.2020.04.018 doi: 10.1016/j.jfranklin.2020.04.018
![]() |
[18] |
X. Li, Y. Zhan, S. Tong, Adaptive neural network decentralized fault-tolerant control for nonlinear interconnected fractional-order systems, Neurocomputing, 488 (2022), 14–22. https://doi.org/10.1016/j.neucom.2022.02.078 doi: 10.1016/j.neucom.2022.02.078
![]() |
[19] |
Z. Yu, Y. Sun, X. Dai, Decentralized partial-variable periodic intermittent control for a class of interconnected fractional-order systems, J. Franklin Inst., 359 (2022), 1298–1319. https://doi.org/10.1016/j.jfranklin.2021.11.022 doi: 10.1016/j.jfranklin.2021.11.022
![]() |
[20] |
J. Cai, R. Yu, B. Wang, C. Mei, L. Shen, Decentralized event-triggered control for interconnected systems with unknown disturbances, J. Franklin Inst., 357 (2020), 1494–1515. https://doi.org/10.1016/j.jfranklin.2019.10.033 doi: 10.1016/j.jfranklin.2019.10.033
![]() |
[21] |
D. Liu, G. H. Yang, Decentralized event-triggered output feedback control for a class of interconnected large-scale systems, ISA Trans., 93 (2019), 156–164. https://doi.org/10.1016/j.isatra.2019.03.009 doi: 10.1016/j.isatra.2019.03.009
![]() |
[22] | M. I. Shahid, Q. Ling, Event-triggered control of physically interconnected systems, In: 2017 29th chinese control and decision conference (CCDC), 2017, 2600–2605. https://doi.org/10.1109/CCDC.2017.7978953 |
[23] |
M. Guinaldo, J. Sánchez, R. Dormido, S. Dormido, Distributed control for large-scale systems with adaptive event-triggering, J. Franklin Inst., 353 (2016), 735–756. https://doi.org/10.1016/j.jfranklin.2015.12.008 doi: 10.1016/j.jfranklin.2015.12.008
![]() |
[24] |
X. Wang, M. D. Lemmon, Event-triggering in distributed networked control systems, IEEE Trans. Automat. Control, 56 (2011), 586–601. https://doi.org/10.1109/TAC.2010.2057951 doi: 10.1109/TAC.2010.2057951
![]() |
[25] |
M. Guinaldo, D. Lehmann, J. Sanchez, S. Dormido, K. H. Johansson, Distributed event-triggered control for non-reliable networks, J. Franklin Inst., 351 (2014), 5250–5273. https://doi.org/10.1016/j.jfranklin.2014.09.004 doi: 10.1016/j.jfranklin.2014.09.004
![]() |
[26] | Y. Sun, N. H. El-Farra, Quasi-decentralized networked process control using an adaptive communication policy, In: Proceedings of the 2010 american control conference, 2010, 2841-2846. https://doi.org/10.1109/ACC.2010.5531452 |
[27] |
M. Guinaldo, D. V. Dimarogonas, K. H. Johansson, J. Sánchez, S. Dormido, Distributed event-based control strategies for interconnected linear systems, IET Control Theory Appl., 7 (2013), 877–886. https://doi.org/10.1049/iet-cta.2012.0525 doi: 10.1049/iet-cta.2012.0525
![]() |
[28] |
C. De Persis, R. Sailer, F. Wirth, Parsimonious event-triggered distributed control: A Zeno free approach, Automatica, 49 (2013), 2116–2124. https://doi.org/10.1016/j.automatica.2013.03.003 doi: 10.1016/j.automatica.2013.03.003
![]() |
[29] |
Y. Wang, T. Zhang, J. Ren, M. Chen, Observer-based event-triggered sliding mode control for uncertain descriptor systems with a neural-network event-triggering sampling scheme, Neurocomputing, 385 (2020), 319–328. https://doi.org/10.1016/j.neucom.2019.12.066 doi: 10.1016/j.neucom.2019.12.066
![]() |
[30] |
X. Ren, F. Hao, Observer-based event-triggered control of linear system with two-time scales, ISA Trans., 129 (2022), 324–335. https://doi.org/10.1016/j.isatra.2021.12.042 doi: 10.1016/j.isatra.2021.12.042
![]() |
[31] |
Z. Wang, D. Xue, F. Pan, Observer-based robust control for singular switched fractional order systems subject to actuator saturation, Appl. Math. Comput., 411 (2021), 126538. https://doi.org/10.1016/j.amc.2021.126538 doi: 10.1016/j.amc.2021.126538
![]() |
[32] |
