Based on the K-means method, an effective block-row partitions algorithm was proposed in [
Citation: Ran-Ran Li, Hao Liu. The maximum residual block Kaczmarz algorithm based on feature selection[J]. AIMS Mathematics, 2025, 10(3): 6270-6290. doi: 10.3934/math.2025286
Based on the K-means method, an effective block-row partitions algorithm was proposed in [
| [1] |
R.-R. Li, H. Liu, On randomized partial block Kaczmarz method for solving huge linear algebraic systems, Comput. Appl. Math., 41 (2022), 278. https://doi.org/10.1007/s40314-022-01978-0 doi: 10.1007/s40314-022-01978-0
|
| [2] |
Y. Censor, Row-action methods for huge and sparse systems and their applications, SIAM Rev., 23 (1981), 444–466. https://doi.org/10.1137/1023097 doi: 10.1137/1023097
|
| [3] | C. Brezinski, Projection methods for systems of equations, Amsterdam: Elsevier, 1997. |
| [4] | Z.-Z. Bai, C.-H. Jin, Column-decomposed relaxation methods for the overdetermined systems of linear equations, Int. J. Appl. Math., 13 (2003), 71–82. |
| [5] | S. Kaczmarz, Angen$\ddot a$herte aufl$\ddot o$sung von systemen linearer gleichungen, Bull. Int. Acad. Polon. Sci. Lett. A, 35 (1937), 355–357. |
| [6] | F. Natterer, The mathematics of computerized tomography, Philadelphia: SIAM, 2001. |
| [7] | G. T. Herman, Fundamentals of computerized tomography: Image reconstruction from projections, Springer, 2009. |
| [8] |
C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Probl., 20 (2004), 103–120. https://doi.org/10.1088/0266-5611/20/1/006 doi: 10.1088/0266-5611/20/1/006
|
| [9] |
C. Popa, R. Zdunek, Kaczmarz extended algorithm for tomographic image reconstruction from limited-data, Math. Comput. Simulat., 65 (2004), 579–598. https://doi.org/10.1016/j.matcom.2004.01.021 doi: 10.1016/j.matcom.2004.01.021
|
| [10] |
T. Strohmer, R. Vershynin, A randomized Kaczmarz algorithm with exponential convergence, J. Fourier Anal. Appl., 15 (2009), 262–278. https://doi.org/10.1007/s00041-008-9030-4 doi: 10.1007/s00041-008-9030-4
|
| [11] |
Z.-Z. Bai, W.-T. Wu, On convergence rate of the randomized Kaczmarz method, Linear Algebra Appl., 553 (2018), 252–269. https://doi.org/10.1016/j.laa.2018.05.009 doi: 10.1016/j.laa.2018.05.009
|
| [12] |
Z.-Z. Bai, W.-T. Wu, On greedy randomized Kaczmarz method for solving large sparse linear systems, SIAM J. Sci. Comput., 40 (2018), 592–606. https://doi.org/10.1137/17m1137747 doi: 10.1137/17m1137747
|
| [13] |
Z.-Z. Bai, W.-T. Wu, On relaxed greedy randomized Kaczmarz methods for solving large sparse linear systems, Appl. Math. Lett., 83 (2018), 21–26. https://doi.org/10.1016/j.aml.2018.03.008 doi: 10.1016/j.aml.2018.03.008
|
| [14] |
J.-J. Zhang, A new greedy Kaczmarz algorithm for the solution of very large linear systems, Appl. Math. Lett., 91 (2019), 207–212. https://doi.org/10.1016/j.aml.2018.12.022 doi: 10.1016/j.aml.2018.12.022
|
| [15] |
Y. Liu, C.-Q. Gu, Variant of greedy randomized Kaczmarz for ridge regression, Appl. Numer. Math., 143 (2019), 223–246. https://doi.org/10.1016/j.apnum.2019.04.008 doi: 10.1016/j.apnum.2019.04.008
|
| [16] |
Z.-Z. Bai, W.-T. Wu, On greedy randomized augmented Kaczmarz method for solving large sparse inconsistent linear systems, SIAM J. Sci. Comput., 43 (2021), A3892–A3911. https://doi.org/10.1137/20m1352235 doi: 10.1137/20m1352235
|
| [17] |
S. Steinerberger, A weighted randomized Kaczmarz method for solving linear systems, Math. Comput., 90 (2021), 2815–2826. https://doi.org/10.1090/mcom/3644 doi: 10.1090/mcom/3644
|
| [18] |
X. Yang, A geometric probability randomized Kaczmarz method for large scale linear systems, Appl. Numer. Math., 164 (2021), 139–160. https://doi.org/10.1016/j.apnum.2020.10.016 doi: 10.1016/j.apnum.2020.10.016
|
| [19] |
Z.-Z. Bai, L. Wang, On convergence rates of Kaczmarz-type methods with different selection rules of working rows, Appl. Numer. Math., 186 (2023), 289–319. https://doi.org/10.1016/j.apnum.2023.01.013 doi: 10.1016/j.apnum.2023.01.013
|
| [20] |
Z.-Z. Bai, W.-T. Wu, Randomized Kaczmarz iteration methods: Algorithmic extensions and convergence theory, Japan J. Indust. Appl. Math., 40 (2023), 1421–1443. https://doi.org/10.1007/s13160-023-00586-7 doi: 10.1007/s13160-023-00586-7
|
| [21] |
A. Ma, D. Molitor, Randomized Kaczmarz for tensor linear systems, BIT Numer. Math., 62 (2022), 171–194. https://doi.org/10.1007/s10543-021-00877-w doi: 10.1007/s10543-021-00877-w
|
| [22] |
X.-Z Wang, M.-L Che, C.-X. Mo, Y.-M. Wei, Solving the system of nonsingular tensor equations via randomized Kaczmarz-like method, J. Comput. Appl. Math., 421 (2023), 114856. https://doi.org/10.1016/j.cam.2022.114856 doi: 10.1016/j.cam.2022.114856
|
| [23] |
S.-Y. Zhong, G.-X. Huang, An almost-maximal residual tensor block Kaczmarz method for large tensor linear systems, J. Comput. Appl. Math., 437 (2024), 115439. https://doi.org/10.1016/j.cam.2023.115439 doi: 10.1016/j.cam.2023.115439
|
| [24] |
T. Elfving, Block-iterative methods for consistent and inconsistent linear equations, Numer. Math., 35 (1980), 1–12. https://doi.org/10.1007/bf01396365 doi: 10.1007/bf01396365
|
| [25] |
D. Needell, J. A. Tropp, Paved with good intentions: Analysis of a randomized block Kaczmarz method, Linear Algebra Appl., 441 (2014), 199–221. https://doi.org/10.1016/j.laa.2012.12.022 doi: 10.1016/j.laa.2012.12.022
|
| [26] |
I. Necoara, Faster randomized block Kaczmarz algorithms, SIAM J. Matrix Anal. Appl., 40 (2019), 1425–1452. https://doi.org/10.1137/19m1251643 doi: 10.1137/19m1251643
|
| [27] |
C.-Q. Miao, W.-T. Wu, On greedy randomized average block Kaczmarz method for solving large linear systems, J. Comput. Appl. Math., 413 (2022), 114372. https://doi.org/10.1016/j.cam.2022.114372 doi: 10.1016/j.cam.2022.114372
|
| [28] |
D. Needell, R. Zhao, A. Zouzias, Randomized block Kaczmarz method with projection for solving least squares, Linear Algebra Appl., 484 (2015), 322–343. https://doi.org/10.1016/j.laa.2015.06.027 doi: 10.1016/j.laa.2015.06.027
|
| [29] |
Y. Liu, C.-Q. Gu, On greedy randomized block Kaczmarz method for consistent linear systems, Linear Algebra Appl., 616 (2021), 178–200. https://doi.org/10.1016/j.laa.2021.01.024 doi: 10.1016/j.laa.2021.01.024
|
| [30] |
R.-R. Li, H. Liu, On global randomized block Kaczmarz method for image reconstruction, Electron. Res. Arch., 30 (2022), 1442–1453. https://doi.org/10.3934/era.2022075 doi: 10.3934/era.2022075
|
| [31] |
J.-Q. Chen, Z.-D. Huang, On a fast deterministic block Kaczmarz method for solving large-scale linear systems, Numer. Algor., 89 (2022), 1007–1029. https://doi.org/10.1007/s11075-021-01143-4 doi: 10.1007/s11075-021-01143-4
|
| [32] |
X.-L. Jiang, K. Zhang, J.-F. Yin, Randomized block Kaczmarz methods with $k$-means clustering for solving large linear systems, J. Comput. Appl. Math., 403 (2022), 113828. https://doi.org/10.1016/j.cam.2021.113828 doi: 10.1016/j.cam.2021.113828
|
| [33] | T. Hastie, R. Tibshirani, M. Wainwright, Statistical learning with sparsity: The Lasso and generalizations, London: Chapman and Hall/CRC, 2015. |
| [34] |
D. L. Donoho, De-noising by soft-thresholding, IEEE Trans. Inf. Theory, 41 (1995), 613–627. https://doi.org/10.1109/18.382009 doi: 10.1109/18.382009
|
| [35] |
L. Xiao, T. Zhang, A proximal stochastic gradient method with progressive variance reduction, SIAM J. Optim., 24 (2014), 2057–2075. https://doi.org/10.1137/140961791 doi: 10.1137/140961791
|
| [36] |
A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imag. Sci., 2 (2009), 183–202. https://doi.org/10.1137/080716542 doi: 10.1137/080716542
|
| [37] |
K. Bredies, D. A. Lorenz, Linear convergence of iterative soft-thresholding, J. Fourier Anal. Appl., 14 (2008), 813–837. https://doi.org/10.1007/s00041-008-9041-1 doi: 10.1007/s00041-008-9041-1
|
| [38] | H. Karimi, J. Nutini, M. Schmidt, Linear convergence of gradient and proximal-gradient methods under the polyak-Lojasiewicz condition, In: Machine learning and knowledge discovery in databases, Cham: Springer, 2016,795–811. https://doi.org/10.1007/978-3-319-46128-1_50 |
| [39] |
T. A. Davis, Y. Hu, The university of Florida sparse matrix collection, ACM Trans. Math. Software, 38 (2011), 1–25. https://doi.org/10.1145/2049662.2049663 doi: 10.1145/2049662.2049663
|
| [40] |
U. Sara, M, Akter, M. S. Uddin, Image quality assessment through FSIM, SSIM, MSE and PSNR-a comparative study, J. Comput. Commun., 7 (2019), 8–18. https://doi.org/10.4236/jcc.2019.73002 doi: 10.4236/jcc.2019.73002
|