The purpose of this article is to investigate the existence of solutions for Urysohn integral equations. To achieve our objectives, we take advantage of common fixed point results for self-mappings satisfying a generalized contraction involving control functions of two variables in the context of complex valued metric spaces. We also supply a non-trivial example to show the validity of obtained results.
Citation: Afrah Ahmad Noman Abdou, Ebtisam Salem Alharbi, Jamshaid Ahmad. Solving Urysohn integral equations by common fixed point results in complex valued metric spaces[J]. AIMS Mathematics, 2023, 8(8): 17585-17602. doi: 10.3934/math.2023897
[1] | Amer Hassan Albargi . Common fixed point theorems on complex valued extended b-metric spaces for rational contractions with application. AIMS Mathematics, 2023, 8(1): 1360-1374. doi: 10.3934/math.2023068 |
[2] | Khaled Berrah, Abdelkrim Aliouche, Taki eddine Oussaeif . Applications and theorem on common fixed point in complex valued b-metric space. AIMS Mathematics, 2019, 4(3): 1019-1033. doi: 10.3934/math.2019.3.1019 |
[3] | Muhammad Rashid, Muhammad Sarwar, Muhammad Fawad, Saber Mansour, Hassen Aydi . On generalized ℑb-contractions and related applications. AIMS Mathematics, 2023, 8(9): 20892-20913. doi: 10.3934/math.20231064 |
[4] | Anam Arif, Muhammad Nazam, Aftab Hussain, Mujahid Abbas . The ordered implicit relations and related fixed point problems in the cone b-metric spaces. AIMS Mathematics, 2022, 7(4): 5199-5219. doi: 10.3934/math.2022290 |
[5] | Nabil Mlaiki, Jamshaid Ahmad, Abdullah Eqal Al-Mazrooei, Dania Santina . Common fixed points of locally contractive mappings in bicomplex valued metric spaces with application to Urysohn integral equation. AIMS Mathematics, 2023, 8(2): 3897-3912. doi: 10.3934/math.2023194 |
[6] | Sudipta Kumar Ghosh, Ozgur Ege, Junaid Ahmad, Ahmad Aloqaily, Nabil Mlaiki . On elliptic valued b-metric spaces and some new fixed point results with an application. AIMS Mathematics, 2024, 9(7): 17184-17204. doi: 10.3934/math.2024835 |
[7] | Saif Ur Rehman, Iqra Shamas, Shamoona Jabeen, Hassen Aydi, Manuel De La Sen . A novel approach of multi-valued contraction results on cone metric spaces with an application. AIMS Mathematics, 2023, 8(5): 12540-12558. doi: 10.3934/math.2023630 |
[8] | Zhenhua Ma, Jamshaid Ahmad, Abdullah Eqal Al-Mazrooei . Fixed point results for generalized contractions in controlled metric spaces with applications. AIMS Mathematics, 2023, 8(1): 529-549. doi: 10.3934/math.2023025 |
[9] | Afrah Ahmad Noman Abdou . A fixed point approach to predator-prey dynamics via nonlinear mixed Volterra–Fredholm integral equations in complex-valued suprametric spaces. AIMS Mathematics, 2025, 10(3): 6002-6024. doi: 10.3934/math.2025274 |
[10] | Afrah Ahmad Noman Abdou . Chatterjea type theorems for complex valued extended b-metric spaces with applications. AIMS Mathematics, 2023, 8(8): 19142-19160. doi: 10.3934/math.2023977 |
The purpose of this article is to investigate the existence of solutions for Urysohn integral equations. To achieve our objectives, we take advantage of common fixed point results for self-mappings satisfying a generalized contraction involving control functions of two variables in the context of complex valued metric spaces. We also supply a non-trivial example to show the validity of obtained results.
In 2011, Azam et al. [1] gave the concept of a complex valued metric space (CVMS) as a special case of cone metric space. Since the concept to introduce complex valued metric spaces is designed to define rational expressions that cannot be defined in cone metric spaces and therefore several results of fixed point theory cannot be proved to cone metric spaces, so complex valued metric space form a special class of cone metric space. Actually, the definition of a cone metric space banks on the underlying Banach space which is not a division ring. However, we can study generalizations of many results of fixed point theory involving divisions in complex valued metric spaces. Moreover, this idea is also used to define complex valued Banach spaces [2] which offer a lot of scope for further investigation. Subsequently, Rouzkard et al. [3] proved some common fixed point results fulfilling rational inequalities in CVMS which generalize the chief results of Azam et al. [1]. Although, Klin-Eam et al. [4] extended the concept of CVMS and extended the main theorems of Azam et al. [1] and Rouzkard et al. [3]. Sintunavarat et al. [5] proved common fixed point results by putting control functions of one variable on the place of constants in contractive condition. Later on, Sitthikul et al. [6] extended the results of Sintunavarat et al. [5] by generalizing the control functions from one variable to two variables. Afterwards, Karuppiah et al. [7] obtained common coupled fixed point results for generalized rational type contractions in the background of complex valued metric spaces. For more details, we refer the readers to [8,9,10,11,12,13,14,15,16,17,18].
In this article, we obtain common fixed points of the contractive type mappings involving control functions of two variables with the conditions of contraction on a closed subset of CVMS. In this regard, we present some results which are more general than the results of Sitthikul et al. [6], Sintunavarat et al. [5], Rouzkard et al. [3] and Azam et al. [1] in complex valued metric spaces. We also supply a non trivial example to show the authenticity of our leading results.
The conception of CVMS is given as follows:
Definition 1. ([1]) Let ω1,ω2∈C. A partial order ≾on C is defined in this way.
ω1≾ω2 ⇔ Re(ω1)⩽Re(ω2), Im(ω1)⩽Im(ω2). |
It follows that
ω1≾ω2 |
if one of these assertions is satisfied:
(a) Re(ω1)=Re(ω2), Im(ω1)<Im(ω2),(b) Re(ω1)<Re(ω2), Im(ω1)=Im(ω2),(c) Re(ω1)<Re(ω2), Im(ω1)<Im(ω2),(d) Re(ω1)=Re(ω2), Im(ω1)=Im(ω2). |
Definition 2. ([1]) Let P≠∅ and φ:P×P→C be a continuous mapping satisfying
(i) 0≾φ(o,τ), for all o,τ∈P and φ(o,τ)=0 if and only if o=τ;
(ii) φ(o,τ)=φ(τ,o) for all o,τ∈P;
(iii) φ(o,τ)≾φ(o,ν)+φ(ν,τ), for all o,τ,ν∈P,
then (P,φ) is said to be a CVMS. A point o∈P is said to be an interior point of A⊆P, whenever there exists 0≺r∈C such that
B(o,r)={τ∈P:φ(o,τ)≺r}⊆A, |
where B(o,r) is an open ball. Then ¯B(o,r)={τ∈P:φ(o,τ)⪯r} is a closed ball.
Example 1. ([1]) Let P=[0,1] and o,τ∈P. Define φ:P×P→C by
φ(o,τ)={0,if o=τ,i2,if o≠τ. |
Then (P,φ) is a CVMS.
Azam et al. [1] presented this result in CVMS.
Theorem 1. ([1]) Let (P,φ) be a complete CVMS and let L1,L2:P→P. If there exist some constants ℓ1,ℓ2∈[0,1) with ℓ1+ℓ2<1 such that
φ(L1o,L2τ)⪯μφ(o,τ)+ℓ2φ(o,L1o)φ(τ,L2τ)1+φ(o,τ), |
for all o,τ∈P, then L1 and L2 have a unique common fixed point.
Rouzkard et al.[3] established this result.
Theorem 2. ([3]) Let (P,φ) be a complete CVMS and let L1,L2:P→P. If there exist some constants ℓ1,ℓ2,ℓ3∈[0,1) with ℓ1+ℓ2+ℓ3<1 such that
φ(L1o,L2τ)⪯ℓ1φ(o,τ)+ℓ2φ(o,L1o)φ(τ,L2τ)1+φ(o,τ)+ℓ3φ(τ,L1o)φ(o,L2τ)1+φ(o,τ), |
for all o,τ∈P, then L1 and L2 have a unique common fixed point.
Sintunavarat et al. [5] proved the following result.
Theorem 3. Let (P,φ) be a complete CVMS and let L1,L2:P→P. If there exist the mappings ϱ1,ϱ2:P→[0,1) such that
(a) ϱ1(L1o)≤ϱ1(o) and ϱ1(L2o)≤ϱ1(o), ϱ2(L1o)≤ϱ2(o) and ϱ2(L2o)≤ϱ2(o), (b) ϱ1(o)+ϱ2(o)<1,
(c) φ(L1o,L2τ)⪯ϱ1(o)φ(o,τ)+ϱ2(o)φ(o,L1o)φ(τ,L2τ)1+φ(o,τ),
for all o,τ∈P, then L1 and L2 have a unique common fixed point.
Lemma 1. ([1]) Let (P,φ) be a CVMS and let {on} ⊆P. Then {on} converges to o if and only if |φ(on,o)|→0 when n→∞.
Lemma 2. ([1]) Let (P,φ) be a CVMS and let {on} ⊆P. Then {on} is Cauchy if and only if |φ(on,on+m)|→0 when n→∞, for each m∈N.
Motivated with proposition proved by Sitthikul et al. [6], we state and prove the following proposition which is required in the proof of our main result.
Proposition 1. Let (P,φ) be a CVMS. Let o0∈¯B(o0,r). Define the sequence {on} by
o2n+1=L1o2n and o2n+2=L2o2n+1 | (3.1) |
for all n=0,1,2,⋯.
Assume that there exists ϱ1:P×P→[0,1) satisfies
ϱ1(L2L1o,τ)≤ϱ1(o,τ) and ϱ1(o,L1L2τ)≤ϱ1(o,τ) |
for all o,τ∈¯B(o0,r). Then
ϱ1(o2n,τ)≤ϱ1(o0,τ) and ϱ1(o,o2n+1)≤ϱ1(o,o1) |
for all o,τ∈¯B(o0,r) and n=0,1,2,⋯.
Lemma 3. Let ϱ1,ϱ2:P×P→[0,1) and o,τ∈¯B(o0,r). If L1,L2:¯B(o0,r) →P satisfy
φ(L1o,L2L1o)⪯ϱ1(o,L1o)φ(o,L1o)+ϱ2(o,L1o)φ(o,L1o)φ(L1o,L2L1o)1+φ(o,L1o), |
φ(L1L2τ,L2τ)⪯ϱ1(L2τ,τ)φ(L2τ,τ)+ϱ2(L2τ,τ)φ(L2τ,L1L2τ)φ(τ,L2τ)1+φ(L2τ,τ), |
then
|φ(L1o,L2L1o)|≤ϱ1(o,L1o)|φ(o,L1o)|+ϱ2(o,L1o)|φ(L1o,L2L1o)|. |
|φ(L1L2τ,L2τ)|≤ϱ1(L2τ,τ)|φ(L2τ,τ)|+ϱ2(L2τ,τ)|φ(L2τ,L1L2τ)|. |
Proof. We can write
|φ(L1o,L2L1o)|≤|ϱ1(o,L1o)φ(o,L1o)+ϱ2(o,L1o)φ(o,L1o)φ(L1o,L2L1o)1+φ(o,L1o)|≤ϱ1(o,L1o)|φ(o,L1o)|+ϱ2(o,L1o)|φ(o,L1o)1+φ(o,L1o)||φ(L1o,L2L1o)|≤ϱ1(o,L1o)|φ(o,L1o)|+ϱ2(o,L1o)|φ(L1o,L2L1o)|. |
Similarly, we have
|φ(L1L2τ,L2τ)|≤|ϱ1(L2τ,τ)φ(L2τ,τ)+ϱ2(L2τ,τ)φ(L2τ,L1L2τ)φ(τ,L2τ)1+φ(L2τ,τ)|≤ϱ1(L2τ,τ)|φ(L2τ,τ)|+ϱ2(L2τ,τ)|φ(τ,L2τ)1+φ(L2τ,τ)||φ(L2τ,L1L2τ)|≤ϱ1(L2τ,τ)|φ(L2τ,τ)|+ϱ2(L2τ,τ)|φ(L2τ,L1L2τ)|. |
Theorem 4. Let (P,φ) be a complete CVMS and let L1,L2:¯B(o0,r)→P. If there exist the mappings ϱ1,ϱ2,ϱ3:P×P→[0,1) such that
(a) ϱ1(L2L1o,τ)≤ϱ1(o,τ) and ϱ1(o,L1L2τ)≤ϱ1(o,τ), ϱ2(L2L1o,τ)≤ϱ2(o,τ) and ϱ2(o,L1L2τ)≤ϱ2(o,τ), ϱ3(L2L1o,τ)≤ϱ3(o,τ) and ϱ3(o,L1L2τ)≤ϱ3(o,τ),
(b) ϱ1(o,τ)+ϱ2(o,τ)+ϱ3(o,τ)<1,
(c)
φ(L1o,L2τ)⪯ϱ1(o,τ)φ(o,τ)+ϱ2(o,τ)φ(o,L1o)φ(τ,L2τ)1+φ(o,τ)+ϱ3(o,τ)φ(τ,L1o)φ(o,L2τ)1+φ(o,τ), | (3.2) |
for all o0,o,τ∈¯B(o0,r), 0≺r∈C and
|φ(o0,L1o0)|≤(1−λ)|r|, | (3.3) |
where λ=ϱ1(o0,o1)1−ϱ2(o0,o1)<1, then there exists a unique point o∗∈¯B(o0,r) such that L1o∗=L2o∗=o∗.
Proof. For the arbitrary point o0 in ¯B(o0,r), define the sequence {on} by
o2n+1=L1o2n and o2n+2=L2o2n+1 |
for all n=0,1,2,... Now by inequality (3.3) and the fact that 0≤λ<1, we have
|φ(o0,L1o0)|≤|r|. |
It yields that o1∈¯B(o0,r). Let o2,o3,...,oj∈¯B(o0,r). It is enough to show that oj+1∈¯B(o0,r). First suppose that j is even, then we can write j=2k also j+1=2k+1. Now by the inequality (3.2), we have
φ(o2k+1,o2k)=φ(L1L2o2k−1,L2o2k−1)⪯ϱ1(L2o2k−1,o2k−1)φ(L2o2k−1,o2k−1)+ϱ2(L2o2k−1,o2k−1)φ(L2o2k−1,L1L2o2k−1)φ(o2k−1,L2o2k−1)1+φ(L2o2k−1,o2k−1)+ϱ3(L2o2k−1,o2k−1)φ(o2k−1,L1L2o2k−1)φ(L2o2k−1,L2o2k−1)1+φ(L2o2k−1,o2k−1), |
which implies
φ(o2k+1,o2k)⪯ϱ1(o2k,o2k−1)φ(o2k−1,o2k)+ϱ2(o2k,o2k−1)φ(o2k,o2k+1)φ(o2k−1,o2k)1+φ(o2k−1,o2k)+ϱ3(o2k,o2k−1)φ(o2k−1,o2k+1)φ(o2k,o2k)1+φ(L2o2k,o2k−1)=ϱ1(o2k,o2k−1)φ(o2k−1,o2k)+ϱ2(o2k,o2k−1)φ(o2k,o2k+1)φ(o2k−1,o2k)1+φ(o2k−1,o2k). |
It yields
|φ(o2k+1,o2k)|≤|ϱ1(o2k,o2k−1)φ(o2k−1,o2k)+ϱ2(o2k,o2k−1)φ(o2k,o2k+1)φ(o2k−1,o2k)1+φ(o2k−1,o2k)|≤ϱ1(o2k,o2k−1)|φ(o2k−1,o2k)|+ϱ2(o2k,o2k−1)|φ(o2k,o2k+1)||φ(o2k−1,o2k)||1+φ(o2k−1,o2k)|. |
Using Proposition 1 and the fact that |φ(o2k−1,o2k)||1+φ(o2k−1,o2k)|<1 in above inequality, we have
|φ(o2k+1,o2k)|≤ϱ1(o0,o2k−1)|φ(o2k,o2k−1)|+ϱ2(o0,o2k−1)|φ(o2k,o2k+1)|≤ϱ1(o0,o1)|φ(o2k,o2k−1)|+ϱ2(o0,o1)|φ(o2k,o2k+1)| |
which implies that
|φ(o2k+1,o2k)|≤ϱ1(o0,o1)1−ϱ2(o0,o1)|φ(o2k,o2k−1)|. | (3.4) |
Similarly, if j is odd, then we can write j=2k+1 and j+1=2k+2. Now by inequality (3.2), we have
φ(o2k+2,o2k+1)=φ(L2L1o2k,L1o2k)=φ(L1o2k,L2L1o2k)⪯ϱ1(o2k,L1o2k)φ(o2k,L1o2k)+ϱ2(o2k,L1o2k)φ(o2k,L1o2k)φ(L1o2k,L2L1o2k)1+φ(o2k,L1o2k)+ϱ3(o2k,L1o2k)φ(L1o2k,L1o2k)φ(o2k,L2L1o2k)1+φ(o2k,L1o2k),=ϱ1(o2k,o2k+1)φ(o2k,o2k+1)+ϱ2(o2k,o2k+1)φ(o2k,o2k+1)φ(o2k+1,o2k+2)1+φ(o2k,o2k+1). |
It implies
|φ(o2k+2,o2k+1)|≤|ϱ1(o2k,o2k+1)φ(o2k,o2k+1)+ϱ2(o2k,o2k+1)φ(o2k,o2k+1)1+φ(o2k,o2k+1)φ(o2k+1,o2k+2)|≤ϱ1(o2k,o2k+1)|φ(o2k,o2k+1)|+ϱ2(o2k,o2k+1)|φ(o2k,o2k+1)||1+φ(o2k,o2k+1)||φ(o2k+1,o2k+2)|. |
Using Proposition 1 and the fact that |φ(o2k,o2k+1)||1+φ(o2k,o2k+1)|<1 in above inequality, we have
|φ(o2k+2,o2k+1)|≤ϱ1(o0,o1)|φ(o2k,o2k+1)|+ϱ2(o0,o1)|φ(o2k+1,o2k+2)|, |
implies that
|φ(o2k+2,o2k+1)|≤ϱ1(o0,o1)1−ϱ2(o0,o1)|φ(o2k+1,o2k)|. | (3.5) |
Since λ=ϱ1(o0,o1)1−ϱ2(o0,o1)<1, then by (3.4) and (3.5), we conclude that
|φ(oj+1,oj)|≤λ|φ(oj,oj−1)| | (3.6) |
for all j∈N. Therefore we have
|φ(oj+1,oj)|≤λ|φ(oj,oj−1)|≤λ2|φ(oj−1,oj−2)|≤⋅⋅⋅≤λȷ|φ(o1,o0)| | (3.7) |
for all j∈N. Now by triangle inequality and inequality(3.7), we have
|φ(oj+1,o0)|≤|φ(oj+1,oj)|+....+|φ(o1,o0)|≤λȷ|φ(o1,o0)|+λȷ−1|φ(o1,o0)|....+|φ(o1,o0)|≤|φ(o1,o0)|(λȷ+λȷ−1+...+1)≤(1−λȷ+1)1−λ|φ(o1,o0)|. |
By inequality (3.3), we have
|φ(oj+1,o0)|≤(1−λȷ+1)1−λ(1−λ)|r|≤|r|, |
gives oj+1∈¯B(o0,r). Thus on∈¯B(o0,r), for all n∈N. Now, by inequality (3.2) and the inequality (3.7), we have
|φ(on+1,on)|≤λn|φ(o0,o1)| |
for all n∈N. Now for m>n, we have
|φ(on,om)|≤|φ(on,on+1)|+|φ(on+1,on+2)|+....+|φ(om−1,om)|≤|φ(o1,o0)|(λn+λn+1+λm−1+...+1)≤λn1−λ|φ(o0,o1)|→0, |
as n→∞. It implies that the sequence {on} is a Cauchy sequence in ¯B(o0,r). As ¯B(o0,r) is closed set in P and (P,φ) is complete. So (¯B(o0,r),φ) is complete. Thus there exists o/∈¯B(o0,r) such that on→o/ as n→∞.
Next, we show that o/ is a fixed point of L1. By (3.2) and Proposition 1, we have
φ(o/,L1o/)≾φ(o/,L2o2n+1)+φ(L2o2n+1,L1o/)=φ(o/,o2n+2)+φ(L1o/,L2o2n+1)≾φ(o/,o2n+2)+ϱ1(o/,o2n+1)φ(o/,o2n+1)+ϱ2(o/,o2n+1)φ(o/,L1o/)φ(o2n+1,L2o2n+1)1+φ(o/,o2n+1)+ϱ3(o/,o2n+1)φ(o2n+1,L1o/)φ(o/,L2o2n+1)1+φ(o/,o2n+1)≾φ(o/,o2n+2)+ϱ1(o/,o1)φ(o/,o2n+1)+ϱ2(o/,o1)φ(o/,L1o/)φ(o2n+1,o2n+2)1+φ(o/,o2n+1)ϱ3(o/,o1)φ(o2n+1,L1o/)φ(o/,o2n+2)1+φ(o/,o2n+1), |
letting n→∞, we have
φ(o/,L1o/)=0 |
and hence o/=L1o/. We also show that o/ is a fixed point of L2. By (3.2) and Proposition 1, we have
φ(o/,L2o/)≾φ(o/,L1o2n)+φ(L1o2n,L2o/)≾φ(o/,o2n+1)+ϱ1(o2n,o/)φ(o2n,o/)+ϱ2(o2n,o/)φ(o2n,L1o2n)φ(o/,L2o/)1+φ(o2n,o/)+ϱ3(o2n,o/)φ(o/,L1o2n)φ(o2n,L2τ)1+φ(o2n,o/)≾φ(o/,o2n+1)+ϱ1(o0,o/)φ(o2n,o/)+ϱ2(o0,o/)φ(o2n,o2n)φ(o/,L2o/)1+φ(o2n,o/)+ϱ3(o0,o/)φ(o/,o2n+1)φ(o2n,L2τ)1+φ(o2n,o/), |
letting n→∞, we have
φ(o/,L2o/)=0 |
and hence o/=L2o/. Therefore o/ is a common fixed point of L1 and L2. Now assume that there is o∗∈¯B(o0,r) is another fixed point of L1 and L2, then o∗=L1o∗=L2o∗ and o/≠o∗. Now by (3.2), we have
φ(o/,o∗)=φ(L1o/,L2o∗)≾ϱ1(o/,o∗)φ(o/,o∗)+ϱ2(o/,o∗)φ(o/,L1o/)φ(o∗,L2o∗)1+φ(o/,o∗)+ϱ3(o/,o∗)φ(o∗,L1o/)φ(o/,L2o∗)1+φ(o/,o∗)=ϱ1(o/,o∗)φ(o/,o∗)+ϱ3(o/,o∗)φ(o∗,o/)φ(o/,o∗)1+φ(o/,o∗), |
which implies that
|φ(o/,o∗)|≤|ϱ1(o/,o∗)φ(o/,o∗)+ϱ3(o/,o∗)φ(o/,o∗)φ(o/,o∗)1+φ(o/,o∗)|≤ϱ1(o/,o∗)|φ(o/,o∗)|+ϱ3(o/,o∗)|φ(o/,o∗)||φ(o/,o∗)||1+φ(o/,o∗)||≤ϱ1(o/,o∗)|φ(o/,o∗)|+ϱ3(o/,o∗)|φ(o/,o∗)|≤(ϱ1(o/,o∗)+ϱ3(o/,o∗))|φ(o/,o∗)|. |
Since ϱ1(o/,o∗)+ϱ3(o/,o∗)<1, we have |φ(o/,o∗)|=0. Thus o/=o∗.
Corollary 1. Let (P,φ) be a complete CVMS and L:¯B(o0,r)→P. If there exist mappings ϱ1,ϱ2,ϱ3:P×P→[0,1) such that
(a) ϱ1(Lo,τ)≤ϱ1(o,τ) and ϱ1(o,Lτ)≤ϱ1(o,τ),
ϱ2(Lo,τ)≤ϱ2(o,τ) and ϱ2(o,Lτ)≤ϱ2(o,τ),
ϱ3(Lo,τ)≤ϱ3(o,τ) and ϱ3(o,Lτ)≤ϱ3(o,τ),
(b) ϱ1(o,τ)+ϱ2(o,τ)+ϱ3(o,τ)<1, (c) φ(Lo,Lτ)≾ϱ1(o,τ)φ(o,τ)+ϱ2(o,τ)φ(o,Lo)φ(τ,Lτ)1+φ(o,τ)+ϱ3(o,τ)φ(τ,Lo)φ(o,Lτ)1+φ(o,τ),
for all o0,o,τ∈¯B(o0,r), 0≺r∈C and
|φ(o0,Lo0)|≤(1−λ)|r|, |
where λ=ϱ1(o0,o1)1−ϱ2(o0,o1)<1. Then L has a unique fixed point.
Proof. Take L1=L2=L in Theorem 4.
Corollary 2. Let (P,φ) be a complete CVMS and L1,L2:¯B(o0,r)→P. If there exist mappings ϱ1,ϱ2:P×P→[0,1) such that
(a) ϱ1(L2L1o,τ)≤ϱ1(o,τ) and ϱ1(o,L1L2τ)≤ϱ1(o,τ),
ϱ2(L2L1o,τ)≤ϱ2(o,τ) and ϱ2(o,L1L2τ)≤ϱ2(o,τ),
(b) ϱ1(o,τ)+ϱ2(o,τ)<1, (c) φ(L1o,L2τ)≾ϱ1(o,τ)φ(o,τ)+ϱ2(o,τ)φ(o,L1o)φ(τ,L2τ)1+φ(o,τ),
for all o0,o,τ∈¯B(o0,r), 0≺r∈C and
|φ(o0,L1o0)|≤(1−λ)|r|, |
where λ=ϱ1(o0,o1)1−ϱ2(o0,o1)<1. Then there exists a unique point o∗∈¯B(o0,r) such that L1o∗=L2o∗=o∗.
Proof. Take \varrho _{3}(o, \tau) = 0 in Theorem 4.
Corollary 3. Let (\mathcal{P}, \varphi) be a complete CVMS and \mathcal{L}_{1}, \mathcal{L}_{2}:\overline{B(o_{0}, r)}\rightarrow \mathcal{P} . If there exist mappings \varrho _{1}, \varrho _{3}:\mathcal{P}\times \mathcal{P} \rightarrow \lbrack 0, 1) such that
(a) \varrho _{1}(\mathcal{L}_{2}\mathcal{L}_{1}o, \tau)\leq \varrho _{1}(o, \tau) and \varrho _{1}(o, \mathcal{L}_{1}\mathcal{L}_{2}\tau)\leq \varrho _{1}(o, \tau) ,
\varrho _{3}(\mathcal{L}_{2}\mathcal{L}_{1}o, \tau)\leq \varrho _{3}(o, \tau) and \varrho _{3}(o, \mathcal{L}_{1}\mathcal{L}_{2}\tau)\leq \varrho _{3}(o, \tau) ,
(b) \varrho _{1}(o, \tau)+\varrho _{3}(o, \tau) < 1, (c) \varphi (\mathcal{L}_{1}o, \mathcal{L}_{2}\tau)\precsim \varrho _{1}(o, \tau)\varphi (o, \tau)+\varrho _{3}(o, \tau)\frac{\varphi (\tau, \mathcal{L} _{1}o)\varphi (o, \mathcal{L}_{2}\tau)}{1+\varphi (o, \tau)},
for all o_{0}, o, \tau \in \overline{B(o_{0}, r)} , 0\prec r\in \mathbb{C} and
\begin{equation*} |\varphi (o_{0}, \mathcal{L}_{1}o_{0})|\leq (1-\lambda )|r|, \end{equation*} |
where \lambda = \varrho _{1} {\left(o_{0}, o_{1}\right) } < 1 . Then there exists a unique point o^{\ast }\in \overline{B(o_{0}, r)} such that \ \mathcal{L}_{1}o^{\ast } = \mathcal{L}_{2}o^{\ast } = o^{\ast }.
Proof. Take \varrho _{2}(o, \tau) = 0 in Theorem 4.
Theorem 5. Let \left(\mathcal{P}, \varphi \right) be a complete CVMS and let \mathcal{L}_{1}, \mathcal{L}_{2}:\overline{B(o_{0}, r)}\rightarrow \mathcal{P} . If there exist the mappings \varrho _{1}, \varrho _{2}, \varrho _{3}:\mathcal{P}\mathfrak{\rightarrow }[0, 1) such that
(a) \varrho _{1}\left(\mathcal{L}_{1}o\right) \leq \varrho _{1}\left(o\right) and \varrho _{1}\left(\mathcal{L}_{2}o\right) \leq \varrho _{1}\left(o\right), \ \ \ \ \ \varrho _{2}\left(\mathcal{L}_{1}o\right) \leq \varrho _{2}\left(o\right) and \varrho _{2}\left(\mathcal{L}_{2}o\right) \leq \varrho _{2}\left(o\right), \ \ \ \ \ \varrho _{3}\left(\mathcal{L}_{1}o\right) \leq \varrho _{3}\left(o\right) and \varrho _{3}\left(\mathcal{L}_{2}o\right) \leq \varrho _{3}\left(o\right) ,
(b) \varrho _{1}\left(o\right) +\varrho _{2}\left(o\right) +\varrho _{3}\left(o\right) < 1 ,
(c) \varphi \left(\mathcal{L}_{1}o, \mathcal{L}_{2}\tau \right) \preceq \varrho _{1}\left(o\right) \varphi \left(o, \tau \right) +\varrho _{2}\left(o\right) \frac{\varphi \left(o, \mathcal{L}_{1}o\right) \varphi \left(\tau, \mathcal{L}_{2}\tau \right) }{1+\varphi \left(o, \tau \right) }+\varrho _{3}\left(o\right) \frac{\varphi \left(\tau, \mathcal{L}_{1}o\right) \varphi \left(o, \mathcal{L}_{2}\tau \right) }{1+\varphi \left(o, \tau \right) }\text{, }
for all o_{0}, o, \tau \in \overline{B(o_{0}, r)} , 0\prec r\in \mathbb{C} and
\begin{equation*} |\varphi (o_{0}, \mathcal{L}_{1}o_{0})|\leq (1-\lambda )|r|, \end{equation*} |
where \lambda = \frac{\varrho _{1}\left(o_{0}\right) }{1-\varrho _{2}\left(o_{0}\right) } < 1 , then there exists a unique point o^{\ast }\in \overline{B(o_{0}, r)} such that \ \mathcal{L}_{1}o^{\ast } = \mathcal{L} _{2}o^{\ast } = o^{\ast }.
Proof. Define \varrho _{1}, \varrho _{2}, \varrho _{3}:\mathcal{P}\mathfrak{\times } \mathcal{P}\mathfrak{\rightarrow }[0, 1) by
\begin{equation*} \varrho _{1}(o, \tau ) = \varrho _{1}\left( o\right) , { \ \ }\varrho _{2}(o, \tau ) = \varrho _{2}\left( o\right)\ \ \ \ \text{ and }\ \ \varrho _{3}(o, \tau ) = \varrho _{3}\left( o\right) \end{equation*} |
for all o, \tau \in \overline{B(o_{0}, r)}\mathfrak{.} Then for all o, \tau \in \overline{B(o_{0}, r)}\mathfrak{, } we have
(a) \varrho _{1}(\mathcal{L}_{2}\mathcal{L}_{1}o, \tau) = \varrho _{1}\left(\mathcal{L}_{2}\mathcal{L}_{1}o\right) \leq \varrho _{1}\left(\mathcal{L} _{1}o\right) \leq \varrho _{1}\left(o\right) = \varrho _{1}(o, \tau) and \varrho _{1}(o, \mathcal{L}_{1}\mathcal{L}_{2}\tau) = \varrho _{1}\left(o\right) = \varrho _{1}(o, \tau),
\varrho _{2}(\mathcal{L}_{2}\mathcal{L}_{1}o, \tau) = \varrho _{2}\left(\mathcal{L}_{2}\mathcal{L}_{1}o\right) \leq \varrho _{2}\left(\mathcal{L} _{1}o\right) \leq \varrho _{2}\left(o\right) = \varrho _{2}(o, \tau) and \varrho _{2}(o, \mathcal{L}_{1}\mathcal{L}_{2}\tau) = \varrho _{2}\left(o\right) = \varrho _{2}(o, \tau),
\varrho _{3}(\mathcal{L}_{2}\mathcal{L}_{1}o, \tau) = \varrho _{3}\left(\mathcal{L}_{2}\mathcal{L}_{1}o\right) \leq \varrho _{3}\left(\mathcal{L} _{1}o\right) \leq \varrho _{3}\left(o\right) = \varrho _{3}(o, \tau) and \varrho _{3}(o, \mathcal{L}_{1}\mathcal{L}_{2}\tau) = \varrho _{3}\left(o\right) = \varrho _{3}(o, \tau),
(b) \varrho _{1}(o, \tau)+\varrho _{2}(o, \tau)+\varrho _{3}(o, \tau) = \varrho _{1}\left(o\right) +\varrho _{2}\left(o\right) +\varrho _{3}\left(o\right) < 1,
(c)
\begin{eqnarray*} \varphi \left( \mathcal{L}_{1}o, \mathcal{L}_{2}\tau \right) &\preceq &\varrho _{1}\left( o\right) \varphi \left( o, \tau \right) +\varrho _{2}\left( o\right) \frac{\varphi \left( o, \mathcal{L}_{1}o\right) \varphi \left( \tau , \mathcal{L}_{2}\tau \right) }{1+\varphi \left( o, \tau \right) } +\varrho _{3}\left( o\right) \frac{\varphi \left( \tau , \mathcal{L} _{1}o\right) \varphi \left( o, \mathcal{L}_{2}\tau \right) }{1+\varphi \left( o, \tau \right) }\text{ } \\ & = &\varrho _{1}\left( o, \tau \right) \varphi \left( o, \tau \right) +\varrho _{2}\left( o, \tau \right) \frac{\varphi \left( o, \mathcal{L}_{1}o\right) \varphi \left( \tau , \mathcal{L}_{2}\tau \right) }{1+\varphi \left( o, \tau \right) }+\varrho _{3}\left( o, \tau \right) \frac{\varphi \left( \tau , \mathcal{L}_{1}o\right) \varphi \left( o, \mathcal{L}_{2}\tau \right) }{ 1+\varphi \left( o, \tau \right) }, \end{eqnarray*} |
(d) \lambda = \frac{\varrho _{1}\left(o_{0}, o_{1}\right) }{1-\varrho _{2}\left(o_{0}, o_{1}\right) } = \frac{\varrho _{1}\left(o_{0}\right) }{ 1-\varrho _{2}\left(o_{0}\right) } < 1.
By Theorem 4, \mathcal{L}_{1} and \mathcal{L}_{2} have a unique common fixed point.
Remark 1. Condition (a) and (b) of Theorem 4 can be weakened by the following condition
\begin{equation*} \varrho _{1}\left( \mathcal{L}_{2}\mathcal{L}_{1}o\right) \leq \varrho _{1}\left( o\right) , { \ }\varrho _{2}\left( \mathcal{L}_{2}\mathcal{L} _{1}o\right) \leq \varrho _{2}\left( o\right) \text{ and }\varrho _{3}\left( \mathcal{L}_{2}\mathcal{L}_{1}o\right) \leq \varrho _{3}\left( o\right) \end{equation*} |
for all o, \tau \in \overline{B(o_{0}, r)} . So, it will be interesting to present the following result in this context.
Theorem 6. Let \left(\mathcal{P}, \varphi \right) be a complete CVMS and let \mathcal{L}_{1}, \mathcal{L}_{2}:\overline{B(o_{0}, r)}\rightarrow \mathcal{P} . If there exist the mappings \varrho _{1}, \varrho _{2}, \varrho _{3}:\mathcal{P}\mathfrak{\rightarrow }[0, 1) such that
(a) \varrho _{1}\left(\mathcal{L}_{2}\mathcal{L}_{1}o\right) \leq \varrho _{1}\left(o\right) and \varrho _{1}\left(\mathcal{L}_{1}\mathcal{L} _{2}o\right) \leq \varrho _{1}\left(o\right),
\ \ \ \ \ \varrho _{2}\left(\mathcal{L}_{2}\mathcal{L}_{1}o\right) \leq \varrho _{2}\left(o\right) and \varrho _{2}\left(\mathcal{L}_{1} \mathcal{L}_{2}o\right) \leq \varrho _{2}\left(o\right),
\ \ \ \ \ \varrho _{3}\left(\mathcal{L}_{2}\mathcal{L}_{1}o\right) \leq \varrho _{3}\left(o\right) and \varrho _{3}\left(\mathcal{L}_{1} \mathcal{L}_{2}o\right) \leq \varrho _{3}\left(o\right) ,
(b) \varrho _{1}\left(o\right) +\varrho _{2}\left(o\right) +\varrho _{3}\left(o\right) < 1 ,
(c) \varphi \left(\mathcal{L}_{1}o, \mathcal{L}_{2}\tau \right) \preceq \varrho _{1}\left(o\right) \varphi \left(o, \tau \right) +\varrho _{2}\left(o\right) \frac{\varphi \left(o, \mathcal{L}_{1}o\right) \varphi \left(\tau, \mathcal{L}_{2}\tau \right) }{1+\varphi \left(o, \tau \right) }+\varrho _{3}\left(o\right) \frac{\varphi \left(\tau, \mathcal{L}_{1}o\right) \varphi \left(o, \mathcal{L}_{2}\tau \right) }{1+\varphi \left(o, \tau \right) }\text{, }
for all o_{0}, o, \tau \in \overline{B(o_{0}, r)} , 0\prec r\in \mathbb{C} and
\begin{equation*} |\varphi (o_{0}, \mathcal{L}_{1}o_{0})|\leq (1-\lambda )|r|, \end{equation*} |
where \lambda = \frac{\varrho _{1}\left(o_{0}\right) }{1-\varrho _{2}\left(o_{0}\right) } < 1 , then \mathcal{L}_{1} and \mathcal{L}_{2} have a unique common fixed point.
Proof. Define \varrho _{1}, \varrho _{2}, \varrho _{3}:\mathcal{P}\mathfrak{\times } \mathcal{P}\mathfrak{\rightarrow }[0, 1) by
\begin{equation*} \varrho _{1}(o, \tau ) = \varrho _{1}\left( o\right) , { \ \ }\varrho _{2}(o, \tau ) = \varrho _{2}\left( o\right)\ \ \ \ \text{ and} \ \ \varrho _{3}(o, \tau ) = \varrho _{3}\left( o\right) . \end{equation*} |
Then for all o, \tau \in \overline{B(o_{0}, r)}\mathfrak{, } we have
(a) \varrho _{1}(\mathcal{L}_{2}\mathcal{L}_{1}o, \tau) = \varrho _{1}\left(\mathcal{L}_{2}\mathcal{L}_{1}o\right) \leq \varrho _{1}\left(o\right) = \varrho _{1}(o, \tau) and \varrho _{1}(o, \mathcal{L}_{1}\mathcal{L} _{2}\tau) = \varrho _{1}\left(o\right) = \varrho _{1}(o, \tau),
\varrho _{2}(\mathcal{L}_{2}\mathcal{L}_{1}o, \tau) = \varrho _{2}\left(\mathcal{L}_{2}\mathcal{L}_{1}o\right) \leq \varrho _{2}\left(o\right) = \varrho _{2}(o, \tau) and \varrho _{2}(o, \mathcal{L}_{1}\mathcal{L} _{2}\tau) = \varrho _{2}\left(o\right) = \varrho _{2}(o, \tau),
\varrho _{3}(\mathcal{L}_{2}\mathcal{L}_{1}o, \tau) = \varrho _{3}\left(\mathcal{L}_{2}\mathcal{L}_{1}o\right) \leq \varrho _{3}\left(o\right) = \varrho _{3}(o, \tau) and \varrho _{3}(o, \mathcal{L}_{1}\mathcal{L} _{2}\tau) = \varrho _{3}\left(o\right) = \varrho _{3}(o, \tau),
(b) \ \varrho _{1}(o, \tau)+\varrho _{2}(o, \tau)+\varrho _{3}(o, \tau) = \varrho _{1}\left(o\right) +\varrho _{2}\left(o\right) +\varrho _{3}\left(o\right) < 1,
(c)
\begin{eqnarray*} \varphi \left( \mathcal{L}_{1}o, \mathcal{L}_{2}\tau \right) &\preceq &\varrho _{1}\left( o\right) \varphi \left( o, \tau \right) +\varrho _{2}\left( o\right) \frac{\varphi \left( o, \mathcal{L}_{1}o\right) \varphi \left( \tau , \mathcal{L}_{2}\tau \right) }{1+\varphi \left( o, \tau \right) } +\varrho _{3}\left( o\right) \frac{\varphi \left( \tau , \mathcal{L} _{1}o\right) \varphi \left( o, \mathcal{L}_{2}\tau \right) }{1+\varphi \left( o, \tau \right) }\text{ } \\ & = &\varrho _{1}\left( o, \tau \right) \varphi \left( o, \tau \right) +\varrho _{2}\left( o, \tau \right) \frac{\varphi \left( o, \mathcal{L}_{1}o\right) \varphi \left( \tau , \mathcal{L}_{2}\tau \right) }{1+\varphi \left( o, \tau \right) }+\varrho _{3}\left( o, \tau \right) \frac{\varphi \left( \tau , \mathcal{L}_{1}o\right) \varphi \left( o, \mathcal{L}_{2}\tau \right) }{ 1+\varphi \left( o, \tau \right) }, \end{eqnarray*} |
(d) \lambda = \frac{\varrho _{1}\left(o_{0}, o_{1}\right) }{1-\varrho _{2}\left(o_{0}, o_{1}\right) } = \frac{\varrho _{1}\left(o_{0}\right) }{ 1-\varrho _{2}\left(o_{0}\right) } < 1.
By Theorem 4, \mathcal{L}_{1} and \mathcal{L}_{2} have a unique common fixed point.
Corollary 4. Let \left(\mathcal{P}, \varphi \right) be a complete CVMS and let \mathcal{L}_{1}, \mathcal{L}_{2}:\overline{B(o_{0}, r)}\rightarrow \mathcal{P} . If there exist some constants \ell _{1}, \ell _{2}, \ell _{3}\in \lbrack 0, 1) with \ell _{1}+\ell _{2}+\ell _{3} < 1 such that
\begin{equation*} \varphi \left( \mathcal{L}_{1}o, \mathcal{L}_{2}\tau \right) \preceq \ell _{1}\varphi \left( o, \tau \right) +\ell _{2}\frac{\varphi \left( o, \mathcal{L }_{1}o\right) \varphi \left( \tau , \mathcal{L}_{2}\tau \right) }{1+\varphi \left( o, \tau \right) }+\ell _{3}\frac{\varphi \left( \tau , \mathcal{L} _{1}o\right) \varphi \left( o, \mathcal{L}_{2}\tau \right) }{1+\varphi \left( o, \tau \right) }\text{, } \end{equation*} |
for all o_{0}, o, \tau \in \overline{B(o_{0}, r)} , 0\prec r\in \mathbb{C} and
\begin{equation*} |\varphi (o_{0}, \mathcal{L}_{1}o_{0})|\leq (1-\lambda )|r|, \end{equation*} |
where \lambda = \frac{\ell _{1}}{1-\ell _{2}} < 1 , then \mathcal{L}_{1} and \mathcal{L}_{2} have a unique common fixed point.
Proof. Define \varrho _{1}, \varrho _{2}, \varrho _{3}:o\mathfrak{\rightarrow }[0, 1) by
\begin{equation*} \varrho _{1}(\cdot ) = \ell _{1}, { \ \ }\varrho _{2}(\cdot ) = \ell _{2} \ \ \ \ \text{and } \ \ \varrho _{3}(\cdot ) = \ell _{3} \end{equation*} |
in the Theorem 6.
Corollary 5. Let \left(\mathcal{P}, \varphi \right) be a complete CVMS and let \mathcal{L}_{1}, \mathcal{L}_{2}:\overline{B(o_{0}, r)}\rightarrow \mathcal{P} . If there exist some constants \ell _{1}, \ell _{2}\in \lbrack 0, 1) with \ell _{1}+\ell _{2} < 1 such that
\begin{equation*} \varphi \left( \mathcal{L}_{1}o, \mathcal{L}_{2}\tau \right) \preceq \ell _{1}\varphi \left( o, \tau \right) +\ell _{2}\frac{\varphi \left( o, \mathcal{L }_{1}o\right) \varphi \left( \tau , \mathcal{L}_{2}\tau \right) }{1+\varphi \left( o, \tau \right) }\text{, } \end{equation*} |
for all o_{0}, o, \tau \in \overline{B(o_{0}, r)} , 0\prec r\in \mathbb{C} and
\begin{equation*} |\varphi (o_{0}, \mathcal{L}_{1}o_{0})|\leq (1-\lambda )|r| \end{equation*} |
where \lambda = \frac{\ell _{1}}{1-\ell _{2}} < 1 , then \mathcal{L}_{1} and \mathcal{L}_{2} have a unique common fixed point.
Now if we expand the closed ball \overline{B(o_{0}, r)} to the whole space \mathcal{P} , we obtain this result.
Corollary 6. Let \left(\mathcal{P}, \varphi \right) be a complete CVMS and let \mathcal{L}_{1}, \mathcal{L}_{2}:\mathcal{P}\rightarrow \mathcal{P} . If there exist the mappings \varrho _{1}, \varrho _{2}, \varrho _{3}:\mathcal{P} \mathfrak{\times }\mathcal{P}\mathfrak{\rightarrow }[0, 1) such that
(a) \varrho _{1}\left(\mathcal{L}_{2}\mathcal{L}_{1}o, \tau \right) \leq \varrho _{1}\left(o, \tau \right) and \varrho _{1}\left(o, \mathcal{L}_{1} \mathcal{L}_{2}\tau \right) \leq \varrho _{1}\left(o, \tau \right),
\ \ \ \ \ \varrho _{2}\left(\mathcal{L}_{2}\mathcal{L}_{1}o, \tau \right) \leq \varrho _{2}\left(o, \tau \right) and \varrho _{2}\left(o, \mathcal{L }_{1}\mathcal{L}_{2}\tau \right) \leq \varrho _{2}\left(o, \tau \right),
\ \ \ \ \ \varrho _{3}\left(\mathcal{L}_{2}\mathcal{L}_{1}o, \tau \right) \leq \varrho _{3}\left(o, \tau \right) and \varrho _{3}\left(o, \mathcal{L }_{1}\mathcal{L}_{2}\tau \right) \leq \varrho _{3}\left(o, \tau \right) ,
(b) \varrho _{1}\left(o, \tau \right) +\varrho _{2}\left(o, \tau \right) +\varrho _{3}\left(o, \tau \right) < 1 ,
(c)
\begin{equation*} \varphi \left( \mathcal{L}_{1}o, \mathcal{L}_{2}\tau \right) \preceq \varrho _{1}\left( o, \tau \right) \varphi \left( o, \tau \right) +\varrho _{2}\left( o, \tau \right) \frac{\varphi \left( o, \mathcal{L}_{1}o\right) \varphi \left( \tau , \mathcal{L}_{2}\tau \right) }{1+\varphi \left( o, \tau \right) } +\varrho _{3}\left( o, \tau \right) \frac{\varphi \left( \tau , \mathcal{L} _{1}o\right) \varphi \left( o, \mathcal{L}_{2}\tau \right) }{1+\varphi \left( o, \tau \right) }\text{, } \end{equation*} |
for all o, \tau \in \mathcal{P} , then \mathcal{L}_{1} and \mathcal{L} _{2} have a unique common fixed point.
Corollary 7. Let \left(\mathcal{P}, \varphi \right) be a complete CVMS and let \mathcal{L}_{1}, \mathcal{L}_{2}:\mathcal{P}\rightarrow \mathcal{P} . If there exist the mappings \varrho _{1}, \varrho _{2}:\mathcal{P}\mathfrak{ \times }\mathcal{P}\mathfrak{\rightarrow }[0, 1) such that
(a) \varrho _{1}\left(\mathcal{L}_{2}\mathcal{L}_{1}o, \tau \right) \leq \varrho _{1}\left(o, \tau \right) and \varrho _{1}\left(o, \mathcal{L}_{1} \mathcal{L}_{2}\tau \right) \leq \varrho _{1}\left(o, \tau \right),
\ \ \ \ \ \varrho _{2}\left(\mathcal{L}_{2}\mathcal{L}_{1}o, \tau \right) \leq \varrho _{2}\left(o, \tau \right) and \varrho _{2}\left(o, \mathcal{L }_{1}\mathcal{L}_{2}\tau \right) \leq \varrho _{2}\left(o, \tau \right),
(b) \varrho _{1}\left(o, \tau \right) +\varrho _{2}\left(o, \tau \right) < 1 ,
(c)
\begin{equation*} \varphi \left( \mathcal{L}_{1}o, \mathcal{L}_{2}\tau \right) \preceq \varrho _{1}\left( o, \tau \right) \varphi \left( o, \tau \right) +\varrho _{2}\left( o, \tau \right) \frac{\varphi \left( o, \mathcal{L}_{1}o\right) \varphi \left( \tau , \mathcal{L}_{2}\tau \right) }{1+\varphi \left( o, \tau \right) }\text{, } \end{equation*} |
for all o, \tau \in \mathcal{P} , then \mathcal{L}_{1} and \mathcal{L} _{2} have a unique common fixed point.
Corollary 8. Let \left(\mathcal{P}, \varphi \right) be a complete CVMS and let \mathcal{L}_{1}, \mathcal{L}_{2}:\mathcal{P}\rightarrow \mathcal{P} . If there exist the mappings \varrho _{1}:\mathcal{P}\mathfrak{\times }\mathcal{ P}\mathfrak{\rightarrow }[0, 1) such that
(a) \varrho _{1}\left(\mathcal{L}_{2}\mathcal{L}_{1}o, \tau \right) \leq \varrho _{1}\left(o, \tau \right) and \varrho _{1}\left(o, \mathcal{L}_{1} \mathcal{L}_{2}\tau \right) \leq \varrho _{1}\left(o, \tau \right),
(b) \varrho _{1}\left(o, \tau \right) < 1 ,
(c) \varphi \left(\mathcal{L}_{1}o, \mathcal{L}_{2}\tau \right) \preceq \varrho _{1}\left(o, \tau \right) \varphi \left(o, \tau \right) \text{, }
for all o, \tau \in \mathcal{P} , then \mathcal{L}_{1} and \mathcal{L} _{2} have a unique common fixed point.
Now if we expand the closed ball \overline{B(o_{0}, r)} to the whole space \mathcal{P} in Theorem 5, we obtain this result.
Corollary 9. Let \left(\mathcal{P}, \varphi \right) be a complete CVMS and let \mathcal{L}_{1}, \mathcal{L}_{2}:\mathcal{P}\rightarrow \mathcal{P} . If there exist the mappings \varrho _{1}, \varrho _{2}, \varrho _{3}:\mathcal{P} \mathfrak{\rightarrow }[0, 1) such that
(a) \varrho _{1}\left(\mathcal{L}_{1}o\right) \leq \varrho _{1}\left(o\right) and \varrho _{1}\left(\mathcal{L}_{2}o\right) \leq \varrho _{1}\left(o\right), \ \ \ \ \ \varrho _{2}\left(\mathcal{L}_{1}o\right) \leq \varrho _{2}\left(o\right) and \varrho _{2}\left(\mathcal{L}_{2}o\right) \leq \varrho _{2}\left(o\right), \ \ \ \ \ \varrho _{3}\left(\mathcal{L}_{1}o\right) \leq \varrho _{3}\left(o\right) and \varrho _{3}\left(\mathcal{L}_{2}o\right) \leq \varrho _{3}\left(o\right) ,
(b) \varrho _{1}\left(o\right) +\varrho _{2}\left(o\right) +\varrho _{3}\left(o\right) < 1 ,
(c)
\begin{equation*} \varphi \left( \mathcal{L}_{1}o, \mathcal{L}_{2}\tau \right) \preceq \varrho _{1}\left( o\right) \varphi \left( o, \tau \right) +\varrho _{2}\left( o\right) \frac{\varphi \left( o, \mathcal{L}_{1}o\right) \varphi \left( \tau , \mathcal{L}_{2}\tau \right) }{1+\varphi \left( o, \tau \right) }+\varrho _{3}\left( o\right) \frac{\varphi \left( \tau , \mathcal{L}_{1}o\right) \varphi \left( o, \mathcal{L}_{2}\tau \right) }{1+\varphi \left( o, \tau \right) }\text{, } \end{equation*} |
for all o, \tau \in \mathcal{P} , then \mathcal{L}_{1} and \mathcal{L} _{2} have a unique common fixed point.
Now if we expand the closed ball \overline{B(o_{0}, r)} to the whole space \mathcal{P} in Theorem 6, we obtain this result.
Theorem 9. Let \left(\mathcal{P}, \varphi \right) be a complete CVMS and let \mathcal{L}_{1}, \mathcal{L}_{2}:\mathcal{P}\rightarrow \mathcal{P} . If there exist the mappings \varrho _{1}, \varrho _{2}, \varrho _{3}:\mathcal{P} \mathfrak{\rightarrow }[0, 1) such that
(a) \varrho _{1}\left(\mathcal{L}_{2}\mathcal{L}_{1}o\right) \leq \varrho _{1}\left(o\right) and \varrho _{1}\left(\mathcal{L}_{1}\mathcal{L} _{2}o\right) \leq \varrho _{1}\left(o\right),
\ \ \ \ \ \varrho _{2}\left(\mathcal{L}_{2}\mathcal{L}_{1}o\right) \leq \varrho _{2}\left(o\right) and \varrho _{2}\left(\mathcal{L}_{1} \mathcal{L}_{2}o\right) \leq \varrho _{2}\left(o\right),
\ \ \ \ \ \varrho _{3}\left(\mathcal{L}_{2}\mathcal{L}_{1}o\right) \leq \varrho _{3}\left(o\right) and \varrho _{3}\left(\mathcal{L}_{1} \mathcal{L}_{2}o\right) \leq \varrho _{3}\left(o\right) ,
(b) \varrho _{1}\left(o\right) +\varrho _{2}\left(o\right) +\varrho _{3}\left(o\right) < 1 ,
(c)
\begin{equation*} \varphi \left( \mathcal{L}_{1}o, \mathcal{L}_{2}\tau \right) \preceq \varrho _{1}\left( o\right) \varphi \left( o, \tau \right) +\varrho _{2}\left( o\right) \frac{\varphi \left( o, \mathcal{L}_{1}o\right) \varphi \left( \tau , \mathcal{L}_{2}\tau \right) }{1+\varphi \left( o, \tau \right) }+\varrho _{3}\left( o\right) \frac{\varphi \left( \tau , \mathcal{L}_{1}o\right) \varphi \left( o, \mathcal{L}_{2}\tau \right) }{1+\varphi \left( o, \tau \right) }\text{, } \end{equation*} |
for all o, \tau \in \mathcal{P} , then \mathcal{L}_{1} and \mathcal{L} _{2} have a unique common fixed point.
Corollary 10. Let \left(\mathcal{P}, \varphi \right) be a complete CVMS and let \mathcal{L}_{1}, \mathcal{L}_{2}:\mathcal{P}\rightarrow \mathcal{P} . If there exist the mappings \varrho _{1}, \varrho _{2}:\mathcal{P}\mathfrak{ \rightarrow }[0, 1) such that
(a) \varrho _{1}\left(\mathcal{L}_{2}\mathcal{L}_{1}o\right) \leq \varrho _{1}\left(o\right) and \varrho _{1}\left(\mathcal{L}_{1}\mathcal{L} _{2}o\right) \leq \varrho _{1}\left(o\right),
\ \ \ \ \ \varrho _{2}\left(\mathcal{L}_{2}\mathcal{L}_{1}o\right) \leq \varrho _{2}\left(o\right) and \varrho _{2}\left(\mathcal{L}_{1} \mathcal{L}_{2}o\right) \leq \varrho _{2}\left(o\right),
(b) \varrho _{1}\left(o\right) +\varrho _{2}\left(o\right) < 1 ,
(c)
\begin{equation*} \varphi \left( \mathcal{L}_{1}o, \mathcal{L}_{2}\tau \right) \preceq \varrho _{1}\left( o\right) \varphi \left( o, \tau \right) +\varrho _{2}\left( o\right) \frac{\varphi \left( o, \mathcal{L}_{1}o\right) \varphi \left( \tau , \mathcal{L}_{2}\tau \right) }{1+\varphi \left( o, \tau \right) }\text{, } \end{equation*} |
for all o, \tau \in \mathcal{P} , then \mathcal{L}_{1} and \mathcal{L} _{2} have a unique common fixed point.
Corollary 11. ([5]) Let \left(\mathcal{P}, \varphi \right) be a complete CVMS and let \mathcal{L}:\mathcal{P}\rightarrow \mathcal{P} . If there exist the mappings \varrho _{1}, \varrho _{2}:\mathcal{P}\mathfrak{\rightarrow }[0, 1) such that
(a) \varrho _{1}\left(\mathcal{L}o\right) \leq \varrho _{1}\left(o\right) and \varrho _{1}\left(\mathcal{L}o\right) \leq \varrho _{1}\left(o\right),
\ \ \ \ \ \varrho _{2}\left(\mathcal{L}o\right) \leq \varrho _{2}\left(o\right) and \varrho _{2}\left(\mathcal{L}o\right) \leq \varrho _{2}\left(o\right),
(b) \varrho _{1}\left(o\right) +\varrho _{2}\left(o\right) < 1 ,
(c)
\begin{equation*} \varphi \left( \mathcal{L}o, \mathcal{L}\tau \right) \preceq \varrho _{1}\left( o\right) \varphi \left( o, \tau \right) +\varrho _{2}\left( o\right) \frac{\varphi \left( o, \mathcal{L}o\right) \varphi \left( \tau , \mathcal{L}\tau \right) }{1+\varphi \left( o, \tau \right) }\text{, } \end{equation*} |
for all o, \tau \in \mathcal{P} , then \mathcal{L} has a unique fixed point.
Now if we expand the closed ball \overline{B(o_{0}, r)} to the whole space \mathcal{P} in result 4, we obtain a result which is main result of Rouzkard et al. [3].
Corollary 12. ([3]) Let \left(\mathcal{P}, \varphi \right) be a complete CVMS and let \mathcal{L}_{1}, \mathcal{L}_{2}:\mathcal{P}\rightarrow \mathcal{P} . If there exist some constants \ell _{1}, \ell _{2}, \ell _{3}\in \lbrack 0, 1) with \ell _{1}+\ell _{2}+\ell _{3} < 1 such that
\begin{equation*} \varphi \left( \mathcal{L}_{1}o, \mathcal{L}_{2}\tau \right) \preceq \ell _{1}\varphi \left( o, \tau \right) +\ell _{2}\frac{\varphi \left( o, \mathcal{L }_{1}o\right) \varphi \left( \tau , \mathcal{L}_{2}\tau \right) }{1+\varphi \left( o, \tau \right) }+\ell _{3}\frac{\varphi \left( \tau , \mathcal{L} _{1}o\right) \varphi \left( o, \mathcal{L}_{2}\tau \right) }{1+\varphi \left( o, \tau \right) }\text{, } \end{equation*} |
for all o, \tau \in \mathcal{P} , then \mathcal{L}_{1} and \mathcal{L} _{2} have a unique common fixed point.
Now we give a result which is main result of Azam et al. [1] from above result.
Corollary 13. ([1]) Let \left(\mathcal{P}, \varphi \right) be a complete CVMS and let \mathcal{L}_{1}, \mathcal{L}_{2}:\mathcal{P}\rightarrow \mathcal{P} . If there exist some constants \ell _{1}, \ell _{2}\in \lbrack 0, 1) with \ell _{1}+\ell _{2} < 1 such that
\begin{equation*} \varphi \left( \mathcal{L}_{1}o, \mathcal{L}_{2}\tau \right) \preceq \ell _{1}\varphi \left( o, \tau \right) +\ell _{2}\frac{\varphi \left( o, \mathcal{L }_{1}o\right) \varphi \left( \tau , \mathcal{L}_{2}\tau \right) }{1+\varphi \left( o, \tau \right) }\mathit{\text{, }} \end{equation*} |
for all o, \tau \in \mathcal{P} , then \mathcal{L}_{1} and \mathcal{L} _{2} have a unique common fixed point.
Example 2. Let
\begin{eqnarray*} \mathcal{P}_{1} & = &\left \{ \omega \in \mathbb{C} :{Re}(\omega )\geq 0, \ {Im}(\omega ) = 0\right \} , \\ \mathcal{P}_{2} & = &\left \{ \omega \in \mathbb{C} :{Im}(\omega )\geq 0, \ {Re}(\omega ) = 0\right \} , \end{eqnarray*} |
and let \mathcal{P} = \mathcal{P}_{1}\cup \mathcal{P}_{2}. Consider a metric \varphi :\mathcal{P}\times \mathcal{P}\longrightarrow \mathbb{C} \ \ as follows:
\varphi \left( \omega _{1, }\omega _{2}\right) = \left \{ \begin{array}{cc} \frac{2}{3}\left \vert o_{1}-o_{2}\right \vert +\frac{i}{2}\left \vert o_{1}-o_{2}\right \vert , & {if\ }~~\omega _{1}, \omega _{2}\in \mathcal{P} _{1} \\ \frac{1}{2}\left \vert \tau _{1}-\tau _{2}\right \vert +\frac{i}{3}\left \vert \tau _{1}-\tau _{2}\right \vert , & {if\ }~~\omega _{1}, \omega _{2}\in \mathcal{P}_{2} \\ \frac{2}{9}(o_{1}+\tau _{2})+\frac{i}{6}\left( o_{1}+\tau _{2}\right) , & {if\ }~~\omega _{1}\in \mathcal{P}_{1}, \ \omega _{2}\in \mathcal{P}_{2} \\ \frac{i}{3}\left( o_{2}+\tau _{1}\right) +\frac{2i}{9}\left( o_{2}+\tau _{1}\right) , & {if\ }~~\omega _{1}\in \mathcal{P}_{2}, \ \omega _{2}\in \mathcal{P}_{1} \end{array} \right. |
for \omega _{1} = o_{1}+o_{2}i and \omega _{2} = \tau _{1}+\tau _{2}i. Then (\mathcal{P}, \varphi) is CVMS. Take o_{0} = \frac{1}{2}+0i and r = \frac{1}{ 3}+\frac{1}{4}i. Then
\begin{equation*} \overline{B(o_{0}, r)} = \left \{ \begin{array}{c} \begin{array}{cc} \omega \in \mathbb{C} :0\leqslant {Re}(\omega )\leqslant 1, \ {Im}(\omega ) = 0 & {if }~~ \omega \in \mathcal{P}_{1} \end{array} \\ \begin{array}{cc} \omega \in \mathbb{C} :0\leqslant {Im}(\omega )\leqslant 1, \ {Re}(\omega ) = 0 & {if }~~ \omega \in \mathcal{P}_{2} \end{array} \end{array} \right.. \end{equation*} |
Define \mathcal{L}_{1}, \mathcal{L}_{2}:\overline{B(o_{0}, r)}\rightarrow \mathcal{P} as
\begin{equation*} \mathcal{L}_{1}\omega = \left \{ \begin{array}{c} \begin{array}{cc} 0+\frac{o}{3}i & \text{if }\omega \in \mathcal{P}_{1}\text{ with } 0\leqslant \mbox{Re}(\omega )\leqslant 1, \ \mbox{Im}(\omega ) = 0 \end{array} \\ \begin{array}{cc} \frac{4o}{5}+0i & \text{if }\omega \in \mathcal{P}_{1}\text{ with }\mbox{Re} (\omega ) > 1, \ \mbox{Im}(\omega ) = 0 \end{array} \\ \begin{array}{cc} \frac{\tau }{4}+0i & \text{if }\omega \in \mathcal{P}_{2}\text{ with } 0\leqslant \mbox{Im}(\omega )\leqslant 1, \ \mbox{Re}(\omega ) = 0 \end{array} \\ \begin{array}{cc} 0+\frac{3\tau }{4}i & \text{if }\omega \in \mathcal{P}_{2}\text{ with } \mbox{Im}(\omega ) > 1, \ \mbox{Re}(\omega ) = 0 \end{array} \end{array} \right.. \end{equation*} |
\begin{equation*} \; \; \mathcal{L}_{2}\omega = \left \{ \begin{array}{c} \begin{array}{cc} 0+\frac{o}{5}i & \text{if }\omega \in \mathcal{P}_{1}\text{ with }0\leq \mbox{Re}(\omega )\leq 1, \ \mbox{Im}(\omega ) = 0 \end{array} \\ \begin{array}{cc} \frac{5o}{6}+0i & \text{if }\omega \in \mathcal{P}_{1}\text{ with}\mbox{Re} (\omega ) > 1, \ \mbox{Im}(\omega ) = 0 \end{array} \\ \begin{array}{c} \begin{array}{cc} \frac{\tau }{8}+0i & \text{if }\omega \in \mathcal{P}_{2}\text{ with } 0\leqslant \mbox{Im}(\omega )\leqslant 1, \ \mbox{Re}(\omega ) = 0 \end{array} \\ \begin{array}{cc} 0+\dfrac{4\tau }{7}i & \text{if }\omega \in \mathcal{P}_{2}\text{ with } \mbox{Im}(\omega ) > 1, \ \mbox{Re}(\omega ) = 0 \end{array} \end{array} \end{array} \right.. \end{equation*} |
Then the mappings \mathcal{L}_{1} and \mathcal{L}_{2} satisfy the conditions (3.2) and (3.3) of our main Theorem 4 with \varrho _{1}, \varrho _{2}, \varrho _{3}:\mathcal{P}\mathfrak{\times \mathcal{P }\rightarrow }[0, 1) defined as follows
\begin{equation*} \varrho _{1}(\omega _{1}, \omega _{2}) = \left \{ \begin{array}{c} \begin{array}{cc} \left \vert 0+\dfrac{o_{1}+o_{2}+\tau _{1}+\tau _{2}}{16}i\right \vert , { \ \ \ \ \ } & \text{if }\omega _{1}, \omega _{2}\in \overline{ B(o_{0}, r)} \end{array} \\ \frac{3}{4}, \ \ \ \ \ \ \text{ otherwise.} \end{array} \right. \end{equation*} |
\begin{equation*} \varrho _{2}(\omega _{1}, \omega _{2}) = \left \{ \begin{array}{c} \begin{array}{cc} \left \vert 0+\dfrac{o_{1}+o_{2}+\tau _{1}+\tau _{2}}{18}i\right \vert , { \ \ \ \ \ } & \text{if }\omega _{1}, \omega _{2}\in \overline{ B(o_{0}, r)} \end{array} \\ \frac{1}{6}, \ \ \ \ \ \ \text{ otherwise.} \end{array} \right. \end{equation*} |
\begin{equation*} \varrho _{3}(\omega _{1}, \omega _{2}) = \left \{ \begin{array}{c} \begin{array}{cc} \left \vert 0+\dfrac{o_{1}+o_{2}+\tau _{1}+\tau _{2}}{17}i\right \vert , { \ \ \ \ \ } & \text{if }\omega _{1}, \omega _{2}\in \overline{ B(o_{0}, r)} \end{array} \\ \frac{3}{50}, \ \ \ \ \ \ \text{ otherwise.} \end{array} \right. \end{equation*} |
Hence \mathcal{L}_{1} and \mathcal{L}_{2} have unique common fixed point 0+0i\in \overline{B(o_{0}, r)} .
It is interesting to notice that contractiveness on the whole space \mathcal{P} does not hold because if \omega _{1} = \omega _{2} = \frac{4}{3} +0i \not \in \overline{B(o_{0}, r)} , then
\begin{eqnarray*} \varphi (\mathcal{L}_{1}\omega _{1}, \mathcal{L}_{2}\omega _{2}) & = &\varphi \left( \frac{16}{15}+0i, \frac{10}{9}+0i\right) = \frac{4}{135}+\frac{1}{45}i > \frac{3}{4}(0+0i)+\frac{1}{6}(0.011+0.039i) \\ &&+\frac{3}{50}(0.011+0.039i) \\ & = &\varrho _{1}(\omega _{1}, \omega _{2})\varphi (\omega _{1}, \omega _{2})+\varrho _{2}(\omega _{1}, \omega _{2})\frac{\varphi (\omega _{1}, \mathcal{L}_{1}\omega _{1})\varphi (\omega _{2}, \mathcal{L}_{2}\omega _{2})}{ 1+\varphi (\omega _{1}, \omega _{2})} \\ &&+\varrho _{3}(\omega _{1}, \omega _{2})\frac{\varphi (\omega _{2}, \mathcal{L }_{1}\omega _{1})\varphi (\omega _{1}, \mathcal{L}_{2}\omega _{2})}{1+\varphi (\omega _{1}, \omega _{2})}. \end{eqnarray*} |
So it is not necessary to obtain the common fixed point of \mathcal{L}_{1} and \mathcal{L}_{2} on the whole space.
Let \mathcal{P} = C([a, b], \mathbb{R}) , a > 0 where C[a, b] denotes the set of all real continuous functions defined on the closed interval [a, b]\ and \ \varphi :\mathcal{P}\times \mathcal{P}\rightarrow \mathbb{C} be defined in this way
\begin{equation*} \varphi (o, \tau ) = \max\limits_{t\in \lbrack a, b]}\left \Vert o\left( t\right) -\tau \left( t\right) \right \Vert _{\infty }\sqrt{1+a^{2}}e^{i\tan ^{-1}a} \end{equation*} |
for all o, \tau \in \mathcal{P} and t\in \lbrack a, b]. Then ( \mathcal{P}, \varphi ) is complete CVMS. Consider the Urysohn integral equations
\begin{equation} o(t) = \int_{a}^{b}K_{1}(t, s, o(s))\varphi s+g(t), \end{equation} | (5.1) |
\begin{equation} o(t) = \int_{a}^{b}K_{2}(t, s, o(s))\varphi s+l(t), \end{equation} | (5.2) |
where K_{1}, K_{2}:[a, b]\times \lbrack a, b]\times \mathbb{R}\rightarrow \mathbb{R} and g, l: [a, b]\rightarrow \mathbb{R} are continuous and t\in \lbrack a, b] .
Theorem 8. Let K_{1}, K_{2}:[a, b]\times \lbrack a, b]\times \mathbb{R}\rightarrow \mathbb{R} are such that \mathfrak{L}_{o}\left(t\right), \mathfrak{M} _{o}\left(t\right) \in \mathcal{P}\ \ for each \ o\in \mathcal{P}, \ where
\begin{equation*} \mathfrak{L}_{o}\left( t\right) = \int_{a}^{b}K_{1}(t, s, o(s))\varphi s, \quad \mathfrak{M}_{o}\left( t\right) = \int_{a}^{b}K_{2}(t, s, o(s))\varphi s, \end{equation*} |
for all \ t\in \lbrack a, b]. Suppose there exist \varrho _{1}, \varrho _{2}, \varrho _{3}:C([a, b], \mathbb{R})\mathfrak{\rightarrow }[0, 1) such that
(a) \varrho _{1}\left(\mathfrak{L}_{o}+g\right) \leq \varrho _{1}(o) and \varrho _{1}\left(\mathfrak{M}_{o}+l\right) \leq \varrho _{1}(o)
\varrho _{2}\left(\mathfrak{L}_{o}+g\right) \leq \varrho _{2}(o) and \varrho _{2}\left(\mathfrak{M}_{o}+l\right) \leq \varrho _{2}(o)
\varrho _{3}\left(\mathfrak{L}_{o}+g\right) \leq \varrho _{3}(o) and \varrho _{3}\left(\mathfrak{M}_{o}+l\right) \leq \varrho _{3}(o),
(b) ( \varrho _{1}+\varrho _{2}+\varrho _{3})(o) < 1,
(c)
\begin{equation*} \left \Vert \mathfrak{L}_{o}\left( t\right) -\mathfrak{M}_{\tau }\left( t\right) +g(t)-h(t)\right \Vert _{\infty }\sqrt{1+a^{2}}e^{i\tan ^{-1}a}\preceq \varrho _{1}\left( o\right) A\left( o, \tau \right) \left( t\right) +\varrho _{2}(o)B\left( o, \tau \right) \left( t\right) +\varrho _{3}(o)B\left( o, \tau \right) \left( t\right) , \end{equation*} |
where
\begin{eqnarray*} A\left( o, \tau \right) \left( t\right) & = &\left \Vert o\left( t\right) -\tau \left( t\right) \right \Vert _{\infty }\sqrt{1+a^{2}}e^{i\tan ^{-1}a}, \\ B\left( o, \tau \right) \left( t\right) & = &\frac{\left \Vert \mathfrak{L} _{o}\left( t\right) +g(t)-o(t)\right \Vert _{\infty }\left \Vert \mathfrak{M} _{\tau }\left( t\right) +l(t)-\tau (t)\right \Vert _{\infty }\ }{1+\left \Vert o\left( t\right) -\tau \left( t\right) \right \Vert _{\infty }}\sqrt{ 1+a^{2}}e^{i\tan ^{-1}a} \\ C\left( o, \tau \right) \left( t\right) & = &\frac{\left \Vert \mathfrak{M} _{\tau }\left( t\right) +l(t)-o(t)\right \Vert _{\infty }\left \Vert \mathfrak{L}_{o}\left( t\right) +g(t)-\tau (t)\right \Vert _{\infty }\ }{ 1+\left \Vert o\left( t\right) -\tau \left( t\right) \right \Vert _{\infty }} \sqrt{1+a^{2}}e^{i\tan ^{-1}a} \end{eqnarray*} |
then the integral operators defined by (5.1) and (5.2) have a unique common solution.
Proof. Define continuous mappings \mathcal{L}_{1}, \mathcal{L}_{2}:\mathcal{P} \rightarrow \mathcal{P} by
\begin{equation*} \mathcal{L}_{1}o(t) = \mathfrak{L}_{o}\left( t\right) +g(t), \end{equation*} |
\begin{equation*} \mathcal{L}_{2}o(t) = \mathfrak{M}_{o}\left( t\right) +g(t), \end{equation*} |
for all \ t\in \lbrack a, b]. Then
\begin{equation*} \; \; \; \; \; \; \; \varphi \left( \mathcal{L}_{1}o, \mathcal{L}_{2}\tau \right) = \max\limits_{t\in \lbrack a, b]}\left \Vert \mathfrak{L}_{o}\left( t\right) -\mathfrak{M}_{\tau }\left( t\right) +g(t)-l(t)\right \Vert _{\infty }\sqrt{1+a^{2}}e^{i\tan ^{-1}a}, \end{equation*} |
\begin{equation*} \varphi (o, \mathcal{L}_{1}o) = \max\limits_{t\in \lbrack a, b]}\left \Vert \mathfrak{L} _{o}\left( t\right) +g(t)-o(t)\right \Vert _{\infty }\sqrt{1+a^{2}}e^{i\tan ^{-1}a}, \end{equation*} |
\begin{equation*} \varphi (\tau , \mathcal{L}_{2}\tau ) = \max\limits_{t\in \lbrack a, b]}\left \Vert \mathfrak{M}_{\tau }\left( t\right) +l(t)-\tau (t)\right \Vert _{\infty } \sqrt{1+a^{2}}e^{i\tan ^{-1}a}, \end{equation*} |
\begin{equation*} \varphi (o, \mathcal{L}_{2}\tau ) = \max\limits_{t\in \lbrack a, b]}\left \Vert \mathfrak{M}_{\tau }\left( t\right) +l(t)-o(t)\right \Vert _{\infty }\sqrt{ 1+a^{2}}e^{i\tan ^{-1}a}, \end{equation*} |
\begin{equation*} \varphi (\tau , \mathcal{L}_{1}o) = \max\limits_{t\in \lbrack a, b]}\left \Vert \mathfrak{L}_{o}\left( t\right) +g(t)-\tau (t)\right \Vert _{\infty }\sqrt{ 1+a^{2}}e^{i\tan ^{-1}a}. \end{equation*} |
Then it very simple to show that for all o, \tau \in \mathcal{P} , we have
(a) \varrho _{1}(\mathcal{L}_{1}o) = \varrho _{1}\left(\mathfrak{L} _{o}+g\right) \leq \varrho _{1}(o) and \varrho _{1}(\mathcal{L} _{2}o) = \varrho _{1}\left(\mathfrak{M}_{o}+l\right) \leq \varrho _{1}(o),
\varrho _{2}(\mathcal{L}_{1}o) = \varrho _{2}\left(\mathfrak{L} _{o}+g\right) \leq \varrho _{2}(o) and \varrho _{2}(\mathcal{L}_{2}o) = \varrho _{2}\left(\mathfrak{M}_{o}+l\right) \leq \varrho _{2}(o),
\varrho _{3}\left(\mathcal{L}_{1}o\right) = \varrho _{3}\left(\mathfrak{L} _{o}+g\right) \leq \varrho _{3}(o) and \varrho _{3}\left(\mathcal{L} _{2}o\right) = \varrho _{3}\left(\mathfrak{M}_{o}+l\right) \leq \varrho _{3}(o),
(b) ( \varrho _{1}+\varrho _{2}+\varrho _{3})(o) < 1,
(c)
\begin{equation*} \varphi \left( \mathcal{L}_{1}o, \mathcal{L}_{2}\tau \right) \preceq \varrho _{1}\left( o\right) \varphi \left( o, \tau \right) +\varrho _{2}\left( o\right) \frac{\varphi \left( o, \mathcal{L}_{1}o\right) \varphi \left( \tau , \mathcal{L}_{2}\tau \right) }{1+\varphi \left( o, \tau \right) }+\varrho _{3}\left( o\right) \frac{\varphi \left( \tau , \mathcal{L}_{1}o\right) \varphi \left( o, \mathcal{L}_{2}\tau \right) }{1+\varphi \left( o, \tau \right) }. \end{equation*} |
Hence all the assumptions of Corollary 9 are satisfied and the integral equations (5.1) and (5.2) have a unique common solution.
This article is precised on the notion of complex valued metric space to establish common fixed points of two self mappings for generalized contractions involving control functions of two variables. A non-trivial example is also provided to show the validity of obtained results. At the end of this paper, we applied our result to discuss the solution of Urysohn integral equation. We believe that the established outcomes in this paper will set a contemporary connection for investigators.
Common fixed points of multivalued mappings and fuzzy mappings in the context of complex valued metric space can be interesting outline for the future work in this direction. Differential and integral inclusions can be investigated as applications of these results.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This work was funded by the University of Jeddah, Saudi Arabia, under grant No. UJ-22-DR-4. The authors, therefore, acknowledge with thanks the University technical and financial support. All authors read and approved the final paper.
The authors declare that they have no conflicts of interest.
[1] | A. Azam, B. Fisher, M. Khan, Common fixed point theorems in complex valued metric spaces, Numer. Func. Anal. Opt., 32 (2011), 243–253. |
[2] |
G. A. Okeke, Iterative approximation of fixed points of contraction mappings in complex valued Banach spaces, Arab J. Math. Sci., 25 (2019), 83–105. https://doi.org/10.1016/j.ajmsc.2018.11.001 doi: 10.1016/j.ajmsc.2018.11.001
![]() |
[3] |
F. Rouzkard, M. Imdad, Some common fixed point theorems on complex valued metric spaces, Comput. Math. Appl., 64 (2012), 1866–1874. https://doi.org/10.1016/j.camwa.2012.02.063 doi: 10.1016/j.camwa.2012.02.063
![]() |
[4] |
C. Klin-Eam, C. Suanoom, Some common fixed point theorems for generalized contractive type mappings on complex valued metric spaces, Abstr. Appl. Anal., 2013 (2013), 604215. https://doi.org/10.1155/2013/604215 doi: 10.1155/2013/604215
![]() |
[5] |
W. Sintunavarat, P. Kumam, Generalized common fixed point theorems in complex valued metric spaces and applications, J. Inequal. Appl., 2012 (2012), 84. https://doi.org/10.1186/1029-242X-2012-84 doi: 10.1186/1029-242X-2012-84
![]() |
[6] |
K. Sitthikul, S. Saejung, Some fixed point theorems in complex valued metric spaces, Fixed Point Theory Appl., 2012 (2012), 189. https://doi.org/10.1186/1687-1812-2012-189 doi: 10.1186/1687-1812-2012-189
![]() |
[7] |
U. Karuppiah, M. Gunaseelan, Common coupled fixed point results for generalized rational type contractions in complex valued metric spaces, Int. J. Math. Trends Technol., 39 (2016), 123–141. http://dx.doi.org/10.14445/22315373/IJMTT-V39P517 doi: 10.14445/22315373/IJMTT-V39P517
![]() |
[8] |
A. Ahmad, C. Klin-Eam, A. Azam, Common fixed points for multivalued mappings in complex valued metric spaces with applications, Abstr. Appl. Anal., 2013 (2013), 85496. https://doi.org/10.1155/2013/854965 doi: 10.1155/2013/854965
![]() |
[9] |
A. Azam, J. Ahmad, P. Kumam, Common fixed point theorems for multi-valued mappings in complex-valued metric spaces, J. Inequal. Appl., 2013 (2013), 578. https://doi.org/10.1186/1029-242X-2013-578 doi: 10.1186/1029-242X-2013-578
![]() |
[10] |
M. A. Kutbi, J. Ahmad, A. Azam, N. Hussain, On fuzzy fixed points for fuzzy maps with generalized weak property, J. Appl. Math., 2014 (2014), 549504. https://doi.org/10.1155/2014/549504 doi: 10.1155/2014/549504
![]() |
[11] |
M. Humaira, G. Sarwar, N. V. Kishore, Fuzzy fixed point results for \phi contractive mapping with applications, Complexity, 2018 (2018), 5303815. https://doi.org/10.1155/2018/5303815 doi: 10.1155/2018/5303815
![]() |
[12] |
A. A. Mukheimer, Some common fixed point theorems in complex valued b-metric spaces, Sci. World J., 2014 (2014), 587825. https://doi.org/10.1155/2014/587825 doi: 10.1155/2014/587825
![]() |
[13] |
N. Ullah, M. S. Shagari, A. Azam, Fixed point theorems in complex valued extended b-metric spaces, Moroccan J. Pure Appl. Anal., 5 (2019), 140–163. https://doi.org/10.2478/mjpaa-2019-0011 doi: 10.2478/mjpaa-2019-0011
![]() |
[14] |
S. Heilpern, Fuzzy mappings and fixed point theorem, J. Math. Anal. Appl., 83 (1981), 566–569. https://doi.org/10.1016/0022-247X(81)90141-4 doi: 10.1016/0022-247X(81)90141-4
![]() |
[15] |
Humaira, M. Sarwar, P. Kumam, Common fixed point results for fuzzy mappings on complex-valued metric spaces with homotopy results, Symmetry, 11 (2019), 61. https://doi.org/10.3390/sym11010061 doi: 10.3390/sym11010061
![]() |
[16] | S. S. Mohammed, N. Ullah, Fixed point results in complex valued extended b-metric spaces and related applications, Ann. Math. Comput. Sci., 1 (2021), 1–11. |
[17] |
J. Carmel Pushpa Raj, A. Arul Xavier, J. Maria Joseph, M. Marudai, Common fixed point theorems under rational contractions in complex valued extended b-metric spaces, Int. J. Nonlinear Anal. Appl., 13 (2022), 3479–3490. https://doi.org/10.22075/ijnaa.2020.20025.2118 doi: 10.22075/ijnaa.2020.20025.2118
![]() |
[18] |
R. Ramaswamy, G. Mani, A. J. Gnanaprakasam, O. A. A. Abdelnaby, S. Radenović, An application of Urysohn integral equation via complex partial metric space, Mathematics, 10 (2022), 2019. https://doi.org/10.3390/math10122019 doi: 10.3390/math10122019
![]() |