Research article

Mathematical analysis of neurological disorder under fractional order derivative

  • Multiple sclerosis (MS) is a common neurological disorder that affects the central nervous system (CNS) and can cause lesions that spread over space and time. Our study proposes a mathematical model that illustrates the progression of the disease and its likelihood of recurrence. We use Caputo fractional-order (FO) derivative operators to represent non-negative solutions and to establish a steady-state point and basic reproductive number. We also employ functional analysis to prove the existence of unique solutions and use the Ulam-Hyres (UH) notion to demonstrate the stability of the solution for the proposed model. Furthermore, we conduct numerical simulations using an Euler-type numerical technique to validate our theoretical results. Our findings are presented through graphs that depict various behaviors of the model for different parameter values.

    Citation: Nadeem Khan, Amjad Ali, Aman Ullah, Zareen A. Khan. Mathematical analysis of neurological disorder under fractional order derivative[J]. AIMS Mathematics, 2023, 8(8): 18846-18865. doi: 10.3934/math.2023959

    Related Papers:

    [1] Zongcheng Li, Jin Li . Linear barycentric rational collocation method for solving a class of generalized Boussinesq equations. AIMS Mathematics, 2023, 8(8): 18141-18162. doi: 10.3934/math.2023921
    [2] Jin Li . Barycentric rational collocation method for semi-infinite domain problems. AIMS Mathematics, 2023, 8(4): 8756-8771. doi: 10.3934/math.2023439
    [3] Jin Li . Barycentric rational collocation method for fractional reaction-diffusion equation. AIMS Mathematics, 2023, 8(4): 9009-9026. doi: 10.3934/math.2023451
    [4] Haoran Sun, Siyu Huang, Mingyang Zhou, Yilun Li, Zhifeng Weng . A numerical investigation of nonlinear Schrödinger equation using barycentric interpolation collocation method. AIMS Mathematics, 2023, 8(1): 361-381. doi: 10.3934/math.2023017
    [5] Kareem T. Elgindy, Hareth M. Refat . A direct integral pseudospectral method for solving a class of infinite-horizon optimal control problems using Gegenbauer polynomials and certain parametric maps. AIMS Mathematics, 2023, 8(2): 3561-3605. doi: 10.3934/math.2023181
    [6] Qasem M. Tawhari . Mathematical analysis of time-fractional nonlinear Kuramoto-Sivashinsky equation. AIMS Mathematics, 2025, 10(4): 9237-9255. doi: 10.3934/math.2025424
    [7] Yunmei Zhao, Yinghui He, Huizhang Yang . The two variable (φ/φ, 1/φ)-expansion method for solving the time-fractional partial differential equations. AIMS Mathematics, 2020, 5(5): 4121-4135. doi: 10.3934/math.2020264
    [8] Yangfang Deng, Zhifeng Weng . Barycentric interpolation collocation method based on Crank-Nicolson scheme for the Allen-Cahn equation. AIMS Mathematics, 2021, 6(4): 3857-3873. doi: 10.3934/math.2021229
    [9] M. Mossa Al-Sawalha, Safyan Mukhtar, Albandari W. Alrowaily, Saleh Alshammari, Sherif. M. E. Ismaeel, S. A. El-Tantawy . Analytical solutions to time-space fractional Kuramoto-Sivashinsky Model using the integrated Bäcklund transformation and Riccati-Bernoulli sub-ODE method. AIMS Mathematics, 2024, 9(5): 12357-12374. doi: 10.3934/math.2024604
    [10] Sunyoung Bu . A collocation methods based on the quadratic quadrature technique for fractional differential equations. AIMS Mathematics, 2022, 7(1): 804-820. doi: 10.3934/math.2022048
  • Multiple sclerosis (MS) is a common neurological disorder that affects the central nervous system (CNS) and can cause lesions that spread over space and time. Our study proposes a mathematical model that illustrates the progression of the disease and its likelihood of recurrence. We use Caputo fractional-order (FO) derivative operators to represent non-negative solutions and to establish a steady-state point and basic reproductive number. We also employ functional analysis to prove the existence of unique solutions and use the Ulam-Hyres (UH) notion to demonstrate the stability of the solution for the proposed model. Furthermore, we conduct numerical simulations using an Euler-type numerical technique to validate our theoretical results. Our findings are presented through graphs that depict various behaviors of the model for different parameter values.



    Lots of physical phenomena can be expressed by non-linear partial differential equations (PDE), including, inter alia, dissipative and dispersive PDE. In this paper, we consider the Kuramoto-Sivashinsky (KS) equation

    ϕt+γ4ϕs4+2ϕs2+ϕϕs=φ(s,t)0s1,0tT,γ>0, (1.1)
    ϕ(0,t)=0,ϕ(1,t)=0,ϕss(0,t)=0,ϕss(1,t)=0,0<t<T, (1.2)
    ϕ(s,0)=φ(s),0s1, (1.3)

    where γR is the constant.

    The KS equation plays an important role in physics such as in diffusion, convection and so on. Lots of attention has been paid by researchers in recent years. An H1-Galerkin mixed finite element method for the KS equation was proposed in [1], lattice Boltzmann models for the Kuramoto-Sivashinsky equation were studied in [2], Backward difference formulae (BDF) methods for the KS equation were investigate in [3]. Stability regions and results for the Korteweg-de Vries-Burgers and Kuramoto-Sivashinsky equations were given in [4,5], respectively. In [6], an improvised quintic B-spline extrapolated collocation technique was used to solve the KS equation, and the stability of the technique was analyzed using the von Neumann scheme, which was found to be unconditionally stable. In [7], a septic Hermite collocation method (SHCM) was proposed to simulate the KS equation, and the nonlinear terms of the KS equation were linearized using the quasi-linearization process. In [8], a semidiscrete approach was presented to solve the variable-order (VO) time fractional 2D KS equation, and the differentiation operational matrices and the collocation technique were used to get a linear system of algebraic equations. In [9] the discrete Legendre polynomials (LPs) and the collocation scheme for nonlinear space-time fractional KdV-Burgers-Kuramoto equation were presented.

    In order to avoid the Runge's phenomenon, barycentric interpolation [10,11,12] was developed. In recent years, linear rational interpolation (LRI) was proposed by Floater [13,14,15], and error of linear rational interpolation was also proved. The barycentric interpolation collocation method (BICM) has been developed by Wang et al.[22,23,24,25], and the algorithm of BICM has been used for linear/non-linear problems [21]. Volterra integro-differential equation (VIDE)[16,20], heat equation (HE) [17], biharmonic equation (BE) [18], the Kolmogorov-Petrovskii-Piskunov (KPP) equation [19], fractional differential equations [20], fractional reaction-diffusion equation [28], semi-infinite domain problems [27] and biharmonic equation [26], plane elastic problems [29] have been studied by the linear barycentric interpolation collocation method (LBICM), and their convergence rates also have been proved.

    In order to solve the KS equation efficiently, the LBRIM is presented. Because the nonlinear part of the KS equation cannot be solved directly, three kinds of linearization methods, including direct linearization, partial linearization and Newton linearization, are presented. Then, the nonlinear part of the KS equation is translated into the linear part, three kinds of iterative schemes are presented, and matrix equation of the linearization schemes are constructed. The convergence rate of the LBRCM for the KS equation is also given. At last, two numerical examples are presented to validate the theoretical analysis.

    In the following, the KS equation is changed into the linear equation by the linearization scheme, including direct linearization, partial linearization and Newton linearization.

    For the Kuramoto-Sivashinskyr equation with the initial value of nonlinear term ϕϕs is changed to ϕ0ϕ0s,

    ϕt+γ4ϕs4+2ϕs2+ϕ0ϕ0s=φ(s,t), (2.1)

    and then we get the linear scheme as

    ϕnt+γ4ϕns4+2ϕns2=ϕn1ϕn1s+φ(s,t),asb,0tT. (2.2)

    By the partial linearization, nonlinear term ϕϕs is changed to ϕ0ϕs,

    ϕt+γ4ϕs4+2ϕs2+ϕ0ϕs=φ(s,t), (2.3)

    and then we have

    ϕnt+γ4ϕns4+2ϕns2+ϕn1ϕns=φ(s,t),asb,0tT. (2.4)

    For the initial value ϕϕs=ϕ0ϕ0s+(ϕ0s+ϕ0ϕ0s)(ϕϕ0), we have

    ϕt+γ4ϕs4+2ϕs2+ϕϕ0s+ϕ0ϕ0sϕ=φ(s,t)+ϕ0ϕ0sϕ0, (2.5)

    and then we have

    ϕnt+γ4ϕns4+2ϕns2+ϕnϕn1s+ϕn1ϕn1sϕn=φ(s,t)+ϕn1ϕn1sϕn1, (2.6)

    where n=1,2,.

    Interval [a,b] is divided into a=s0<s1<s2<<sm1<sm=b, for uniform partition with hs=bam and nonuniform partition to be the second kind of Chebychev point. Time [0,T] is divided into 0=t0<t1<t2<<tn1<tn=T and ht=Tn for uniform partition. Then, we take ϕnm(s,t) to approximate ϕ(s,t) as

    ϕnm(s,t)=mi=0nj=0ri(s)rj(t)ϕij (3.1)

    where ϕij=ϕ(si,tj),

    ri(s)=wissimj=0wjssj,rj(t)=wjttjni=0witti (3.2)

    is the barycentric interpolation basis [26], and

    wi=kJi(1)kk+dsj=k,ji1sisj,wj=kJj(1)kk+dti=k,kj1tjti (3.3)

    where Ji={kI,idski},I={0,1,,mds}. See [26]. We get the barycentric rational interpolation.

    For the case

    wi=1ik(sisk),wj=1jk(tjtk), (3.4)

    we get the barycentric Lagrange interpolation.

    So,

    rj(si)=wj/wisisj,ji,ri(si)=jirj(si), (3.5)
    r(k)j(si)=k(r(k1)i(si)ri(sj)r(k1)i(sj)sisj),ji, (3.6)
    r(k)i(si)=jir(k)j(si). (3.7)

    Then, we have

    D(0,1)ij=ri(tj), (3.8)
    D(1,0)ij=ri(sj), (3.9)
    D(k,0)ij=r(k)i(sj),k=2,3,. (3.10)

    Combining (3.1) and (2.2), we have

    [ImD(0,1)+D(2,0)In+γD(4,0)In]ϕn=Ψdiag(ϕn1)D(1,0)Inϕn1, (3.11)

    and then we have

    Lϕn=Ψn1 (3.12)

    where

    L=ImD(0,1)+D(2,0)In+γD(4,0)In,
    Ψn1=Ψdiag(ϕn1)D(1,0)Inϕn1

    and is the Kronecher product [17].