T. Feng, Y. E. Wang, L. Liu, B. Wu, Observer-based event-triggered control for uncertain fractional-order systems, J. Franklin Inst., 357 (2020), 9423–9441. https://doi.org/10.1016/j.jfranklin.2020.07.017 doi: 10.1016/j.jfranklin.2020.07.017
![]() |
[33] |
M. Xiong, Y. Tan, D. Du, B. Zhang, S. Fei, Observer-based event-triggered output feedback control for fractional-order cyber-physical systems subject to stochastic network attacks, ISA Trans., 104 (2020), 15–25. https://doi.org/10.1016/j.isatra.2019.11.040 doi: 10.1016/j.isatra.2019.11.040
![]() |
[34] | A. Teixeira, H. Sandberg, K. H. Johansson, Networked control systems under cyber attacks with applications to power networks, In: Proceedings of the 2010 american control conference, 3690–3696. https://doi.org/10.1109/ACC.2010.5530638 |
[35] |
Z. Pang, G. Liu, Design and implementation of secure networked predictive control systems under deception attacks, IEEE Trans. Control Syst. Technol., 20 (2012), 1334–1342. https://doi.org/10.1109/TCST.2011.2160543 doi: 10.1109/TCST.2011.2160543
![]() |
[36] |
D. Ding, Z. Wang, Q. L. Han, G. Wei, Security control for discrete-time stochastic nonlinear systems subject to deception attacks, IEEE Trans. Syst. Man Cybernet. Syst., 48 (2018), 779–789. https://doi.org/10.1109/TSMC.2016.2616544 doi: 10.1109/TSMC.2016.2616544
![]() |
[37] | H. S. Foroush, S. Martínez, On event-triggered control of linear systems under periodic Denial-of-Service jamming attacks, In: 2012 IEEE 51st IEEE conference on decision and control (CDC), 2012, 2551–2556. https://doi.org/10.1109/CDC.2012.6425868 |
[38] |
M. Zhu, S. Martínez, On the performance analysis of resilient networked control systems under replay attacks, IEEE Trans. Automat. Control, 59 (2014), 804–808. https://doi.org/10.1109/TAC.2013.2279896 doi: 10.1109/TAC.2013.2279896
![]() |
[39] |
Y. Mo, B. Sinopoli, On the performance degradation of cyber-physical systems under stealthy integrity attacks, IEEE Trans. Automat. Control, 61 (2016), 2618–2624. https://doi.org/10.1109/TAC.2015.2498708 doi: 10.1109/TAC.2015.2498708
![]() |
[40] |
J. C. Trigeassou, N. Maamri, J. Sabatier, A. Oustaloup, A Lyapunov approach to the stability of fractional differential equations, Signal Process., 91 (2011), 437–445. https://doi.org/10.1016/j.sigpro.2010.04.024 doi: 10.1016/j.sigpro.2010.04.024
![]() |
[41] |
M. S. Mahmoud, Interconnected jumping time-delay systems: Mode-dependent decentralized stability and stabilization, Internat. J. Robust Nonlinear Control, 22 (2012), 808–826. https://doi.org/10.1002/rnc.1736 doi: 10.1002/rnc.1736
![]() |
[42] |
J. Liu, D. Yue, Event-triggering in networked systems with probabilistic sensor and actuator faults, Inform. Sci., 240 (2013), 145–160. https://doi.org/10.1016/j.ins.2013.03.042 doi: 10.1016/j.ins.2013.03.042
![]() |
[43] |
D. W. C. Ho, G. Lu, Robust stabilization for a class of discrete-time non-linear systems via output feedback: The unified LMI approach, Int. J. Control, 76 (2003), 105–115. https://doi.org/10.1080/0020717031000067367 doi: 10.1080/0020717031000067367
![]() |
[44] |
J. Liu, J. Xia, J. Cao, E. Tian, Quantized state estimation for neural networks with cyber attacks and hybrid triggered communication scheme, Neurocomputing, 291 (2018), 35–49. https://doi.org/10.1016/j.neucom.2018.02.060 doi: 10.1016/j.neucom.2018.02.060
![]() |
1. | Miao-Kun Wang, Zai-Yin He, Tie-Hong Zhao, Qi Bao, Sharp weighted Hölder mean bounds for the complete elliptic integral of the second kind, 2022, 1065-2469, 1, 10.1080/10652469.2022.2155819 | |
2. | Ling Zhu, New Bounds for Arithmetic Mean by the Seiffert-like Means, 2022, 10, 2227-7390, 1789, 10.3390/math10111789 |