Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Research article Special Issues

Multiple positive solutions for system of mixed Hadamard fractional boundary value problems with (p1,p2)-Laplacian operator

  • Received: 03 March 2023 Revised: 11 April 2023 Accepted: 12 April 2023 Published: 21 April 2023
  • MSC : 34A08, 34B15, 34B18, 34B27

  • In this paper, we investigate the existence of positive solutions of a system of Riemann-Liouville Hadamard differential equations with p-Laplacian operators under various combinations of superlinearity and sublinearity. We apply the Guo-Krasnosel'skii fixed point theorem for the proof of the existence results.

    Citation: Sabbavarapu Nageswara Rao, Abdullah Ali H. Ahmadini. Multiple positive solutions for system of mixed Hadamard fractional boundary value problems with (p1,p2)-Laplacian operator[J]. AIMS Mathematics, 2023, 8(6): 14767-14791. doi: 10.3934/math.2023755

    Related Papers:

    [1] Dan Yang, Jinchao Yu, Jingjing Zhang, Xiaoying Zhu . A class of hypersurfaces in En+1s satisfying ΔH=λH. AIMS Mathematics, 2022, 7(1): 39-53. doi: 10.3934/math.2022003
    [2] Mutaz Al-Sabbagh . Surfaces of coordinate finite II-type. AIMS Mathematics, 2025, 10(3): 6258-6269. doi: 10.3934/math.2025285
    [3] Yanlin Li, Erhan Güler, Magdalena Toda . Family of right conoid hypersurfaces with light-like axis in Minkowski four-space. AIMS Mathematics, 2024, 9(7): 18732-18745. doi: 10.3934/math.2024911
    [4] Derya Sağlam, Cumali Sunar . Translation hypersurfaces of semi-Euclidean spaces with constant scalar curvature. AIMS Mathematics, 2023, 8(2): 5036-5048. doi: 10.3934/math.2023252
    [5] Mohammed Guediri, Sharief Deshmukh . Hypersurfaces in a Euclidean space with a Killing vector field. AIMS Mathematics, 2024, 9(1): 1899-1910. doi: 10.3934/math.2024093
    [6] Hanan Alohali, Sharief Deshmukh . Some generic hypersurfaces in a Euclidean space. AIMS Mathematics, 2024, 9(6): 15008-15023. doi: 10.3934/math.2024727
    [7] Yanlin Li, Nasser Bin Turki, Sharief Deshmukh, Olga Belova . Euclidean hypersurfaces isometric to spheres. AIMS Mathematics, 2024, 9(10): 28306-28319. doi: 10.3934/math.20241373
    [8] Hassan Al-Zoubi, Bendehiba Senoussi, Mutaz Al-Sabbagh, Mehmet Ozdemir . The Chen type of Hasimoto surfaces in the Euclidean 3-space. AIMS Mathematics, 2023, 8(7): 16062-16072. doi: 10.3934/math.2023819
    [9] Sharief Deshmukh, Mohammed Guediri . Characterizations of Euclidean spheres. AIMS Mathematics, 2021, 6(7): 7733-7740. doi: 10.3934/math.2021449
    [10] Jin Liu, Botao Wang . A rigidity result for 2-dimensional λ-translators. AIMS Mathematics, 2023, 8(10): 24947-24956. doi: 10.3934/math.20231272
  • In this paper, we investigate the existence of positive solutions of a system of Riemann-Liouville Hadamard differential equations with p-Laplacian operators under various combinations of superlinearity and sublinearity. We apply the Guo-Krasnosel'skii fixed point theorem for the proof of the existence results.



    Chen [11,12,13,14] originally proposed the notion of submanifolds of finite order immersed in m-space Em or pseudo-Euclidean m -space Emν employing a finite number of eigenfunctions of their Laplacian. This subject has subsequently undergone thorough investigation.

    Takahashi established that a Euclidean submanifold is classified as 1-type if and only if it is minimal or minimal within a hypersphere of Em. The study of 2-type submanifolds on closed spheres was conducted by [9,10,12]. Garay further [26] examined Takahashi's theorem in Em. Cheng and Yau [18] focused on hypersurfaces with constant curvature, while Chen and Piccinni [15] concentrated on submanifolds with a Gauss map of finite type in Em. Dursun [22] introduced hypersurfaces with a pointwise 1-type Gauss map in En+1. Aminov [2] delved into the geometry of submanifolds. Within the domain of space forms, Chen et al. [16] dedicated four decades to the investigation of 1-type submanifolds and the 1-type Gauss map.

    In E3, Takahashi [43] explored the concept of minimal surfaces, where spheres and minimal surfaces with Δr=λr, λR are the exclusive types of surfaces. Ferrandez et al. [23] identified that surfaces ΔH=A3×3H are either the minimal sections of a sphere or a right circular cylinder. Choi and Kim [19] examined the minimal helicoid with a pointwise 1-type Gauss map of the first kind. Garay [25] derived a category of finite type surfaces that are revolution-based. Dillen et al. [20] investigated the unique surfaces characterized by Δr=A3×3r+B3×1, which include minimal surfaces, spheres, and circular cylinders. Stamatakis and Zoubi [42] established the properties of surfaces of revolution defined by ΔIIIx=A3×3x. Kim et al. [36] focused on the Cheng-Yau operator and the Gauss map of surfaces of revolution.

    In E4, Moore [40,41] conducted two studies on general rotational surfaces. Hasanis and Vlachos [35] examined hypersurfaces with a harmonic mean curvature vector field. Cheng and Wan [17] focused on complete hypersurfaces with constant mean curvature. Arslan et al. [3] explored the Vranceanu surface with a pointwise 1-type Gauss map. Arslan et al. [4] investigated generalized rotational surfaces and [5] introduced tensor product surfaces with a pointwise 1-type Gauss map. Yoon [44] established certain relations involving the Clifford torus. Güler et al. [30] delved into helicoidal hypersurfaces, while Güler et al. [29] studied the Gauss map and the third Laplace-Beltrami operator of rotational hypersurfaces. Güler [28] investigated rotational hypersurfaces characterized by ΔIR=A4×4R. Furthermore, Güler [27] obtained the fundamental form IV and curvature formulas of the hypersphere.

    In Minkowski 4-space E41, Ganchev and Milousheva [24] explored the analogous surfaces to those in [40,41]. Arvanitoyeorgos et al. [8] investigated the mean curvature vector field, where they established ΔH=αH with a constant α. Arslan and Milousheva [6] focused on meridian surfaces of elliptic or hyperbolic type with a pointwise 1-type Gauss map. Arslan et al. [7] examined rotational λ-hypersurfaces in Euclidean spaces. Güler et al. [31,32,33,34] worked the concept of bi-rotational hypersurfaces. Li and Güler studied a family of hypersurfaces of revolution distinguished by four parameters in the five-dimensional pseudo-Euclidean space E52 [39].

    The aim of this paper is to present a family of hypersurfaces of revolution in the seven-dimensional pseudo-Euclidean space E73. This family, denoted as r, is characterized by six parameters. The paper focuses on computing various matrices associated with r, including the fundamental form, Gauss map, and shape operator. The Cayley-Hamilton theorem is employed to determine the curvatures of r. Furthermore, the paper establishes equations that describe the relationship between the mean curvature and Gauss-Kronecker curvature of r. Additionally, the paper explores the connection between the Laplace-Beltrami operator of r and a 7×7 matrix.

    In Section 2, we provide an explanation of the fundamental concepts of seven-dimensional pseudo-Euclidean geometry.

    Section 3 is dedicated to presenting the curvature formulas of a hypersurface in E73.

    In Section 4, we offer a comprehensive definition of the hypersurfaces of revolution family, focusing on their properties and characteristics.

    In Section 5, we discuss the Laplace-Beltrami operator of a smooth function in E73 and utilize the previously discussed family to compute it.

    Finally, we serve a conclusion in the last section.

    In this paper, we use the following notations, formulas, eqations, etc.

    For clarity, Emv represents a pseudo-Euclidean m-space with coordinates denoted as (x1,x2,,xm) with index v. The canonical pseudo-Euclidean metric tensor on Emv is represented by ˜g and defined as ˜g= =vi=1dx2i+mi=v+1dx2i. Let ˜M be an m-dimensional semi-Riemannian submanifold, and is embedded in Emv, and the Levi-Civita connections [38] associated with M are denoted as ˜,, respectively. We utilize X,Y,Z, and W to denote vector fields tangent to M, and ξ,ς to represent vector fields normal to M.

    The Gauss formula and the Weingarten formula is given by

    ˜XY=XY+h(X,Y), ˜Xξ=Aξ(X)+DXξ,

    where h represents the second fundamental form of M, A denotes the shape operator, and D corresponds to the normal connection of M. The shape operator Aξ is a symmetric endomorphism of the tangent space TpM at each point pM for each ξTpM. The shape operator and the second fundamental form are related by the equation.

    h(X,Y),ξ=AξX,Y.

    The Gauss equation is determined by

    R(X,Y,)Z,W=h(Y,Z),h(X,W)h(X,Z),h(Y,W),

    where R describes the curvature tensor associated with the Levi-Civita connection , and h denotes the second fundamental form of M. The Codazzi equation is given by

    (ˉXh)(Y,Z)=(ˉYh)(X,Z),

    where ˉh denotes the covariant derivative of h w.r.t. the Levi-Civita connection , and X,Y,Z represent tangent vector fields on M. The curvature tensor RD associated with the normal connection D is not explicitly mentioned in the given equations. The covariant derivative of h is defined by

    (ˉXh)(Y,Z)=DXh(Y,Z)h(XY,Z)h(Y,XZ),

    where D represents the normal connection of M.

    Let M be an oriented hypersurface in En+1 with its shape operator S, and position vector x. Consider a local orthonormal frame field {e1,e2,,en} consisting of principal directions of M coinciding with the principal curvature ki for i=1,2,,n. Let the dual basis of this frame field be {f1,f2,,fn}. Then, the first structural equation of Cartan is determined by

    dθi=ni=1θjωij,i,j=1,2,,n,

    where ωij indicates the connection forms coinciding with the chosen frame field. By the Codazzi equation, we derive the equations.

    ei(kj)=ωij(ej)(kikj),ωij(el)(kikj)=ωil(ej)(kikl)

    for different i,j,l=1,2,,n.

    We let sj=σj(k1,k2,,kn), where σj denotes the j-th elementary symmetric function defined by

    σj(a1,a2,,an)=1i1<i2<<ijnai1ai2aij.

    We consider the notation

    rji=σj(k1,k2,,ki1,ki+1,ki+2,,kn).

    According to the given definition, we have r0i=1 and sn+1=sn+2==0. The function sk is referred to as the k -th mean curvature of the oriented hypersurface M. The mean curvature H=1ns1 is also defined, and the Gauss-Kronecker curvature of M is K=sn. If sj0, the hypersurface M is known as j -minimal.

    In Euclidean (n+1)-space, getting the i-th curvature formulas Ki (see [1,37] for details), where i=0,,n, we have the following characteristic polynomial equation PS(λ)=0 of S:

    nk=0(1)kskλnk=det(SλIn)=0. (2.1)

    Here i=0,,n, In indicates the identity matrix. Hence, we reveal the curvature formulas as (ni)Ki=si.

    Let r=r(u,v,w,α,β,γ) be an immersion from M6E6 to E73.

    Definition 1. An inner product of υ1=(υ11,υ12,,υ17),, υ2=(υ21,υ22,,υ27) of E73 is determined by

    υ1,υ2=υ11υ21υ12υ22+υ13υ23υ14υ24+υ15υ25υ16υ26+υ17υ27.

    Definition 2. A sixtuple vector product of υ1=(υ11,υ12,,υ17), υ2=(υ21,υ22,,υ27),, υ6=(υ61,υ62,,υ67) of E73 is defined by

    υ1×υ2××υ6=det(e1e2e3e4e5e6e7υ11υ12υ13υ14υ15υ16υ17υ21υ22υ23υ24υ25υ26υ27υ31υ32υ33υ34υ35υ36υ37υ41υ42υ43υ44υ45υ46υ47υ51υ52υ53υ54υ55υ56υ57υ61υ62υ63υ64υ65υ66υ67).

    Definition 3. The product matrix (gij)1· (hij) describes the shape operator matrix S of hypersurface r in pseudo-Euclidean 7-space E73,  where, (gij)6×6 and (hij)6×6 describe the first and the second fundamental form matrices, respectively, and gij=ri,rj, hij=rij,G, i,j=1,2,,6, ru=ru when i=1, ruv=2ruv when i=1 and j=2, etc., ek denotes the natural base elements of E7. Here,

    G=ru×rv×rw×rα×rβ×rγ (2.2)

    determines the Gauss map of the hypersurface \mathfrak{r} .

    In this section, we reveal the curvature formulas of any hypersurface \mathfrak{r} = \mathfrak{r}(u, v, w, \alpha, \beta, \gamma) in \mathbb{E}_{3}^{7}.

    Theorem 1. A hypersurface \mathfrak{r} in \mathbb{E}_{3}^{7} has the following curvature formulas, \mathcal{K}_{0} = 1 by definition,

    \begin{equation} 6\mathcal{K}_{1} = -\frac{\mathfrak{a}_{5}}{\mathfrak{a}_{6}},{\text{ }}15 \mathcal{K}_{2} = \frac{\mathfrak{a}_{4}}{\mathfrak{a}_{6}},{\text{ }}20\mathcal{ K}_{3} = -\frac{\mathfrak{a}_{3}}{\mathfrak{a}_{6}},{\text{ }}15\mathcal{K}_{4} = \frac{\mathfrak{a}_{2}}{\mathfrak{a}_{6}},{\text{ }}6\mathcal{K}_{5} = -\frac{ \mathfrak{a}_{1}}{\mathfrak{a}_{6}},{\text{ }}\mathcal{K}_{6} = \frac{\mathfrak{a }_{0}}{\mathfrak{a}_{6}}, \end{equation} (3.1)

    where \mathfrak{a}_{6}\lambda ^{6}+\mathfrak{a}_{5}\lambda ^{5}+ \mathfrak{a}_{4}\lambda ^{4}+\mathfrak{a}_{3}\lambda ^{3}+\mathfrak{a} _{2}\lambda ^{2}+\mathfrak{a}_{1}\lambda +\mathfrak{a}_{0} = 0 denotes the characteristic polynomial equation P_{\mathcal{S}}(\lambda) = 0 of the shape operator matrix \mathcal{S} , \mathfrak{a} _{6} = \det \left(\mathfrak{g}_{ij}\right) , \mathfrak{a}_{0} = \det \left(\mathfrak{h}_{ij}\right) , and \left(\mathfrak{g} _{ij}\right) , \left(\mathfrak{h}_{ij}\right) are the first, and the second fundamental form matrices, respectively.

    Proof. The solution matrix \left(\mathfrak{g}_{ij}\right) ^{-1} · \left(\mathfrak{h}_{ij}\right) supplies the shape operator matrix \mathcal{S} of hypersurface \mathfrak{r} in pseudo-Euclidean 7-space \mathbb{E}_{3}^{7} . In \mathbb{E} _{3}^{7} , computing the curvature formula \mathcal{K}_{i} , where i = 0, 1, \cdots, 6, we reveal the characteristic polynomial equation \det (\mathcal{S} -\lambda \mathcal{I}_{6}) = 0 of \mathcal{S} . Then, we obtain

    \begin{eqnarray*} \binom{6}{0}\mathcal{K}_{0} & = &1, \\ \binom{6}{1}\mathcal{K}_{1} & = &\sum\limits_{i = 1}^{6}k_{i} = -\frac{\mathfrak{a} _{5}}{\mathfrak{a}_{6}}, \\ \binom{6}{2}\mathcal{K}_{2} & = &\sum\limits_{1 = i_{1} < i_{2}}^{6}k_{i_{1}}k_{i_{2}} = \frac{\mathfrak{a}_{4}}{ \mathfrak{a}_{6}}, \\ \binom{6}{3}\mathcal{K}_{3} & = &\sum\limits_{1 = i_{1} < i_{2} < i_{3}}^{6}k_{i_{1}}k_{i_{2}}k_{i_{3}} = -\frac{ \mathfrak{a}_{3}}{\mathfrak{a}_{6}}, \\ \binom{6}{4}\mathcal{K}_{4} & = &\sum \limits_{1 = i_{1} < i_{2} < i_{3} < i_{4}}^{6}k_{i_{1}}k_{i_{2}}k_{i_{3}}k_{i_{4}} = \frac{\mathfrak{a}_{2}}{\mathfrak{a}_{6}}, \\ \binom{6}{5}\mathcal{K}_{5} & = &\sum \limits_{1 = i_{1} < i_{2} < i_{3} < i_{4} < i_{5}}^{6}k_{i_{1}}k_{i_{2}}k_{i_{3}}k_{i_{4}}k_{i_{5}} = - \frac{\mathfrak{a}_{1}}{\mathfrak{a}_{6}}, \\ \binom{6}{6}\mathcal{K}_{6} & = &\prod\limits_{i = 1}^{6}k_{i} = \frac{\mathfrak{a} _{0}}{\mathfrak{a}_{6}}. \end{eqnarray*}

    Definition 4. A space-like hypersurface \mathfrak{r} is called j -maximal if \mathcal{K}_{j} = 0 , where j = 1, ..., 6.

    Theorem 2. A hypersurface \mathfrak{r} = \mathfrak{r} (u, v, w, \alpha, \beta, \gamma) in \mathbb{E}_{3}^{7} has the following relation

    \begin{equation*} \mathcal{K}_{0}\mathbb{VII}-6\mathcal{K}_{1}\mathbb{VI}+15\mathcal{K}_{2} \mathbb{V}-20\mathcal{K}_{3}\mathbb{IV}+15\mathcal{K}_{4}\mathbb{III}-6 \mathcal{K}_{5}\mathbb{II}+\mathcal{K}_{6}\mathbb{I} = \mathcal{O}_{6}, \end{equation*}

    where \mathbb{I}, \mathbb{II}, \cdots, \mathbb{VII} determines the fundamental form matrices, \mathcal{O}_{6} represents the zero matrix having order 6\times 6 of the hypersurface.

    Proof. Regarding n = 6 in \left(2.1\right) , it works.

    In this section, we define the hypersurfaces of revolution family (HRF), then find its differential geometric properties in pseudo-Euclidean 7-space \mathbb{E}_{3}^{7} . An HR in Riemannian space forms were given in [21].

    An HRF M of Euclidean \left(n+1\right) -space constructed by a hypersurface \hbar around rotating axis \mathcal{\ell } does not meet \hbar is acquired by taking the orbit of \mathcal{\ell } under the orthogonal transformations of \left(n+1\right) -space.

    To consctruct an HRF, we start with the generating hypersurface given by \hbar = \hbar \left(u, v, w\right) = \left(\eta, 0, \psi, 0, \phi, 0, \varphi \right), and apply the rotation matrix \mathfrak{R} = diag \left(\mathcal{R}_{\alpha }, \mathcal{R}_{\beta }, \mathcal{R}_{\gamma }, 1\right) with the elements given by \mathcal{R}_{k} = \left(\begin{array}{cc} \cosh k & \sinh k \\ \sinh k & \cosh k \end{array} \right), k = \alpha, \beta, \gamma, respectively, and \mathfrak{R}{\text{ · }}\mathcal{\ell } = \mathcal{\ell } , \det \mathfrak{R} = 1. Therefore, we state the HRF given by \mathfrak{r} = \mathfrak{R} · \hbar ^{T} when \hbar rotates about axis \mathcal{ \ell } = \overrightarrow{e_{7}} = (0, 0, 0, 0, 0, 0, 1). We then present the following.

    Definition 5. An HRF is an immersion \mathfrak{r} : M^{6} \subset \mathbb{E}^{6}\longrightarrow \mathbb{E}_{3}^{7} with rotating axis \overrightarrow{e_{7}} , defined by

    \begin{equation} \mathfrak{r}(u,v,w,\alpha ,\beta ,\gamma ) = \left( \eta \cosh \alpha ,\eta \sinh \alpha ,\psi \cosh \beta ,\psi \sinh \beta ,\phi \cosh \gamma ,\phi \sinh \gamma ,\varphi \right) , \end{equation} (4.1)

    where \eta, \psi, \phi, \varphi denote the differentiable functions, depend on u, v, w\in \mathbb{R} , 0\leq \alpha, \beta, \gamma < 2\pi.

    Considering the first derivatives of HRF given by Eq \left(4.1\right) w.r.t. u, v, w, \alpha, \beta, \gamma, respectively, we find the symmetical first fundamental form matrix

    \begin{equation} \left( \mathfrak{g}_{ij}\right) = {\text{diag}}\left( \begin{array}{cccc} \left( \mathfrak{g}_{kl}\right) _{3\times 3}, & \mathfrak{g}_{44}, & \mathfrak{g}_{55}, & \mathfrak{g}_{66} \end{array} \right) , \end{equation} (4.2)

    where

    \begin{eqnarray*} \mathfrak{g}_{11} & = &\eta _{u}^{2}+\psi _{u}^{2}+\phi _{u}^{2}+\varphi _{u}^{2}, \\ \mathfrak{g}_{12} & = &\eta _{u}\eta _{v}+\psi _{u}\psi _{v}+\phi _{u}\phi _{v}+\varphi _{u}\varphi _{v}, \\ \mathfrak{g}_{13} & = &\eta _{u}\eta _{w}+\psi _{u}\psi _{w}+\phi _{u}\phi _{w}+\varphi _{u}\varphi _{w}, \\ \mathfrak{g}_{22} & = &\eta _{v}^{2}+\psi _{v}^{2}+\phi _{v}^{2}+\varphi _{v}^{2}, \\ \mathfrak{g}_{23} & = &\eta _{v}\eta _{w}+\psi _{v}\psi _{w}+\phi _{v}\phi _{w}+\varphi _{v}\varphi _{w}, \\ \mathfrak{g}_{33} & = &\eta _{w}^{2}+\psi _{w}^{2}+\phi _{w}^{2}+\varphi _{w}^{2}, \\ \mathfrak{g}_{44} & = &\eta ^{2},{\text{ }}\mathfrak{g}_{55} = \psi ^{2},{\text{ }} \mathfrak{g}_{66} = \phi ^{2}, \end{eqnarray*}

    and \eta _{u} = \frac{\partial \eta }{\partial u}, \eta _{v} = \frac{\partial \eta }{\partial v}, \eta _{u}^{2} = \frac{\partial ^{2}\eta }{\partial u^{2}}, etc. Hence, {\bf{\hat{g}}} = \det \left(\mathfrak{g}_{ij}\right) = \eta ^{2}\psi ^{2}\phi ^{2}\mathcal{Q}, where

    \begin{equation*} \mathcal{Q} = \left( {\mathcal{G}}_{1}\right) ^{2}+\left( {\mathcal{G}} _{2}\right) ^{2}+\left( {\mathcal{G}}_{3}\right) ^{2}+\left( {\mathcal{G}} _{4}\right) ^{2}, \end{equation*}

    and

    \begin{eqnarray*} {\mathcal{G}}_{1} & = &\left( \psi _{v}\phi _{w}-\psi _{w}\phi _{v}\right) \varphi _{u}+\left( \psi _{w}\phi _{u}-\psi _{u}\phi _{w}\right) \varphi _{v}+\left( \psi _{u}\phi _{v}-\psi _{v}\phi _{u}\right) \varphi _{w}, \\ {\mathcal{G}}_{2} & = &\left( \eta _{v}\phi _{w}-\eta _{w}\phi _{v}\right) \varphi _{u}+\left( \eta _{w}\phi _{u}-\eta _{u}\phi _{w}\right) \varphi _{v}+\left( \eta _{u}\phi _{v}-\eta _{v}\phi _{u}\right) \varphi _{w}, \\ {\mathcal{G}}_{3} & = &\left( \eta _{v}\psi _{w}-\eta _{w}\psi _{v}\right) \varphi _{u}+\left( \eta _{w}\psi _{u}-\eta _{u}\psi _{w}\right) \varphi _{v}+\left( \eta _{u}\psi _{v}-\eta _{v}\psi _{u}\right) \varphi _{w}, \\ {\mathcal{G}}_{4} & = &\left( \eta _{w}\psi _{v}-\eta _{v}\psi _{w}\right) \phi _{u}+\left( \eta _{u}\psi _{w}-\eta _{w}\psi _{u}\right) \phi _{v}+\left( \eta _{v}\psi _{u}-\eta _{u}\psi _{v}\right) \phi _{w}. \end{eqnarray*}

    Since {\bf{\hat{g}}} > 0 , the HRF given by Eq \left(4.1 \right) is a space-like hypersurface.

    Using \left(2.2\right), we obtain the following Gauss map of the HRF determined by Eq \left(4.1\right) :

    \begin{equation} {\mathcal{G}} = \mathcal{Q}^{-1/2}\left( {\mathcal{G}}_{1}\cosh \alpha ,{ \mathcal{G}}_{1}\sinh \alpha ,{\mathcal{G}}_{2}\cosh \beta ,{\mathcal{G}} _{2}\sinh \beta ,{\mathcal{G}}_{3}\cosh \gamma ,{\mathcal{G}}_{3}\sinh \gamma ,{\mathcal{G}}_{4}\right) . \end{equation} (4.3)

    With the help of the second derivatives w.r.t. u, v, w, \alpha, \beta, \gamma, of HRF described by Eq \left(4.1\right), and by using the Gauss map given by Eq \left(4.3\right) , we reveal the following symmetical second fundamental form matrix

    \begin{equation} \left( \mathfrak{h}_{ij}\right) = {\text{diag}}\left( \begin{array}{cccc} \left( \mathfrak{h}_{kl}\right) _{3\times 3}, & \mathfrak{h}_{44}, & \mathfrak{h}_{55}, & \mathfrak{h}_{66} \end{array} \right) , \end{equation} (4.4)

    where

    \begin{eqnarray*} \mathfrak{h}_{11} & = &\mathcal{Q}^{-1/2}\left( {\mathcal{G}}_{1}\eta _{uu}+{ \mathcal{G}}_{2}\psi _{uu}+{\mathcal{G}}_{3}\phi _{uu}+{\mathcal{G}} _{4}\varphi _{uu}\right) , \\ \mathfrak{h}_{12} & = &\mathcal{Q}^{-1/2}\left( {\mathcal{G}}_{1}\eta _{uv}+{ \mathcal{G}}_{2}\psi _{uv}+{\mathcal{G}}_{3}\phi _{uv}+{\mathcal{G}} _{4}\varphi _{uv}\right) , \\ \mathfrak{h}_{13} & = &\mathcal{Q}^{-1/2}\left( {\mathcal{G}}_{1}\eta _{uw}+{ \mathcal{G}}_{2}\psi _{uw}+{\mathcal{G}}_{3}\phi _{uw}+{\mathcal{G}} _{4}\varphi _{uw}\right) , \\ \mathfrak{h}_{22} & = &\mathcal{Q}^{-1/2}\left( {\mathcal{G}}_{1}\eta _{vv}+{ \mathcal{G}}_{2}\psi _{vv}+{\mathcal{G}}_{3}\phi _{vv}+{\mathcal{G}} _{4}\varphi _{vv}\right) , \\ \mathfrak{h}_{23} & = &\mathcal{Q}^{-1/2}\left( {\mathcal{G}}_{1}\eta _{vw}+{ \mathcal{G}}_{2}\psi _{vw}+{\mathcal{G}}_{3}\phi _{vw}+{\mathcal{G}} _{4}\varphi _{vw}\right) , \\ \mathfrak{h}_{33} & = &\mathcal{Q}^{-1/2}\left( {\mathcal{G}}_{1}\eta _{ww}+{ \mathcal{G}}_{2}\psi _{ww}+{\mathcal{G}}_{3}\phi _{ww}+{\mathcal{G}} _{4}\varphi _{ww}\right) , \\ \mathfrak{h}_{44} & = &\mathcal{Q}^{-1/2}{\mathcal{G}}_{1}\eta ,{\text{ }} \\ \mathfrak{h}_{55} & = &\mathcal{Q}^{-1/2}{\mathcal{G}}_{2}\psi ,{\text{ }} \\ \mathfrak{h}_{66} & = &\mathcal{Q}^{-1/2}{\mathcal{G}}_{3}\phi , \end{eqnarray*}

    and \eta _{uu} = \frac{\partial ^{2}\eta }{\partial u^{2}}, \eta _{uv} = \frac{\partial ^{2}\eta }{\partial u\partial v}, ect.. By using \left(4.2\right) and \left(4.4\right) , we compute the following shape operator matrix of \left(4.1\right) :

    \begin{equation*} \mathcal{S} = {\text{diag}}\left( \begin{array}{cccc} \left( {\mathfrak{s}}_{kl}\right) _{3\times 3}, & {\mathfrak{ s}}_{44}, & \mathfrak{s}_{55}, & \mathfrak{s}_{66} \end{array} \right) \end{equation*}

    with the following components

    \begin{eqnarray*} \mathfrak{s}_{11} & = &\left[ \left( \mathfrak{g}_{22}\mathfrak{g}_{33}{\bf{ -}}\mathfrak{g}_{23}^{2}\right) \mathfrak{h}_{11}+\left( \mathfrak{g}_{13} \mathfrak{g}_{23}{\bf{-}}\mathfrak{g}_{12}\mathfrak{g}_{33}\right) \mathfrak{h}_{12}+\left( \mathfrak{g}_{12}\mathfrak{g}_{23}{\bf{-}} \mathfrak{g}_{13}\mathfrak{g}_{22}\right) \mathfrak{h}_{13}\right] /\mathcal{ Q}, \\ \mathfrak{s}_{12} & = &\left[ \left( \mathfrak{g}_{22}\mathfrak{g}_{33}{\bf{ -}}\mathfrak{g}_{23}^{2}\right) \mathfrak{h}_{12}+\left( \mathfrak{g}_{13} \mathfrak{g}_{23}{\bf{-}}\mathfrak{g}_{12}\mathfrak{g}_{33}\right) \mathfrak{h}_{22}+\left( \mathfrak{g}_{12}\mathfrak{g}_{23}{\bf{-}} \mathfrak{g}_{13}\mathfrak{g}_{22}\right) \mathfrak{h}_{23}\right] /\mathcal{ Q}, \\ \mathfrak{s}_{13} & = &\left[ \left( \mathfrak{g}_{22}\mathfrak{g}_{33}{\bf{ -}}\mathfrak{g}_{23}^{2}\right) \mathfrak{h}_{13}+\left( \mathfrak{g}_{13} \mathfrak{g}_{23}{\bf{-}}\mathfrak{g}_{12}\mathfrak{g}_{33}\right) \mathfrak{h}_{23}+\left( \mathfrak{g}_{12}\mathfrak{g}_{23}{\bf{-}} \mathfrak{g}_{13}\mathfrak{g}_{22}\right) \mathfrak{h}_{33}\right] /\mathcal{ Q}, \\ \mathfrak{s}_{21} & = &\left[ \left( \mathfrak{g}_{13}\mathfrak{g}_{23}{\bf{ -}}\mathfrak{g}_{12}\mathfrak{g}_{33}\right) \mathfrak{h}_{11}+\left( \mathfrak{g}_{11}\mathfrak{g}_{33}{\bf{-}}\mathfrak{g}_{13}^{2}\right) \mathfrak{h}_{12}+\left( \mathfrak{g}_{12}\mathfrak{g}_{13}{\bf{-}} \mathfrak{g}_{11}\mathfrak{g}_{23}\right) \mathfrak{h}_{13}\right] /\mathcal{ Q}, \\ \mathfrak{s}_{22} & = &\left[ \left( \mathfrak{g}_{13}\mathfrak{g}_{23}{\bf{ -}}\mathfrak{g}_{12}\mathfrak{g}_{33}\right) \mathfrak{h}_{12}+\left( \mathfrak{g}_{11}\mathfrak{g}_{33}{\bf{-}}\mathfrak{g}_{13}^{2}\right) \mathfrak{h}_{22}+\left( \mathfrak{g}_{12}\mathfrak{g}_{13}{\bf{-}} \mathfrak{g}_{11}\mathfrak{g}_{23}\right) \mathfrak{h}_{23}\right] /\mathcal{ Q}, \\ \mathfrak{s}_{23} & = &\left[ \left( \mathfrak{g}_{13}\mathfrak{g}_{23}{\bf{ -}}\mathfrak{g}_{12}\mathfrak{g}_{33}\right) \mathfrak{h}_{13}+\left( \mathfrak{g}_{11}\mathfrak{g}_{33}{\bf{-}}\mathfrak{g}_{13}^{2}\right) \mathfrak{h}_{23}+\left( \mathfrak{g}_{12}\mathfrak{g}_{13}{\bf{-}} \mathfrak{g}_{11}\mathfrak{g}_{23}\right) \mathfrak{h}_{33}\right] /\mathcal{ Q}, \\ \mathfrak{s}_{31} & = &\left[ \left( \mathfrak{g}_{12}\mathfrak{g}_{23}{\bf{ -}}\mathfrak{g}_{13}\mathfrak{g}_{22}\right) \mathfrak{h}_{11}+\left( \mathfrak{g}_{12}\mathfrak{g}_{13}{\bf{-}}\mathfrak{g}_{11}\mathfrak{g} _{23}\right) \mathfrak{h}_{12}+\left( \mathfrak{g}_{11}\mathfrak{g}_{22} {\bf{-}}\mathfrak{g}_{12}^{2}\right) \mathfrak{h}_{13}\right] /\mathcal{Q}, \\ \mathfrak{s}_{32} & = &\left[ \left( \mathfrak{g}_{12}\mathfrak{g}_{23}{\bf{ -}}\mathfrak{g}_{13}\mathfrak{g}_{22}\right) \mathfrak{h}_{12}+\left( \mathfrak{g}_{12}\mathfrak{g}_{13}{\bf{-}}\mathfrak{g}_{11}\mathfrak{g} _{23}\right) \mathfrak{h}_{22}+\left( \mathfrak{g}_{11}\mathfrak{g}_{22} {\bf{-}}\mathfrak{g}_{12}^{2}\right) \mathfrak{h}_{23}\right] /\mathcal{Q}, \\ \mathfrak{s}_{33} & = &\left[ \left( \mathfrak{g}_{12}\mathfrak{g}_{23}{\bf{ -}}\mathfrak{g}_{13}\mathfrak{g}_{22}\right) \mathfrak{h}_{13}+\left( \mathfrak{g}_{12}\mathfrak{g}_{13}{\bf{-}}\mathfrak{g}_{11}\mathfrak{g} _{23}\right) \mathfrak{h}_{23}+\left( \mathfrak{g}_{11}\mathfrak{g}_{22} {\bf{-}}\mathfrak{g}_{12}^{2}\right) \mathfrak{h}_{33}\right] /\mathcal{Q}, \\ \mathfrak{s}_{44} & = &\frac{\mathfrak{h}_{44}}{\mathfrak{g}_{44}}, \ \mathfrak{s}_{55} = \frac{\mathfrak{h}_{55}}{\mathfrak{g}_{55}}, \ \mathfrak{s}_{66} = \frac{\mathfrak{h}_{66}}{\mathfrak{g}_{66}}. \end{eqnarray*}

    Finally, using \left(3.1\right) , with \left(4.2\right) , \left(4.4\right) , respectively, we find the curvatures of the HRF defined by Eq \left(4.1\right) as follows.

    Theorem 3. Let \mathfrak{r} be an HRF determined by Eq \left(4.1\right) in \mathbb{E}_{3}^{7} . \mathfrak{r} contains the following curvatures

    \begin{eqnarray*} \mathcal{K}_{1} & = &\left( \mathfrak{s}_{11}+\mathfrak{s}_{22}+\mathfrak{s} _{33}+\mathfrak{s}_{44}+\mathfrak{s}_{55}+\mathfrak{s}_{66}\right) /6, \\ && \\ \mathcal{K}_{6} & = &\left( \left( \mathfrak{s}_{11}\mathfrak{s}_{13}+ \mathfrak{s}_{12}\mathfrak{s}_{23}\right) \mathfrak{s}_{13}+\left( \mathfrak{ s}_{12}\mathfrak{s}_{13}+\mathfrak{s}_{22}\mathfrak{s}_{23}\right) \mathfrak{ s}_{23}-\left( \mathfrak{s}_{11}+\mathfrak{s}_{22}\right) \left( \mathfrak{s} _{13}^{2}+\mathfrak{s}_{23}^{2}\right) +\left( \mathfrak{s}_{11}\mathfrak{s} _{22}-\mathfrak{s}_{12}^{2}\right) \mathfrak{s}_{33}\right) \mathfrak{s}_{44} \mathfrak{s}_{55}\mathfrak{s}_{66}. \end{eqnarray*}

    Here, \mathcal{K}_{1} represents the mean curvature, \mathcal{K}_{6} denotes the Gauss-Kronecker curvature.

    Proof. By using the Cayley-Hamilton theorem, we reveal the following characteristic polynomial equation P_{\mathcal{S}}(\lambda) = 0 of \mathcal{S} :

    \begin{equation*} \mathcal{K}_{0}\lambda ^{6}-6\mathcal{K}_{1}\lambda ^{5}+15\mathcal{K} _{2}\lambda ^{4}-20\mathcal{K}_{3}\lambda ^{3}+15\mathcal{K}_{4}\lambda ^{2}-6\mathcal{K}_{5}\lambda +\mathcal{K}_{6} = 0. \end{equation*}

    The curvatures \mathcal{K}_{1} and \mathcal{K}_{6} of \mathfrak{r} are obtained by the above equation.

    Corollary 1. Let \mathfrak{r} be an HRF defined by Eq \left(4.1\right) in \mathbb{E}_{3}^{7} . \mathfrak{r} is a 1 -maximal (i.e., has zero mean curvature) iff the following partial differential equation appears

    \begin{equation*} \begin{array}{l} \left( \mathfrak{g}_{44}\mathfrak{g}_{55}\mathfrak{h}_{66}+\mathfrak{g}_{44} \mathfrak{h}_{55}\mathfrak{g}_{66}+\mathfrak{h}_{44}\mathfrak{g}_{55} \mathfrak{g}_{66}\right) Q \\ -2\mathfrak{g}_{44}\mathfrak{g}_{55}\mathfrak{g}_{66}(\mathfrak{g}_{11} \mathfrak{g}_{23}\mathfrak{h}_{23}-\mathfrak{g}_{12}\mathfrak{g}_{13} \mathfrak{h}_{23}+\mathfrak{g}_{12}\mathfrak{h}_{12}\mathfrak{g}_{33}- \mathfrak{g}_{12}\mathfrak{g}_{23}\mathfrak{h}_{13}+\mathfrak{g}_{13} \mathfrak{g}_{22}\mathfrak{h}_{13} \\ -\mathfrak{g}_{13}\mathfrak{h}_{12}\mathfrak{g}_{23}+\mathfrak{g}_{11} \mathfrak{g}_{22}\mathfrak{h}_{33}+\mathfrak{g}_{11}\mathfrak{h}_{22} \mathfrak{g}_{33}+\mathfrak{h}_{11}\mathfrak{g}_{22}\mathfrak{g}_{33}- \mathfrak{h}_{11}\mathfrak{g}_{23}^{2}-\mathfrak{g}_{13}^{2}\mathfrak{h} _{22}-\mathfrak{g}_{12}^{2}\mathfrak{h}_{33}) = 0. \end{array} \end{equation*}

    Corollary 2. Let \mathfrak{r} be a HRF given by Eq \left(4.1\right) in \mathbb{E}_{3}^{7} . \mathfrak{r} is a 6 -maximal (i.e., has zero Gauss-Kronecker curvature) iff the following partial differential equation occurs

    \begin{equation*} \begin{array}{l} \lbrack \left( \mathfrak{s}_{11}\mathfrak{s}_{13}+\mathfrak{s}_{12}\mathfrak{ s}_{23}\right) \mathfrak{s}_{13}+\left( \mathfrak{s}_{12}\mathfrak{s}_{13}+ \mathfrak{s}_{22}\mathfrak{s}_{23}\right) \mathfrak{s}_{23} \\ -\left( \mathfrak{s}_{11}+\mathfrak{s}_{22}\right) \left( \mathfrak{s} _{13}^{2}+\mathfrak{s}_{23}^{2}\right) +\left( \mathfrak{s}_{11}\mathfrak{s} _{22}-\mathfrak{s}_{12}^{2}\right) \mathfrak{s}_{33}]\mathfrak{s}_{44} \mathfrak{s}_{55}\mathfrak{s}_{66} = 0. \end{array} \end{equation*}

    Corollary 3. Let \mathfrak{r} be a HRF defined by Eq \left(4.1\right) in \mathbb{E}_{3}^{7} . \mathfrak{r} has umbilical point (i.e., \left(\mathcal{K} _{1}\right) ^{6} = \mathcal{K}_{6} ) iff the following partial differential equation holds

    \begin{eqnarray*} &&\left( \mathfrak{s}_{11}+\mathfrak{s}_{22}+\mathfrak{s}_{33}+\mathfrak{s} _{44}+\mathfrak{s}_{55}+\mathfrak{s}_{66}\right) ^{6} \\ &&-46\,656\left\{ \begin{array}{c} \left( \mathfrak{s}_{11}\mathfrak{s}_{13}+\mathfrak{s}_{12}\mathfrak{s} _{23}\right) \mathfrak{s}_{13}+\left( \mathfrak{s}_{12}\mathfrak{s}_{13}+ \mathfrak{s}_{22}\mathfrak{s}_{23}\right) \mathfrak{s}_{23} \\ -\left( \mathfrak{s}_{11}+\mathfrak{s}_{22}\right) \left( \mathfrak{s} _{13}^{2}+\mathfrak{s}_{23}^{2}\right) +\left( \mathfrak{s}_{11}\mathfrak{s} _{22}-\mathfrak{s}_{12}^{2}\right) \mathfrak{s}_{33} \end{array} \right\} \mathfrak{s}_{44}\mathfrak{s}_{55}\mathfrak{s}_{66} = 0. \end{eqnarray*}

    Hence, we find the following.

    Example 1. Let \mathfrak{r} be an HRF determined by Eq \left(4.1\right) in \mathbb{E}_{3}^{7} . When the profile hypersurface \gamma of \mathfrak{r} is parametrized by the unit hypersphere: \eta = \cos u\cos v\cos w , \psi = \sin u\cos v\cos w , \phi = \sin v\cos w , \varphi = \sin w , then \mathcal{S} = \mathcal{I}_{6} and the HRF has the following curvatures \mathcal{K}_{i} = 1 , where i = 0, 1, ..., 6.

    Example 2. Assume \mathfrak{r} be an HRF denoted by Eq \left(4.1\right) in \mathbb{E}_{3}^{7} . While the profile hypersurface \gamma of \mathfrak{r} is parametrized by the rational unit hypersphere: \eta = \frac{ 1-u^{2}}{1+u^{2}}\frac{1-v^{2}}{1+v^{2}}\frac{1-w^{2}}{1+w^{2}} , \psi = \frac{2u}{1+u^{2}}\frac{1-v^{2}}{1+v^{2}}\frac{1-w^{2}}{1+w^{2}} , \phi = \frac{2v}{1+v^{2}}\frac{1-w^{2}}{1+w^{2}} , \varphi = \frac{2w}{1+w^{2}} , the HRF has the same results determined by Example 1.

    Example 3. Let \mathfrak{r} be an HRF defined by Eq \left(4.1\right) in \mathbb{E}_{3}^{7} . When the generating hypersurface \gamma of \mathfrak{r} is parametrized by the Riemann hypersphere: \eta = \frac{2u}{ u^{2}+v^{2}+w^{2}+1} , \psi = \frac{2v}{u^{2}+v^{2}+w^{2}+1} , \phi = \frac{2w}{u^{2}+v^{2}+w^{2}+1} , \varphi = \frac{ u^{2}+v^{2}+w^{2}-1}{u^{2}+v^{2}+w^{2}+1} , the HRF has \mathcal{S} = -\mathcal{I}_{6}, and has the following curvatures \mathcal{K} _{i} = \left(-1\right) ^{i} , where i = 0, 1, ..., 6.

    Example 4.Considering the pseudo-hypersphere \mathbb{S} _{3}^{6}(\rho): = \left\{ {\bf{p}}\in \mathbb{E}_{3}^{7}\mid \langle {\bf{p}}, {\bf{p}}\rangle = \rho ^{2}\right\}, radius \rho > 0 , parametrized by

    \begin{equation} {\bf{p}}(u,v,w,\alpha ,\beta ,\gamma ) = \left( \begin{array}{c} \rho \cos u\cos v\cos w\cosh \alpha \\ \rho \cos u\cos v\cos w\sinh \alpha \\ \rho \sin u\cos v\cos w\cosh \beta \\ \rho \sin u\cos v\cos w\sinh \beta \\ \rho \sin v\cos w\cosh \gamma \\ \rho \sin v\cos w\sinh \gamma \\ \rho \sin w \end{array} \right) , \end{equation} (4.5)

    we compute \mathcal{S} = \frac{1}{\rho }\mathcal{I}_{6}. Hence, we find the following curvatures \mathcal{K}_{i} = \frac{1}{\rho ^{i}} , where i = 0, 1, ..., 6. Then, the hypersurface {\bf{p}} described by Eq \left(4.5\right) is an umbilical hypersphere (i.e., it supplies \left(\mathcal{K}_{1}\right) ^{6} = \mathcal{K}_{6} ) of \mathbb{E}_{3}^{7} .

    In this section, our focus is on the Laplace-Beltrami operator of a smooth function in \mathbb{E}_{3}^{7} . We will proceed to compute it utilizing the HRF, which is defined by Eq \left(4.1\right) .

    Definition 6. The Laplace-Beltrami operator of a smooth function f = f(x^{1}, x^{2}, ..., x^{6})\mid _{\mathcal{D}} (\mathcal{D} \subset {\mathbb{R}}^{6}) of class C^{6} depends on the first fundamental form \left(\mathfrak{g}_{ij}\right) of a hypersurface \mathfrak{r} , and is the operator defined by

    \begin{equation} \Delta f = \frac{1}{{\bf{\hat{g}}}^{1/2}}\sum\limits_{i,j = 1}^{6}\frac{\partial }{ \partial x^{i}}\left( {\bf{\hat{g}}}^{1/2}\mathfrak{g}^{ij}\frac{\partial f }{\partial x^{j}}\right) , \end{equation} (5.1)

    where \left(\mathfrak{g}^{ij}\right) = \left(\mathfrak{g} _{kl}\right) ^{-1} and {\bf{\hat{g}}} = \det \left(\mathfrak{g} _{ij}\right).

    By using the inverse matrix of the first fundamental form matrix \left(\mathfrak{g}_{ij}\right) _{6\times 6}, we have the following.

    For an HRF given by Eq \left(4.1\right), \mathfrak{g}_{ij} = 0 when i\neq j except for i, j < 4. Therefore, the Laplace-Beltrami operator of the HRF \mathfrak{r} = \mathfrak{r}(u, v, w, \alpha, \beta, \gamma) is given by

    \begin{eqnarray} \Delta \mathfrak{r} & = &\frac{1}{{\bf{\hat{g}}}^{1/2}}[\frac{\partial }{ \partial u}\left( {\bf{\hat{g}}}^{1/2}\mathfrak{g}^{11}\frac{\partial \mathfrak{r}}{\partial u}\right) +\frac{\partial }{\partial u}\left( {\bf{ \hat{g}}}^{1/2}\mathfrak{g}^{12}\frac{\partial \mathfrak{r}}{\partial v} \right) +\frac{\partial }{\partial u}\left( {\bf{\hat{g}}}^{1/2}\mathfrak{g }^{13}\frac{\partial \mathfrak{r}}{\partial w}\right) \\ && \ \ \ \ \ \ +\frac{\partial }{\partial v}\left( {\bf{\hat{g}}} ^{1/2}\mathfrak{g}^{21}\frac{\partial \mathfrak{r}}{\partial u}\right) + \frac{\partial }{\partial v}\left( {\bf{\hat{g}}}^{1/2}\mathfrak{g}^{22} \frac{\partial \mathfrak{r}}{\partial v}\right)+\frac{\partial }{\partial v} \left( {\bf{\hat{g}}}^{1/2}\mathfrak{g}^{23}\frac{\partial \mathfrak{r}}{ \partial w}\right) \\ && \ \ \ \ \ \ +\frac{\partial }{\partial w}\left( {\bf{\hat{g}}} ^{1/2}\mathfrak{g}^{31}\frac{\partial \mathfrak{r}}{\partial u}\right) + \frac{\partial }{\partial w}\left( {\bf{\hat{g}}}^{1/2}\mathfrak{g}^{32} \frac{\partial \mathfrak{r}}{\partial v}\right) +\frac{\partial }{\partial w} \left( {\bf{\hat{g}}}^{1/2}\mathfrak{g}^{33}\frac{\partial \mathfrak{r}}{ \partial w}\right) \\ && \ \ \ \ \ \ +\frac{\partial }{\partial \alpha }\left( {\bf{\hat{ g}}}^{1/2}\mathfrak{g}^{44}\frac{\partial \mathfrak{r}}{\partial \alpha } \right) +\frac{\partial }{\partial \beta }\left( {\bf{\hat{g}}}^{1/2} \mathfrak{g}^{55}\frac{\partial \mathfrak{r}}{\partial \beta }\right) +\frac{ \partial }{\partial \gamma }\left( {\bf{\hat{g}}}^{1/2}\mathfrak{g}^{66} \frac{\partial \mathfrak{r}}{\partial \gamma }\right). \end{eqnarray} (5.2)

    By using the derivatives of the functions in \left(5.2\right) , w.r.t. u, v, w, \alpha, \beta, \gamma, resp., we obtain the following.

    Theorem 4. The Laplace-Beltrami operator of the HRF \mathfrak{r} denoted by Eq \left(4.1\right) is given by \Delta \mathfrak{r} = 6\mathcal{K}_{1}\mathcal{G} , where \mathcal{K}_{1} denotes the mean curvature, \mathcal{G} represents the Gauss map of \mathfrak{r} .

    Proof. By directly computing \left(5.2\right) , we obtain \Delta \mathfrak{r} .

    Theorem 5.Let \mathfrak{r} be an HRF defined by Eq \left(4.1\right) . \Delta \mathfrak{r} = \mathcal{A}\mathfrak{r } , where \mathcal{A} denotes the square matrix of order 7 iff \mathfrak{r} has \mathcal{K}_{1} = 0 , i.e., it is a 1 -maximal hypersurface.

    Proof. We found 6\mathcal{K}_{1}\mathcal{G} = \mathcal{A}\mathfrak{r} , and then we have

    \begin{eqnarray*} &&a_{11}\eta \cosh \alpha +a_{12}\eta \sinh \alpha +a_{13}\psi \cosh \beta +a_{14}\psi \sinh \beta +a_{15}\phi \cosh \gamma +a_{16}\phi \sinh \gamma +a_{17}\varphi \\ & = &\Upsilon \eta \psi \phi \left[ \left( \psi _{v}\phi _{w}-\psi _{w}\phi _{v}\right) \varphi _{u}+\left( \psi _{w}\phi _{u}-\psi _{u}\phi _{w}\right) \varphi _{v}+\left( \psi _{u}\phi _{v}-\psi _{v}\phi _{u}\right) \varphi _{w} \right] \cosh \alpha , \\ && \\ &&a_{21}\eta \cosh \alpha +a_{22}\eta \sinh \alpha +a_{23}\psi \cosh \beta +a_{24}\psi \sinh \beta +a_{25}\phi \cosh \gamma +a_{26}\phi \sinh \gamma +a_{27}\varphi \\ & = &\Upsilon \eta \psi \phi \left[ \left( \psi _{v}\phi _{w}-\psi _{w}\phi _{v}\right) \varphi _{u}+\left( \psi _{w}\phi _{u}-\psi _{u}\phi _{w}\right) \varphi _{v}+\left( \psi _{u}\phi _{v}-\psi _{v}\phi _{u}\right) \varphi _{w} \right] \sinh \alpha , \\ && \\ &&a_{31}\eta \cosh \alpha +a_{32}\eta \sinh \alpha +a_{33}\psi \cosh \beta +a_{34}\psi \sinh \beta +a_{35}\phi \cosh \gamma +a_{36}\phi \sinh \gamma +a_{37}\varphi \\ & = &\Upsilon \eta \psi \phi \left[ \left( \eta _{v}\phi _{w}-\eta _{w}\phi _{v}\right) \varphi _{u}+\left( \eta _{w}\phi _{u}-\eta _{u}\phi _{w}\right) \varphi _{v}+\left( \eta _{u}\phi _{v}-\eta _{v}\phi _{u}\right) \varphi _{w} \right] \cosh \beta , \\ && \\ &&a_{41}\eta \cosh \alpha +a_{42}\eta \sinh \alpha +a_{43}\psi \cosh \beta +a_{44}\psi \sinh \beta +a_{45}\phi \cosh \gamma +a_{46}\phi \sinh \gamma +a_{47}\varphi \\ & = &\Upsilon \eta \psi \phi \left[ \left( \eta _{v}\phi _{w}-\eta _{w}\phi _{v}\right) \varphi _{u}+\left( \eta _{w}\phi _{u}-\eta _{u}\phi _{w}\right) \varphi _{v}+\left( \eta _{u}\phi _{v}-\eta _{v}\phi _{u}\right) \varphi _{w} \right] \sinh \beta , \\ && \\ &&a_{51}\eta \cosh \alpha +a_{52}\eta \sinh \alpha +a_{53}\psi \cosh \beta +a_{54}\psi \sinh \beta +a_{55}\phi \cosh \gamma +a_{56}\phi \sinh \gamma +a_{57}\varphi \\ & = &\Upsilon \eta \psi \phi \left[ \left( \eta _{v}\psi _{w}-\eta _{w}\psi _{v}\right) \varphi _{u}+\left( \eta _{w}\psi _{u}-\eta _{u}\psi _{w}\right) \varphi _{v}+\left( \eta _{u}\psi _{v}-\eta _{v}\psi _{u}\right) \varphi _{w} \right] \cosh \gamma , \\ && \\ &&a_{61}\eta \cosh \alpha +a_{62}\eta \sinh \alpha +a_{63}\psi \cosh \beta +a_{64}\psi \sinh \beta +a_{65}\phi \cosh \gamma +a_{66}\phi \sinh \gamma +a_{67}\varphi \\ & = &\Upsilon \eta \psi \phi \left[ \left( \eta _{v}\psi _{w}-\eta _{w}\psi _{v}\right) \varphi _{u}+\left( \eta _{w}\psi _{u}-\eta _{u}\psi _{w}\right) \varphi _{v}+\left( \eta _{u}\psi _{v}-\eta _{v}\psi _{u}\right) \varphi _{w} \right] \sinh \gamma , \\ && \\ &&a_{71}\eta \cosh \alpha +a_{72}\eta \sinh \alpha +a_{73}\psi \cosh \beta +a_{74}\psi \sinh \beta +a_{75}\phi \cosh \gamma +a_{76}\phi \sinh \gamma +a_{77}\varphi \\ & = &\Upsilon \eta \psi \phi \left[ \left( \eta _{w}\psi _{v}-\eta _{v}\psi _{w}\right) \phi _{u}+\left( \eta _{u}\psi _{w}-\eta _{w}\psi _{u}\right) \phi _{v}+\left( \eta _{v}\psi _{u}-\eta _{u}\psi _{v}\right) \phi _{w} \right] , \end{eqnarray*}

    where \mathcal{A} = \left(a_{ij}\right) is the 7\times 7 matrix, \Upsilon = 6\mathcal{K}_{1}{\bf{\hat{g}}}^{-1/2}, where {\bf{\hat{g}}} = \eta ^{2}\psi ^{2}\phi ^{2}\mathcal{Q}. Derivating above ODEs twice w.r.t. \alpha , we obtain the following a_{i7} = 0, \Upsilon = 0, where i = 1, 2, ..., 7. Then, we get \left(a_{i1}\cosh \alpha +a_{i2}\sinh \alpha \right) \eta = 0, where i = 1, 2, ..., 7. The functions \cosh and \sinh are linear independent on \alpha , then all the components of the matrix \mathcal{A} are 0 . Since \Upsilon = 6\mathcal{K}_{1}{\bf{\hat{g}}} ^{-1/2}, then \mathcal{K}_{1} = 0 . This means, \mathfrak{r} is a 1 -maximal HRF.

    Therefore, we give the following.

    Example 5. Let \mathfrak{r} be an HRF given by Eq \left(4.1\right) , and let the generating hypersurface \gamma of \mathfrak{r} be parametrized by the unit hypersphere determined by Example 1. Then, an HRF \mathfrak{r} supplies \Delta \mathfrak{r} = \mathcal{A}\mathfrak{r} , where \mathcal{A} = -6\mathcal{I}_{7}, \mathcal{I}_{7} denotes identity matrix.

    Example 6. Let \mathfrak{r} be an HRF denoted by Eq \left(4.1\right) , and let the generating hypersurface \gamma of \mathfrak{r} be parametrized by the Riemann hypersphere defined by Example 3. An HRF \mathfrak{r} has the same results denoted by Example 5.

    This research has presented a detailed analysis of a family of hypersurfaces of revolution \mathfrak{r} is characterized by six parameters in the seven-dimensional pseudo-Euclidean space {\mathbb{E}}_{3}^{7} , and its geometric properties have been thoroughly explored.

    The main focus of the paper was on computing and investigating various matrices associated with \mathfrak{r} . The fundamental form, Gauss map, and shape operator matrices were derived, providing essential information about the local geometry of the hypersurfaces. By utilizing the Cayley-Hamilton theorem, the curvatures of \mathfrak{r} were determined, facilitating a comprehensive understanding of their intrinsic curvature properties. Moreover, the paper established equations that describe the relationship between the mean curvature and Gauss-Kronecker curvature of \mathfrak{r} . These equations shed light on the geometric behavior of the hypersurfaces and offer valuable insights into their intrinsic properties. Additionally, the paper investigated the connection between the Laplace-Beltrami operator of \mathfrak{r} and a specific 7\times 7 matrix. This exploration further deepened our understanding of the geometric structure and differential properties of the hypersurface family.

    In summary, this research contributes to the understanding of hypersurfaces of revolution in {\mathbb{E}}_{3}^{7} .

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors declare that they have no conflicts of interest to report regarding the present study.



    [1] A. Alsaedi, R. Luca, B. Ahmad, Existence of positive solutions for a system of singular fractional boundary value problems with p-Laplacian operators, Mathematics., 8 (2020), 1890. https://doi.org/10.3390/math8111890 doi: 10.3390/math8111890
    [2] B. Ahmad, A. Alsaedi, S. K. Ntouyas, J. Tariboon, Hadamard-type fractional differential equations, inclusions and inequalities, Switzerland: Springer, 2017. https://doi.org/10.1007/978-3-319-52141-1
    [3] B. Ahmad, R. Luca, Existence of solutions for a system of fractional differential equations with coupled nonlocal boundary conditions, Frac. Calc. Appl. Anal., 21 (2018), 423–441. https://doi.org/10.1515/fca-2018-0024 doi: 10.1515/fca-2018-0024
    [4] B. Ahmad, S. K. Ntouyas, A. Alsaedi, A. Albideewi, A study of a coupled system of Hadamard fractional differential equations with nonlocal coupled initial-multipoint conditions, Adv. Differ. Equ., 2021 (2021), 33. https://doi.org/10.1186/s13662-020-03198-4 doi: 10.1186/s13662-020-03198-4
    [5] B. Ahmad, J. Henderson, R. Luca, Boundary value problems for fractional differential equations and systems, World Scientific, 2021.
    [6] B. Ahmad, A. F. Albideewi, S. K. Ntouyas, A. Alsaedi, Existence results for a multi-point boundary value problem of nonlinear sequential Hadamard fractional differential equations, Cubo (Temuco), 23 (2021), 225–237. https://doi.org/10.4067/S0719-06462021000200225 doi: 10.4067/S0719-06462021000200225
    [7] M. Al-Refai, Y. Luchko, Maximum principle for the fractional diffusion equations with the Riemann-Liouville fractional derivative and its applications, Fract. Calc. Appl. Anal., 17 (2014), 483–498. https://doi.org/10.2478/s13540-014-0181-5 doi: 10.2478/s13540-014-0181-5
    [8] S. Das, Functional fractional calculus for system identification and control, Berlin: Springer, 2008.
    [9] X. Du, Y. Meng, H. Pang, Iterative positive solutions to a coupled Hadamard-type fractional differential system on infinite domain with the multistrip and multipoint mixed boundary conditions, J. Funct. Space., 2020 (2020), 6508075. https://doi.org/10.1155/2020/6508075 doi: 10.1155/2020/6508075
    [10] D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, 1988.
    [11] H. Huang, K. Zhao, X. Liu, On solvability of BVP for a coupled Hadamard fractional systems involving fractional derivative impulses, AIMS Math., 7 (2022), 19221–19236. https://doi.org/10.3934/math.20221055 doi: 10.3934/math.20221055
    [12] J. Hadamard, Essai sur létude des fonctions donnees par leur développment de Taylor, J. Math. Pure. Appl., 8 (1892), 101–186.
    [13] J. Hristov, New trends in fractional differential equations with real-world applications in physics, Frontiers Media SA, 2020.
    [14] X. Hao, H. Wang, L. Liu, Y. Cui, Positive solutions for a system of nonlinear fractional nonlocal boundary value problems with parameters and p-Laplacian operator, Bound. Value Probl., 2017 (2017), 182. https://doi.org/10.1186/s13661-017-0915-5 doi: 10.1186/s13661-017-0915-5
    [15] J. Jiang, D. O'Regan, J. Xu, Z. Fu, Positive solutions for a system of nonlinear Hadamard fractional differential equations involving coupled integral boundary conditions, J. Inequal. Appl., 2019 (2019), 204. https://doi.org/10.1186/s13660-019-2156-x doi: 10.1186/s13660-019-2156-x
    [16] J. Jiang, D. O'Regan, J. Xu, Y. Cui, Positive solutions for a Hadamard fractional p-Laplacian three-point boundary value problem, Mathematics., 7 (2019), 439. https://doi.org/10.3390/math7050439 doi: 10.3390/math7050439
    [17] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
    [18] M. Khuddush, K. R. Prasad, P. Veeraiah, Infinitely many positive solutions for an iterative system of fractional BVPs with multistrip Riemann-Stieltjes integral boundary conditions, Afr. Mat., 33 (2022), 91. https://doi.org/10.1007/s13370-022-01026-4 doi: 10.1007/s13370-022-01026-4
    [19] M. Khuddush, K. R. Prasad, D. Leela, Existence theory and stability analysis to the system of infinite point fractional order bvps by multivariate best proximity point theorem, Int. J. Nonlinear Anal. Appl., 13 (2022), 1713–1733. https://doi.org/10.22075/ijnaa.2022.25945.3167 doi: 10.22075/ijnaa.2022.25945.3167
    [20] M. Khuddush, K. R. Prasad, Iterative system of nabla fractional order difference equations with two-point boundary conditions, Appl. Math., 11 (2022), 57–74. https://doi.org/10.13164/ma.2022.06 doi: 10.13164/ma.2022.06
    [21] M. Khuddush, S. Kathun, Infinitely many positive solutions and Ulam-Hyers stability of fractional order two-point boundary value problems, J. Anal., 2023 (2023). https://doi.org/10.1007/s41478-023-00549-8 doi: 10.1007/s41478-023-00549-8
    [22] L. S. Leibenson, General problem of the movement of a compressible uid in a porous medium, Izv. Akad. Nauk Kirg. SSSR, 9 (1983), 7–10.
    [23] M. Li, P. Guo, C. Ren, Water resources management models based on two-level linear fractional programming method under uncertainty, J. Water Res. Plan. Man., 141 (2015), 05015001. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000518 doi: 10.1061/(ASCE)WR.1943-5452.0000518
    [24] R. Luca, Positive solutions for a system of fractional differential equations with p-Laplacian operator and multi-point boundary conditions, Nonlinear Anal. Model., 23 (2018), 771–801. https://doi.org/10.15388/NA.2018.5.8 doi: 10.15388/NA.2018.5.8
    [25] R. Luca, Positive solutions for a system of Riemann-Liouville fractional differential equations with multi-point fractional boundary conditions, Bound. Value Probl., 2017 (2017), 102. https://doi.org/10.1186/s13661-017-0833-6 doi: 10.1186/s13661-017-0833-6
    [26] R. Luca, On a system of fractional boundary value problems with p-Laplacian operator, Dyn. Syst. Appl., 28 (2019), 691–713.
    [27] S. Li, C. Zhai, Positive solutions for a new class of Hadamard fractional differential equations on infinite intervals, J. Inequal Appl., 2019 (2019), 150. https://doi.org/10.1186/s13660-019-2102-y doi: 10.1186/s13660-019-2102-y
    [28] Y. Li, J. Xu, H. Luo, Approximate iterative sequences for positive solutions of a Hadamard type fractional differential system involving Hadamard type fractional derivatives, AIMS Math., 6 (2021), 7229–7250. https://doi.org/10.3934/math.2021424 doi: 10.3934/math.2021424
    [29] A. H. Msmali, Positive solutions for a system of Hadamard fractional (\varrho_{1}, \varrho_{2}, \varrho_{3})-Laplacian operator with a parameter in the boundary, AIMS Math., 7 (2022), 10564–10581. https://doi.org/10.3934/math.2022589 doi: 10.3934/math.2022589
    [30] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, 1993.
    [31] I. Podlubny, Fractional differential equations, Academic Press, 1999.
    [32] K. R. Prasad, I. D. Leela, M. Khuddush, Existence and uniqueness of positive solutions for system of (p, q, r)-Laplacian fractional order boundary value problems, Adv. Theory Nonlinear Anal. Appl., 5 (2021), 138–157. https://doi.org/10.31197/atnaa.703304 doi: 10.31197/atnaa.703304
    [33] S. Rekhviashvili, A. Pskhu, P. Agarwal, S. Jain, Application of the fractional oscillator model to describe damped vibrations, Turk. J. Phys., 43 (2019), 236–242. https://doi.org/10.3906/fiz-1811-16 doi: 10.3906/fiz-1811-16
    [34] S. N. Rao, A. Ahmadini, Multiple positive solutions for a system of (p_{1}, p_{2}, p_{3})-Laplacian Hadamard fractional order BVP with parameters, Adv. Differ. Equ., 2021 (2021), 436. https://doi.org/10.1186/s13662-021-03591-7 doi: 10.1186/s13662-021-03591-7
    [35] S. N. Rao, M. Singh, M. Z. Meetei, Multiplicity of positive solutions for Hadamard fractional differential equations with p-Laplacian operator, Bound. Value Probl., 2020 (2020), 43. https://doi.org/10.1186/s13661-020-01341-4 doi: 10.1186/s13661-020-01341-4
    [36] J. Sabatier, O. P. Agrawal, J. A. T. Machado, Advances in fractional calculus: Theoretical developments and applications in physics and engineering, Dordrecht: Springer, 2007. https://doi.org/10.1007/978-1-4020-6042-7
    [37] A. A. Kilbas, O. I. Marichev, S. G. Samko, Fractional integrals and derivatives: Theory and applications, 1993.
    [38] A. Tudorache, R. Luca, System of Riemann-Liouville fractional differential equations with p-Laplacian operators and nonlocal coupled boundary conditions, Fractal Fract., 6 (2022), 610. https://doi.org/10.3390/fractalfract6100610 doi: 10.3390/fractalfract6100610
    [39] A. Tudorache, R. Luca, Positive solutions for a system of Riemann-Liouville fractional boundary value problems with p-Laplacian operators, Adv. Differ. Equ., 2020 (2020), 292. https://doi.org/10.1186/s13662-020-02750-6 doi: 10.1186/s13662-020-02750-6
    [40] A. Tudorache, R. Luca, Positive solutions of a singular fractional boundary value problem with r-Laplacian operators, Fractal Fract., 6 (2022), 18. https://doi.org/10.3390/fractalfract6010018 doi: 10.3390/fractalfract6010018
    [41] A. Tudorache, R. Luca, Positive solutions for a system of Riemann-Liouville fractional boundary value problems with p-Laplacian operators, Adv. Differ. Equ., 2020 (2020), 292. https://doi.org/10.1186/s13662-020-02750-6 doi: 10.1186/s13662-020-02750-6
    [42] Y. Tian, Z. Bai, S. Sun, Positive solutions for a boundary value problem of fractional differential equation with p-Laplacian operator, Adv. Differ. Equ., 2019 (2019), 349. https://doi.org/10.1186/s13662-019-2280-4 doi: 10.1186/s13662-019-2280-4
    [43] G. Wang, T. Wang, On a nonlinear Hadamard type fractional differential equation with p-Laplacian operator and strip condition, J. Nonlinear Sci. Appl., 9 (2016), 5073–5081. http://dx.doi.org/10.22436/jnsa.009.07.10 doi: 10.22436/jnsa.009.07.10
    [44] G. T. Wang, K. Pei, R. P. Agarwal, L. H. Zhang, B. Ahmad, Nonlocal Hadamard fractional boundary value problem with Hadamard integral and discrete boundary conditions on a half-line, J. Comput. Appl. Math., 343 (2018), 230–239. https://doi.org/10.1016/j.cam.2018.04.062 doi: 10.1016/j.cam.2018.04.062
    [45] H. Wang, J. Jiang, Existence and multiplicity of positive solutions for a system of nonlinear fractional multi-point boundary value problems with p-Laplacian operator, J. Appl. Anal. Comput., 11 (2021), 351–366. https://doi.org/10.11948/20200021 doi: 10.11948/20200021
    [46] Y. Wang, Multiple positive solutions for mixed fractional differential system with p-Laplacian operators, Bound. Value Probl., 2019 (2019), 144. https://doi.org/10.1186/s13661-019-1257-2 doi: 10.1186/s13661-019-1257-2
    [47] Y. Wang, G. Zhao, A comparative study of fractional-order models for lithium-ion batteries using Runge Kutta optimizer and electrochemical impedance spectroscopy, Control Eng. Pract., 133 (2023), 105451. https://doi.org/10.1016/j.conengprac.2023.105451 doi: 10.1016/j.conengprac.2023.105451
    [48] Y. Wang, G. Gao, X. Li, Z. Chen, A fractional-order model-based state estimation approach for lithium-ion battery and ultra-capacitor hybrid power source system considering load trajectory, J. power sources, 449 (2020), 227543. https://doi.org/10.1016/j.jpowsour.2019.227543 doi: 10.1016/j.jpowsour.2019.227543
    [49] J. Xu, J. Jiang, D. O'Regan, Positive solutions for a class of p-Laplacian Hadamard fractional three-point boundary value problem, Mathematics., 8 (2020), 308. https://doi.org/10.3390/math8030308 doi: 10.3390/math8030308
    [50] J. Xu, D. O'Regan, Positive solutions for a fractional p-Laplacian boundary value problem, Filomat., 31 (2017), 1549–1558.
    [51] J. Xu, L. Liu, S. Bai, Y. Wu, Solvability for a system of Hadamard fractional multi-point boundary value problems, Nonlinear Anal. Model., 26 (2021), 502–521. https://doi.org/10.15388/namc.2021 doi: 10.15388/namc.2021
    [52] F. Yan, M. Zuo, X. Hao, Positive solution for a fractional singular boundary value problem with p-Laplacian operator, Bound. Value Probl., 2018 (2018), 51. https://doi.org/10.1186/s13661-018-0972-4 doi: 10.1186/s13661-018-0972-4
    [53] W. Yang, Monotone iterative technique for a coupled system of nonlinear Hadamard fractional differential equations, J. Appl. Math. Comput., 59 (2019), 585–596. https://doi.org/10.1007/s12190-018-1192-x doi: 10.1007/s12190-018-1192-x
    [54] K. Zhao, Existence and UH-stability of integral boundary problem for a class of nonlinear higher-order Hadamard fractional Langevin equation via Mittag-Leffler functions, Filomat, 37 (2023), 1053–1063. https://doi.org/10.2298/FIL2304053Z doi: 10.2298/FIL2304053Z
    [55] W. Zhang, J. Ni, New multiple positive solutions for Hadamard type fractional differential equations with nonlocal conditions on an infinite interval, Appl. Math. Lett., 118 (2021), 107165. https://doi.org/10.1016/j.aml.2021.107165 doi: 10.1016/j.aml.2021.107165
  • This article has been cited by:

    1. Meraj Ali Khan, Ibrahim Al-Dayel, Foued Aloui, Shyamal Kumar Hui, Contact CR-Warped Product Submanifold of a Sasakian Space Form with a Semi-Symmetric Metric Connection, 2024, 16, 2073-8994, 190, 10.3390/sym16020190
    2. Yanlin Li, Fatemah Mofarreh, Abimbola Abolarinwa, Norah Alshehri, Akram Ali, Bounds for Eigenvalues of q-Laplacian on Contact Submanifolds of Sasakian Space Forms, 2023, 11, 2227-7390, 4717, 10.3390/math11234717
    3. Zewen Li, Donghe Pei, Null cartan geodesic isophote curves in Minkowski 3-space, 2024, 21, 0219-8878, 10.1142/S0219887824501421
    4. Sahar H. Nazra, Rashad A. Abdel-Baky, A Surface Pencil with Bertrand Curves as Joint Curvature Lines in Euclidean Three-Space, 2023, 15, 2073-8994, 1986, 10.3390/sym15111986
    5. Yanlin Li, Erhan Güler, Magdalena Toda, Family of right conoid hypersurfaces with light-like axis in Minkowski four-space, 2024, 9, 2473-6988, 18732, 10.3934/math.2024911
    6. Boyuan Xu, Donghe Pei, Generalized null Cartan helices and principal normal worldsheets in Minkowski 3-space, 2024, 39, 0217-7323, 10.1142/S0217732324500408
    7. Esmaeil Peyghan, Davood Seifipour, Ion Mihai, On the Geometry of Kobayashi–Nomizu Type and Yano Type Connections on the Tangent Bundle with Sasaki Metric, 2023, 11, 2227-7390, 3865, 10.3390/math11183865
    8. Ali H. Hakami, Mohd Danish Siddiqi, Significance of Solitonic Fibers in Riemannian Submersions and Some Number Theoretic Applications, 2023, 15, 2073-8994, 1841, 10.3390/sym15101841
    9. Ibrahim Al-Dayel, Meraj Ali Khan, Mohammad Shuaib, Qingkai Zhao, Homology of Warped Product Semi-Invariant Submanifolds of a Sasakian Space Form with Semisymmetric Metric Connection, 2023, 2023, 2314-4785, 1, 10.1155/2023/5035740
    10. Nadia Alluhaibi, Rashad A. Abdel-Baky, Surface Pencil Couple with Bertrand Couple as Joint Principal Curves in Galilean 3-Space, 2023, 12, 2075-1680, 1022, 10.3390/axioms12111022
    11. Meraj Ali Khan, Ibrahim Al-Dayel, Foued Aloui, Ricci Curvature Inequalities for Contact CR-Warped Product Submanifolds of an Odd Dimensional Sphere Admitting a Semi-Symmetric Metric Connection, 2024, 16, 2073-8994, 95, 10.3390/sym16010095
    12. Yanlin Li, Erhan Güler, Twisted Hypersurfaces in Euclidean 5-Space, 2023, 11, 2227-7390, 4612, 10.3390/math11224612
    13. Samesh Shenawy, Alaa Rabie, Uday Chand De, Carlo Mantica, Nasser Bin Turki, Semi-Conformally Flat Singly Warped Product Manifolds and Applications, 2023, 12, 2075-1680, 1078, 10.3390/axioms12121078
    14. Wei Zhang, Pengcheng Li, Donghe Pei, Circular evolutes and involutes of spacelike framed curves and their duality relations in Minkowski 3-space, 2024, 9, 2473-6988, 5688, 10.3934/math.2024276
    15. Marija S. Najdanović, Characterization of dual curves using the theory of infinitesimal bending, 2024, 47, 0170-4214, 8626, 10.1002/mma.10035
    16. Erhan Güler, G. Muhiuddin, Investigating Helical Hypersurfaces Within 7‐Dimensional Euclidean Space, 2024, 2024, 2314-4629, 10.1155/2024/3459717
    17. Erhan Güler, A helicoidal hypersurfaces family in five-dimensional euclidean space, 2024, 38, 0354-5180, 3813, 10.2298/FIL2411813G
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1555) PDF downloads(45) Cited by(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog