Loading [MathJax]/jax/element/mml/optable/MathOperators.js
Research article

Fixed point theorems for (α,ψ)-rational type contractions in Jleli-Samet generalized metric spaces

  • Received: 10 March 2023 Revised: 17 April 2023 Accepted: 24 April 2023 Published: 11 May 2023
  • MSC : 47H09, 47H10, 54H25

  • The aim of this article is to present some results regarding (α,ψ)-rational type contractions in the setting of the generalized metric spaces introduced by Jleli and Samet. By the nature of these types of contractions which use also comparison functions, new fixed point theorems are established. Already known facts appear as consequences of our outcomes. Examples and comments point out the applicability of our approach.

    Citation: Doru Dumitrescu, Ariana Pitea. Fixed point theorems for (α,ψ)-rational type contractions in Jleli-Samet generalized metric spaces[J]. AIMS Mathematics, 2023, 8(7): 16599-16617. doi: 10.3934/math.2023849

    Related Papers:

    [1] Qiang Yu, Yuanyang Feng . Stability analysis of switching systems with all modes unstable based on a Φ-dependent max-minimum dwell time method. AIMS Mathematics, 2024, 9(2): 4863-4881. doi: 10.3934/math.2024236
    [2] Han Geng, Huasheng Zhang . A new H control method of switched nonlinear systems with persistent dwell time: H fuzzy control criterion with convergence rate constraints. AIMS Mathematics, 2024, 9(9): 26092-26113. doi: 10.3934/math.20241275
    [3] Gengjiao Yang, Fei Hao, Lin Zhang, Lixin Gao . Stabilization of discrete-time positive switched T-S fuzzy systems subject to actuator saturation. AIMS Mathematics, 2023, 8(6): 12708-12728. doi: 10.3934/math.2023640
    [4] Jiaojiao Li, Yingying Wang, Jianyu Zhang . Event-triggered sliding mode control for a class of uncertain switching systems. AIMS Mathematics, 2023, 8(12): 29424-29439. doi: 10.3934/math.20231506
    [5] Guojie Zheng, Taige Wang . The moment exponential stability of infinite-dimensional linear stochastic switched systems. AIMS Mathematics, 2023, 8(10): 24663-24680. doi: 10.3934/math.20231257
    [6] Huijuan Li . Input-to-state stability for discrete-time switched systems by using Lyapunov functions with relaxed constraints. AIMS Mathematics, 2023, 8(12): 30827-30845. doi: 10.3934/math.20231576
    [7] YeongJae Kim, YongGwon Lee, SeungHoon Lee, Palanisamy Selvaraj, Ramalingam Sakthivel, OhMin Kwon . Design and experimentation of sampled-data controller in T-S fuzzy systems with input saturation through the use of linear switching methods. AIMS Mathematics, 2024, 9(1): 2389-2410. doi: 10.3934/math.2024118
    [8] Zhengqi Zhang, Huaiqin Wu . Cluster synchronization in finite/fixed time for semi-Markovian switching T-S fuzzy complex dynamical networks with discontinuous dynamic nodes. AIMS Mathematics, 2022, 7(7): 11942-11971. doi: 10.3934/math.2022666
    [9] Ruofeng Rao, Xiaodi Li . Input-to-state stability in the meaning of switching for delayed feedback switched stochastic financial system. AIMS Mathematics, 2021, 6(1): 1040-1064. doi: 10.3934/math.2021062
    [10] Jingjing Yang, Jianqiu Lu . Stabilization in distribution of hybrid stochastic differential delay equations with Lévy noise by discrete-time state feedback controls. AIMS Mathematics, 2025, 10(2): 3457-3483. doi: 10.3934/math.2025160
  • The aim of this article is to present some results regarding (α,ψ)-rational type contractions in the setting of the generalized metric spaces introduced by Jleli and Samet. By the nature of these types of contractions which use also comparison functions, new fixed point theorems are established. Already known facts appear as consequences of our outcomes. Examples and comments point out the applicability of our approach.



    A switched system usually consists of a set of state-space models and a switching signal. The problem of stability/stabilization for switched systems has drawn a great deal of attention and interest in the field of automation [1,2,3,4,5,6]. Without a doubt, the stability analysis of switched systems is very important and is closely related to various switching strategies, such as average dwell time (ADT) switching [7,8,9,10,11,12,13,14,15]. The authors point out that there is incorrect thinking about the relationship between mode-dependent ADT (MDADT) and ADT in many existing related studies, where ADT is seen as a special case of MDADT. In fact, the ADT strategy mainly focuses on the compensation effect among subsystems without considering the subsystems' differences. Instead, the MDADT strategy takes these subsystems' differences into account but misses the compensation among subsystems. In the stability study of switched systems, as we know, both the switching strategies and other supported methods are quite important. Therefore, in recent decades, various stability analysis tools have been proposed, mainly including the common Lyapunov function [16,17,18], the multiple Lyapunov functions [19,20,21,22], the multiple discontinuous Lyapunov function [23,24], and the multiple convex Lyapunov function [25,26].

    The switching strategies and supported methods above are mainly applied to the system under synchronous switching. However, a class of asynchronously switched systems has become a research hotspot. The literature [27], in both continuous-time and discrete-time contexts, studies the problem of asynchronous switching control for a class of switched linear systems under the ADT strategy by further relaxing the demand of the Lyapunov-like function decreasing during the whole running time of each active subsystem. The literature [28] studies the problem of asynchronous switching control for discrete-time switched systems with MDADT strategy and considers that the lag time of the controllers of different subsystems may be different. The paper [29] investigates the stability of a class of asynchronously switched linear systems by using a mode-dependent integrated dwell time (MDIDT) strategy. It is worth noting that all the above-mentioned works of literature assume that the Lyapunov function may be discontinuous when the controller changes, but it is still continuous when the subsystem switches. Thus, the designed Lyapunov function may be deduced as greatly conservative due to neglecting the jump of the Lyapunov function caused by the subsystem switching. Then, seeking a less conservative result has become an important problem in the stability analysis and asynchronous control of switched systems.

    Inspired by the aforementioned works and issues, this article investigates more general stability and stabilization criteria for a class of asynchronously switched linear systems. The main contributions are as follows: (1) A novel MCLF is constructed that considers the jump of the Lyapunov function caused by the subsystem switching. (2) A switching strategy named ΦDIDT is proposed that covers the IDT and MDIDT strategies. (3) Based on the proposed ΦDIDT strategy with the constructed MCLF, some new stability criteria and controller designs of the system under study are obtained, which are more flexible than the existing results [29,30,31].

    The remaining structure is organized as follows: In Section 2, the problem statement and necessary definitions for stability analysis of discrete-time switched linear systems are provided. In Section 3, the stability analysis for the asynchronous switching control of the considered system with ΦDIDT switching is deduced by the MCLF approach. Moreover, the design of the asynchronous controller for the system is obtained. In addition, the proposed method can degenerate into that of Vu and Liberzon [30]. A numerical example illustrates the superiority of the asynchronous control strategy in Section 4. Lastly, it is summarized in Section 5.

    For the convenience of reviewing the meanings of abbreviations, the following Table 1 is provided.

    Table 1.  List of abbreviations.
    DT Dwell Time MCLF Multiple Convex Lyapunov Functions
    ADT Average Dwell Time IDT Integrated Dwell Time
    MDADT Mode Dependent ADT MDIDT Mode Dependent IDT
    ΦDADT Φ Dependent ADT ΦDIDT Φ Dependent IDT
    LMI Linear Matrix Inequalities GUES Globally Uniformly Exponentially Stable

     | Show Table
    DownLoad: CSV

    Some fairly standard notations are used in this paper. Z (R) stands for the set of positive integers (real numbers). Rn represents the space of n-dimensional real Euclidean and Rn×n refers to the space of n×n matrix with all entries being real. P>0 (P0) implies that P is positive definite (semi-definite). Meanwhile, AT stands for the transpose of a matrix A, and A1 stands for the inverse of a matrix A. For xRn, x stands for the Euclidean vector norm of x. The notation (,) denotes "for all" ("in", "not in"). The "" notation denotes the elements above the main diagonal of a symmetric matrix.

    Consider the following discrete-time switched linear system

    x(k+1)=Aς(k)x(k)+Bς(k)u(k),x(k0)=x0,kk0, (2.1)

    where x(k) is the system state, x(k0)Rn stands for initial state, u(k)Rn is control input, ς(k):[k0,+)Fm={1,2,,m}, is a piecewise constant function from the right, called the switching law. Let k1<k2<<kl<,lZ be the switching instants of ς(k). Aν, Bν, νFm are constant matrices of appropriate dimensions. Letting O={1,2,,s}, sZ, sm. Define the mapping ΦI:FmO as an epimorphism operator. Set ΦIγ={νFmΦI(ν)=γ}.

    Definition 2.1. ([10]) The equilibrium x=0 of system (2.1) with u(k)0 is globally uniformly exponentially stable (GUES), if, for a given switching signals ς, there exist constants ϵ>0 and 0<λ<1 such that the system satisfies x(k)ϵλ(kk0)x(k0), kk0 with initial condition x(k0).

    Definition 2.2. For k[kl,kl+1), lZ, and ΦI(ν)=γO, if there are a ΦI-dependent dwell time τdΦIγ>0 and a ΦI-dependent average dwell time τaΦIγ>τdΦIγ with some scalar N0ΦIγ>0, such that

    kl+1klτdΦIγ, (2.2)
    NςΦIγ(k0,k)N0ΦIγ+KΦIγ(k0,k)τaΦIγ,kk00, (2.3)

    hold, then we say the switching signal ς(k) has a Φ-dependent integrated dwell time (ΦDIDT) τaΦIγ with the minimum dwell time τdΦIγ. When there is no ambiguity, it is briefly described as ς(k) having a ΦDIDT τaΦIγ. Here, N0ΦIγ stands for the chatter bound, NςΦIγ(k,k0) is the sum of switching numbers of subsystems ΦIγ being activated over [k0,k], and KΦIγ(k,k0) represents the total running time of subsystems ΦIγ over [k0,k].

    Let O={1} and O=Fm, we can get the following integrated dwell time (IDT) and mode-dependent integrated dwell time (MDIDT) from Definition 2.2.

    Definition 2.3. ([30]) For k[kl,kl+1), lZ, if there exist a dwell time τd>0 and ADT τa>τd with some scalar N0ς>0, such that

    kl+1klτd, (2.4)
    Nς(k0,k)N0ς+K(k0,k)τa,kk00, (2.5)

    hold, then the switching signal ς(k) is called to have an integrated dwell time (IDT) τa with the minimum dwell time τd (briefly described as IDT τa with no ambiguity). Here, N0ς stands for the chatter bound, Nς(k,k0) is the sum of switching numbers of all subsystems being activated over [k0,k], and Kς(k,k0) represents the total running time of all subsystems over [k0,k].

    Definition 2.4. ([31]) For k[kl,kl+1), lZ and ς(k)=νFm, if there exist a mode-dependent dwell time τdν>0 and an MDADT τaν>τdν with some scalar N0ςν>0, such that

    kl+1klτdν, (2.6)
    Nςν(k0,k)N0ςν+Kν(k0,k)τaν,kk00, (2.7)

    hold, then we say ς(k) has an mode-dependent integrated dwell time (MDIDT) τaν with the minimum dwell time τdν (briefly described as MDIDT τaν with no ambiguity). Here, N0ςν stands for the chatter bound, Nςν(k,k0) is the sum of switching numbers of the νth subsystem being activated over [k0,k], and Kν(k,k0) represents the total running time of the νth subsystem over [k0,k].

    Remark 2.1. In essence, ΦDIDT (resp., IDT/MDIDT) is the hybrid between DT and ΦDADT (resp., ADT/MDADT).

    Lemma 2.1. ([32]) Given XRn and ZT=ZRn×n and DRm×n meeting rank(D)<n. The following two expressions are equivalent:

    1) XZXT<0, X{XRn|X0,DX=0};

    2) YRn×m, Z+YD+DTYT<0.

    For asynchronous switching, we generally assume that the time lags of switching controllers to their corresponding subsystems are Δlkl+1kl. As a matter of convenience, it is assumed that maximal delay of asynchronous switching, ΔL=maxlZ{Δl}, is known a prior without loss of generality. Let ς(kl1)=ω, ς(kl)=ν, ν, ωFm. From the notation of above these symbols, the closed-loop system can be described as:

    (a) when k is on the asynchronous interval [kl,kl+Δl), ν, ωFm,

    x(k+1)=Aν,ωx(k),(Aν,ω=Aν+BνKω), (2.8)

    (b) when k is on the synchronous interval [kl+Δl,kl+1), νFm,

    x(k+1)=Aνx(k),(Aν=Aν+BνKν). (2.9)

    In this section, an MCLF is firstly improved, which is expressed in the form of a convex combination of positive definite matrices. For the study of the system (2.8)–(2.9) under ΦDIDT switching, consider that Lyapunov functions may jump when the subsystem switches or the controller changes. Thus, the constructed MCLF is dependent on both the asynchronous interval and the synchronous interval. As a matter of fact, we can not find accurately the moment of subsystems switching because of the influence of the asynchronous problem. Therefore, it's hard to construct a convex function over the entire synchronous interval. To solve this problem, [29] came up with a new idea that the synchronous interval [kla,kl+1) is divided into convex interval [kla,klb) and non-convex interval [klb,kl+1) by τdν, where kla and klb (kla=kl+ΔL and klb=kl+τdν) are the starting and ending points of the synchronous convex interval, respectively. In the research of asynchronous switching, it is often required that the asynchronous delay should not exceed a certain dwell time. Moreover, the existence of convex interval [kla,klb) plays a crucial role in the paper. Therefore, it is both natural and necessary to require kla<klb. Without causing ambiguity, we use klb to denote kl+τdΦIγ in the paper. Then it is assumed that ΔL<τdΦIγ.

    Similar to the literature [24] and [26], the multiple convex Lyapunov function approach is employed as follows: \forall n\in\mathcal{N}\triangleq\{1, 2, \cdots, N\} where the positive integer N refers to the number of matrices U_{\nu\omega n} > 0 (U_{\nu n} > 0) ; nonlinear continuous functions \hbar_{\nu \omega n}[k_{la}-(k-1)] = \hbar_{\nu \omega n}(k_{la}-k+1) (\hbar_{\nu n}(k-k_{la})) are satisfying

    \begin{equation} \hbar_{\nu\omega n}(k_{la}-k+1)\geq0, \mathop \sum \limits_{n = 1}^N \hbar_{\nu\omega n}(k_{la}-k+1) = 1, \end{equation} (3.1)
    \begin{array}{c} \hbar_{\nu\omega n}(0) = a_{\nu\omega n}, \mathop \sum \limits_{n = 1}^N \hbar_{ \nu\omega n}(k_{la}-k+1) = b_{ \nu\omega n}, \\ \hbar_{\nu\omega n}(k_{la}-k+1) = \frac{b_{ \nu\omega n}-a_{\nu\omega n}}{\Delta L}(k_{la}-k+1)+a_{\nu\omega n}. \end{array} (3.2)

    Then, we have

    \begin{equation} \hbar_{\nu\omega n}(k_{la}+1-k+1)-\hbar_{\nu\omega n}(k_{la}-k+1) = \frac{b_{ \nu\omega n}-a_{\nu\omega n}}{\Delta L}. \end{equation} (3.3)

    Next, the constructed Lyapunov functions are dependent on both the subsystem and controller. Namely, the Lyapunov function on the asynchronous interval [k_{l}, k_{la}) takes the different one on the convex interval [k_{(l-1)a}, k_{(l-1)b}) and the Lyapunov function on the non-convex interval [k_{lb}, k_{l+1}) uses the same one on the convex interval [k_{la}, k_{lb}) with k = k_{lb} , which is more consistent with the engineering reality.

    Further, for \forall\nu, \omega\in\mathfrak{F}_{m} , we construct an MCLF candidate as follows:

    (a) when k\in[k_{l}, k_{la}) ,

    \begin{equation} \begin{split} V_{\nu\omega}& = x^{T}(k)U_{\nu\omega}(k_{la}-k+1)x(k)\\ & = x^{T}(k)\sum^{N}_{n = 1}\hbar_{\nu\omega n}(k_{la}-k+1)U_{\nu\omega n}x(k), \\ \end{split} \end{equation} (3.4)

    (b) when k\in[k_{la}, k_{lb}) ,

    \begin{equation} \begin{split} V_{\nu}& = x^{T}(k)U_{\nu}(k)x(k)\\ & = x^{T}(k)\sum^{N}_{n = 1}\hbar_{\nu n}(k-k_{la})U_{\nu n}x(k), \\ \end{split} \end{equation} (3.5)

    (c) when k\in[k_{lb}, k_{l+1}) ,

    \begin{equation} \begin{split} V_{\nu}& = x^{T}(k)U_{\nu}(k)x(k) = x^{T}(k)U_{\nu}(k_{lb}-k_{la})x(k)\\ & = x^{T}(k)\sum^{N}_{n = 1}\hbar_{\nu n}(k_{lb}-k_{la})U_{\nu n}x(k).\\ \end{split} \end{equation} (3.6)

    It can be seen from (3.4) that the taken Lyapunov function on the synchronous interval [k_{l}+\Delta l, k_{la}) is the one on the asynchronous interval [k_{l}, k_{l}+\Delta l) , which is inconsistent with the one on the synchronous interval [k_{la}, k_{lb}) . As we know, it is unrealistic and unreasonable to predict the asynchronous duration \Delta l after each switching in advance. To solve this problem, this paper uses the fixed asynchronous duration \Delta L instead of the actual asynchronous duration \Delta l . Although this brings some conservatism, it provides us with solutions to difficult problems.

    Now, we are in a position to deduce the condition of the exponential stability of the system (2.8)–(2.9).

    \bf{Theorem\; 3.1.} For given scalar 0 < \alpha_{\gamma} < 1 , \beta_{\gamma} > 1 , \mu_{1\gamma} > 0 , \mu_{2\gamma} > 1 with \alpha^{-\Delta L}_{\gamma}\beta^{\Delta L}_{\gamma}\mu_{1\gamma}\mu_{2\gamma} > 1 , \forall\gamma\in\mathfrak{O} , \forall\nu , \omega\in\mathfrak{F}_{m} , \nu\neq\omega and \Phi_{I}(\nu) = \gamma , suppose there exist positive matrices U_{\nu n} and matrices Q , \forall n , r\in \mathcal{N} , such that

    \begin{equation} \left[ \begin{array}{cc} -\alpha_{\gamma}U_{\nu n}& \star\\ Q A_{\nu}' & U_{\nu n}+\Sigma^{N}_{r = 1}\pi_{\nu r}U_{\nu r}-Q-Q^{T} \\ \end{array} \right] < 0, \end{equation} (3.7)
    \begin{equation} \left[ \begin{array}{cc} -\alpha_{\gamma}\sum^{N}_{n = 1}b_{\nu n}U_{\nu n}& \star\\ Q A_{\nu}' & \sum^{N}_{n = 1}(b_{\nu n}+\pi_{\nu n})U_{\nu n}-Q-Q^{T} \\ \end{array} \right] < 0, \end{equation} (3.8)
    \begin{equation} \left[ \begin{array}{cc} -\beta_{\gamma}\sum^{N}_{n = 1}b_{\omega n}U_{\nu\omega n}& \star\\ Q A_{\nu\omega}'' & \sum^{N}_{n = 1}(b_{\omega n}+\pi_{\nu\omega n})U_{\nu\omega n}-Q-Q^{T} \\ \end{array} \right] < 0, \end{equation} (3.9)
    \begin{equation} \mathop \sum \limits_{n = 1}^N a_{\nu\omega n}U_{\nu\omega n} < \mu_{1\gamma} \mathop \sum \limits_{n = 1}^N b_{\omega n}U_{\omega n}, \end{equation} (3.10)
    \begin{equation} \mathop \sum \limits_{n = 1}^N a_{\nu n}U_{\nu n} < \mu_{2\gamma}\mathop \sum \limits_{n = 1}^N a_{\nu\omega n}U_{\nu\omega n}, \end{equation} (3.11)

    hold, where \pi_{\nu n} = \frac{b_{\nu n}-a_{\nu n}}{\tau_{d\Phi_{I\gamma}-\Delta L}} . Then, the system (2.8)–(2.9) is GUES for any \varsigma(k) having \Phi DIDT

    \begin{equation} \tau_{a\Phi_{I\gamma}} > \tau^{\ast}_{a\Phi_{I\gamma}}\geq\max\{\tau_{d\Phi_{I\gamma}}, \frac{\ln(\alpha^{-\Delta L}_{\gamma}\beta^{\Delta L}_{\gamma} \mu_{1\gamma}\mu_{2\gamma})}{-\ln\alpha_{\gamma}}\}, \forall\gamma\in\mathfrak{O}, \forall\nu\in\mathfrak{F}_{m}. \end{equation} (3.12)

    Proof: From (3.4), we have

    V_{\nu\omega}(k+1)-\beta_{\gamma}V_{\nu\omega}(k)

    \begin{equation} \begin{split} & = \left[ \begin{array}{cc} x(k)\\ x(k+1)\\ \end{array} \right]^{T} \left[ \begin{array}{cc} -\beta_{\gamma}U_{\nu\omega}(k_{la}-k+1)& 0\\ 0 & U_{\nu\omega}(k_{la}-k+2) \\ \end{array} \right]\left[ \begin{array}{cc} x(k)\\ x(k+1)\\ \end{array} \right]\\ & = \mathfrak{X}^{T}\mathcal{Z}\mathfrak{X} < 0, \end{split} \end{equation} (3.13)

    where k\in[k_{l}, k_{la}) , \forall\nu , \omega\in\mathfrak{F}_{m} , \forall\gamma\in\mathfrak{O} . Let \mathfrak{Y} = [0 \ \ Q^{T}]^{T} , \mathcal{D}_{\nu\omega} = [\mathcal{A}''_{\nu\omega}\ \ -I] . By (3.1), (3.3), and Lemma 2.1, (3.9) indicates that

    \begin{equation} \begin{split} & \mathcal{Z}+\mathfrak{Y}\mathcal{D}_{\nu\omega}+\mathcal{D}_{\nu\omega}^{T}\mathfrak{Y}^{T}\\ & = \left[ \begin{array}{cc} -\beta_{\gamma}U_{\nu\omega}(k_{la}-k+1)& 0\\ 0 & U_{\nu\omega}(k_{la}-k+2) \\ \end{array} \right]+ \left[ \begin{array}{cc} 0\\ Q\\ \end{array} \right] \left[ \begin{array}{cc} A''_{\nu\omega}& -I\\ \end{array} \right]\\ &+ \left[ \begin{array}{cc} A''^{T}_{\nu\omega}\\ -I\\ \end{array} \right] \left[ \begin{array}{cc} 0& Q^{T}\\ \end{array} \right]\\ & = \left[ \begin{array}{cc} -\beta_{\gamma}U_{\nu\omega}(k_{la}-k+1)& \star\\ Q A''_{\nu\omega}& U_{\nu\omega}(k_{la}-k+2)-Q-Q^{T} \\ \end{array} \right] < 0. \end{split} \end{equation} (3.14)

    Further, it follows from (3.13) and (3.14) that

    \begin{equation} V_{\nu\omega}(k+1)\leq \beta_{\gamma}V_{\nu\omega}(k), \forall k\in[k_{l}, k_{la}). \end{equation} (3.15)

    In a similar way, if (3.7) and (3.8) hold, we immediately get

    \begin{equation} V_{\nu}(k+1)\leq\alpha_{\gamma} V_{\nu}(k), \forall k\in[k_{la}, k_{lb}), \end{equation} (3.16)
    \begin{equation} V_{\nu}(k+1)\leq \alpha_{\gamma} V_{\nu}(k), \forall k\in[k_{lb}, k_{l+1}). \end{equation} (3.17)

    At the switching point k_{l} , l\in \mathbb{Z^{\ast}} , suppose \varsigma(k_{l-1}) = \omega , \varsigma(k_{l}) = \nu , \forall \nu , \omega\in\mathfrak{F}_{m} , \nu\neq\omega , we have

    \begin{equation} V_{\nu\omega}(k_{l})-\mu_{1\gamma}V_{\omega}(k_{l}) = x^{T}(k_{l})[U_{\nu\omega}(k_{l})-\mu_{1\gamma}U_{\omega} (k_{(l-1)a})]x(k_{l}). \end{equation} (3.18)

    Similariy, at point k_{la} , it is clear that

    \begin{equation} V_{\nu}(k_{la})-\mu_{2\gamma}V_{\nu\omega}(k_{la}) = x^{T}(k_{la})[U_{\nu}(k_{la})-\mu_{2\gamma}U_{\omega}(k_{(l)b})]x(k_{la}). \end{equation} (3.19)

    According to (3.10) and (3.11), \forall\gamma\in\mathfrak{O} , \forall\nu , \omega\in\mathfrak{F}_{m} , \nu\neq\omega , one can obtain

    \begin{equation} V_{\nu\omega}(k_{l})\leq\mu_{1\gamma}V_{\omega}(k_{l}), \end{equation} (3.20)
    \begin{equation} V_{\nu}(k_{la})\leq\mu_{2\gamma}V_{\nu\omega}(k_{la}). \end{equation} (3.21)

    From (3.15)–(3.21), one has

    \begin{equation} \begin{split} V_{\varsigma(k)}(k)&\leq\alpha^{k-k_{lb}}_{\varsigma(k_{l})}V_{\varsigma(k_{l})}(k_{lb})\\ &\leq\alpha^{k-k_{la}}_{\varsigma(k_{l})}V_{\varsigma(k_{l})}(k_{la})\\ &\leq\alpha^{k-k_{la}}_{\varsigma(k_{l})}\mu_{\varsigma(k_{l})_{2\gamma}}V_{\varsigma(k_{l})}(k_{la})\\ &\leq\alpha^{k-k_{la}}_{\varsigma(k_{l})}\beta^{\Delta L}_{\varsigma(k_{l})}\mu_{\varsigma(k_{l})_{2\gamma}}V_{\varsigma(k_{l})}(k_{l})\\ &\leq\alpha^{k-k_{la}}_{\varsigma(k_{l})}\beta^{\Delta L}_{\varsigma(k_{l})}\mu_{\varsigma(k_{l})_{1\gamma}}\mu_{\varsigma(k_{l})_{2\gamma}} V_{\varsigma(k_{l-1})}(k_{l}). \end{split} \end{equation} (3.22)

    Then, one can further get

    \begin{equation} \begin{split} V_{\varsigma(k)}&\leq\alpha^{k-k_{la}}_{\varsigma(k_{l})}\alpha^{k_{l}-k_{(l-1)a}}_{\varsigma(k_{l-1})}\cdots\alpha^{k_{1}-k_{0}}_{\varsigma(k_{0})} \beta^{\Delta L}_{\varsigma(k_{l})}\beta^{\Delta L}_{\varsigma(k_{l-1})}\cdots\beta^{\Delta L}_{\varsigma(k_{1})}\\ &\times\mu_{\varsigma(k_{l})_{1\gamma}}\mu_{\varsigma(k_{l-1})_{1\gamma}}\cdots\mu_{\varsigma(k_{1})_{1\gamma}} \mu_{\varsigma(k_{l})_{2\gamma}}\mu_{\varsigma(k_{l-1})_{2\gamma}}\cdots\mu_{\varsigma(k_{1})_{2\gamma}}V_{\varsigma(k_{0})}(k_{0})\\ & = \alpha^{\Delta L}_{\varsigma (k_{0})}\beta^{-\Delta L}_{\varsigma{(k_{0})}}\mu^{-1}_{\varsigma(k_{0})_{1\gamma}}\mu^{-1}_{\varsigma(k_{0})_{2\gamma}} \prod^{s}_{\gamma = 1}[(\alpha^{-\Delta L}_{\gamma}\beta^{\Delta L}_{\gamma}\mu_{1\gamma}\mu_{2\gamma})^{N_{\Phi_{\gamma}}(k, k_{0})} \alpha^{K_{\Phi_{\gamma}}(k, k_{0})}_{\gamma}]\\ &\times V_{\varsigma(k_{0})}(k_{0}). \end{split} \end{equation} (3.23)

    Moreover, if (2.3) and \alpha^{-\Delta L}_{\gamma}\beta^{\Delta L}_{\gamma}\mu_{1\gamma}\mu_{2\gamma} > 1 hold, (3.23) can be rewritten as

    \begin{align*} V_{\varsigma(k)}(k)&\leq\alpha^{\Delta L}_{\varsigma(k_{0})}\beta^{-\Delta L}_{\varsigma(k_{0})}\mu^{-1}_{\varsigma(k_{0})_{1\gamma}} \mu^{-1}_{\varsigma(k_{0})_{2\gamma}}\prod^{s}_{\gamma = 1}[(\alpha^{-\Delta L}_{\gamma}\beta^{\Delta L}_{\gamma}\mu_{\gamma_{1\gamma}} \mu_{\gamma_{2\gamma}})^{N_{0\Phi_{I\gamma}}+\frac{K_{\Phi_{I\gamma}}(k, k_{0})}{\tau_{a\Phi_{I\gamma}}}}\\ &\times\alpha^{K_{\Phi_{I\gamma}}(k, k_{0})}_{\gamma}]V_{\varsigma(k_{0})}(k_{0})\\ & = \alpha^{\Delta L}_{\varsigma(k_{0})}\beta^{-\Delta L}_{\varsigma(k_{0})}\mu^{-1}_{\varsigma(k_{0})_{1\gamma}}\mu^{-1}_{\varsigma(k_{0})_{2\gamma}} \prod^{s}_{\gamma = 1}\{(\alpha^{-\Delta L}_{\gamma}\beta^{\Delta L}_{\gamma}\mu_{\gamma_{1\gamma}}\mu_{\gamma_{2\gamma}})^{N_{0\Phi_{I\gamma}}}\\ &\times[(\alpha^{-\Delta L}_{\gamma}\beta^{\Delta L}_{\gamma}\mu_{1\gamma}\mu_{2\gamma})^{\frac{1}{\tau_{a\Phi_{I\gamma}}}} \alpha_{\gamma}]^{K_{\Phi_{I\gamma}}(k, k_{0})}\}V_{\varsigma(k_{0})}(k_{0}). \end{align*}

    Considering \tau_{a\Phi_{I\gamma}} > \tau^{\ast}_{a\Phi_{I\gamma}}\geq \max\{\tau_{d\Phi_{I\gamma}} , \frac{\ln\alpha^{-\Delta L}_{\gamma}\beta^{\Delta L}_{\gamma}\mu_{1\gamma}\mu_{2\gamma}}{-\ln\alpha_{\gamma}}\} , \forall\gamma\in\mathfrak{O} , \forall\nu\in\mathfrak{F}_{m} , we have 0 < (\alpha^{-\Delta L}_{\gamma}\beta^{\Delta L}_{\gamma}\mu_{1\gamma}\mu_{2\gamma})^{\frac{1}{\tau_{a\Phi_{I\gamma}}}} \alpha_{\gamma} < 1 , and it follows that

    \begin{align*} V_{\varsigma(k)}(k)&\leq \max\limits_{\gamma\in\mathfrak{O}}\{\alpha^{\Delta L}_{\gamma}\}\max\limits_{\gamma\in\mathfrak{O}}\{\beta^{-\Delta L}_{\gamma}\} \max\limits_{\gamma\in\mathfrak{O}}\{\mu^{-1}_{1\gamma}\}\max\limits_{\gamma\in\mathfrak{O}}\{\mu^{-1}_{2\gamma}\}\\ &\times\prod^{s}_{\gamma = 1}\{(\alpha^{-\Delta L}_{\gamma}\beta^{\Delta L}_{\gamma}\mu_{1\gamma}\mu_{2\gamma})^{N_{0\Phi_{I\gamma}}}\\ &\times\max\limits_{\gamma\in\mathfrak{O}}[(\alpha^{-\Delta L}_{\gamma}\beta^{\Delta L}_{\gamma}\mu_{1\gamma}\mu_{2\gamma})^{\frac{1}{\tau_{a\Phi_{I\gamma}}}} \alpha_{\gamma}]\}^{K_{\Phi_{I\gamma}}(k, k_{0})} V_{\varsigma(k_{0})}(k_{0}). \end{align*}

    Therefore, we conclude that the system (2.8)–(2.9) is GUES. It is proven.

    Next, we give the design of the asynchronous controller to guarantee the GUES of the asynchronously switched control system (2.8)–(2.9).

    \bf{Theorem\; 3.2.} For given scalars 0 < \alpha_{\gamma} < 1 , \beta_{\gamma} > 1 , \mu_{1\gamma} > 0 , \mu_{2\gamma} > 1 with \alpha^{-\Delta L}_{\gamma}\beta^{\Delta L}_{\gamma}\mu_{1\gamma}\mu_{2\gamma} > 1 , \forall\gamma\in\mathfrak{O} , \forall\nu , \omega\in\mathfrak{F}_{m} , \nu\neq\omega , suppose there exist positive matrices H_{\nu n} , matrices Y_{\nu} , and symmetric invertible matrix X , \forall r , n \in\mathcal{N} , such that

    \begin{equation} \left[ \begin{array}{cc} -\alpha_{\gamma}H_{\nu n}& \star\\ A_{\nu}X+B_{\nu}Y_{\nu} & H_{\nu n}+\sum^{N}_{r = 1}\pi_{\nu r}H_{\nu r}-2X \\ \end{array} \right] < 0, \end{equation} (3.24)
    \begin{equation} \left[ \begin{array}{cc} -\alpha_{\gamma}\sum^{N}_{n = 1}b_{\nu n}H_{\nu n}& \star\\ A_{\nu}X+B_{\nu}Y_{\nu} & \sum^{N}_{n = 1}(b_{\nu n}+\pi_{\nu n})H_{\nu n}-2X \\ \end{array} \right] < 0, \end{equation} (3.25)
    \begin{equation} \left[ \begin{array}{cc} -\beta_{\gamma}\sum^{N}_{n = 1}b_{\omega n}H_{\nu\omega n} & \star\\ A_{\nu}X+B_{\nu}Y_{\omega} & \sum^{N}_{n = 1}(b_{\omega n}+\pi_{\omega n})H_{\nu\omega n}-2X \\ \end{array} \right] < 0, \end{equation} (3.26)
    \begin{equation} \mathop \sum \limits_{n = 1}^N a_{\nu\omega n}H_{\nu\omega n} < \mu_{1\gamma} \mathop \sum \limits_{n = 1}^N b_{\omega n}H_{\omega n}, \end{equation} (3.27)
    \begin{equation} \mathop \sum \limits_{n = 1}^N a_{\nu n}H_{\nu n} < \mu_{2\gamma}\mathop \sum \limits_{n = 1}^N a_{\nu\omega n}H_{\nu\omega n}, \end{equation} (3.28)

    hold, where \pi_{\nu n} = \frac{b_{\nu n}-a_{\nu n}}{\tau_{d\Phi_{I\gamma}-\Delta L}} . Then there is a state feedback controller such that the resulting closed-loop system of (2.8)–(2.9) is GUES for any switching signal satisfying (3.12), and the feedback gain can be given by

    \begin{equation} K_{\nu} = Y_{\nu}X^{-1}. \end{equation} (3.29)

    Proof: For k\in[k_{l}, k_{la}) , let

    \begin{align*} H_{\nu\omega n} = X^{T}U_{\nu\omega n}X, Y_{\omega} = K_{\omega}X, X = Q^{-1}. \end{align*}

    From (3.26), we have

    \begin{equation} \left[ \begin{array}{cc} -\beta_{\gamma}\sum^{N}_{n = 1}b_{\omega n}Q^{-1^{T}}H_{\nu\omega n}Q^{-1}& \star\\ A_{\nu}Q^{-1}+B_{\nu}K_{\omega} Q^{-1} & Q^{-1^{T}}[\sum^{N}_{n = 1}(b_{\omega n}+\pi_{\omega n})H_{\nu\omega n}]Q^{-1}-2Q^{-1} \\ \end{array} \right] < 0. \end{equation} (3.30)

    Pre- and post-multiplying both sides of the inequality in (3.30) by diag \{Q, Q\} yields

    \begin{equation} \left[ \begin{array}{cc} -\beta_{\gamma}\sum^{N}_{n = 1}b_{\omega n}H_{\nu\omega n}& \star\\ Q(A_{\nu}+B_{\nu}K_{\omega}) & \sum^{N}_{n = 1}(b_{\omega n}+\pi_{\omega n})H_{\nu\omega n}-2Q \\ \end{array} \right] < 0, \end{equation} (3.31)

    which it can ensure (3.9). We omit the same part here, the conditions (3.7), (3.8) and (3.11) also can be guaranteed by (3.24), (3.25) and (3.28). According to Theorem 3.1, the switched system (2.8)–(2.9) is GUES.

    \bf{Remark\; 3.1.} The \Phi DIDT strategy covers the IDT and MDIDT ones. On the one hand, let \mathfrak{O} = \{1\} , and replace \alpha_{\gamma} , \beta_{\gamma} , \mu_{1\gamma} and \mu_{2\gamma} in Theorems 3.1 and 3.2 with \alpha , \beta , \mu_{1} and \mu_{2} , and we can obtain the corresponding results of stability based on the IDT strategy. On the other hand, let \mathfrak{O} = \mathfrak{F}_{m} and \Phi_{I}(\nu) = \nu (\forall\nu\in\mathfrak{F}_{m}) , and replace \alpha_{\gamma} , \beta_{\gamma} , \mu_{1\gamma} and \mu_{2\gamma} in Theorems 3.1 and 3.2 with \alpha_{\nu} , \beta_{\nu} , \mu_{1\nu} and \mu_{2\nu} , and we can obtain the corresponding stability criterion under the MDIDT strategy. We have omitted these easily obtained results because of spatial limitations. So the \Phi DIDT strategy can unify the IDT and MDIDT strategies.

    \bf{Remark\; 3.2.} As we know, the IDT strategy only focuses on the compensation effect between subsystems but does not take into account the difference between subsystems. Contrariwise, the MDIDT strategy mainly concerns the difference between subsystems but does not consider the compensation between subsystems. For some given (\Phi_{I}, \mathfrak{O}) , \mathfrak{O}\neq\{1\} and \mathfrak{O}\neq\mathfrak{F}_{m} , it takes into account both the compensation effect between the \nu and the \omega subsystems ( \nu\neq\omega , \nu , \omega\in\Phi_{I\gamma} ) and the difference between \Phi_{I\gamma} and \Phi_{I\iota} (\gamma\neq\iota) . The fact is that some different stability results with their own advantages can be obtained by choosing different (\Phi_{I}, \mathfrak{O}) . So we can't decide which one is better. It is easy to know that when the number of subsystems is limited, we can give all the possibilities of (\Phi_{I}, \mathfrak{O}) . For instance, take \mathfrak{F}_{m} = \{1, 2, 3\} , theoretically, function \Phi has 13 forms, including 1 form for \mathfrak{O} = \{1\} , 6 forms for \mathfrak{O} = \{1, 2\} and 6 forms for \mathfrak{O} = \{1, 2, 3\} . Nevertheless, some forms can be classified as the same type; for example, \Phi_{I1} = \{2, 3\} , \Phi_{I2} = \{1\} and \Phi_{I1} = \{1\} , \Phi_{I2} = \{2, 3\} . Therefore, the function \Phi is finally categorized into 5 types as follows:

    (ⅰ) for \mathfrak{O} = \{1\} , then \Phi_{I1} = \{1, 2, 3\} , which corresponds the IDT results.

    (ⅱ) if \mathfrak{O} = \{1, 2\} , then there are 3 classification forms: ① \Phi_{I1} = \{1, 2\} , \Phi_{I2} = \{3\} ; ② \Phi_{I1} = \{1, 3\} , \Phi_{I2} = \{2\} ; ③ \Phi_{I1} = \{2, 3\} , \Phi_{I2} = \{1\} .

    (ⅲ) when \mathfrak{O} = \{1, 2, 3\} , then \Phi_{I1} = \{1\} , \Phi_{I2} = \{2\} , \Phi_{I3} = \{3\} , which corresponds the MDIDT results.

    \bf{Remark\; 3.3.} For \mathfrak{O} = \{1, 2, 3\} case, if we take the special value \mu_{1\gamma} = 1 in Theorems 3.1 and 3.2, then our results in this paper will degenerate to the results of in [29], which implies that [29] is a special case of the new conclusion.

    \bf{Remark\; 3.4.} There is the problem of how to properly select design parameters \alpha_{\gamma} , \beta_{\gamma} , \mu_{1\gamma} and \mu_{2\gamma} in the implementation of Theorems 3.1 and 3.2. These parameters are coupled with the decision matrices U_{\nu n} , Q and matrices H_{\nu n} , Y_{\nu} , X in Theorems 3.1 and 3.2, respectively, making it difficult to solve them simultaneously. An effective algorithm for selecting appropriate design parameters is proposed here.

    Step 1: Select sufficiently small \alpha_{\gamma} and sufficiently large \beta_{\gamma} , \mu_{1\gamma} and \mu_{2\gamma} to ensure a large feasible range of decision variables in Theorems 3.1 and 3.2.

    Step 2: If there are the solutions of \alpha^{@}_{\gamma} , \beta^{@}_{\gamma} , \mu^{@}_{1\gamma} and \mu^{@}_{2\gamma} in Step 1, proceed to the next step, otherwise terminate.

    Step 3: Fix \alpha^{@}_{\gamma} , and gradually reduce \beta_{\gamma} , \mu_{1\gamma} and \mu_{2\gamma} in sequence while ensuring the feasibility of Theorems 3.1 and 3.2. Then one can obtain \beta_{\gamma} = \beta^{*}_{\gamma} , \mu_{1\gamma} = \mu^{*}_{1\gamma} and \mu_{2\gamma} = \mu^{*}_{2\gamma} .

    Step 4: Fix \beta^{*}_{\gamma} , \mu^{*}_{1\gamma} and \mu^{*}_{2\gamma} , and gradually increase \alpha_{\gamma} while ensuring the feasibility of Theorems 3.1 and 3.2. Then one can get \alpha_{\gamma} = \alpha^{*}_{\gamma} .

    Step 5: Obtain a set of relatively ideal design parameters ( \alpha^{*}_{\gamma} \beta^{*}_{\gamma} , \mu^{*}_{1\gamma} , \mu^{*}_{2\gamma} ).

    \bf{Remark\; 3.5.} Consider that Lyapunov functions may not jump when the subsystem switches or the controller changes. Then, we look for the relationship of the constructed Lyapunov functions on the interval [k_{l}, k_{la}] .

    Let V(k) be a function defined on the interval [k_{l}, k_{la}] , suppose that there are m-1 points on the interval [k_{l}, k_{la}] , which are

    k-1 = k^{(0)}_{l} < k^{(1)}_{l} < k^{(2)}_{l} < \cdots < k^{(i-1)}_{l} < k^{(i)}_{l} = k_{la}.

    They divide [k_{l}, k_{la}) into m cells \Delta k^{(i)}_{l} = [k^{(i)}_{l}, k^{(i-1)}_{l}] , i = 1, 2, \cdots m . Denote

    \parallel K\parallel = \max\limits_{1\leq i\leq m}\{\Delta k^{(i)}_{l}\}.

    Take any point \xi_{i} \in\Delta k^{(i)}_{l} , we have

    V(\xi_{1})\Delta k^{(1)}_{l}+V(\xi_{2})\Delta k^{(2)}_{l} +\cdots+V(\xi_{i-1})\Delta k^{(i-1)}_{l}+V(\xi_{i})\Delta k^{(i)}_{l} = \mathop \sum \limits_{i = 1}^m V(\xi_{i})\Delta k^{(i)}_{l}.

    Let

    J = \lim\limits_{\parallel K \parallel\rightarrow 0}\mathop \sum \limits_{i = 1}^m V(\xi_{i})\Delta k^{(i)}_{l} = \int^{k_{la}}_{k-1}V(k)dk.

    Further, one can know

    V_{m}(k) = \frac{J}{\Delta L}k+ V_{\omega}(k-1),
    V_{\omega}(k-1) = x^{T}(k)U_{\omega}(k_{(l-1)b}-k_{(l-1)a})x(k).

    It satisfies at point k_{la} that

    \begin{equation} \begin{split} V_{\nu}(k_{la}) = x^{T}(k)U_{\nu}(k-k_{la})x(k)+V_{\omega}(k-1) = \frac{J}{\Delta L}k_{la}+V_{\omega}(k-1). \end{split} \end{equation} (3.32)

    From the functional relation of the above, we can obtain the following Corollaries 3.1 and 3.2.

    \bf{Corollary\; 3.1.} For given scalars 0 < \alpha_{\gamma} < 1 , \mu_{\gamma} > 1 , \forall\gamma\in\mathfrak{O} , with \alpha^{-\Delta L}_{\gamma}\mu_{\gamma} > 1 , suppose there exist matrices P^{\ast}_{\nu n} > 0 and matrices Q^{\ast} , \forall \nu\in \mathfrak{F}_{m} , \forall r , n\in \mathcal{N} such that

    \begin{equation} \left[ \begin{array}{cc} -\alpha_{\gamma}U^{\ast}_{\nu n}& \star\\ Q^{\ast} A_{\nu}' & U^{\ast}_{\nu n}+\Sigma^{N}_{r = 1}\pi_{\nu r}U^{\ast}_{\nu r}-Q^{\ast}-Q^{\ast T} \\ \end{array} \right] < 0, \end{equation} (3.33)
    \begin{equation} \left[ \begin{array}{cc} -\alpha_{\gamma}\sum^{N}_{n = 1}b_{\nu n}U^{\ast}_{\nu n}& \star\\ Q^{\ast} A_{\nu}' & \sum^{N}_{n = 1}(b_{\nu n}+\pi_{\nu n})U^{\ast}_{\nu n}-Q^{\ast}-Q^{\ast T}\\ \end{array} \right] < 0, \end{equation} (3.34)
    \begin{equation} \mathop \sum \limits_{n = 1}^N a_{\nu n}U^{\ast}_{\nu n} < \mu_{\gamma}\mathop \sum \limits_{n = 1}^N b_{\omega n}U^{\ast}_{\omega n}, \end{equation} (3.35)

    hold, where \pi_{\nu n} = \frac{b_{\nu n}-a_{\nu n}}{\tau_{d\Phi_{I\gamma}-\Delta L}} . Then, the system (2.8)–(2.9) is GUES for any \varsigma(k) having \Phi DIDT

    \begin{equation} \tau_{a\Phi_{I\gamma}} > \tau^{\ast}_{a\Phi_{I\gamma}}\geq\max\{\tau_{d\Phi_{I\gamma}}, \frac{\ln\alpha^{-\Delta L}_{\gamma}\mu_{\gamma}}{-\ln\alpha_{\gamma}}\}, \forall\gamma\in\mathfrak{O}. \end{equation} (3.36)

    Proof: Integrating the proof of Theorem 3.1 with (3.32), it can be concluded.

    \bf{Corollary\; 3.2.} For given scalars 0 < \alpha_{\gamma} < 1, \mu_{\gamma} > 1 , \forall\gamma\in\mathfrak{O} , with \alpha^{-\Delta L}_{\gamma}\mu_{\gamma} > 1 , suppose there exist matrices H^{\ast}_{\nu n} > 0 , matrices Y^{\ast}_{\nu} , and symmetric invertible matrix X^{\ast} , \forall\nu\in\mathfrak{F}_{m} , \forall r , n \in\mathcal{N} , such that

    \begin{equation} \left[ \begin{array}{cc} -\alpha_{\gamma}H^{\ast}_{\nu n}& \star\\ A_{\nu}X+B_{\nu}Y^{\ast}_{\nu} & H^{\ast}_{\nu n}+\sum^{N}_{r = 1}\pi_{\nu r}H^{\ast}_{\nu r}-2X^{\ast} \\ \end{array} \right] < 0, \end{equation} (3.37)
    \begin{equation} \left[ \begin{array}{cc} -\alpha_{\gamma}\sum^{N}_{n = 1}b_{\nu n}H^{\ast}_{\nu n}& \star\\ A_{\nu}X+B_{\nu}Y^{\ast}_{\nu} & \sum^{N}_{n = 1}(b_{\nu n}+\pi_{\nu n})H^{\ast}_{\nu n}-2X^{\ast} \\ \end{array} \right] < 0, \end{equation} (3.38)
    \begin{equation} \mathop \sum \limits_{n = 1}^N a_{\nu n}H^{\ast}_{\nu n} < \mu_{\gamma}\mathop \sum \limits_{n = 1}^N b_{\omega n}H^{\ast}_{\omega n}, \end{equation} (3.39)

    hold, where \pi_{\nu n} = \frac{b_{\nu n}-a_{\nu n}}{\tau_{d\Phi_{I\gamma}-\Delta L}} , then there is the state feedback controller such that the resulting closed-loop system of (2.8)–(2.9) is GUES for any switching signal satisfying

    \begin{equation} \tau_{a\Phi_{I\gamma}} > \tau^{\ast}_{a\Phi_{I\gamma}}\geq\max\{\tau_{d\Phi_{I\gamma}}, \frac{\ln\alpha^{-\Delta L}_{\gamma}\mu_{\gamma}}{-\ln\alpha_{\gamma}}\}, \forall\gamma\in\mathfrak{O}. \end{equation} (3.40)

    Moreover, the feedback gain is given by

    K^{\ast}_{\nu} = Y^{\ast}_{\nu}X^{\ast-1}_{\nu}.

    Proof: Integrating the proof of Theorem 3.2 with (3.32), it can be concluded.

    In this section, a simple numerical example in the discrete-time domain will be provided to verify the effectiveness of the theoretical results.

    Consider the switched linear system (2.8)–(2.9) with subsystem matrices

    \begin{equation*} A_{1} = \left[ \begin{array}{cc} -0.40 & 0.23 \\ 0.16& -6.71 \\ \end{array} \right], A_{2} = \left[ \begin{array}{cc} -0.60 & 0 \\ 0.42& -48.12 \\ \end{array} \right], A_{3} = \left[ \begin{array}{cc} -3.16 & -0.44\\ -3.43& -1.19\\ \end{array} \right], \end{equation*}
    \begin{equation*} B_{1} = \left[ \begin{array}{cc} -0.2 \\ -0.3 \\ \end{array} \right], B_{2} = \left[ \begin{array}{cc} 0 \\ 1.0 \\ \end{array} \right], B_{3} = \left[ \begin{array}{cc} -0.1\\ 0.5\\ \end{array} \right]. \end{equation*}

    By using the Matlab LMI Toolbox to solve the conditions in Theorem 3.2 with \Phi_{I1} = \{1, 2\} , \Phi_{I2} = \{3\} (no loss of generality) and other parameters referring to the corresponding columns in Table 2, the feasible solutions are obtained

    \begin{equation*} X = \left[ \begin{array}{cc} -0.2020 & * \\ 0.3483& 0.3390 \\ \end{array} \right], X^{-1} = \left[ \begin{array}{cc} -1.7862 & * \\ 1.8352& 0.3390 \\ \end{array} \right], \end{equation*}
    Table 2.  Comparison of the results under three switching strategies (\Delta L=2).
    \mathfrak{O} {1}/ IDT [30] {1, 2} {1, 2, 3}/ MDIDT [31]
    \Phi_{I} \Phi_{I1}=\{1, 2, 3\} \Phi_{I1}=\{1, 2\}, \Phi_{I2}=\{3\} \Phi_{I1}=\{1, 3\}, \Phi_{I2}=\{2\} \Phi_{I1}=\{1\}, \Phi_{I2}=\{2, 3\} \Phi_{I1}=\{1\}, \Phi_{I2}=\{2\}, \Phi_{I3}=\{3\}
    \mu \mu_{11} = 2 \mu_{11} = 2, \mu_{12} = 2 \mu_{11} = 2, \mu_{12} = 2 \mu_{11} = 2, \mu_{12} = 2 \mu_{11} = 2, \mu_{12} = 2, \mu_{13} = 2
    \mu_{21} = 0.6 \mu_{21} = 0.6, \mu_{22} = 0.6 \mu_{21} = 0.6, \mu_{22} = 0.6 \mu_{21} = 0.3, \mu_{22} = 0.3 \mu_{21} = 0.3, \mu_{22} = 0.6, \mu_{23} = 0.6
    \alpha \alpha_{1} = 0.64 \alpha_{1} = 0.5, \alpha_{2} = 0.2 \alpha_{1} = 0.64, \alpha_{2} = 0.32 \alpha_{1} = 0.65, \alpha_{2} = 0.2 \alpha_{1} = 0.5, \alpha_{2} = 0.64, \alpha_{3} = 0.32
    \beta \beta_{1} = 1.25 \beta_{1} = 1.3, \beta_{2} = 1.3 \beta_{1} = 1.25, \beta_{2} = 1.25 \beta_{1} = 1.66, \beta_{2} = 1.66 \beta_{1} = 1.3, \beta_{2} = 1.25, \beta_{3} = 1.25
    H_{1} \left[ \begin{array}{cc} 0.2949 & \star\\ -0.0598 & 0.3383 \end{array} \right] \left[ \begin{array}{cc} 0.1385 & \star\\-0.0370 & 0.1779 \end{array} \right] \left[ \begin{array}{cc} 0.1515 & \star\\-0.0558 & 0.1516\end{array} \right] \left[ \begin{array}{cc} 0.1289 & \star\\ -0.0345 & -0.1500\end{array} \right] \left[ \begin{array}{cc} 0.2088 & \star\\ -0.0879 & 0.2651\end{array} \right]
    H_{2} \left[ \begin{array}{cc} 0.3018 & \star\\ -0.0551 & 0.3390\end{array} \right] \left[ \begin{array}{cc} 0.3272 & \star\\ -0.0519 & 0.3332\end{array} \right] \left[ \begin{array}{cc} 0.1236 & \star\\ -0.0410 & 0.1213\end{array} \right] \left[ \begin{array}{cc} 0.6531 & \star\\ -0.1185 & 0.6968\end{array} \right] \left[ \begin{array}{cc} 0.2881 & \star\\ -0.0852 & 0.3315\end{array} \right]
    H_{3} \left[ \begin{array}{cc} 0.2935 & \star\\ -0.0569 & 0.3427\end{array} \right] \left[ \begin{array}{cc} 0.2131 & \star\\ -0.0518 & 0.2666\end{array} \right] \left[ \begin{array}{cc} 0.6734 & \star\\ -0.2456 & 0.7296\end{array} \right] \left[ \begin{array}{cc} 0.6031 & \star\\ -0.1274 & 0.7225\end{array} \right] \left[ \begin{array}{cc} 0.2444 & \star\\ -0.0972 & 0.3359\end{array} \right]
    Signal \tau^{\ast}_{a\Phi_{I1}} = 3.0200 \tau^{\ast}_{a\Phi_{I1}} = 3.4085 \tau^{\ast}_{a\Phi_{I1}} = 3.1672 \tau^{\ast}_{a\Phi_{I1}} = 2.0200 , \tau^{\ast}_{a\Phi_{I2}} = 3.4085
    design \tau^{\ast}_{a\Phi_{I1}} = 3.4085 \tau^{\ast}_{a\Phi_{I2}} = 2.4393 \tau^{\ast}_{a\Phi_{I2}} = 2.5516 \tau^{\ast}_{a\Phi_{I2}} = 2.3124 \tau^{\ast}_{a\Phi_{I3}} = 2.5516
    Signal \tau_{1} = 3.5 , \tau_{2} = 2.2 \tau_{1} = 1.2 , \tau_{2} = 5.1 \tau_{1} = 5.5 , \tau_{2} = 2.6 \tau_{1} = 3.2 , \tau_{2} = 2.2 \tau_{1} = 2.1 , \tau_{2} = 3.6
    instance \tau_{3} = 4.8 \tau_{3} = 2.5 \tau_{3} = 1.4 \tau_{3} = 2.4 \tau_{3} = 2.6
    Figure of
    signal Figure 1(a) Figure 2(a) Figure 3(a) Figure 4(a) Figure 5(a)
    State
    response Figure 1(b) Figure 2(b) Figure 3(b) Figure 4(b) Figure 5(b)
    with
    x_{0} = (7, -1)^{T}

     | Show Table
    DownLoad: CSV

    and

    \begin{equation*} Y_{1} = \left[ \begin{array}{cc} 3.9980 & 2.6600 \\ \end{array} \right], Y_{2} = \left[ \begin{array}{cc} 0.4018 & 2.2180 \\ \end{array} \right], Y_{3} = \left[ \begin{array}{cc} 5.178 & 3.885\\ \end{array} \right], \end{equation*}

    and switching signals satisfy \tau^{\ast}_{a\Phi_{I1}} = 3.0200 and \tau^{\ast}_{a\Phi_{I2}} = 2.4393 , then the controller-gain matrices can be given as follows:

    \begin{equation*} K_{1} = Y_{1}X^{-1} = \left[ \begin{array}{cc} -2.2418 & 10.1498 \\ \end{array} \right], K_{2} = Y_{2}X^{-1} = \left[ \begin{array}{cc} 3.3528 & 2.3606 \\ \end{array} \right], \end{equation*}
    \begin{equation*} K_{3} = Y_{3}X^{-1} = \left[ \begin{array}{cc} -2.1191 & 13.6375\\ \end{array} \right]. \end{equation*}

    Thus, the closed-loop systems are obtained with matrices A'_{\nu} = A_{\nu}+B_{\nu}K_{\nu}

    \begin{equation*} A'_{1} = \left[ \begin{array}{cc} 0.0484 & -1.7999 \\ 0.8328& -3.7049\\ \end{array} \right], A'_{2} = \left[ \begin{array}{cc} -0.6000 & 0 \\ 33.9480& 24.6060 \\ \end{array} \right], \end{equation*}
    \begin{equation*} A'_{3} = \left[ \begin{array}{cc} -3.3629 & -1.8037\\ -4.4896& 5.6288\\ \end{array} \right]. \end{equation*}

    It is worth noting that the larger parameter N will incur an additional computational burden. To reduce the complexity of the calculation, we take N = 2 in the example. When applying Theorem 3.2, different controller designs are generally obtained for different \Phi_{I} , resulting in different closed-loop subsystems. In this situation, it is difficult to compare IDT, MDIDT and \Phi DIDT switching strategies. To verify the comprehensiveness and comparison of the presented results, the switching strategies in the following tables are all based on the same controllers mentioned above.

    The following facts can be obtained from Tables 2 and 3:

    Table 3.  Comparison between the results in this paper and the results in Cui et al. (2021) [29] under MDIDT (\Delta L=2).
    \mathfrak{O} MDIDT MDIDT in [29]
    \Phi_{I} \Phi_{I1}=\{1\}, \Phi_{I2}=\{2\}, \Phi_{I3}=\{3\} \Phi_{I1}=\{1\}, \Phi_{I2}=\{2\}, \Phi_{I3}=\{3\}
    \mu \mu_{11} = 2, \mu_{12} = 2, \mu_{13} = 2 \mu_{11} = 2, \mu_{12} = 2, \mu_{13} = 2
    \mu_{21} = 0.3, \mu_{22} = 0.6, \mu_{23} = 0.6
    \alpha \alpha_{1} = 0.5, \alpha_{2} = 0.64, \alpha_{3} = 0.32 \alpha_{1} = 0.5, \alpha_{2} = 0.64, \alpha_{3} = 0.32
    \beta_{1} = 1.3, \beta_{2} = 1.25, \beta_{3} = 1.25 \beta_{1} = 1.3, \beta_{2} = 1.25, \beta_{3} = 1.25
    H_{1} \left[ \begin{array}{cc} 0.2088&\star\\ -0.0879&0.2651 \end{array} \right] \left[ \begin{array}{cc} 0.3353&\star\\ -0.4369&0.5743 \end{array} \right]
    H_{2} \left[ \begin{array}{cc} 0.2881&\star\\ -0.0852&0.3315 \end{array} \right] \left[ \begin{array}{cc} 0.3335&\star\\ -0.2775&0.3993 \end{array} \right]
    H_{3} \left[ \begin{array}{cc} 0.2444&\star\\ -0.0972&0.3359 \end{array} \right] \left[ \begin{array}{cc} 1.6078&\star\\ -3.5011&7.6239 \end{array} \right]
    Signal \tau^{\ast}_{a\Phi_{I1}} = 2.022 \tau^{\ast}_{a1} = 3.7570
    design \tau^{\ast}_{a\Phi_{I2}} = 3.4085 \tau^{\ast}_{a2} = 4.5531
    \tau^{\ast}_{a\Phi_{I3}} = 2.5516 \tau^{\ast}_{a3} = 3.0000
    Signal \tau_{1} = 2.1 \tau_{1} = 3.8
    instance \tau_{2} = 3.6 \tau_{2} = 4.6
    \tau_{3} = 2.6 \tau_{3} = 3.1

     | Show Table
    DownLoad: CSV

    (Ⅰ) For \mathfrak{O} = \{1\} (\Phi_{I1} = \{1, 2, 3\}) and \mathfrak{O} = \{1, 2, 3\} (\Phi_{I1} = \{1\}, \Phi_{I2} = \{2\}, \Phi_{I3} = \{3\}) cases, we can obtain the IDT and MDIDT strategies, respectively.

    (Ⅱ) For different \Phi_{I} , the \Phi DIDT method provides the different results of admissible signals with their own merits. Let \mathfrak{O} = \{1, 2\} , for case (ⅰ): \Phi_{I1} = \{1, 2\} , \Phi_{I2} = \{3\} , the 1st and 2nd modes have IDT \geq3.0200 and the 3rd mode has IDT \geq2.4393 ; for case (ⅱ): \Phi_{I1} = \{1, 3\} , \Phi_{I2} = \{2\} , the 1st and 3rd modes have IDT \geq3.4085 , and the 2nd mode has IDT \geq2.5516 ; for case (ⅲ): \Phi_{I1} = \{2, 3\} , \Phi_{I2} = \{1\} , the 2nd and 3rd modes have IDT \geq3.1672 , and the 1st mode has IDT \geq2.3124 .

    (Ⅲ) A fact can be shown from Table 2, and some different stability results with their own advantages can be obtained by choosing different (\Phi_{I}, \mathfrak{O}) . So we can't decide which is better.

    (Ⅳ) The IDT strategy only focuses on the compensation effect between subsystems but does not pay attention to the difference between subsystems. On the contrary, the MDIDT strategy mainly notices the differences between systems but does not consider the compensation between subsystems. For the three cases of \mathfrak{O} = \{1, 2\} , we think about not only the differences between the 2nd and 3rd subsystems, the 1st and 3rd subsystems, and the 1st and 2nd subsystems and the rest of the subsystems, but also the compensation effect between them. Thus, the \Phi DIDT results cover the IDT and MDIDT ones, which can be shown in Table 2.

    (Ⅴ) It follows from Table 3 that the MDIDT has a smaller value of \tau^{\ast}_{a\Phi_{\gamma}} than the MDIDT value \tau^{\ast}_{a\nu} in the literature [29]. Let \mu_{11} = 2 , \mu_{21} = 0.3 , \mu_{12} = 2 , \mu_{22} = 0.6 , \mu_{13} = 2 , \mu_{23} = 0.6 , and \Delta L = 2 . By solving the conditions in our Theorem 3.1, we can obtain \tau^{\ast}_{a\Phi _{I1}} = 2.0200 , \tau^{\ast}_{a\Phi_{I2} } = 3.4085 , and \tau^{\ast}_{a\Phi_{I3}} = 2.5516 . Letting \mu_{11} = 2 , \mu_{12} = 2 , \mu_{13} = 2 , and \Delta L = 2 , we can obtain \tau^{\ast}_{a1} = 3.7570 , \tau^{\ast}_{a2} = 4.5531 , and \tau^{\ast}_{a3} = 3.0000 by Theorem 1 in the literature [29]. So the new result has a larger feasible region than the result in the literature [29].

    Figure 1(a).  The switching signal \theta^{1}(k) .
    Figure 1(b).  The state response of the system under \theta^{1}(k) .
    Figure 2(a).  The switching signal \theta^{2}(k) .
    Figure 2(b).  The state response of the system under \theta^{2}(k) .
    Figure 3(a).  The switching signal \theta^{3}(k) .
    Figure 3(b).  The state response of the system under \theta^{3}(k) .
    Figure 4(a).  The switching signal \theta^{4}(k) .
    Figure 4(b).  The state response of the system under \theta^{4}(k) .
    Figure 5(a).  The switching signal \theta^{5}(k) .
    Figure 5(b).  The state response of the system under \theta^{5}(k) .

    In this paper, a new switching strategy \Phi DIDT has been proposed and a new MCLF has been introduced for the asynchronous control problem of a class of discrete-time switched linear systems. Different from the existing studies, the paper considers that Lyapunov functions may jump when both the subsystem switches or the controller changes. A numerical example makes some comparisons among different switching strategies to demonstrate the effectiveness of the presented techniques.

    Although the methods and techniques presented in this paper are applied to discrete-time switched systems, they are also applicable to continuous-time cases by adjusting the Lyapunov function appropriately, which is our work at hand. In addition, these methods and technologies are expected to be extended to T-S fuzzy systems, Markov jump systems, etc., which are some of the future research directions. On the other hand, some improved forms of ADT/MDADT/ \Phi DADT, such as persistent DT [2,33], weighted ADT [15] and binary F-dependent ADT [34] have been proposed. Therefore, extending the techniques of this paper to the corresponding persistent IDT/weighted IDT/binary F-dependent IDT forms is another meaningful follow-up work.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    Supported by Fundamental Research Program of Shanxi Province (202103021224249) and Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province (20220023).

    The authors declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.



    [1] V. Berinde, Iterative approximation of fixed point, Berlin: Springer, 2007.
    [2] M. Samreen, T. Kamran, M. Postolache, Extended b-metric space, extended b-comparison function and nonlinear contractions, U. Politech. Buch. Ser. A, 80 (2018), 21–28
    [3] E. Karapınar, D. O'Regan, A. Roldan, N. Shahzad, Fixed point theorems in new generalized metric spaces, Fixed Point Theory Appl., 18 (2016), 645–671, https://doi.org/10.1007/s11784-016-0301-4 doi: 10.1007/s11784-016-0301-4
    [4] D. Dumitrescu, A. Pitea, Fixed point theorems on almost (\varphi, \theta)-contractions in Jleli-Samet generalized metric spaces, Mathematics, 10 (2022). https://doi.org/10.3390/math10224239 doi: 10.3390/math10224239
    [5] H. H. Alsulami, S. Chandok, M. A. Taoudi, I. M. Erhan, Some fixed point theorems for (\alpha, \psi)-rational type contractive mappings, Fixed Point Theory Appl., 2015 (2015), 97. https://doi.org/10.1186/s13663-015-0332-3 doi: 10.1186/s13663-015-0332-3
    [6] I. A. Bakhtin, The contraction mapping principle in almost metric spaces, Funct. Anal. Gos. Ped. Inst. Unianowsk, 30 (1989), 26–37
    [7] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav., 1 (1993), 5–11
    [8] T. Kamran, M. Samreen, Q. U. Ain, A generalization of b-metric space and some fixed point theorems, Mathematics, 5 (2017). https://doi.org/10.3390/math5020019 doi: 10.3390/math5020019
    [9] P. Hitzler, A. K. Seda, Dislocated topologies, J. Electr. Engng., 51 (2000), 3–7.
    [10] M. U. Ali, T. Kamran, M. Postolache, Solution of Volterra integral inclusion in b-metric spaces via new fixed point theorem, Nonlinear Anal. Model. Control, 22 (2017), 389–400. https://doi.org/10.15388/NA.2017.1.2 doi: 10.15388/NA.2017.1.2
    [11] W. Shatanawi, Fixed and common fixed point for mappings satisfying some nonlinear contractions in b-metric spaces, J. Math. Anal., 7 (2016), 1–12
    [12] G. Okeke, D. Francis, M. de la Sen, Some fixed point theorems for mappings satisfying rational inequality in modular metric spaces with application, Helyion, 6 (2020), 1–12, https://doi.org/10.1016/j.heliyon.2020.e04785 doi: 10.1016/j.heliyon.2020.e04785
    [13] A. Nowakowski, R. Plebaniak, Fixed point theorems and periodic problems for nonlinear Hill's equation, Nonlinear Differ. Equ. Appl., 30 (2023), 16. https://doi.org/10.1007/s00030-022-00825-9 doi: 10.1007/s00030-022-00825-9
    [14] M. Aslantas, H. Sahin, D. Turkoglu, Some Caristi type fixed point theorems, J. Anal., 29 (2021), 89–103. https://doi.org/10.1007/s41478-020-00248-8 doi: 10.1007/s41478-020-00248-8
    [15] M. Aslantas, H. Sahin, U. Sadullah, Some generalizations for mixed multivalued mappings, Appl. Gen. Topol., 23 (2021), 169–178. https://doi.org/10.4995/agt.2022.15214 doi: 10.4995/agt.2022.15214
    [16] A. V. Arutyunov, A. V. Greshnov, (q_1, q_2)-quasimetric spaces. Covering mappings and coincidence points, Izvestiya Math., 82 (2018), 245–272. https://doi.org/10.1070/IM8546 doi: 10.1070/IM8546
    [17] A. V. Greshnov, V. Potapov, About coincidence points theorems on 2-step Carnot groups with 1-dimensional centre equipped with Box-quasimetrics, AIMS Math., 8 (2023), 6191–6205. https://doi.org/10.3934/math.2023313 doi: 10.3934/math.2023313
    [18] M. Jleli, B. Samet, A generalized metric space and related fixed point theorems, Fixed Point Theory Appl., 2015 (2015), 61. https://doi.org/10.1186/s13663-015-0312-7 doi: 10.1186/s13663-015-0312-7
    [19] I. Altun, B. Samet, Pseudo Picard operators on generalized metric spaces, Appl. Anal. Discrete Math., 12 (2018), 389–400. https://doi.org/10.2298/AADM170105008A doi: 10.2298/AADM170105008A
    [20] E. Karapınar, B. Samet, D. Zhang, Meir-Keeler type contractions on JS-metric spaces and related fixed point theorems, Fixed Point Theory Appl., 20 (2018), 60. https://doi.org/10.1007/s11784-018-0544-3 doi: 10.1007/s11784-018-0544-3
    [21] T. Senapati, L. K. Dey, D. Dolićanin Dekić, Extentions of Ćirić and Wardowski type fixed point theorems in D-generalized metric spaces, Fixed Point Theory Appl., 2016 (2016), 33. https://doi.org/10.1186/s13663-016-0522-7 doi: 10.1186/s13663-016-0522-7
    [22] X. Wu, L. Zhao, Fixed point theorems for generalized alpha-psi type contractive mappings in b-metric spaces and applications, J. Math. Comput. Sci., 18 (2018), 49–62. https://doi.org/10.22436/jmcs.018.01.06 doi: 10.22436/jmcs.018.01.06
    [23] S. Thounaojam, R. Yumnam, N. Mlaiki, M. Bina, H. Nawab, R. Doaa, On fixed points of rational contractions in generalized parametric metric and fuzzy metric spaces, J. Inequal. Appl., 2021 (2021), 125. https://doi.org/10.1186/s13660-021-02661-4 doi: 10.1186/s13660-021-02661-4
    [24] A. Deshmukh, D. Gopal, Topology of non-triangular metric spaces and related fixed point results, Filomat, 35 (2021), 3557–3570. https://doi.org/10.2298/FIL2111557D doi: 10.2298/FIL2111557D
    [25] S. Panja, K. Roy, M. Paunović, M. Saha, V. Parvaneh, Fixed points of weakly K-nonexpansive mappings and a stability result for fixed point iterative process with an application, J. Inequal. Appl., 2022 (2022), 90. https://doi.org/10.1186/s13660-022-02826-9 doi: 10.1186/s13660-022-02826-9
    [26] G. Mani, G. Janardhanan, O. Ege, A. J. Gnanaprakasam, M. De la Sen, Solving a boundary value problem via fixed-point theorem on ®-metric space, Symmetry, 14 (2022), 2518. https://doi.org/10.3390/sym14122518 doi: 10.3390/sym14122518
    [27] M. Paunović, S. H. Bonab, V. Parvaneh, F. Golkarmanesh, Soft computing: recent advances and applications in engineering and mathematical sciences, Boca Raton: CRC Press, 2023.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1768) PDF downloads(84) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog