In itemset mining, the two vital goals that must be resolved from a multi-objective perspective are frequency and utility. To effectively address the issue, researchers have placed a great deal of emphasis on achieving both objectives without sacrificing the quality of the solution. In this work, an effective itemset mining method was formulated for high-frequency and high-utility itemset mining (HFUI) in a transaction database. The problem of HFUI is modeled mathematically as a multi-objective issue to handle it with the aid of a modified bio-inspired multi-objective algorithm, namely, the multi-objective Boolean grey wolf optimization based decomposition algorithm. This algorithm is an enhanced version of the Boolean grey wolf optimization algorithm (BGWO) for handling multi-objective itemset mining problem using decomposition factor. In the further part of this paper decomposition factor will be mentioned as decomposition. Different population initialization strategies were used to test the impact of the proposed algorithm. The system was evaluated with 12 different real-time datasets, and the results were compared with seven different recent existing multi-objective models. Statistical analysis, namely, the Wilcoxon signed rank test, was also utilized to prove the impact of the proposed algorithm. The outcome shows the impact of the formulated technique model over other standard techniques.
Citation: N. Pazhaniraja, Shakila Basheer, Kalaipriyan Thirugnanasambandam, Rajakumar Ramalingam, Mamoon Rashid, J. Kalaivani. Multi-objective Boolean grey wolf optimization based decomposition algorithm for high-frequency and high-utility itemset mining[J]. AIMS Mathematics, 2023, 8(8): 18111-18140. doi: 10.3934/math.2023920
[1] | He Yuan, Zhuo Liu . Lie n-centralizers of generalized matrix algebras. AIMS Mathematics, 2023, 8(6): 14609-14622. doi: 10.3934/math.2023747 |
[2] | Xinfeng Liang, Mengya Zhang . Triangular algebras with nonlinear higher Lie n-derivation by local actions. AIMS Mathematics, 2024, 9(2): 2549-2583. doi: 10.3934/math.2024126 |
[3] | Anas Al-Masarwah, Nadeen Kdaisat, Majdoleen Abuqamar, Kholood Alsager . Crossing cubic Lie algebras. AIMS Mathematics, 2024, 9(8): 22112-22129. doi: 10.3934/math.20241075 |
[4] | Shan Li, Kaijia Luo, Jiankui Li . Generalized Lie n-derivations on generalized matrix algebras. AIMS Mathematics, 2024, 9(10): 29386-29403. doi: 10.3934/math.20241424 |
[5] | He Yuan, Qian Zhang, Zhendi Gu . Characterizations of generalized Lie n-higher derivations on certain triangular algebras. AIMS Mathematics, 2024, 9(11): 29916-29941. doi: 10.3934/math.20241446 |
[6] | Nouf Almutiben, Ryad Ghanam, G. Thompson, Edward L. Boone . Symmetry analysis of the canonical connection on Lie groups: six-dimensional case with abelian nilradical and one-dimensional center. AIMS Mathematics, 2024, 9(6): 14504-14524. doi: 10.3934/math.2024705 |
[7] | Xianguo Hu . Universal enveloping Hom-algebras of regular Hom-Poisson algebras. AIMS Mathematics, 2022, 7(4): 5712-5727. doi: 10.3934/math.2022316 |
[8] | Nouf Almutiben, Edward L. Boone, Ryad Ghanam, G. Thompson . Classification of the symmetry Lie algebras for six-dimensional co-dimension two Abelian nilradical Lie algebras. AIMS Mathematics, 2024, 9(1): 1969-1996. doi: 10.3934/math.2024098 |
[9] | Baiying He, Siyu Gao . The nonisospectral integrable hierarchies of three generalized Lie algebras. AIMS Mathematics, 2024, 9(10): 27361-27387. doi: 10.3934/math.20241329 |
[10] | Mohd Arif Raza, Huda Eid Almehmadi . Lie (Jordan) σ−centralizer at the zero products on generalized matrix algebra. AIMS Mathematics, 2024, 9(10): 26631-26648. doi: 10.3934/math.20241295 |
In itemset mining, the two vital goals that must be resolved from a multi-objective perspective are frequency and utility. To effectively address the issue, researchers have placed a great deal of emphasis on achieving both objectives without sacrificing the quality of the solution. In this work, an effective itemset mining method was formulated for high-frequency and high-utility itemset mining (HFUI) in a transaction database. The problem of HFUI is modeled mathematically as a multi-objective issue to handle it with the aid of a modified bio-inspired multi-objective algorithm, namely, the multi-objective Boolean grey wolf optimization based decomposition algorithm. This algorithm is an enhanced version of the Boolean grey wolf optimization algorithm (BGWO) for handling multi-objective itemset mining problem using decomposition factor. In the further part of this paper decomposition factor will be mentioned as decomposition. Different population initialization strategies were used to test the impact of the proposed algorithm. The system was evaluated with 12 different real-time datasets, and the results were compared with seven different recent existing multi-objective models. Statistical analysis, namely, the Wilcoxon signed rank test, was also utilized to prove the impact of the proposed algorithm. The outcome shows the impact of the formulated technique model over other standard techniques.
A Poisson algebra is a triple, (L,⋅,[−,−]), where (L,⋅) is a commutative associative algebra and (L,[−,−]) is a Lie algebra that satisfies the following Leibniz rule:
[x,y⋅z]=[x,y]⋅z+y⋅[x,z],∀x,y,z∈L. |
Poisson algebras appear naturally in the study of Hamiltonian mechanics and play a significant role in mathematics and physics, such as in applications of Poisson manifolds, integral systems, algebraic geometry, quantum groups, and quantum field theory (see [7,11,24,25]). Poisson algebras can be viewed as the algebraic counterpart of Poisson manifolds. With the development of Poisson algebras, many other algebraic structures have been found, such as Jacobi algebras [1,9], Poisson bialgebras [20,23], Gerstenhaber algebras, Lie-Rinehart algebras [16,17,26], F-manifold algebras [12], Novikov-Poisson algebras [28], quasi-Poisson algebras [8] and Poisson n-Lie algebras [10].
As a dual notion of a Poisson algebra, the concept of a transposed Poisson algebra was recently introduced by Bai et al. [2]. A transposed Poisson algebra (L,⋅,[−,−]) is defined by exchanging the roles of the two binary operations in the Leibniz rule defining the Poisson algebra:
2z⋅[x,y]=[z⋅x,y]+[x,z⋅y],∀x,y,z∈L, |
where (L,⋅) is a commutative associative algebra and (L,[−,−]) is a Lie algebra.
It is shown that a transposed Poisson algebra possesses many important identities and properties and can be naturally obtained by taking the commutator in the Novikov-Poisson algebra [2]. There are many results on transposed Poisson algebras, such as those on transposed Hom-Poisson algebras [18], transposed BiHom-Poisson algebras [21], a bialgebra theory for transposed Poisson algebras [19], the relation between 12-derivations of Lie algebras and transposed Poisson algebras [14], the relation between 12-biderivations and transposed Poisson algebras [29], and the transposed Poisson structures with fixed Lie algebras (see [6] for more details).
The notion of an n-Lie algebra (see Definition 2.1), as introduced by Filippov [15], has found use in many fields in mathematics and physics [4,5,22,27]. The explicit construction of n-Lie algebras has become one of the important problems in this theory. In [3], Bai et al. gave a construction of (n+1)-Lie algebras through the use of n-Lie algebras and some linear functions. In [13], Dzhumadil′daev introduced the notion of a Poisson n-Lie algebra which can be used to construct an (n+1)-Lie algebra under an additional strong condition. In [2], Bai et al. showed that this strong condition for n=2 holds automatically for a transposed Poisson algebra, and they gave a construction of 3-Lie algebras from transposed Poisson algebras with derivations. They also found that this constructed 3-Lie algebra and the commutative associative algebra satisfy the analog of the compatibility condition for transposed Poisson algebras, which is called a transposed Poisson 3-Lie algebra. This motivated them to introduce the concept of a transposed Poisson n-Lie algebra (see Definition 2.2) and propose the following conjecture:
Conjecture 1.1. [2] Let n≥2 be an integer and (L,⋅,μn) a transposed Poisson n-Lie algebra. Let D be a derivation of (L,⋅) and (L,μn). Define an (n+1)-ary operation:
μn+1(x1,⋯,xn+1):=n+1∑i=1(−1)i−1D(xi)μn(x1,⋯,ˆxi,⋯,xn+1),∀x1,⋯,xn+1∈L, |
where ˆxi means that the i-th entry is omitted. Then, (L,⋅,μn+1) is a transposed Poisson (n+1)-Lie algebra.
In this paper, based on the identities for transposed Poisson n-Lie algebras given in Section 2, we prove that Conjecture 1.1 holds under a certain strong condition described in Section 3 (see Definition 2.3 and Theorem 3.2).
Throughout the paper, all vector spaces are taken over a field of characteristic zero. To simplify notations, the commutative associative multiplication (⋅) will be omitted unless the emphasis is needed.
In this section, we first recall some definitions, and then we exhibit a class of identities for transposed Poisson n-Lie algebras.
Definition 2.1. [15] Let n≥2 be an integer. An n-Lie algebra is a vector space L, together with a skew-symmetric linear map [−,⋯,−]:⊗nL→L, such that, for any xi,yj∈L,1≤i≤n−1,1≤j≤n, the following identity holds:
[[y1,⋯,yn],x1,⋯,xn−1]=n∑i=1(−1)i−1[[yi,x1,⋯,xn−1],y1,⋯,ˆyi,⋯,yn]. | (2.1) |
Definition 2.2. [2] Let n≥2 be an integer and L a vector space. The triple (L,⋅,[−,⋯,−]) is called a transposed Poisson n-Lie algebra if (L,⋅) is a commutative associative algebra and (L,[−,⋯,−]) is an n-Lie algebra such that, for any h,xi∈L,1≤i≤n, the following identity holds:
nh[x1,⋯,xn]=n∑i=1[x1,⋯,hxi,⋯,xn]. | (2.2) |
Some identities for transposed Poisson algebras in [2] can be extended to the following theorem for transposed Poisson n-Lie algebras.
Theorem 2.1. Let (L,⋅,[−,⋯,−]) be a transposed Poisson n-Lie algebra. Then, the following identities hold:
(1) For any xi∈L,1≤i≤n+1, we have
n+1∑i=1(−1)i−1xi[x1,⋯,ˆxi,⋯,xn+1]=0; | (2.3) |
(2) For any h,xi,yj∈L,1≤i≤n−1,1≤j≤n, we have
n∑i=1(−1)i−1[h[yi,x1,⋯,xn−1],y1,⋯,ˆyi,⋯,yn]=[h[y1,⋯,yn],x1,⋯,xn−1]; | (2.4) |
(3) For any xi,yj∈L,1≤i≤n−1,1≤j≤n+1, we have
n+1∑i=1(−1)i−1[yi,x1,⋯,xn−1][y1,⋯,ˆyi,⋯,yn+1]=0; | (2.5) |
(4) For any x1,x2,yi∈L,1≤i≤n, we have
n∑i=1n∑j=1,j≠i[y1,⋯,yix1,⋯,yjx2,⋯,yn]=n(n−1)x1x2[y1,y2,⋯,yn]. | (2.6) |
Proof. (1) By Eq (2.2), for any 1≤i≤n+1, we have
nxi[x1,⋯,xi−1,xi+1,⋯,xn+1]=∑j≠i[x1,⋯,xi−1,xi+1,⋯,xixj,⋯,xn+1]. |
Thus, we obtain
n+1∑i=1(−1)i−1nxi[x1,⋯,ˆxi,⋯,xn+1]=n+1∑i=1n+1∑j=1,j≠i(−1)i−1[x1,⋯,ˆxi,⋯,xixj,⋯,xn+1]. |
Note that, for any i>j, we have
(−1)i−1[x1,⋯,xj−1,xixj,xj+1,⋯,ˆxi,⋯,xn]+(−1)j−1[x1,⋯,ˆxj,⋯,xi−1,xjxi,xi+1,⋯,xn]=(−1)i−1+(i−j−1)[x1,⋯,xj−1,xj+1,⋯,xi−1,xixj,xi+1,⋯,xn]+(−1)j−1[x1,⋯,ˆxj,⋯,xi−1,xjxi,xi+1,⋯,xn]=((−1)−j−2+(−1)j−1)[x1,⋯,xj−1,xj+1,⋯,xi−1,xixj,xi+1,⋯,xn]=0, |
which gives n+1∑i=1n+1∑j=1,j≠i(−1)i−1[x1,⋯,ˆxi,⋯,xixj,⋯,xn+1]=0.
Hence, we get
n+1∑i=1(−1)i−1nxi[x1,⋯,ˆxi,⋯,xn+1]=0. |
(2) By Eq (2.2), we have
−[h[y1,⋯,yn],x1,⋯,xn−1]−n−1∑i=1[[y1,⋯,yn],x1,⋯,hxi,⋯,xn−1]=−nh[[y1,⋯,yn],x1,⋯,xn−1], |
and, for any 1≤j≤n,
(−1)j−1([h[yj,x1,⋯,xn−1],y1,⋯,ˆyj,⋯,yn−1]+n∑i=1,i≠j[[yj,x1,⋯,xn−1],y1,⋯,hyi,⋯,ˆyj,⋯,yn−1])=(−1)j−1nh[[yj,x1,⋯,xn−1],y1,⋯,ˆyj,⋯,yn−1]. |
By taking the sum of the above n+1 identities and applying Eq (2.1), we get
−[h[y1,⋯,yn],x1,⋯,xn−1]−n−1∑i=1[[y1,⋯,yn],x1,⋯,hxi,⋯,xn−1]+n∑j=1(−1)j−1([h[yj,x1,⋯,xn−1],y1,⋯,ˆyj,⋯,yn−1]+n∑i=1,i≠j[[yj,x1,⋯,xn−1],y1,⋯,hyi,⋯,ˆyj,⋯,yn−1])=−nh[[y1,⋯,yn],x1,⋯,xn−1]+nhn∑j=1(−1)j−1[[yj,x1,⋯,xn−1],y1,⋯,ˆyj,⋯,yn−1]=0. |
We denote
Aj:=n∑i=1,i≠j(−1)i−1[[yi,x1,⋯,xn−1],y1,⋯,hyj,⋯,ˆyi,⋯,yn],1≤j≤n,Bi:=[[y1,⋯,yn],x1,⋯,hxi,⋯,xn−1],1≤i≤n−1. |
Then, the above equation can be rewritten as
n∑i=1(−1)i−1[h[yi,x1,⋯,xn−1],y1,⋯,ˆyi,⋯,yn]−[h[y1,⋯,yn],x1,⋯,xn−1]+n∑j=1Aj−n−1∑i=1Bi=0. | (2.7) |
By applying Eq (2.1) to Aj,1≤j≤n, we have
Aj=n∑i=1,i≠j(−1)i−1[[yi,x1,⋯,xn−1],y1,⋯,hyj,⋯,ˆyi,⋯,yn]=[[y1,⋯,hyj,⋯,yn],x1,⋯,xn−1]+(−1)j[[hyj,x1,⋯,xn−1],y1,⋯,ˆyj,⋯,yn]. |
Thus, we get
n∑j=1Aj=n∑j=1[[y1,⋯,hyj,⋯,yn],x1,⋯,xn−1]+n∑j=1(−1)j[[hyj,x1,⋯,xn−1],y1,⋯,ˆyj,⋯,yn]=n[h[y1,⋯,yn],x1,⋯,xn−1]+n∑j=1(−1)j[[hyj,x1,⋯,xn−1],y1,⋯,ˆyj,⋯,yn]. |
By applying Eq (2.1) to Bi,1≤i≤n−1, we have
Bi=[[y1,⋯,yn],x1,⋯,hxi,⋯,xn−1]=n∑j=1(−1)j−1[[yj,x1,⋯,hxi,⋯,xn−1],y1,⋯ˆyj,⋯,yn]. |
Thus, we get
n−1∑i=1Bi=n−1∑i=1n∑j=1(−1)j−1[[yj,x1,⋯,hxi,⋯,xn−1],y1,⋯ˆyj,⋯,yn]=n∑j=1n−1∑i=1(−1)j−1[[yj,x1,⋯,hxi,⋯,xn−1],y1,⋯ˆyj,⋯,yn]. |
Note that, by Eq (2.2), we have
n−1∑i=1(−1)j−1[[yj,x1,⋯,hxi,⋯,xn−1],y1,⋯ˆyj,⋯,yn]=(−1)j−1n[h[yj,x1,⋯,xi,⋯,xn−1],y1,⋯ˆyj,⋯,yn]+(−1)j[[hyj,x1,⋯,xi,⋯,xn−1],y1,⋯ˆyj,⋯,yn]. |
Thus, we obtain
n−1∑i=1Bi=n∑j=1(−1)j−1n[h[yj,x1,⋯,xi,⋯,xn−1],y1,⋯ˆyj,⋯,yn]+n∑j=1(−1)j[[hyj,x1,⋯,xi,⋯,xn−1],y1,⋯ˆyj,⋯,yn]. |
By substituting these equations into Eq (2.7), we have
n∑i=1(−1)i−1[h[yi,x1,⋯,xn−1],y1,⋯,ˆyi,⋯,yn]−[h[y1,⋯,yn],x1,⋯,xn−1]+n[h[y1,⋯,yn],x1,⋯,xn−1]+n∑j=1(−1)j[[hyj,x1,⋯,xn−1],y1,⋯,ˆyj,⋯,yn]−n∑j=1(−1)j−1n[h[yj,x1,⋯,xi,⋯,xn−1],y1,⋯ˆyj,⋯,yn]−n∑j=1(−1)j[[hyj,x1,⋯,xi,⋯,xn−1],y1,⋯ˆyj,⋯,yn]=0, |
which implies that
(n−1)(n∑i=1(−1)i[h[yi,x1,⋯,xn−1],y1,⋯,ˆyi,⋯,yn]+[h[y1,⋯,yn],x1,⋯,xn−1])=0. |
Therefore, the proof of Eq (2.4) is completed.
(3) By Eq (2.2), for any 1≤j≤n+1, we have
(−1)j−1n[yj,x1,⋯,xn−1][y1,⋯,ˆyj,⋯,yn+1]=n+1∑i=1,i≠j(−1)j−1[y1,⋯,yi[yj,x1,⋯,xn−1],⋯,ˆyj,⋯,yn+1]. |
By taking the sum of the above n+1 identities, we obtain
n+1∑j=1(−1)j−1n[yj,x1,⋯,xn−1][y1,⋯,ˆyj,⋯,yn+1]=n+1∑j=1n+1∑i=1,i≠j(−1)j−1[y1,⋯,yi[yj,x1,⋯,xn−1],⋯,ˆyj,⋯,yn+1]. |
Thus, we only need to prove the following equation:
n+1∑j=1n+1∑i=1,i≠j(−1)j−1[y1,⋯,yi[yj,x1,⋯,xn−1],⋯,ˆyj,⋯,yn+1]=0. |
Note that
n+1∑j=1n+1∑i=1,i≠j(−1)j−1[y1,⋯,yi[yj,x1,⋯,xn−1],⋯,ˆyj,⋯,yn+1]=n+1∑i=1n+1∑j=1,j≠i(−1)j−1[y1,⋯,yi[yj,x1,⋯,xn−1],⋯,ˆyj,⋯,yn+1]=n+1∑i=1i−1∑j=1(−1)i+j−1[yi[yj,x1,⋯,xn−1],y1,⋯,ˆyj,⋯,ˆyi,⋯,yn+1]+n+1∑i=1n+1∑j=i+1(−1)i+j[yi[yj,x1,⋯,xn−1],y1,⋯,ˆyi,⋯,ˆyj,⋯,yn+1](2.4)=n+1∑i=1(−1)i[yi[y1,⋯,ˆyi,⋯,yn+1],x1,⋯,xn−1](2.3)=0. |
Hence, the conclusion holds.
(4) By applying Eq (2.2), we have
n2x1x2[y1,y2,⋯,yn]=nx1n∑j=1[y1,⋯,yjx2,⋯,yn]=n∑i=1n∑j=1,j≠i[y1,⋯,yix1,⋯,yjx2,⋯,yn]+n∑j=1[y1,⋯,yjx1x2,⋯,yn]=n∑i=1n∑j=1,j≠i[y1,⋯,yix1,⋯,yjx2,⋯,yn]+nx1x2[y1,⋯,yn], |
which gives
n(n−1)x1x2[y1,y2,⋯,yn]=n∑i=1n∑j=1,j≠i[y1,⋯,yix1,⋯,yjx2,⋯,yn]. |
Hence, the proof is completed.
To prove Conjecture 1.1, we need the following extra condition.
Definition 2.3. A transposed Poisson n-Lie algebra (L,⋅,[−,⋯,−]) is called strong if the following identity holds:
y1[hy2,x1,⋯,xn−1]−y2[hy1,x1,⋯,xn−1]+n−1∑i=1(−1)i−1hxi[y1,y2,x1,⋯,ˆxi,⋯,xn−1]=0 | (2.8) |
for any y1,y2,xi∈L,1≤i≤n−1.
Remark 2.1. When n=2, the identity is
y1[hy2,x1]+y2[x1,hy1]+hx1[y1,y2]=0, |
which is exactly Theorem 2.5 (11) in [2]. Thus, in the case of a transposed Poisson algebra, the strong condition always holds. So far, we cannot prove that the strong condition fails to hold for n≥3.
Proposition 2.1. Let (L,⋅,[−,⋯,−]) be a strong transposed Poisson n-Lie algebra. Then,
y1[hy2,x1,⋯,xn−1]−hy1[y2,x1,⋯,xn−1]=y2[hy1,x1,⋯,xn−1]−hy2[y1,x1,⋯,xn−1] | (2.9) |
for any y1,y2,xi∈L,1≤i≤n−1.
Proof. By Eq (2.3), we have
−hy1[y2,x1,⋯,xn−1]+hy2[y1,x1,⋯,xn−1]=n−1∑i=1(−1)i−1hxi[y1,y2,x1,⋯,ˆxi,⋯,xn−1]. |
Then, the statement follows from Eq (2.8).
In this section, we will prove Conjecture 1.1 for strong transposed Poisson n-Lie algebras. First, we recall the notion of derivations of transposed Poisson n-Lie algebras.
Definition 3.1. Let (L,⋅,[−,⋯,−]) be a transposed Poisson n-Lie algebra. The linear operation D:L→L is called a derivation of (L,⋅,[−,⋯,−]) if the following holds for any u,v,xi∈L,1≤i≤n:
(1) D is a derivation of (L,⋅), i.e., D(uv)=D(u)v+uD(v);
(2) D is a derivation of (L,[−,⋯,−]), i.e.,
D([x1,⋯,xn])=n∑i=1[x1,⋯,xi−1,D(xi),xi+1,⋯,xn]. |
Lemma 3.1. Let (L,⋅,[−,⋯,−]) be a transposed Poisson n-Lie algebra and D a derivation of (L,⋅,[−,⋯,−]). For any yi∈L,1≤i≤n+1, we have the following:
(1)
n+1∑i=1(−1)i−1D(yi)D([y1,⋯,ˆyi,⋯,yn+1])=n+1∑i=1n+1∑j=1,j≠i(−1)i−1D(yi)[y1,⋯,D(yj),⋯,ˆyi,⋯,yn+1]; | (3.1) |
(2)
n+1∑i=1(−1)i−1D(yi)D([y1,⋯,ˆyi,⋯,yn+1])=n+1∑i=1n+1∑j=1,j≠in+1∑k=j+1,k≠i(−1)iyi[y1,⋯,D(yj),⋯,D(yk),⋯,ˆyi,⋯,yn+1], | (3.2) |
where, for any i>j, j∑i denotes the empty sum, which is equal to zero.
Proof. (1) The statement follows immediately from Definition 3.1.
(2) By applying Eq (3.1), we need to prove the following equation:
n+1∑i=1n+1∑j=1,j≠i(−1)i−1nD(yi)[y1,⋯,D(yj),⋯,ˆyi,⋯,yn+1]=n+1∑i=1n+1∑j=1,j≠in+1∑k=j+1,k≠i(−1)inyi[y1,⋯,D(yj),⋯,D(yk),⋯,ˆyi,⋯,yn+1]. |
For any 1≤i≤n+1, denote Ai:=nn+1∑j=1,j≠i(−1)i−1D(yi)[y1,⋯,D(yj),⋯,ˆyi,⋯,yn+1]. Then, we have
n+1∑i=1n+1∑j=1,j≠i(−1)i−1nD(yi)[y1,⋯,D(yj),⋯,ˆyi,⋯,yn+1]=n+1∑i=1Ai. |
Note that
Ai=(−1)i−1(nD(yi)[D(y1),y2,⋯,ˆyi,⋯,yn+1]+nD(yi)[y1,D(y2),y3,⋯,ˆyi,⋯,yn+1]+⋯+nD(yi)[y1,⋯,ˆyi,⋯,yn,D(yn+1)])=(−1)i−1([D(yi)D(y1),y2,⋯,ˆyi,⋯,yn+1]+n+1∑k=2,k≠i[D(y1),y2,⋯,ykD(yi),⋯,ˆyi,⋯,yn+1]+[y1,D(yi)D(y2),y3,⋯,ˆyi,⋯,yn+1]+n+1∑k=1,k≠2,i[y1,D(y2),y3,⋯,ykD(yi),⋯,ˆyi,⋯,yn+1]+⋯+[y1,⋯,ˆyi,⋯,yn,D(yi)D(yn+1)]+n∑k=1,k≠i[y1,⋯,ykD(yi),⋯,ˆyi,⋯,yn,D(yn+1)])=(−1)i−1n+1∑j=1,j≠i[y1,⋯,D(yi)D(yj),⋯,ˆyi,⋯,yn+1]+(−1)i−1n+1∑j=1,j≠in+1∑k=1,k≠j,i[y1,⋯,D(yj),⋯,ykD(yi),⋯,ˆyi,⋯,yn+1]. |
Thus, we have
n+1∑i=1Ai=n+1∑j=1n+1∑i=1,i≠j(−1)j−1[y1,⋯,D(yj)D(yi),⋯,ˆyj,⋯,yn+1]+n+1∑i=1n+1∑j=1,j≠in+1∑k=1,k≠i,j(−1)i−1[y1,⋯,D(yj),⋯,ykD(yi),⋯,ˆyi,⋯,yn+1]=T1+T2, |
where
T1:=n+1∑j=1n+1∑i=1,i≠j(−1)j−1[y1,⋯,D(yj)D(yi),⋯,ˆyj,⋯,yn+1],T2:=n+1∑i=1n+1∑j=1,j≠in+1∑k=1,k≠i,j(−1)i−1[y1,⋯,D(yj),⋯,ykD(yi),⋯,ˆyi,⋯,yn+1]. |
Note that
T1=n+1∑j,i=1Bji, |
where Bji=(−1)j−1[y1,⋯,D(yj)D(yi),⋯,ˆyj,⋯,yn+1] for any 1≤j≠i≤n+1, and Bii=0 for any 1≤i≤n+1.
For any 1≤i,j≤n+1, without loss of generality, assume that i<j; then, we have
Bji+Bij=(−1)j−1[y1,⋯,D(yj)D(yi),⋯,ˆyj,⋯,yn+1]+(−1)i−1[y1,⋯,ˆyi,⋯,D(yi)D(yj),⋯,yn+1]=(−1)j−1[y1,⋯,D(yj)D(yi),⋯,ˆyj,⋯,yn+1]+(−1)i−1+j−i+1[y1,⋯,D(yj)D(yi),⋯,ˆyj,⋯,yn+1]=0, |
which implies that T1=n+1∑j,i=1Bji=0.
Thus, we get that n+1∑i=1Ai=T2.
We rewrite
n+1∑i=1n+1∑j=1,j≠in+1∑k=j+1,k≠i(−1)inyi[y1,⋯,D(yj),⋯,D(yk),⋯,ˆyi,⋯,yn+1]=n+1∑i=1n+1∑j=1,j≠in+1∑k=j+1,k≠in+1∑t=1,t≠j,k,i(−1)i⋅[y1,⋯,D(yj),⋯,D(yk),⋯,ytyi,⋯,ˆyi,⋯,yn+1]+n+1∑i=1n+1∑j=1,j≠in+1∑k=j+1,k≠i(−1)i[y1,⋯,yiD(yj),⋯,D(yk),⋯,ˆyi,⋯,yn+1]+n+1∑i=1n+1∑j=1,j≠in+1∑k=j+1,k≠i(−1)i[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyi,⋯,yn+1]=M1+M2+M3, |
where
M1:=n+1∑i=1n+1∑j=1,j≠in+1∑k=j+1,k≠in+1∑t=1,t≠j,k,i(−1)i⋅[y1,⋯,D(yj),⋯,D(yk),⋯,ytyi,⋯,ˆyi,⋯,yn+1],M2:=n+1∑i=1n+1∑j=1,j≠in+1∑k=j+1,k≠i(−1)i[y1,⋯,yiD(yj),⋯,D(yk),⋯,ˆyi,⋯,yn+1],M3:=n+1∑i=1n+1∑j=1,j≠in+1∑k=j+1,k≠i(−1)i[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyi,⋯,yn+1]. |
Note that
M1=n+1∑i=1n+1∑j=1,j≠in+1∑k=j+1,k≠in+1∑t=1,t≠j,k,i(−1)i⋅[y1,⋯,D(yj),⋯,D(yk),⋯,ytyi,⋯,ˆyi,⋯,yn+1]=n+1∑i,j,k,t=1Bijkt, |
where
Bijkt={0,if any two indices are equal or k<j;(−1)i[y1,⋯,D(yj),⋯,D(yk),⋯,ytyi,⋯,ˆyi,⋯,yn+1],otherwise. |
For any 1≤j,k≤n+1, without loss of generality, assume that t<i; then, we have
Bijkt+Btjki=(−1)i[y1,⋯,D(yj),⋯,D(yk),⋯,ytyi,⋯,ˆyi,⋯,yn+1]+(−1)t[y1,⋯,D(yj),⋯,D(yk),⋯,ˆyt,⋯,ytyi,⋯,yn+1]=(−1)i[y1,⋯,D(yj),⋯,D(yk),⋯,ytyi,⋯,ˆyi,⋯,yn+1]+(−1)t+i−t−1[y1,⋯,D(yj),⋯,D(yk),⋯,ytyi,⋯,ˆyi,⋯,yn+1]=0, |
which implies that M1=0.
Therefore, we only need to prove the following equation:
M2+M3=n+1∑i=1n+1∑j=1,j≠in+1∑k=1,k≠i,j(−1)i−1[y1,⋯,D(yj),⋯,ykD(yi),⋯,ˆyi,⋯,yn+1]. |
First, we have
n+1∑j=1,j≠in+1∑k=j+1,k≠i(−1)i[y1,⋯,yiD(yj),⋯,D(yk),⋯,ˆyi,⋯,yn+1]+n+1∑j=1,j≠in+1∑k=j+1,k≠i(−1)i[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyi,⋯,yn+1]=n+1∑k=1,k≠ik−1∑j=1,j≠i(−1)i[y1,⋯,yiD(yj),⋯,D(yk),⋯,ˆyi,⋯,yn+1]+n+1∑j=1,j≠in+1∑k=j+1,k≠i(−1)i[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyi,⋯,yn+1]=n+1∑j=1,j≠ij−1∑k=1,k≠i(−1)i[y1,⋯,yiD(yk),⋯,D(yj),⋯,ˆyi,⋯,yn+1]+n+1∑j=1,j≠in+1∑k=j+1,k≠i(−1)i[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyi,⋯,yn+1]=n+1∑j=1,j≠in+1∑k=1,k≠i,j(−1)i[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyi,⋯,yn+1]. |
Thus,
M2+M3=n+1∑i=1n+1∑j=1,j≠in+1∑k=1,k≠i,j(−1)i[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyi,⋯,yn+1]=n+1∑j=1n+1∑i=1,i≠jn+1∑k=1,k≠i,j(−1)i[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyi,⋯,yn+1]=n+1∑j=1n+1∑i=1,i≠ji−1∑k=1,k≠j(−1)i[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyi,⋯,yn+1]+n+1∑j=1n+1∑i=1,i≠jn+1∑k=i+1,k≠j(−1)i[y1,⋯,D(yj),⋯,ˆyi,⋯,yiD(yk),⋯,yn+1]. |
Note that, for any 1≤j≤n+1, we have
n+1∑i=1,i≠ji−1∑k=1,k≠j(−1)i[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyi,⋯,yn+1]=n+1∑i=1,i≠ji−1∑k=1,k≠j(−1)i[y1,⋯,D(yj),⋯,yk−1,yiD(yk),yk+1,⋯,ˆyi⋯,yn+1]=n+1∑i=1,i≠ji−1∑k=1,k≠j(−1)k−1[y1,⋯,D(yj),⋯,ˆyk,⋯,yi−1,yiD(yk),yi+1,⋯,yn+1]=n+1∑i=1,i≠ji−1∑k=1,k≠j(−1)k−1[y1,⋯,D(yj),⋯,ˆyk,⋯,yiD(yk),⋯,yn+1]. |
Similarly, we have
n+1∑i=1,i≠jn+1∑k=i+1,k≠j(−1)i[y1,⋯,D(yj),⋯,ˆyi,⋯,yiD(yk),⋯,yn+1]=n+1∑i=1,i≠jn+1∑k=i+1,k≠j(−1)k−1[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyk,⋯,yn+1]. |
Thus,
M2+M3=n+1∑j=1n+1∑i=1,i≠ji−1∑k=1,k≠j(−1)k−1[y1,⋯,D(yj),⋯,ˆyk,⋯,yiD(yk),⋯,yn+1]+n+1∑j=1n+1∑i=1,i≠jn+1∑k=i+1,k≠j(−1)k−1[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyk,⋯,yn+1]=n+1∑j=1n+1∑i=1,i≠jn+1∑k=1,k≠i,j(−1)k−1[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyk,⋯,yn+1]=n+1∑k=1n+1∑j=1,j≠kn+1∑i=1,i≠j,k(−1)k−1[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyk,⋯,yn+1]=n+1∑i=1n+1∑j=1,j≠in+1∑k=1,k≠j,i(−1)i−1[y1,⋯,D(yj),⋯,ykD(yi),⋯,ˆyi,⋯,yn+1]. |
The proof is completed.
Theorem 3.1. Let (L,⋅,[−,⋯,−]) be a strong transposed Poisson n-Lie algebra and D a derivation of (L,⋅,[−,⋯,−]). Define an (n+1)-ary operation:
μn+1(x1,⋯,xn+1):=n+1∑i=1(−1)i−1D(xi)[x1,⋯,ˆxi,⋯,xn+1] | (3.3) |
for any xi∈L,1≤i≤n+1. Then, (L,μn+1) is an (n+1)-Lie algebra.
Proof. For convenience, we denote
μn+1(x1,⋯,xn+1):=[x1,⋯,xn+1]. |
On one hand, we have
[[y1,⋯,yn+1],x1,⋯,xn](3.3)=n+1∑i=1(−1)i−1[D(yi)[y1,⋯,ˆyi,⋯,yn+1],x1,⋯,xn](3.3)=n+1∑i=1(−1)i−1D(D(yi)[y1,⋯,ˆyi,⋯,yn+1])[x1,⋯,xn]+n+1∑i=1n∑j=1(−1)i+j−1D(xj)[D(yi)[y1,⋯,ˆyi,⋯,yn+1],x1,⋯,ˆxj,⋯,xn]=n+1∑i=1(−1)i−1D2(yi)[y1,⋯,ˆyi,⋯,yn+1][x1,⋯,xn]+n+1∑i=1(−1)i−1D(yi)D([y1,⋯,ˆyi,⋯,yn+1])[x1,⋯,xn]+n+1∑i=1n∑j=1(−1)i+j−1D(xj)[D(yi)[y1,⋯,ˆyi,⋯,yn+1],x1,⋯,ˆxj,⋯,xn](3.1)=n+1∑i=1(−1)i−1D2(yi)[y1,⋯,ˆyi,⋯,yn+1][x1,⋯,xn]+n+1∑i=1n+1∑k=1,k≠i(−1)i−1D(yi)[y1,⋯,D(yk),⋯,ˆyi,⋯,yn+1][x1,⋯,xn]+n+1∑i=1n∑j=1(−1)i+j−1D(xj)[D(yi)[y1,⋯,ˆyi,⋯,yn+1],x1,⋯,ˆxj,⋯,xn]=n+1∑i=1(−1)i−1D2(yi)[y1,⋯,ˆyi,⋯,yn+1][x1,⋯,xn]+n+1∑k=1k−1∑i=1(−1)k+i−1D(yi)[D(yk),y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1][x1,⋯,xn]+n+1∑k=1n+1∑i=k+1(−1)i+kD(yi)[D(yk),y1,⋯,ˆyk,⋯,ˆyi,⋯,yn+1][x1,⋯,xn]+n+1∑i=1n∑j=1(−1)i+j−1D(xj)[D(yi)[y1,⋯,ˆyi,⋯,yn+1],x1,⋯,ˆxj,⋯,xn]. |
On the other hand, for any 1≤k≤n, we have
(−1)k−1[[yk,x1,⋯,xn],y1,⋯,ˆyk,⋯,yn+1](3.3)=(−1)k−1[D(yk)[x1,⋯,xn],y1,⋯,ˆyk,⋯,yn+1]+n∑j=1(−1)j+k−1[D(xj)[yk,x1,⋯,ˆxj,⋯,xn],y1,⋯,ˆyk,⋯,yn+1](3.3)=(−1)k−1D(D(yk)[x1,⋯,xn])[y1,⋯,ˆyk,⋯,yn+1]+k−1∑i=1(−1)i+k−1D(yi)[D(yk)[x1,⋯,xn],y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1]+n+1∑i=k+1(−1)i+kD(yi)[D(yk)[x1,⋯,xn],y1,⋯,ˆyk,⋯,ˆyi,⋯,yn+1]+n∑j=1(−1)j+k−1D(D(xj)[yk,x1,⋯,ˆxj,⋯,xn])[y1,⋯,ˆyk,⋯,yn+1]+n∑j=1n+1∑i=k+1((−1)i+jD(yi)⋅[D(xj)[yk,x1,⋯,ˆxj,⋯,xn],y1,⋯,ˆyk,⋯,ˆyi,⋯,yn+1])+n∑j=1k−1∑i=1((−1)i+j−1D(yi)⋅[D(xj)[yk,x1,⋯,ˆxj,⋯,xn],y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1])=(−1)k−1D2(yk)[x1,⋯,xn][y1,⋯,ˆyk,⋯,yn+1]+k−1∑i=1(−1)i+k−1D(yi)[D(yk)[x1,⋯,xn],y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1]+n+1∑i=k+1(−1)i+kD(yi)[D(yk)[x1,⋯,xn],y1,⋯,ˆyk,⋯,ˆyi,⋯,yn+1]+n∑j=1(−1)j+k−1D2(xj)[yk,x1,⋯,ˆxj,⋯,xn][y1,⋯,ˆyk,⋯,yn+1]+n∑j=1n+1∑i=k+1((−1)i+jD(yi)⋅[D(xj)[yk,x1,⋯,ˆxj,⋯,xn],y1,⋯,ˆyk,⋯,ˆyi,⋯,yn+1])+n∑j=1k−1∑i=1((−1)i+j−1D(yi)⋅[D(xj)[yk,x1,⋯,ˆxj,⋯,xn],y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1])+(−1)k−1D(yk)D([x1,⋯,xn])[y1,⋯,ˆyk,⋯,yn+1]+n∑j=1(−1)j+k−1D(xj)D([yk,x1,⋯,ˆxj,⋯,xn])[y1,⋯,ˆyk,⋯,yn+1](3.2)=(−1)k−1D2(yk)[x1,⋯,xn][y1,⋯,ˆyk,⋯,yn+1]+k−1∑i=1(−1)i+k−1D(yi)[D(yk)[x1,⋯,xn],y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1]+n+1∑i=k+1(−1)i+kD(yi)[D(yk)[x1,⋯,xn],y1,⋯,ˆyk,⋯,ˆyi,⋯,yn+1]+n∑j=1(−1)j+k−1D2(xj)[yk,x1,⋯,ˆxj,⋯,xn][y1,⋯,ˆyk,⋯,yn+1]+n∑j=1n+1∑i=k+1((−1)i+jD(yi)⋅[D(xj)[yk,x1,⋯,ˆxj,⋯,xn],y1,⋯,ˆyk,⋯,ˆyi,⋯,yn+1])+n∑j=1k−1∑i=1((−1)i+j−1D(yi)⋅[D(xj)[yk,x1,⋯,ˆxj,⋯,xn],y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1])+n∑j=1n∑t=j+1(−1)kyk[x1,⋯,D(xj),⋯,D(xt),⋯,xn][y1,⋯,ˆyk,⋯,yn+1]+n∑i=1n∑j=1,j≠i(−1)k+ixi[D(yk),x1,⋯,D(xj),⋯,ˆxi,⋯,xn][y1,⋯,ˆyk,⋯,yn+1]+n∑i=1n∑j=1,j≠in∑t=j+1,t≠i(−1)k+ixi[yk,x1,⋯,D(xj),D(xt),⋯,ˆxi,⋯,xn]⋅[y1,⋯,ˆyk,⋯,yn+1]. |
We denote
n+1∑i=1(−1)i−1[[yi,x1,⋯,xn],y1,⋯,ˆyi,⋯,yn+1]=7∑i=1Ai, |
where
A1:=n+1∑i=1(−1)i−1D2(yi)[x1,⋯,xn][y1,⋯,ˆyi,⋯,yn+1],A2:=n+1∑k=1n∑j=1(−1)k+j−1D2(xj)[yk,x1,⋯,ˆxj,⋯,xn][y1,⋯,ˆyk,⋯,yn+1],A3:=n+1∑i=1n∑j=1n∑k=j+1(−1)iyi[x1,⋯,D(xj),⋯,D(xk),⋯,xn][y1,⋯,ˆyi,⋯,yn+1],A4:=n+1∑k=1n∑i=1n∑j=1,j≠in∑t=j+1,t≠i((−1)k+ixi[yk,x1,⋯,D(xj),D(xt),⋯,ˆxi,⋯,xn]⋅[y1,⋯,ˆyk,⋯,yn+1]),A5:=n+1∑k=1k−1∑i=1(−1)k+i−1D(yi)[D(yk)[x1,⋯,xn],y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1]+n+1∑k=1n+1∑i=k+1(−1)i+kD(yi)[D(yk)[x1,⋯,xn],y1,⋯,ˆyk,⋯,ˆyi,⋯,yn+1],A6:=n+1∑k=1n∑i=1n∑j=1,j≠i((−1)k+ixi[D(yk),x1,⋯,D(xj),⋯,ˆxi,⋯,xn]⋅[y1,⋯,ˆyk,⋯,yn+1]),A7:=n+1∑k=1n∑j=1n+1∑i=k+1((−1)k+i+jD(yi)⋅[D(xj)[yk,x1,⋯,ˆxj,⋯,xn],y1,⋯,ˆyk,⋯,ˆyi,⋯,yn+1])+n+1∑k=1n∑j=1k−1∑i=1((−1)k+i+j−1D(yi)⋅[D(xj)[yk,x1,⋯,ˆxj,⋯,xn],y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1]). |
By Eq (2.5), for fixed j, we have
n+1∑k=1(−1)k+j−1D2(xj)[yk,x1,⋯,ˆxj,⋯,xn][y1,⋯,ˆyk,⋯,yn+1]=0. |
So, we obtain that A2=0.
By Eq (2.3), for fixed j and k, we have
n+1∑i=1(−1)iyi[x1,⋯,D(xj),⋯,D(xk),⋯,xn][y1,⋯,ˆyi,⋯,yn+1]=0. |
So, we obtain that A3=0.
By Eq (2.5), for fixed j and t, we have
n+1∑k=1(−1)k+ixi[yk,x1,⋯,D(xj),D(xt),⋯,ˆxi,⋯,xn][y1,⋯,ˆyk,⋯,yn+1]=0. |
So, we obtain that A4=0.
By Eq (2.9), for fixed i and k, we have
(−1)k+i−1D(yi)[D(yk)[x1,⋯,xn],y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1]+(−1)i+kD(yk)[D(yi)[x1,⋯,xn],y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1]=(−1)k+i−1D(yi)[D(yk),y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1][x1,⋯,xn]+(−1)i+kD(yk)[D(yi),y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1][x1,⋯,xn]. |
Thus, we obtain
A5=n+1∑k=1k−1∑i=1(−1)k+i−1D(yi)[D(yk),y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1][x1,⋯,xn]+n+1∑k=1n+1∑i=k+1(−1)i+kD(yi)[D(yk),y1,⋯,ˆyk,⋯,ˆyi,⋯,yn+1][x1,⋯,xn]. |
By Eq (2.3), for fixed j and k, we have
n∑i=1(−1)k+ixi[D(yk),x1,⋯,D(xj),⋯,ˆxi,⋯,xn]=(−1)k−1D(yk)[x1,⋯,D(xj),⋯,xn]+(−1)k+j−1D(xj)[D(yk),x1,⋯,xn]=(−1)k+jD(yk)[D(xj),x1,⋯,ˆxj,⋯,xn]+(−1)k+j−1D(xj)[D(yk),x1,⋯,xn]. |
Thus, we get
A6=n+1∑k=1n∑j=1(−1)k+jD(yk)[D(xj),x1,⋯,ˆxj,⋯,xn][y1,⋯,ˆyk,⋯,yn+1]+n+1∑k=1n∑j=1(−1)k+j−1D(xj)[D(yk),x1,⋯,xn][y1,⋯,ˆyk,⋯,yn+1]. |
By Eq (2.4), for fixed j and i, we have
n+1∑k=i+1(−1)k+i+j−1D(yi)[D(xj)[yk,x1,⋯,ˆxj,⋯,xn],y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1]+i−1∑k=1(−1)k+i+jD(yi)[D(xj)[yk,x1,⋯,ˆxj,⋯,xn],y1,⋯,ˆyk,⋯,ˆyi,⋯,yn+1]=(−1)j+i−1D(yi)[D(xj)[y1,⋯,ˆyi,⋯,yn+1],x1,⋯,ˆxj,⋯,xn]. |
So, we obtain
A7=n∑j=1n+1∑i=1(−1)j+i−1D(yi)[D(xj)[y1,⋯,ˆyi,⋯,yn+1],x1,⋯,ˆxj,⋯,xn]. |
By Eq (2.9), we have
(−1)i+jD(yi)[D(xj),x1,⋯,ˆxj,⋯,xn][y1,⋯,ˆyi,⋯,yn+1]+(−1)i+j−1D(xj)[D(yi),x1,⋯,xn][y1,⋯,ˆyi,⋯,yn+1]+(−1)j+i−1D(yi)[D(xj)[y1,⋯,ˆyi,⋯,yn+1],x1,⋯,ˆxj,⋯,xn]=(−1)j+i−1D(xj)[D(yi)[y1,⋯,ˆyi,⋯,yn+1],x1,⋯,ˆxj,⋯,xn]. |
So, we get
A6+A7=n+1∑i=1n∑j=1(−1)j+i−1D(xj)[D(yi)[y1,⋯,ˆyi,⋯,yn+1],x1,⋯,ˆxj,⋯,xn]. |
Thus, we have
7∑i=1Ai=A1+A5+A6+A7=[[y1,⋯,yn+1],x1,⋯,xn]. |
Therefore, (L,μn+1) is an (n+1)-Lie algebra.
Now, we can prove Conjecture 1.1 for strong transposed Poisson n-Lie algebras.
Theorem 3.2. With the notations in Theorem 3.1, (L,⋅,μn+1) is a strong transposed Poisson (n+1)-Lie algebra.
Proof. For convenience, we denote μn+1(x1,⋯,xn+1):=[x1,⋯,xn+1]. According to Theorem 3.1, we only need to prove Eqs (2.2) and (2.8).
Proof of Eq (2.2). By Eq (3.3), we have
n+1∑i=1[x1,⋯,hxi,⋯,xn+1]=D(hx1)[x2,⋯,xn+1]+n+1∑j=2(−1)j−1D(xj)[hx1,x2,⋯,ˆxj,⋯,xn+1]−D(hx2)[x1,x3,⋯,xn+1]+n+1∑j=1,j≠2(−1)j−1D(xj)[x1,hx2,x3,⋯,ˆxj,⋯,xn+1]+⋯+(−1)nD(hxn)[x1,⋯,xn]+n∑j=1(−1)j−1D(xj)[x1,⋯,ˆxj,⋯,xn,hxn+1]=n+1∑i=1(−1)i−1D(hxi)[x1,⋯,ˆxi,⋯,xn]+n+1∑i=1n+1∑j=1,j≠i(−1)j−1D(xj)[x1,,⋯,hxi,⋯,ˆxj,⋯,xn+1]=n+1∑i=1(−1)i−1D(hxi)[x1,⋯,ˆxi,⋯,xn+1]+n+1∑j=1n+1∑i=1,i≠j(−1)j−1D(xj)[x1,⋯,hxi,⋯,ˆxj,⋯,xn+1]=n+1∑i=1(−1)i−1hD(xi)[x1,⋯,ˆxi,⋯,xn+1]+n+1∑i=1(−1)i−1xiD(h)[x1,⋯,ˆxi,⋯,xn+1]+n+1∑j=1n+1∑i=1,i≠j(−1)j−1D(xj)[x1,⋯,hxi,⋯,ˆxj,⋯,xn+1](2.3)=n+1∑i=1(−1)i−1hD(xi)[x1,⋯,ˆxi,⋯,xn+1]+n+1∑j=1n+1∑i=1,i≠j(−1)j−1D(xj)[x1,⋯,hxi,⋯,ˆxj,⋯,xn+1](3.3)=h[x1,⋯,xn+1]+n+1∑j=1n+1∑i=1,i≠j(−1)j−1D(xj)[x1,⋯,hxi,⋯,ˆxj,⋯,xn+1](2.2)=h[x1,⋯,xn+1]+nhn+1∑j=1(−1)j−1D(xj)[x1,⋯,ˆxj,⋯,xn+1](3.3)=h[x1,⋯,xn+1]+nh[x1,⋯,xn+1]=(n+1)h[x1,⋯,xn+1]. |
Proof of Eq (2.8). By Eq (3.3), we have
y1[hy2,x1,⋯,xn]−y2[hy1,x1,⋯,xn]+n∑i=1(−1)i−1hxi[y1,y2,x1,⋯,ˆxi,⋯,xn]=y1y2D(h)[x1,⋯,xn]+y1hD(y2)[x1,⋯,xn]−y1D(x1)[hy2,x2,⋯,xn]+y1D(x2)[hy2,x1,x3,⋯,xn]+⋯+(−1)ny1D(xn)[hy2,x1,⋯,xn−1]−y2y1D(h)[x1,⋯,xn]−y2hD(y1)[x1,⋯,xn]+y2D(x1)[hy1,x2,⋯,xn]−y2D(x2)[hy1,x1,x3,⋯,xn]+⋯+(−1)n−1y2D(xn)[hy1,x1,⋯,xn−1]+hx1D(y1)[y2,x2,⋯,xn]−hx1D(y2)[y1,x2,⋯,xn]+hx1D(x2)[y1,y2,x3,⋯,xn]+⋯+(−1)n+1hx1D(xn)[y1,y2,x2,⋯,xn−1]−hx2D(y1)[y2,x1,x3,⋯,xn]+hx2D(y2)[y1,x1,x3,⋯,xn]−hx2D(x1)[y1,y2,x3,⋯,xn]+⋯+(−1)n+2hx2D(xn)[y1,y2,x1,x3,⋯,xn−1]+⋯+(−1)n−1hxnD(y1)[y2,x1,⋯,xn−1]+(−1)nhxnD(y2)[y1,x1,⋯,xn−1]+(−1)n+1hxnD(x1)[y1,y2,x2,⋯,xn−1]+⋯+(−1)2n−1hxnD(xn−1)[y1,y2,x1,⋯,xn−2]=−y2hD(y1)[x1,⋯,xn]+hx1D(y1)[y2,x2,⋯,xn]+n∑i=2(−1)i−1hxiD(y1)[y2,x1,⋯,ˆxi,⋯,xn]+y1hD(y2)[x1,⋯,xn]−hx1D(y2)[y1,x2,⋯,xn]+n∑i=2(−1)ihxiD(y2)[y1,x1,⋯,ˆxi,⋯,xn]−y1D(x1)[hy2,x2,⋯,xn]+y2D(x1)[hy1,x2,⋯,xn]+n∑i=2(−1)i−1hxiD(x1)[y1,y2,x2,⋯,ˆxi,⋯,xn]+y1D(x2)[hy2,x1,x3,⋯,xn]−y2D(x2)[hy1,x1,x3,⋯,xn]+hx1D(x2)[y1,y2,x3,⋯,xn]+n∑i=3(−1)ihxiD(x2)[y1,y2,x1,x3,⋯,ˆxi,⋯,xn]⋯+(−1)ny1D(xn)[hy2,x1,⋯,xn−1]+(−1)n−1y2D(xn)[hy1,x1,⋯,xn−1]+n−1∑j=1(−1)n+j−1hxjD(xn)[y1,y2,x1,⋯,ˆxj,⋯,xn−1]=A1+A2+n∑i=1Bi, |
where
A1:=−y2hD(y1)[x1,⋯,xn]+n∑i=1(−1)i−1hxiD(y1)[y2,x1,⋯,ˆxi,⋯,xn],A2:=y1hD(y2)[x1,⋯,xn]+n∑i=1(−1)ihxiD(y2)[y1,x1,⋯,ˆxi,⋯,xn], |
and, for any 1≤i≤n,
Bi:=(−1)iy1D(xi)[hy2,x1,⋯,ˆxi,⋯,xn]+(−1)i−1y2D(xi)[hy1,x1,⋯,ˆxi,⋯,xn]+i−1∑j=1(−1)i+j−1hxjD(xi)[y1,y2,x1,⋯,ˆxj,⋯,ˆxi,⋯,xn]+n∑j=i+1(−1)i+jhxjD(xi)[y1,y2,x1,⋯,ˆxi,⋯,ˆxj,⋯,xn]. |
By Eq (2.3), we have
A1=hD(y1)(−y2[x1,⋯,xn]+n∑i=1(−1)i−1xi[y2,x1,⋯,ˆxi,⋯,xn])=0. |
Similarly, we have that A2=0.
By Eq (2.8), for any 1≤i≤n, we have
Bi=(−1)iD(xi)(y1[hy2,x1,⋯,ˆxi,⋯,xn]−y2[hy1,x1,⋯,ˆxi,⋯,xn]+i−1∑j=1(−1)j−1hxj[y1,y2,x1,⋯,ˆxj,⋯,ˆxi,⋯,xn]+n∑j=i+1(−1)jhxj[y1,y2,x1,⋯,ˆxi,⋯,ˆxj,⋯,xn])=0. |
Thus, we get
y1[hy2,x1,⋯,xn]−y2[hy1,x1,⋯,xn]+n∑i=1(−1)i−1hxi[y1,y2,x1,⋯,ˆxi,⋯,xn]=0. |
The proof is completed.
Example 3.1. The commutative associative algebra L=k[x1,x2,x3], together with the bracket
[x,y]:=x⋅D1(y)−y⋅D1(x),∀x,y∈L. |
gives a transposed Poisson algebra (L,⋅,[−,−]), where D1=∂x1 ([2, Proposition 2.2]). Note that the transposed Poisson algebra (L,⋅,[−,−]) is strong according to Remark 2.5. Now, let D2=∂x2; one can check that D2 is a derivation of (L,⋅,[−,−]). Then, there exists a strong transposed Poisson 3-Lie algebra defined by
[x,y,z]:=D2(x)(yD1(z)−zD1(y))+D2(y)(zD1(x)−xD1(z))+D2(z)(xD1(y)−yD1(x)), ∀x,y,z∈L. |
We note that [x1,x2,x3]=x3, which is non-zero. The strong condition can be checked as follows:
For any h,y1,y2,z1,z2∈L, by a direct calculation, we have
y1[hy2,z1,z2]=y1z1hD1(z2)D2(y2)−y1z2hD1(z1)D2(y2)+y1y2z1D1(z2)D2(h)−y1y2z2D1(z1)D2(h)−y1y2hD1(z2)D2(z1)+y1z2hD1(y2)D2(z1)+y1y2z2D1(h)D2(z1)+y1y2hD1(z1)D2(z2)−y1z1hD1(y2)D2(z2)−y1y2z1D1(h)D2(z2), |
−y2[hy1,z1,z2]=−y2z1hD1(z2)D2(y1)+y2z2hD1(z1)D2(y1)−y1y2z1D1(z2)D2(h)+y1y2z2D1(z1)D2(h)+y1y2hD1(z2)D2(z1)−y2z2hD1(y1)D2(z1)−y1y2z2D1(h)D2(z1)−y1y2hD1(z1)D2(z2)+y2z1hD1(y1)D2(z2)+y1y2z1D1(h)D2(z2), |
hz1[y1,y2,z2]=hy2z1D1(z2)D2(y1)−hz1z2D1(y2)D2(y1)−hy1z1D1(z2)D2(y2)+hz1z2D1(y1)D2(y2)+hy1z1D1(y2)D2(z2)−hy2z1D1(y1)D2(z2), |
−hz2[y1,y2,z1]=−hy2z2D1(z1)D2(y1)+hz1z2D1(y2)D2(y1)+hy1z2D1(z1)D2(y2)−hz1z2D1(y1)D2(y2)−hy1z2D1(y2)D2(z1)+hy2z2D1(y1)D2(z1). |
Thus, we get
y1[hy2,z1,z2]−y2[hy1,z1,z2]+hz1[y1,y2,z2]−hz2[y1,y2,z1]=0. |
We have studied transposed Poisson n-Lie algebras. We first established an important class of identities for transposed Poisson n-Lie algebras, which were subsequently used throughout the paper. We believe that the identities developed here will be useful in investigations of the structure of transposed Poisson n-Lie algebras in the future. Then, we introduced the notion of a strong transposed Poisson n-Lie algebra and derived an (n+1)-Lie algebra from a strong transposed Poisson n-Lie algebra with a derivation. Finally, we proved the conjecture of Bai et al. [2] for strong transposed Poisson n-Lie algebras.
The authors declare that they have not used artificial intelligence tools in the creation of this article.
Ming Ding was supported by the Guangdong Basic and Applied Basic Research Foundation (2023A1515011739) and the Basic Research Joint Funding Project of University and Guangzhou City under grant number 202201020103.
The authors declare that there is no conflict of interest.
[1] | C. C. Aggarwal, J. Han, Frequent Pattern Mining, 1 Ed., Cham: Springer, 2014. https://doi.org/10.1007/978-3-319-07821-2_1 |
[2] | S. Ventura, J. M. Luna, Pattern Mining with Evolutionary Algorithms, 1 Ed., Cham: Springer, 2016. https://doi.org/10.1007/978-3-319-33858-3 |
[3] |
J. R. Sampson, Adaptation in Natural and Artificial Systems (John H. Holland), SIAM Review, 18 (1976), 529–530. https://doi.org/10.1137/1018105 doi: 10.1137/1018105
![]() |
[4] |
J. Kennedy, R. Eberhart, Particle Swarm Optimization, Proceedings of IEEE International Conference on Neural Networks, 4 (1995), 1942–1948. https://doi.org/10.1109/ICNN.1995.488968 doi: 10.1109/ICNN.1995.488968
![]() |
[5] |
M. Dorigo, V. Maniezzo, A. Colorni, Ant system: Optimization by a colony of cooperating agents, IEEE T. Syst. Man Cy. B, 26 (1996), 29–41. https://doi.org/10.1109/3477.484436 doi: 10.1109/3477.484436
![]() |
[6] |
X. S. Yang, S. Deb, Cuckoo search: Recent advances and applications, Neural Comput. Applic., 24 (2014), 169–174. https://doi.org/10.1007/s00521-013-1367-1 doi: 10.1007/s00521-013-1367-1
![]() |
[7] |
N. Pazhaniraja, S. Sountharrajan, B. Sathis Kumar, High utility itemset mining: a Boolean operators-based modified grey wolf optimization algorithm, Soft Comput., 24 (2020), 16691–16704. https://doi.org/10.1007/s00500-020-05123-z doi: 10.1007/s00500-020-05123-z
![]() |
[8] |
S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Software, 69 (2014), 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007 doi: 10.1016/j.advengsoft.2013.12.007
![]() |
[9] |
H. Faris, Hossam, I. Aljarah, M. A. Al-Betar, S. Mirjalili, Grey wolf optimizer: A review of recent variants and applications, Neural Comput. Appl., 30 (2018), 413–435. https://doi.org/10.1007/s00521-017-3272-5 doi: 10.1007/s00521-017-3272-5
![]() |
[10] |
S. Mirjalili, S. Saremi, S. M. Mirjalili, L. S. Coelho, Multi-objective grey wolf optimizer: a novel algorithm for multi-criterion optimization, Expert Syst. Appl., 47 (2016), 106–119. https://doi.org/10.1016/j.eswa.2015.10.039 doi: 10.1016/j.eswa.2015.10.039
![]() |
[11] |
Wolpert, David H., William G. Macready, No free lunch theorems for optimization, IEEE Trans. Evol. Comput., 1 (1997), 67–82. https://doi.org/10.1109/4235.585893 doi: 10.1109/4235.585893
![]() |
[12] |
L. Huang, H. Chen, X. Wang, G. Chen, A fast algorithm for mining association rules, J. Comput. Sci. Technol., 15 (2000), 619–624. https://doi.org/10.1007/BF02948845 doi: 10.1007/BF02948845
![]() |
[13] |
A. Savasere, E. R. Omiecinski, S. B. Navathe, An efficient algorithm for mining association rules in large databases, Proceedings of the 21th International Conference on Very Large Data Bases, 1995,432–444. https://doi.org/10.5555/645921.673300 doi: 10.5555/645921.673300
![]() |
[14] | J. Han, J. Pei, Y. Yin, Mining frequent patterns without candidate generation, ACM Sigmod Rec., 29 (2000), 1–12. |
[15] |
M. J. Zaki, Scalable algorithms for association mining, IEEE Trans. Knowl. Data Eng., 12 (2000), 372–390. https://doi.org/10.1109/69.846291 doi: 10.1109/69.846291
![]() |
[16] | C. Lucchese, S. Orlando, P. Palmerini, R. Perego, F. Silvestri, kDCI: A Multi-Strategy Algorithm for Mining Frequent Sets, Proceedings of the IEEE ICDM Workshop of Frequent Itemset Mining Implementations (FIMI), 2003. |
[17] |
H. Yao, H.J. Hamilton, C. J. Butz, A foundational approach to mining itemset utilities from databases, Proceedings of the 2004 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics, 2004,482–486. https://doi.org/10.1137/1.9781611972740.51 doi: 10.1137/1.9781611972740.51
![]() |
[18] |
Y. Liu, W. K. Liao, A. Choudhary, A fast high utility itemsets mining algorithm, Proceedings of the 1st international workshop on Utility-based data mining, 2005, 90–99. https://doi.org/10.1145/1089827.1089839 doi: 10.1145/1089827.1089839
![]() |
[19] |
K. Gade, J. Wang, G. Karypis, Efficient closed pattern mining in the presence of tough block constraints, Proceedings of ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2004,138–147. https://doi.org/10.1145/1014052.1014070 doi: 10.1145/1014052.1014070
![]() |
[20] |
C. F. Ahmed, S. K. Tanbeer, B. S. Jeong, Y. K. Lee, Efficient tree structures for high utility pattern mining in incremental databases, IEEE Trans. Knowl. Data Eng., 21 (12) (2009) 1708–1721. https://doi.org/10.1109/TKDE.2009.46 doi: 10.1109/TKDE.2009.46
![]() |
[21] |
V. S. Tseng, C. W. Wu, B. E. Shie, P. S. Yu, Up-growth: An efficient algorithm for high utility itemset mining, Proceedings of ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2010,253–262. https://doi.org/10.1145/1835804.1835839 doi: 10.1145/1835804.1835839
![]() |
[22] |
C. W. Wu, B. E. Shie, V. S. Tseng, P. S. Yu, Mining top-k high utility itemsets, Proceedings of ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2012, 78–86. https://doi.org/10.1145/2339530.2339546 doi: 10.1145/2339530.2339546
![]() |
[23] |
M. Liu, J. Qu, Mining high utility itemsets without candidate generation, Proceedings of ACM International Conference on Information and Knowledge Management, 2012, 55–64. https://doi.org/10.1145/2396761.2396773 doi: 10.1145/2396761.2396773
![]() |
[24] |
H. Ryang, U. Yun, Top-k high utility pattern mining with effective threshold raising strategies, Knowl.-Based Syst., 76 (2015), 109–126. https://doi.org/10.1016/j.knosys.2014.12.010 doi: 10.1016/j.knosys.2014.12.010
![]() |
[25] |
V. S. Tseng, C. W. Wu, P. Fournier-Viger, P. S. Yu, Efficient algorithms for mining top-k high utility itemsets, IEEE Trans. Knowl. Data Eng., 28 (2016), 54–67. https://doi.org/10.1109/TKDE.2015.2458860 doi: 10.1109/TKDE.2015.2458860
![]() |
[26] |
A. H. Altalhi, J. M. Luna, M. A. Vallejo, S. Ventura, Evaluation and comparison of open source software suites for data mining and knowledge discovery, Wiley Interdiscip. Rev.: Data Min. Knowl. Discov., 7 (2017), e1204. https://doi.org/10.1002/widm.1204 doi: 10.1002/widm.1204
![]() |
[27] |
S. Kannimuthu, K. Premalatha, Discovery of high utility itemsets using genetic algorithm with ranked mutation, Appl. Artif. Intell., 28 (2014), 337–359. https://doi.org/10.1080/08839514.2014.891839 doi: 10.1080/08839514.2014.891839
![]() |
[28] |
J. C. Lin, L. Yang, P. Fournier-Viger, J. M. Wu, T. Hong, L. S. Wang, J. Zhan, Mining high-utility itemsets based on particle swarm optimization, Eng. Appl. Artif. Intell., 55 (2016), 320–330. https://doi.org/10.1016/j.engappai.2016.07.006 doi: 10.1016/j.engappai.2016.07.006
![]() |
[29] |
J. C. W. Lin, L. Yang, P. Fournier-Viger, T. P. Hong, M. Voznak, A binary pso approach to mine high-utility itemsets, Soft Comput., 21 (2017), 5103–5121. https://doi.org/10.1007/s00500-016-2106-1 doi: 10.1007/s00500-016-2106-1
![]() |
[30] |
J. M. Wu, J. Zhan, J. C. Lin, An ACO-based approach to mine high-utility itemsets, Knowl.-Based Syst., 116 (2017), 102–113. https://doi.org/10.1016/j.knosys.2016.10.027 doi: 10.1016/j.knosys.2016.10.027
![]() |
[31] |
K. Thirugnanasambandam, S. Prakash, V. Subramanian, S. Pothula, V. Thirumal, Reinforced cuckoo search algorithm-based multimodal optimization, Appl. Intell., 49 (2019), 2059–2083. https://doi.org/10.1007/s10489-018-1355-3 doi: 10.1007/s10489-018-1355-3
![]() |
[32] |
R. S. Raghav, K. Thirugnansambandam, D. K. Anguraj, Beeware Routing Scheme for Detecting Network Layer Attacks in Wireless Sensor Networks. Wireless Pers. Commun., 112 (2020), 2439–2459. https://doi.org/10.1007/s11277-020-07158-9 doi: 10.1007/s11277-020-07158-9
![]() |
[33] |
D. Saravanan, S. Janakiraman, K. Chandraprabha, T. Kalaipriyan, R. Raghav, S. Venkatesan, Augmented Powell-Based Krill Herd Optimization for Roadside Unit Deployment in Vehicular Ad Hoc Networks, J. Test. Eva., 47 (2019), 4108–4127. https://doi.org/10.1520/JTE20180494 doi: 10.1520/JTE20180494
![]() |
[34] |
K. Thirugnanasambandam, R. S. Raghav, D. Saravanan, U. Prabu, M. Rajeswari, Experimental Analysis of Ant System on Travelling Salesman Problem Dataset TSPLIB, EAI Endorsed Trans. Pervasive Health Technol., 5 (2019), e4. https://doi.org/10.4108/eai.13-7-2018.163092 doi: 10.4108/eai.13-7-2018.163092
![]() |
[35] |
S. Abbaspour, A. Aghsami, F. Jolai, M. Yazdani, An Integrated Queueing-Inventory-Routing Problem in a Green Dual-Channel Supply Chain Considering Pricing and Delivery Period, a Case Study of Construction Material Supplier, J. Comput. Des. Eng., 9 (2022), 1917-1951. https://doi.org/10.1093/jcde/qwac089 doi: 10.1093/jcde/qwac089
![]() |
[36] |
A. Asgari, M. Yari, S. M. S. Mahmoudi, U. Desideri, Multi-objective grey wolf optimization and parametric study of a continuous solar-based tri-generation system using a phase change material storage unit, J. Energy Storage, 55 (2022), 105783. https://doi.org/10.1016/j.est.2022.105783 doi: 10.1016/j.est.2022.105783
![]() |
[37] |
A. Hasanzadeh, A. Chitsaz, A. Ghasemi, P. Mojaver, R. Khodaei, S. M. Alirahmi, Soft computing investigation of stand-alone gas turbine and hybrid gas turbine–solid oxide fuel cell systems via artificial intelligence and multi-objective grey wolf optimizer, Energy Rep., 8 (2022), 7537–7556. https://doi.org/10.1016/j.egyr.2022.05.281 doi: 10.1016/j.egyr.2022.05.281
![]() |
[38] |
L. Xuan, G. Chen, W. Zuo, Effective algorithms to mine skyline frequent-utility itemsets, Eng. Appl. Artif. Intell., 116 (2022), 105355. https://doi.org/10.1016/j.engappai.2022.105355 doi: 10.1016/j.engappai.2022.105355
![]() |
[39] |
B. Le, T. Truong, H. Duong, P. Fournier-Viger, H. Fujita, H-FHAUI: Hiding frequent high average utility itemsets, Inf. Sci., 611 (2022), 408–431. https://doi.org/10.1016/j.ins.2022.07.027 doi: 10.1016/j.ins.2022.07.027
![]() |
[40] |
J. M. Luna, R. U. Kiran, P. Fournier-Viger, S. Ventura, Efficient Mining of Top-k High Utility Itemsets through Genetic Algorithms, Inf. Sci., 624 (2023), 529–553. https://doi.org/10.1016/j.ins.2022.12.092 doi: 10.1016/j.ins.2022.12.092
![]() |
[41] | K. Miettinen, Nonlinear Multiobjective Optimization, Norwell: Kluwer, 1999. |
[42] |
L. Zhang, G. Fu, F. Cheng, J. Qiu, , Y. Su, A multi-objective evolutionary approach for mining frequent and high utility itemsets, Appl. Soft Comput., 62 (2018), 974–986. https://doi.org/10.1016/j.asoc.2017.09.033 doi: 10.1016/j.asoc.2017.09.033
![]() |
[43] |
L. Zhang, P. Luo, E. Chen, M. Wang, Revisiting bound estimation of pattern measures: A generic framework, Inf. Sci., 339 (2016), 254–273. https://doi.org/10.1016/j.ins.2015.12.036 doi: 10.1016/j.ins.2015.12.036
![]() |
[44] |
W. Peng, X. Niu, P. Fournier-Viger, C. Huang, B. Wang, UBP-Miner: An efficient bit based high utility itemset mining algorithm, Knowl.-Based Syst., 248 (2022), 108865. https://doi.org/10.1016/j.knosys.2022.108865 doi: 10.1016/j.knosys.2022.108865
![]() |
[45] |
F. Wei, C. Li, Q. Zhang, X. Zhang, J. C. W. Lin, An efficient biobjective evolutionary algorithm for mining frequent and high utility itemsets, Appl. Soft Comput., 140 (2023) 110233. https://doi.org/10.1016/j.asoc.2023.110233 doi: 10.1016/j.asoc.2023.110233
![]() |
[46] | P. Fournier-Viger, C. W. Lin, A. Gomariz, T Gueniche, A. Soltani, Z. Deng, et al., The SPMF Open-Source Data Mining Library Version 2, Proc. 19th European Conference on Principles of Data Mining and Knowledge Discovery (PKDD 2016) Part Ⅲ, Springer LNCS 9853 (2016), 36–40. https://www.philippe-fournier-viger.com/spmf/ |
[47] |
E. Zitzler, L. Thiele, Multiobjective optimization using evolutionary algorithms a comparative case study, Proceedings of International Conference on Parallel Problem Solving from Nature, (1998) 292–301. https://doi.org/10.1007/BFb0056872 doi: 10.1007/BFb0056872
![]() |
[48] |
J. Bobadilla, F. Ortega, A. Hernando, A. Gutiérrez, Recommender systems survey, Knowl.-Based Syst., 46 (2013) 109–132. https://doi.org/10.1016/j.knosys.2013.03.012 doi: 10.1016/j.knosys.2013.03.012
![]() |
1. | K. Abdurasulov, F. Deraman, A. Saydaliyev, S. H. Sapar, Transposed Poisson Structures on Low Dimensional Quasi-Filiform Lie Algebras of Maximum Length, 2024, 45, 1995-0802, 5735, 10.1134/S1995080224606866 |