    Combining (3.1) and (2.4), we have

    [ImD(0,1)+D(2,0)In+γD(4,0)In+diag(ϕn1)D(1,0)In]ϕn=Ψ, (3.13)

    n=1,2,, and then we have

    Lϕ=Ψ (3.14)

    where L=ImD(0,1)+D(2,0)In+γD(4,0)In+diag(ϕn1)D(1,0)In.

    Combining (3.1) and (2.6), we have

    [ImD(0,1)+D(2,0)In+γD(4,0)In+diag(ϕn1)D(1,0)In]ϕn=Ψ+[diag(ϕn)diag(ϕn1)]D(1,0)Inϕn1, (3.15)

    and then we get

    Lϕ=Ψn1 (3.16)

    where

    L=ImD(0,1)+D(2,0)In+γD(4,0)In+diag(ϕn1)D(1,0)In,

    and

    Ψn1=Ψ+[diag(ϕn)diag(ϕn1)]D(1,0)Inϕn1.

    In this part, an error estimate of the KS equation is given with rn(s)=ni=0ri(s)ϕi to replace ϕ(s), where ri(s) is defined as (3.2), and ϕi=ϕ(si). We also define

    e(s):=ϕ(s)rn(s)=(ssi)(ssi+d)ϕ[si,si+1,,si+d,s]. (4.1)

    Then, we have the following.

    Lemma 1. For e(s) defined by (4.1) and ϕ(s)Cd+2[a,b], there is

    |e(k)(s)|Chdk+1,k=0,1,. (4.2)

    For KS equation, rational interpolation function of ϕ(s,t) is defined as rmn(s,t)

    rmn(s,t)=m+dsi=0n+dtj=0wi,j(ssi)(ttj)ϕi,jm+dsi=0n+dtj=0wi,j(ssi)(ttj) (4.3)

    where

    wi,j=(1)ids+jdtk1Jik1+dsh1=k1,h1j1|sish1|k2Jik2+dth2=k2,h2j1|tjth2|. (4.4)

    We define e(s,t) to be the error of ϕ(s,t) as

    e(s,t):=ϕ(s,t)rmn(s,t)=(ssi)(ssi+ds)ϕ[si,si+1,,si+d1,s,t]+(ttj)(ttj+dt)ϕ[s,tj,tj+1,,tj+d2,t]. (4.5)

    With similar analysis of Lemma 1, we have the following

    Theorem 1. For e(s,t) defined as (4.5) and ϕ(s,t)Cds+2[a,b]×Cdt+2[0,T], we have

    |e(k1,k2)(s,t)|C(hdsk1+1s+hdtk2+1t),k1,k2=0,1,. (4.6)

    We take the direct linearization of the KS equation as an example prove the convergence rate. Let ϕ(sm,tn) be the approximate function of ϕ(s,t) and L be a bounded operator. There holds

    Lϕ(sm,tn)=φ(sm,tn), (4.7)

    and

    limm,nϕ(sm,tn)=ϕ(s,t). (4.8)

    Then, we get the following

    Theorem 2. For ϕ(sm,tn):Lϕ(sm,tn)=φ(s,t) and L defined as (4.7), there

    |ϕ(s,t)ϕ(sm,tn)|C(hds3+τdt).

    Proof. As

    Lϕ(s,t)Lϕ(sm,tn)=ϕt+γ4ϕs4+2ϕs2ϕ0ϕ0sφ(s,t)[ϕ(sm,tn)t+γ4ϕ(sm,tn)s4+2ϕ(sm,tn)s2+ϕ0(sm,tn)ϕ0(sm,tn)sφ(s,t)]=ϕtϕt(sm,tn)+γ[4ϕs44ϕs4(sm,tn)]+2ϕs22ϕs2(sm,tn)+[ϕ0ϕ0sϕ0(sm,tn)ϕ0s(sm,tn)]:=E1(s,t)+E2(s,t)+E3(s,t)+E4(s,t). (4.9)

    Here,

    E1(s,t)=ϕtϕt(sm,tn),
    E2(s,t)=γ[4ϕs44ϕs4(sm,tn)],
    E3(s,t)=2ϕs22ϕs2(sm,tn),
    E4(s,t)=ϕ0ϕ0sϕ0(sm,tn)ϕ0s(sm,tn).

    With E2(s,t), we have

    E2(s,t)=γ[4ϕs44ϕs4(sm,tn)]=γ[4ϕs44ϕs4(sm,t)+4ϕs4(sm,t)4ϕs4(sm,tn)]=mdsi=0(1)i4ϕs4[si,si+1,,si+d1,sm,t]mdsi=0λi(s)+ndtj=0(1)j4ϕs4[tj,tj+1,,tj+d2,sm,tn]ndtj=0λj(t)=4es4(sm,t)+4es4(sm,tn).

    For E2(s,t) we get

    |E2(s,t)||4es4(sm,x)+4es4(sm,tn)|C(hds3+τdt+1). (4.10)

    Then, we have

    |E1(s,t)||et(sm,t)+et(sm,tn)|C(hds+1+τdt). (4.11)

    Similarly, for E3(s,t) we have

    E3(s,t)=2ϕs2(s,t)2ϕs2(sm,tn)=2es2(s,tn)+2es2(sm,tn), (4.12)

    and

    |E3(s,t)||2es2(s,tn)+2es2(sm,tn)|C(hds1+τdt+1). (4.13)

    For E4(s,t) we get

    |E4(s,t)|=|ϕ0ϕsϕ0(sm,tn)ϕs(sm,tn)||et(sm,t)+et(sm,tn)|C(hds+1+τdt). (4.14)

    Combining (4.9) and (4.11)–(4.14) together, the proof of Theorem 2 is completed.

    All the examples are carried on a computer with Intel(R) Core(TM) i5-8265U CPU @ 1.60 GHz 1.80 GHz operating system, 16 G radon access running memory and a 512 G solid state disk memory. All simulation experiments were realized by the software Matlab (Version: R2016a). In this part, two examples are presented to test the theorem.

    Example 1. Consider the KS equation

    ϕt+γ4ϕs4+2ϕs2+ϕϕs=φ(s,t)

    with the condition is

    ϕ(0,t)=0,ϕ(1,t)=0,

    and

    ϕ(s,0)=sin(2πs).
    ϕss(0,t)=0,ϕss(1,t)=0,

    and

    φ(s,t)=etsin(2πs)[2πetcos(2πs)1+16π44π2].

    The solution of the KS equation is

    ϕ(s,t)=etsin(2πs).

    In Figures 13, errors of unform partition with direct linearization, partial linearization, Newton linearization for the KS equation are presented. In Figures 46, errors of non-uniform partition with direct linearization, partial linearization, Newton linearization for the KS equation are presented.

    Figure 1.  Errors of nonuniform partition by direct linearization with m=n=19.
    Figure 2.  Errors of nonuniform partition by partial linearization with m=n=19.
    Figure 3.  Errors of nonuniform partition by Newton linearization with m=n=19.
    Figure 4.  Errors of uniform partition by direct linearization with m=n=19.
    Figure 5.  Errors of uniform partition by partial linearization with m=n=19.
    Figure 6.  Errors of uniform partition by Newton linearization with m=n=19.

    In Tables 1 and 2, errors of LBCM and LBRCM for the KS equation with boundary condition dealt with by the method of substitution and method of addition are given. From Table 1, we know that the accuracy of LBCM is higher than LBRCM, and from Table 2 the accuracy of the method of additional is higher than the method of substitution.

    Table 1.  Errors of LBCM for KS equation with m=n=17.
    Method of substitution Method of additional
    Linearization Uniform partition Nonuniform partition Uniform partition Nonuniform partition
    direct 1.3278e-07 5.6616e-10 1.7050e-08 4.6293e-10
    partial 5.5563e-07 2.6381e-09 1.1492e-07 5.0974e-10
    Newton 6.6705e-07 4.8875e-10 8.8609e-08 2.5867e-11

     | Show Table
    DownLoad: CSV
    Table 2.  Errors of LBRCM for KS equation with m=n=17,ds=dt=12.
    Method of substitution Method of additional
    Linearization Uniform partition Nonuniform partition Uniform partition Nonuniform partition
    direct 4.4575e-06 3.2280e-08 4.1010e-08 2.2749e-09
    partial 4.4573e-06 3.2245e-08 5.4191e-07 1.5951e-07
    Newton 4.4560e-06 3.2215e-08 1.2972e-06 3.5137e-07

     | Show Table
    DownLoad: CSV

    In Table 3, we choose the Newton linearization to solve the KS equation, and the error of LBRCM for uniform and nonuniform partitions are presented with t=0.3,0.9,2,4,8,16.

    Table 3.  Errors of Newton linearization for t.
    Uniform partition Nonuniform partition
    t (8,8)ds=dt=7 (16,16)ds=dt=15 (8,8)ds=dt=7 (16,16)ds=dt=15
    0.3 1.5449e-01 1.3163e-06 6.2692e-02 2.4769e-08
    0.9 1.4211e-01 1.1737e-06 6.1721e-02 2.3846e-08
    2 1.2162e-01 1.0785e-06 5.8680e-02 2.3685e-08
    4 9.1544e-02 9.4383e-07 5.3241e-02 2.3353e-08
    8 5.1798e-02 7.2283e-07 4.3721e-02 2.2440e-08
    16 1.6540e-02 4.1712e-07 2.9435e-02 1.9220e-08

     | Show Table
    DownLoad: CSV

    The errors of LBRCM of uniform and Chebyshev partitions are presented with (m,n,ds,dt)=(8,8,7,7),(16,16,15,15). From the table, comparing (m,n)=(8,8) with (m,n)=(16,16), the accuracy was higher when the number became bigger.

    In the following table, we take Newton linearization to present numerical results. From Tables 4 and 5, with errors of Newton linearization for uniform partition dt=6;t=1 are given and convergence rate is O(hds). From Table 5, with space variable s,ds=6, and there is superconvergence rate O(hds1) at t=1.

    Table 4.  Errors of Newton linearization for uniform partition dt=6.
    m,n ds=2 hα ds=3 hα ds=4 hα
    8, 8 4.1317e-01 3.2652e-03 3.3180e-01
    16, 16 1.8608e-01 1.1508 3.1257e-02 - 3.3919e-02 3.2902
    32, 32 9.5437e-02 0.9633 1.0198e-02 1.6159 3.3873e-03 3.3239
    64, 64 4.7221e-02 1.0151 2.6490e-03 1.9448 3.5472e-04 3.2554

     | Show Table
    DownLoad: CSV
    Table 5.  Errors of Newton linearization for uniform partition ds=6.
    m,n dt=2 τα dt=3 τα dt=4 τα
    8, 8 1.3997e-01 1.4004e-01 1.4008e-01
    16, 16 5.4923e-03 4.6716 5.4957e-03 4.6714 5.4973e-03 4.6714
    32, 32 1.2850e-04 5.4176 1.2883e-04 5.4148 1.2891e-04 5.4143
    64, 64 2.9976e-06 5.4218 3.0728e-06 5.3898 3.0798e-06 5.3874

     | Show Table
    DownLoad: CSV

    For Tables 6 and 7, the errors of Chebyshev partition for Newton linearization with s and t are presented. For dt=6, the convergence rate is O(hds) in Table 6, while in Table 7, there are also superconvergence phenomena.

    Table 6.  Errors of Newton linearization for Chebyshev partition dt=6.
    m,n ds=2 hα ds=3 hα ds=4 hα
    8, 8 5.4754e-01 2.9399e-02 8.5922e-02
    16, 16 1.0318e-01 2.4078 4.6815e-03 2.6507 1.2658e-03 6.0849
    32, 32 9.6912e-02 0.0904 8.0675e-04 2.5368 1.9577e-05 6.0148
    64, 64 4.8014e-01 - 1.7672e-03 - 2.2716e-05 -

     | Show Table
    DownLoad: CSV
    Table 7.  Errors of Newton linearization for Chebyshev partition ds=6.
    m,n dt=2 τα dt=3 τα dt=4 τα
    8, 8 6.1344e-02 6.1386e-02 6.1415e-02
    16, 16 8.1492e-05 9.5561 8.1163e-05 9.5629 8.0977e-05 9.5669
    32, 32 1.4204e-07 9.1642 1.4183e-07 9.1606 1.5487e-07 9.0303
    64, 64 6.3190e-06 - 3.8960e-06 - 1.4861e-06 -

     | Show Table
    DownLoad: CSV

    Example 2. Consider the KS equation

    ϕt+γ4ϕs4+2ϕs2+ϕϕs=0,

    with the analytic solution

    ϕ(s,t)=c+15111919[3tanh11219(sct+s0)+tanh311219(sct+s0)],

    and boundary condition

    ϕ(10,t)=c+15111919[3tanh11219(10ct+s0)+tanh311219(10ct+s0)],
    ϕ(10,t)=c+15111919[3tanh11219(10ct+s0)+tanh311219(10ct+s0)],

    and initial condition

    ϕ(s,0)=c+15111919[3tanh11219(s+s0)+tanh311219(s+s0)],

    with c=2,x0=10.

    In Figures 79, errors of direct linearization, partial linearization, Newton linearization with m=n=19 KS equation are presented, respectively.

    Figure 7.  Errors of direct linearization with m=n=19.
    Figure 8.  Errors of partial linearization with m=n=19.
    Figure 9.  Errors of Newton linearization with m=n=19.

    In the following table, direct linearization is chosen to present numerical results. From Tables 8 and 9, errors of direct linearization for uniform partition dt=7 with different ds are given and the convergence rate is O(hds1). From Table 9, with space variable s,ds=7, and there are also superconvergence phenomena.

    Table 8.  Errors of direct linearization for uniform partition for dt=7.
    m,n ds=2 hα ds=3 hα ds=4 hα
    8, 8 1.3587e+00 8.9361e-01 6.3703e-01
    16, 16 2.1617e-01 2.6520 2.7467e-01 1.7019 2.5682e-01 1.3106
    32, 32 6.7743e-02 1.6740 6.8822e-02 1.9967 4.7078e-02 2.4476
    64, 64 2.5175e-02 1.4281 1.3216e-02 2.3806 4.3739e-03 3.4281

     | Show Table
    DownLoad: CSV
    Table 9.  Errors of direct linearization for uniform partition for ds=7.
    m,n dt=2 τα dt=3 τα dt=4 τα
    8, 8 3.6253e-01 3.6380e-01 3.6446e-01
    16, 16 1.8147e-01 0.9984 1.8124e-01 1.0052 1.8121e-01 1.0081
    32, 32 6.4076e-02 1.5019 6.4158e-02 1.4982 6.4141e-02 1.4983
    64, 64 8.9037e-04 6.1692 8.9840e-04 6.1581 8.9863e-04 6.1574

     | Show Table
    DownLoad: CSV

    For Tables 10 and 11, the errors of Chebyshev partition for direct linearization with s and t are presented. For dt=7, the convergence rate is O(hds) in Table 10, while in Table 11, there are also superconvergence phenomena.

    Table 10.  Errors of direct linearization for Chebyshev partition for dt=7.
    m,n ds=2 hα ds=3 hα ds=4 hα
    8, 8 6.5990e-01 4.0742e-01 3.6175e-01
    16, 16 1.1154e-01 2.5646 1.7539e-01 1.2160 2.1752e-01 0.7338
    32, 32 4.3052e-02 1.3735 8.6654e-03 4.3391 1.2511e-03 7.4418
    64, 64 3.9204e-02 0.1351 2.3776e-03 1.8658 3.5682e-04 1.8099

     | Show Table
    DownLoad: CSV
    Table 11.  Errors of direct linearization for Chebyshev partition for ds=7.
    m,n dt=2 τα dt=3 τα dt=4 τα
    8, 8 4.3760e-01 4.3745e-01 4.3739e-01
    16, 16 1.1801e-01 1.8908 1.1801e-01 1.8902 1.1801e-01 1.8900
    32, 32 9.9842e-04 6.8850 9.9854e-04 6.8849 9.9801e-04 6.8857
    64, 64 2.5749e-06 8.5990 2.5052e-06 8.6388 4.8401e-06 7.6879

     | Show Table
    DownLoad: CSV

    In this paper, LBRCM is used to solve the (1+1) dimensional SK equation. Three kinds of linearization methods are taken to translate the nonlinear part into a linear part. Matrix equations of the discrete SK equation are obtained from corresponding linearization schemes. The convergence rate of LBRCM is also presented. In the future work, LBRCM can be developed for the (2+1) dimensional SK equation and other partial differential equations classes, including Kolmogorov-Petrovskii-Piskunov (KPP) equation and, fractional reaction-diffusion equation and so on.

    The work of Jin Li was supported by the Natural Science Foundation of Shandong Province (Grant No. ZR2022MA003).

    The authors also gratefully acknowledges the helpful comments and suggestions of the reviewers, which have improved the presentation.

    The author declares no conflict of interest.



    [1] N. Shigesi, M. Kvaskoff, S. Kirtley, Q. Feng, H. Fang, J. C. Knight, et al., The association between endometriosis and autoimmune diseases: a systematic review and meta-analysis, Hum. Reprod. Update, 25 (2019), 486–503. http://doi.org/10.1093/humupd/dmz014 doi: 10.1093/humupd/dmz014
    [2] R. Nardone, V. Versace, L. Sebastianelli, F. Brigo, S. Golaszewski, M. Christova, et al., Transcranial magnetic stimulation and bladder function: a systematic review, Clin. Neurophysiol., 130 (2019), 2032–2037. http://doi.org/10.1016/j.clinph.2019.08.020 doi: 10.1016/j.clinph.2019.08.020
    [3] I. J. Crane, J. V. Forrester, Th1 and Th2 lymphocytes in autoimmune disease, Crit. Rev. Immunol., 25 (2005), 75–102. http://doi.org/10.1615/critrevimmunol.v25.i2.10 doi: 10.1615/critrevimmunol.v25.i2.10
    [4] Z. Blach-Olszewska, J. Leszek, Mechanisms of over-activated innate immune system regulation in autoimmune and neurodegenerative disorders, Neuropsych. Dis. Treat., 3 (2007), 365–372. http://doi.org/10.2147/ndt.s12160184 doi: 10.2147/ndt.s12160184
    [5] G. E. Kaiko, J. C. Horvat, K. W. Beagley, P. M. Hansbro, Immunological decision-making: how does the immune system decide to mount a helper T-cell response, Immunology, 123 (2007), 326–338. http://doi.org/10.1111/j.1365-2567.2007.02719.x doi: 10.1111/j.1365-2567.2007.02719.x
    [6] P. Blanco, A. K. Palucka, V. Pascual, J. Banchereau, Dendritic cells and cytokines in human inflammatory and autoimmune diseases, Cytokine Growth Factor Rev., 19 (2008), 41–52. http://doi.org/10.1016/j.cytogfr.2007.10.004 doi: 10.1016/j.cytogfr.2007.10.004
    [7] J. Tabarkiewicz, K. Pogoda, A. Karczmarczyk, P. Pozarowski, K. Giannopoulos, The role of IL-17 and Th17 lymphocytes in autoimmune diseases, Arch. Immunol. Ther. Exp., 63 (2015), 435–449. http://doi.org/10.1007/s00005-015-0344-z doi: 10.1007/s00005-015-0344-z
    [8] B. B. Ganesh, P. Bhattacharya, A. Gopisetty, B. S. Prabhakar, Role of cytokines in the pathogenesis and suppression of thyroid autoimmunity, J. Interferon Cytokine Res., 31 (2011), 721–731. http://doi.org/10.1089/jir.2011.0049 doi: 10.1089/jir.2011.0049
    [9] F. D. Lublin, S. C. Reingold, J. A. Cohen, G. R. Cutter, P. S. Sørensen, A. J. Thompson, et al., Defining the clinical course of multiple sclerosis: the 2013 revisions, Neurology, 83 (2014), 278–286. http://doi.org/10.1212/WNL.0000000000000560 doi: 10.1212/WNL.0000000000000560
    [10] R. Zivadinov, R. Bakshi, Central nervous system atrophy and clinical status in multiple sclerosis, J. Neuroimaging, 14 (2004), 27s–35s. http://doi.org/10.1177/1051228404266266 doi: 10.1177/1051228404266266
    [11] T. Akaishi, I. Nakashima, S. Mugikura, M. Aoki, K. Fujihara, Whole-brain and grey matter volume of Japanese patients with multiple sclerosis, J. Neuroimmunol., 306 (2017), 68–75. http://doi.org/10.1016/j.jneuroim.2017.03.009 doi: 10.1016/j.jneuroim.2017.03.009
    [12] D. T. Chard, C. M. Griffin, G. J. M. Parker, R. Kapoor, A. J. Thompson, D. H. Miller, Brain atrophy in clinically early relapsing remitting-multiple sclerosis, Brain, 125 (2002), 327–337. http://doi.org/10.1093/brain/awf025 doi: 10.1093/brain/awf025
    [13] C. H. Polman, S. C. Reingold, B. Banwell, M. Clanet, J. A. Cohen, M. Filippi, et al., Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria, Ann. Neurol., 69 (2011), 292–302. http://doi.org/10.1002/ana.22366 doi: 10.1002/ana.22366
    [14] H. H. Uhlig, B. S. McKenzie, S. Hue, C. Thompson, B. J. Shaikh, R. Stepankova, et al., Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology, Immunity, 25 (2006), 309–318. http://doi.org/10.1016/j.immuni.2006.05.017 doi: 10.1016/j.immuni.2006.05.017
    [15] R. H. Khonsari, V. Calvez, The origins of concentric demyelination: self-organization in the human brain, PLoS ONE, 2 (2007), e150. https://doi.org/10.1371/journal.pone.0000150 doi: 10.1371/journal.pone.0000150
    [16] M. C. Lombardo, R. Barresi, E. Bilotta, F. Gargano, P. Pantano, M. Sammartino, Demyelination patterns in a mathematical model of multiple sclerosis, J. Math. Biol., 75 (2017), 373–417. https://doi.org/10.1007/s00285-016-1087-0 doi: 10.1007/s00285-016-1087-0
    [17] M. F. Elettreby, E. Ahmed, A simple mathematical model for relapsing remitting multiple sclerosis (RRMS), Med. Hypotheses, 135 (2020), 109478. https://doi.org/10.1016/j.mehy.2019.109478 doi: 10.1016/j.mehy.2019.109478
    [18] K. Shah, M. A. Alqudah, F. Jarad, T. Abdeljawad, Semi-analytical study of Pine Wilt Disease model with convex rate under Caputo-Febrizio fractional-order derivative, Chaos Soliton. Fract., 135 (2020), 109754. https://doi.org/10.1016/j.chaos.2020.109754 doi: 10.1016/j.chaos.2020.109754
    [19] K. Shah, T. Abdeljawad, Study of a mathematical model of COVID-19 outbreak using some advanced analysis, Wave. Random Complex, 2022 (2022), 1–18. https://doi.org/10.1080/17455030.2022.2149890 doi: 10.1080/17455030.2022.2149890
    [20] C. Xu, D. Mu, Z. Liu, Y. Pang, M. Liao, C. Aouiti, New insight into bifurcation of fractional-order 4D neural networks incorporating two different time delays, Commun Nonlinear Sci., 118 (2023) 107043. https://doi.org/10.1016/j.cnsns.2022.107043 doi: 10.1016/j.cnsns.2022.107043
    [21] C. Xu, Z. Liu, P. Li, J. Yan, L. Yao, Bifurcation mechanism for fractional-order three-triangle multi-delayed neural networks, Neural Process. Lett., 2022 (2022), 1–27. https://doi.org/10.1007/s11063-022-11130-y doi: 10.1007/s11063-022-11130-y
    [22] C. Xu, W. Zhang, C. Aouiti, Z. Liu, L. Yao, Bifurcation insight for a fractional-order stage-structured predator-prey system incorporating mixed time delays, Math. Method. Appl. Sci., 46 (2023), 9103–9118. https://doi.org/10.1002/mma.9041 doi: 10.1002/mma.9041
    [23] C. Xu, M. Liao, P. Li, Y. Guo, Z. Liu, Bifurcation properties for fractional order delayed BAM neural networks, Cogn. Comput., 13 (2021), 322–356. https://doi.org/10.1007/s12559-020-09782-w doi: 10.1007/s12559-020-09782-w
    [24] A. Khan, A. Ali, S. Ahmad, S. Saifullah, K. Nonlaopon, A. Akgul, Nonlinear Schrödinger equation under non-singular fractional operators: a computational study, Results Phys., 43 (2022) 106062. https://doi.org/10.1016/j.rinp.2022.106062 doi: 10.1016/j.rinp.2022.106062
    [25] K. S. Nisar, A. Ciancio, K. K. Ali, M. S. Osman, C. Cattani, D. Baleanu, et al., On beta-time fractional biological population model with abundant solitary wave structures, Alex. Eng. J., 61 (2022), 1996–2008. https://doi.org/10.1016/j.aej.2021.06.106 doi: 10.1016/j.aej.2021.06.106
    [26] O. A. Arqub, M. Al-Smadi, H. Almusawa, D. Baleanu, T. Hayat, M. Alhodaly, et al., A novel analytical algorithm for generalized fifth-order time-fractional nonlinear evolution equations with conformable time derivative arising in shallow water waves, Alex. Eng. J., 61 (2022), 5753–5769. https://doi.org/10.1016/j.aej.2021.12.044 doi: 10.1016/j.aej.2021.12.044
    [27] B. C. Barro, M. A. Taneco-Hernández, Y. P. Lv, J. F. Gómez-Aguilar, M. S. Osman, H. Jahanshahi, et al., Analytical solutions of fractional wave equation with emory effect using the fractional derivative with exponential kernel, Results Phys., 25 (2021), 104148. https://doi.org/10.1016/j.rinp.2021.104148 doi: 10.1016/j.rinp.2021.104148
    [28] S. Rashid, K. T. Kubra, S. Sultana, P. Agarwal, M. S. Osman, An approximate analytical view of physical and biological models in the setting of Caputo operator via Elzaki transform decomposition method, J. Comput. Appl. Math., 413 (2022), 114378. https://doi.org/10.1016/j.cam.2022.114378 doi: 10.1016/j.cam.2022.114378
    [29] T. Ak, M. S. Osman, A. H. Kara, Polynomial and rational wave solutions of Kudryashov-Sinelshchikov equation and numerical simulations for its dynamic motions, J. Appl. Anal. Comput., 10 (2020), 2145–2162. https://doi.org/10.11948/20190341 doi: 10.11948/20190341
    [30] K. Iskakova, M. M. Alam, S. Ahmad, S. Saifullah, A. Akgul, G. Yilmaz, Dynamical study of a novel 4D hyperchaotic system: an integer and fractional order analysis, Math. Comput. Simulat., 208 (2023), 219–245. https://doi.org/10.1016/j.matcom.2023.01.024 doi: 10.1016/j.matcom.2023.01.024
    [31] S. A. M. Abdelmohsen, S. Ahmad, M. F. Yassen, S. A. Asiri, A. M. M. Ashraf, S. Saifullah, et al., Numerical analysis for hidden chaotic behavior of a coupled memristive dynamical system via fractal-fractional operator based on newton polynomial interpolation, Fractals, 2023 (2023), 1–24. https://doi.org/10.1142/S0218348X2340087X doi: 10.1142/S0218348X2340087X
    [32] X. W. Jiang, J. H. Li, B. Li, W. Yin, L. Sun, X. Y. Chen, Bifurcation, chaos, and circuit realisation of a new four-dimensional memristor system, Int. J. Nonlin. Sci. Num., 2022 (2022), 0393. https://doi.org/10.1515/ijnsns-2021-0393 doi: 10.1515/ijnsns-2021-0393
    [33] B. Li, Z. Eskandari, Z. Avazzadeh, Strong resonance bifurcations for a discrete-time prey-predator model, J. Appl. Math. Comput., 2023 (2023), 2. https://doi.org/10.1007/s12190-023-01842-2 doi: 10.1007/s12190-023-01842-2
    [34] B. Li, Z. Eskandari, Z. Avazzadeh, Dynamical behaviors of an SIR epidemic model with discrete time, Fractal Fract., 6 (2022), 659. https://doi.org/10.3390/fractalfract6110659 doi: 10.3390/fractalfract6110659
    [35] S. Saifullah, S. Ahmad, F. Jarad, Study on the dynamics of a piecewise Tumour-Immune interaction model, Fractals, 30 (2022), 2240233. https://doi.org/10.1142/S0218348X22402332 doi: 10.1142/S0218348X22402332
    [36] H. Qu, M. U. Rahman, S. Ahmad, M. B. Riaz, M. Ibrahim, T. Saeed, Investigation of fractional order bacteria dependent disease with the effects of different contact rates, Chaos Soliton. Fract., 159 (2022), 112169. https://doi.org/10.1016/j.chaos.2022.112169 doi: 10.1016/j.chaos.2022.112169
    [37] Z. H. Shen, Y. M. Chu, M. A. Khan, S. Muhammad, O. A. Al-Hartomy, M. Higazy, Mathematical modeling and optimal control of the COVID-19 dynamics, Results Phys., 31 (2021), 105028. https://doi.org/10.1016/j.rinp.2021.105028 doi: 10.1016/j.rinp.2021.105028
    [38] Y. M. Chu, M. Farhan, M. A. Khan, M. Y. Alshahrani, T. Muhammad, S. Islam, Mathematical modeling and stability analysis of Buruli ulcer in Possum mammals, Results Phys., 27 (2021), 104471. https://doi.org/10.1016/j.rinp.2021.104471 doi: 10.1016/j.rinp.2021.104471
    [39] Y. M. Chu, A. Ali, M. A. Khan, S. Islam, S. Ullah, Dynamics of fractional order COVID-19 model with a case study of Saudi Arabia, Results Phys., 21 (2021), 103787. https://doi.org/10.1016/j.rinp.2020.103787 doi: 10.1016/j.rinp.2020.103787
    [40] W. Y. Shen, Y. M. Chu, M. U. Rahman, I. Mahariq, A. Zeb, Mathematical analysis of HBV and HCV co-infection model under nonsingular fractional order derivative, Results Phys., 28 (2021), 104582. https://doi.org/10.1016/j.rinp.2021.104582 doi: 10.1016/j.rinp.2021.104582
    [41] Y. M. Chu, M. F. Khan, S. Ullah, S. A. A. Shah, M. Farooq, M. B. Mamat, Mathematical assessment of a fractional‐order vector-host disease model with the Caputo-Fabrizio derivative, Math. Method. Appl. Sci., 46 (2023), 232–247. https://doi.org/10.1002/mma.8507 doi: 10.1002/mma.8507
    [42] L. V. C. Hoan, M. A. Akinlar, M. Inc, J. F. Gómez-Aguilar, Y. M. Chu, B. Almohsen, A new fractional-order compartmental disease model, Alex. Eng. J., 59 (2020), 3187–3196. https://doi.org/10.1016/j.aej.2020.07.040 doi: 10.1016/j.aej.2020.07.040
    [43] Y. M. Chu, M. S. Khan, M. Abbas, S. Ali, W. Nazeer, On characterizing of bifurcation and stability analysis for time fractional glycolysis model, Chaos Soliton. Fract., 165 (2022), 112804. https://doi.org/10.1016/j.chaos.2022.112804 doi: 10.1016/j.chaos.2022.112804
    [44] J. Fang, Z. S. Qian, Y. M. Chu, M. U. Rahman, On nonlinear evolution model for drinking behavior under Caputo-Fabrizio derivative, J. Appl. Anal. Comput., 12 (2022), 790–806. https://doi.org/10.11948/20210357 doi: 10.11948/20210357
    [45] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional calculus: models and numerical methods, Singapore: World Scientific, 2012. https://doi.org/10.1142/10044
  • This article has been cited by:

    1. Jin Li, Yongling Cheng, Barycentric rational interpolation method for solving 3 dimensional convection–diffusion equation, 2024, 304, 00219045, 106106, 10.1016/j.jat.2024.106106
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1605) PDF downloads(60) Cited by(6)

Figures and Tables

Figures(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog