We study the class of surfaces of revolution in the 3-dimensional Euclidean space $ E^{3} $ with nonvanishing Gauss curvature whose position vector $ \boldsymbol{x} $ satisfies the condition $ \Delta^{II}\boldsymbol{x} = A\boldsymbol{x} $, where $ A $ is a square matrix of order 3 and $ \Delta^{II} $ denotes the Laplace operator of the second fundamental form $ II $ of the surface. We show that a surface of revolution satisfying the preceding relation is a catenoid or part of a sphere.
Citation: Mutaz Al-Sabbagh. Surfaces of coordinate finite $ II $-type[J]. AIMS Mathematics, 2025, 10(3): 6258-6269. doi: 10.3934/math.2025285
We study the class of surfaces of revolution in the 3-dimensional Euclidean space $ E^{3} $ with nonvanishing Gauss curvature whose position vector $ \boldsymbol{x} $ satisfies the condition $ \Delta^{II}\boldsymbol{x} = A\boldsymbol{x} $, where $ A $ is a square matrix of order 3 and $ \Delta^{II} $ denotes the Laplace operator of the second fundamental form $ II $ of the surface. We show that a surface of revolution satisfying the preceding relation is a catenoid or part of a sphere.
| [1] | B. Y. Chen, A report on submanifolds of finite type, Soochow J. Math., 22 (1996), 117–337. |
| [2] | S. I. Abdelsalam, A. Magesh, P. Tamizharasi, Optimizing fluid dynamics: An in-depth study for nano-biomedical applications with a heat source, J. Therm. Anal. Calorim., 2024. https://doi.org/10.1007/s10973-024-13472-2 |
| [3] | B. Y. Chen, Total mean curvature and submanifolds of finite type, 2 Eds., World Scientific Publisher, 2014. https://doi.org/10.1142/9237 |
| [4] |
T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan, 18 (1966), 380–385. https://doi.org/10.2969/jmsj/01840380 doi: 10.2969/jmsj/01840380
|
| [5] |
O. J. Garay, An extension of Takahashi's theorem, Geom. Dedicata., 34 (1990), 105–112. https://doi.org/10.1007/BF00147319 doi: 10.1007/BF00147319
|
| [6] |
F. Dilen, J. Pas, L. Verstraelen, On surfaces of finite type in Euclidean 3-space, Kodai Math. J., 13 (1990), 10–21. https://doi.org/10.2996/kmj/1138039155 doi: 10.2996/kmj/1138039155
|
| [7] | B. Y. Chen, P. Piccini, Submanifolds with finite type Gauss map, Bull. Austral. Math. Soc., 35 (1987), 161–186. |
| [8] | H. Al-Zoubi, H. Alzaareer, T. Hamadneh, M. Al Rawajbeh, Tubes of coordinate finite type Gauss map in the Euclidean 3-space, Indian J. Math., 62 (2020), 171–182. |
| [9] | H. Alzaareer, H. Al-Zoubi, F. Abdel-Fattah, Quadrics with finite Chen-type Gauss map, J. Prime Res. Math., 18 (2022), 96–107. |
| [10] |
C. Baikoussis, L. Verstraelen, The Chen-type of the spiral surfaces, Results Math., 28 (1995), 214–223. https://doi.org/10.1007/BF03322254 doi: 10.1007/BF03322254
|
| [11] | C. Baikoussis, L. Verstraelen, On the Gauss map of translation surfaces, Rend. Semi. Mat. Messina Ser II, in press. |
| [12] | C. Baikoussis, L. Verstraelen, On the Gauss map of helicoidal surfaces, Rend. Sem. Mat. Messina Ser. II, 16 (1993), 31–42. |
| [13] | F. Dillen, J. Pass, L. Verstraelen, On the Gauss map of surfaces of revolution, Bull. Inst. Math. Acad. Sin., 18 (1990), 239–246. |
| [14] | H. Al-Zoubi, M. Al-Sabbagh, Anchor rings of finite type Gauss map in the Euclidean 3-space, Int. J. Math. Comput. Methods, 5 (2020), 9–13. |
| [15] |
H. Al-Zoubi, F. Abdel-Fattah, M. Al-Sabbagh, Surfaces of finite III-type in the Euclidean 3-space, WSEAS Trans. Math., 20 (2021), 729–735. https://doi.org/10.37394/23206.2021.20.77 doi: 10.37394/23206.2021.20.77
|
| [16] |
S. Stamatakis, H. Al-Zoubi, On surfaces of finite Chen-type, Results Math., 43 (2003), 181–190. https://doi.org/10.1007/BF03322734 doi: 10.1007/BF03322734
|
| [17] |
H. Al-Zoubi, H. Alzaareer, A. Zraiqat, T. Hamadneh, W. Al Mashaleh, On ruled surfaces of coordinate finite type, WSEAS Trans. Math., 21 (2022), 765–769. https://doi.org/10.37394/23206.2022.21.87 doi: 10.37394/23206.2022.21.87
|
| [18] |
H. Al-Zoubi, H. Alzaareer, M. Al-Rawajbeh, M. Al-Kafaween, Characterization of tubular surfaces in terms of finite $III$-type, WSEAS Trans. Syst. Control, 19 (2024), 22–26. https://doi.org/ 10.37394/23203.2024.19.3 doi: 10.37394/23203.2024.19.3
|
| [19] |
H. Al-Zoubi, T. Hamadneh, M. A. Hammad, M. Al-Sabbagh, M. Ozdemir, Ruled and quadric surfaces satisfying $\triangle ^II\mathbf{N} = \Lambda\mathbf{N}$, Symmetry, 15 (2023), 300. https://doi.org/10.3390/sym15020300 doi: 10.3390/sym15020300
|
| [20] | J. Arroyo, O. J. Garay, J. J. Mencía, On a family of surfaces of revolution of finite Chen-type, Kodai Math. J., 21 (1998) 73–80. |
| [21] | H. Al-Zoubi, T. Hamadneh, H. Alzaareer, M. Al-Sabbagh, Tubes in the Euclidean 3-space with coordinate finite type Gauss map, In: 2021 International conference on information technology (ICIT), Jordan: IEEE, 2021. https://doi.org/10.1109/ICIT52682.2021.9491118 |
| [22] | H. Al-Zoubi, A. Dababneh, M. Al-Sabbagh, Ruled surfaces of finite $II$-type, WSEAS Trans. Math., 18 (2019), 1–5. |
| [23] | S. Stamatakis, H. Al-Zoubi, Surfaces of revolution satisfying $\triangle^III\mathbf{x} = A\mathbf{x}$, arXiv: 1510.08479, 2010. https://doi.org/10.48550/arXiv.1510.08479 |
| [24] | H. Al-Zoubi, T. Hamadneh, A. Alkhatib, Quadric surfaces of coordinate finite type Gauss map in the Euclidean 3-space, Indian J. Math., 64 (2022), 385–399. |
| [25] | H. Al-Zoubi, H. Alzaareer, Non-degenerate translation surfaces of finite $III$-type, Indian J. Math., 65 (2023), 395–407. |
| [26] | H. Huck, R. Roitzsch, U. Simon, W. Vortisch, R. Walden, B. Wegner, et al., Beweismethoden der Differentialgeometrie im Grossen, In: Lecture notes in mathematics, Heidelberg: Springer Berlin, 335 (1973). https://doi.org/10.1007/BFb0061770 |
| [27] | H. Al-Zoubi, W. Al Mashaleh, Surfaces of finite type with respect to the third fundamental form, In: 2019 IEEE Jordan international joint conference on electrical engineering and information technology (JEEIT), Jordan: IEEE, 2019,174–178. https://doi.org/10.1109/JEEIT.2019.8717507 |
| [28] |
Y. H. Kim, C. W. Lee, D. W. Yoon, On the Gauss map of surfaces of revolution without parabolic points, Bull. Korean Math. Soc., 46 (2009), 1141–1149. https://doi.org/10.4134/BKMS.2009.46.6.1141 doi: 10.4134/BKMS.2009.46.6.1141
|