Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Design of double acceptance sampling plan for Weibull distribution under indeterminacy

  • Received: 18 December 2022 Revised: 16 March 2023 Accepted: 23 March 2023 Published: 04 April 2023
  • MSC : 62A86

  • This paper addresses neutrosophic statistics that will be used to design a double- acceptance sampling plan. We will design the sampling plans when the lifetime of the product follows the neutrosophic Weibull distribution. The plan parameters of the proposed double sampling plan will be determined using nonlinear optimization at various indeterminacy values and parameters. The productivity of the double sampling plan using neutrosophic statistics over the sampling plan under classical statistics will be given. The presentation of the proposed double sampling plan will be given with the help of industrial data.

    Citation: Ali Hussein AL-Marshadi, Muhammad Aslam, Abdullah Alharbey. Design of double acceptance sampling plan for Weibull distribution under indeterminacy[J]. AIMS Mathematics, 2023, 8(6): 13294-13305. doi: 10.3934/math.2023672

    Related Papers:

    [1] K. R. Karthikeyan, G. Murugusundaramoorthy, N. E. Cho . Some inequalities on Bazilevič class of functions involving quasi-subordination. AIMS Mathematics, 2021, 6(7): 7111-7124. doi: 10.3934/math.2021417
    [2] Muajebah Hidan, Abbas Kareem Wanas, Faiz Chaseb Khudher, Gangadharan Murugusundaramoorthy, Mohamed Abdalla . Coefficient bounds for certain families of bi-Bazilevič and bi-Ozaki-close-to-convex functions. AIMS Mathematics, 2024, 9(4): 8134-8147. doi: 10.3934/math.2024395
    [3] Ala Amourah, B. A. Frasin, G. Murugusundaramoorthy, Tariq Al-Hawary . Bi-Bazilevič functions of order ϑ+iδ associated with (p,q) Lucas polynomials. AIMS Mathematics, 2021, 6(5): 4296-4305. doi: 10.3934/math.2021254
    [4] Mohsan Raza, Khalida Inayat Noor . Subclass of Bazilevič functions of complex order. AIMS Mathematics, 2020, 5(3): 2448-2460. doi: 10.3934/math.2020162
    [5] Bakhtiar Ahmad, Muhammad Ghaffar Khan, Basem Aref Frasin, Mohamed Kamal Aouf, Thabet Abdeljawad, Wali Khan Mashwani, Muhammad Arif . On q-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain. AIMS Mathematics, 2021, 6(4): 3037-3052. doi: 10.3934/math.2021185
    [6] Ahmad A. Abubaker, Khaled Matarneh, Mohammad Faisal Khan, Suha B. Al-Shaikh, Mustafa Kamal . Study of quantum calculus for a new subclass of q-starlike bi-univalent functions connected with vertical strip domain. AIMS Mathematics, 2024, 9(5): 11789-11804. doi: 10.3934/math.2024577
    [7] Aoen, Shuhai Li, Tula, Shuwen Li, Hang Gao . New subclass of generalized close-to-convex function related with quasi-subordination. AIMS Mathematics, 2025, 10(5): 12149-12167. doi: 10.3934/math.2025551
    [8] Kholood M. Alsager, Sheza M. El-Deeb, Ala Amourah, Jongsuk Ro . Some results for the family of holomorphic functions associated with the Babalola operator and combination binomial series. AIMS Mathematics, 2024, 9(10): 29370-29385. doi: 10.3934/math.20241423
    [9] Jianhua Gong, Muhammad Ghaffar Khan, Hala Alaqad, Bilal Khan . Sharp inequalities for q-starlike functions associated with differential subordination and q-calculus. AIMS Mathematics, 2024, 9(10): 28421-28446. doi: 10.3934/math.20241379
    [10] Muhammad Sabil Ur Rehman, Qazi Zahoor Ahmad, H. M. Srivastava, Nazar Khan, Maslina Darus, Bilal Khan . Applications of higher-order q-derivatives to the subclass of q-starlike functions associated with the Janowski functions. AIMS Mathematics, 2021, 6(2): 1110-1125. doi: 10.3934/math.2021067
  • This paper addresses neutrosophic statistics that will be used to design a double- acceptance sampling plan. We will design the sampling plans when the lifetime of the product follows the neutrosophic Weibull distribution. The plan parameters of the proposed double sampling plan will be determined using nonlinear optimization at various indeterminacy values and parameters. The productivity of the double sampling plan using neutrosophic statistics over the sampling plan under classical statistics will be given. The presentation of the proposed double sampling plan will be given with the help of industrial data.



    Let A denote the class of functions f which are analytic in the open unit disk Δ={zC:|z|<1}, normalized by the conditions f(0)=f(0)1=0. So each fA has series representation of the form

    f(z)=z+n=2anzn. (1.1)

    For two analytic functions f and g, f is said to be subordinated to g (written as fg) if there exists an analytic function ω with ω(0)=0 and |ω(z)|<1 for zΔ such that f(z)=(gω)(z).

    A function fA is said to be in the class S if f is univalent in Δ. A function fS is in class C of normalized convex functions if f(Δ) is a convex domain. For 0α1, Mocanu [23] introduced the class Mα of functions fA such that f(z)f(z)z0 for all zΔ and

    ((1α)zf(z)f(z)+α(zf(z))f(z))>0(zΔ). (1.2)

    Geometrically, fMα maps the circle centred at origin onto α-convex arcs which leads to the condition (1.2). The class Mα was studied extensively by several researchers, see [1,10,11,12,24,25,26,27] and the references cited therein.

    A function fS is uniformly starlike if f maps every circular arc Γ contained in Δ with center at ζ Δ onto a starlike arc with respect to f(ζ). A function fC is uniformly convex if f maps every circular arc Γ contained in Δ with center ζ Δ onto a convex arc. We denote the classes of uniformly starlike and uniformly convex functions by UST and  UCV, respectively. For recent study on these function classes, one can refer to [7,9,13,19,20,31].

    In 1999, Kanas and Wisniowska [15] introduced the class k-UCV (k0) of k-uniformly convex functions. A function fA is said to be in the class k-UCV if it satisfies the condition

    (1+zf(z)f(z))>k|zf(z)f(z)|(zΔ). (1.3)

    In recent years, many researchers investigated interesting properties of this class and its generalizations. For more details, see [2,3,4,14,15,16,17,18,30,32,35] and references cited therein.

    In 2015, Sokół and Nunokawa [33] introduced the class MN, a function fMN if it satisfies the condition

    (1+zf(z)f(z))>|zf(z)f(z)1|(zΔ).

    In [28], it is proved that if (f)>0 in Δ, then f is univalent in Δ. In 1972, MacGregor [21] studied the class B of functions with bounded turning, a function fB if it satisfies the condition (f)>0 for zΔ. A natural generalization of the class B is B(δ1) (0δ1<1), a function fB(δ1) if it satisfies the condition

    (f(z))>δ1(zΔ;0δ1<1), (1.4)

    for details associated with the class B(δ1) (see [5,6,34]).

    Motivated essentially by the above work, we now introduce the following class k-Q(α) of analytic functions.

    Definition 1. Let k0 and 0α1. A function fA is said to be in the class k-Q(α) if it satisfies the condition

    ((zf(z))f(z))>k|(1α)f(z)+α(zf(z))f(z)1|(zΔ). (1.5)

    It is worth mentioning that, for special values of parameters, one can obtain a number of well-known function classes, some of them are listed below:

    1. k-Q(1)=k-UCV;

    2. 0-Q(α)=C.

    In what follows, we give an example for the class k-Q(α).

    Example 1. The function f(z)=z1Az(A0) is in the class k-Q(α) with

    k1b2bb(1+α)[b(1+α)+2]+4(b=|A|). (1.6)

    The main purpose of this paper is to establish several interesting relationships between k-Q(α) and the class B(δ) of functions with bounded turning.

    To prove our main results, we need the following lemmas.

    Lemma 1. ([8]) Let h be analytic in Δ with h(0)=1, β>0 and 0γ1<1. If

    h(z)+βzh(z)h(z)1+(12γ1)z1z,

    then

    h(z)1+(12δ)z1z,

    where

    δ=(2γ1β)+(2γ1β)2+8β4. (2.1)

    Lemma 2. Let h be analytic in Δ and of the form

    h(z)=1+n=mbnzn(bm0)

    with h(z)0 in Δ. If there exists a point z0(|z0|<1) such that |argh(z)|<πρ2(|z|<|z0|) and |argh(z0)|=πρ2 for some ρ>0, then z0h(z0)h(z0)=iρ, where

    :{n2(c+1c)(argh(z0)=πρ2),n2(c+1c)(argh(z0)=πρ2),

    and (h(z0))1/ρ=±ic(c>0).

    This result is a generalization of the Nunokawa's lemma [29].

    Lemma 3. ([37]) Let ε be a positive measure on [0,1]. Let ϝ be a complex-valued function defined on Δ×[0,1] such that ϝ(.,t) is analytic in Δ for each t[0,1] and ϝ(z,.) is ε-integrable on [0,1] for all zΔ. In addition, suppose that (ϝ(z,t))>0, ϝ(r,t) is real and (1/ϝ(z,t))1/ϝ(r,t) for |z|r<1 and t[0,1]. If ϝ(z)=10ϝ(z,t)dε(t), then (1/ϝ(z))1/ϝ(r).

    Lemma 4. ([22]) If 1D<C1, λ1>0 and (γ2)λ1(1C)/(1D), then the differential equation

    s(z)+zs(z)λ1s(z)+γ2=1+Cz1+Dz(zΔ)

    has a univalent solution in Δ given by

    s(z)={zλ1+γ2(1+Dz)λ1(CD)/Dλ1z0tλ1+γ21(1+Dt)λ1(CD)/Ddtγ2λ1(D0),zλ1+γ2eλ1Czλ1z0tλ1+γ21eλ1Ctdtγ2λ1(D=0).

    If r(z)=1+c1z+c2z2+ satisfies the condition

    r(z)+zr(z)λ1r(z)+γ21+Cz1+Dz(zΔ),

    then

    r(z)s(z)1+Cz1+Dz,

    and s(z) is the best dominant.

    Lemma 5. ([36,Chapter 14]) Let w, x and\ y0,1,2, be complex numbers. Then, for (y)>(x)>0, one has

    1. 2G1(w,x,y;z)=Γ(y)Γ(yx)Γ(x)10sx1(1s)yx1(1sz)wds;

    2. 2G1(w,x,y;z)= 2G1(x,w,y;z);

    3. 2G1(w,x,y;z)=(1z)w2G1(w,yx,y;zz1).

    Firstly, we derive the following result.

    Theorem 1. Let 0α<1 and k11α. If fk-Q(α), then fB(δ), where

    δ=(2μλ)+(2μλ)2+8λ4(λ=1+αkk(1α);μ=kαk1k(1α)). (3.1)

    Proof. Let f=, where is analytic in Δ with (0)=1. From inequality (1.5) which takes the form

    (1+z(z)(z))>k|(1α)(z)+α(1+z(z)(z))1|=k|1α(z)+α(z)αz(z)(z)|,

    we find that

    ((z)+1+αkk(1α)z(z)(z))>kαk1k(1α),

    which can be rewritten as

    ((z)+λz(z)(z))>μ(λ=1+αkk(1α);μ=kαk1k(1α)).

    The above relationship can be written as the following Briot-Bouquet differential subordination

    (z)+λz(z)(z)1+(12μ)z1z.

    Thus, by Lemma 1, we obtain

    1+(12δ)z1z, (3.2)

    where δ is given by (3.1). The relationship (3.2) implies that fB(δ). We thus complete the proof of Theorem 3.1.

    Theorem 2. Let 0<α1, 0<β<1, c>0, k1, nm+1(m N ), ||n2(c+1c) and

    |αβ±(1α)cβsinβπ2|1. (3.3)

    If

    f(z)=z+n=m+1anzn(am+10)

    and fk-Q(α), then fB(β0), where

    β0=min{β:β(0,1)}

    such that (3.3) holds.

    Proof. By the assumption, we have

    f(z)=(z)=1+n=mcnzn(cm0). (3.4)

    In view of (1.5) and (3.4), we get

    (1+z(z)(z))>k|(1α)(z)+α(1+z(z)(z))1|.

    If there exists a point z0Δ such that

    |arg(z)|<βπ2(|z|<|z0|;0<β<1)

    and

    |arg(z0)|=βπ2(0<β<1),

    then from Lemma 2, we know that

    z0(z0)(z0)=iβ,

    where

    ((z0))1/β=±ic(c>0)

    and

    :{n2(c+1c)(arg(z0)=βπ2),n2(c+1c)(arg(z0)=βπ2).

    For the case

    arg(z0)=βπ2,

    we get

    (1+z0(z0)(z0))=(1+iβ)=1. (3.5)

    Moreover, we find from (3.3) that

    k|(1α)(z0)+α(1+z0(z0)(z0))1|=k|(1α)((z0)1)+αz0(z0)(z0)|=k|(1α)[(±ic)β1]+iαβ|=k(1α)2(cβcosβπ21)2+[αβ±(1α)cβsinβπ2]21. (3.6)

    By virtue of (3.5) and (3.6), we have

    (1+z(z0)(z0))k|(1α)(z0)+α(1+z0(z0)(z0))1|,

    which is a contradiction to the definition of k-Q(α). Since β0=min{β:β(0,1)} such that (3.3) holds, we can deduce that fB(β0).

    By using the similar method as given above, we can prove the case

    arg(z0)=βπ2

    is true. The proof of Theorem 2 is thus completed.

    Theorem 3. If 0<β<1 and 0ν<1. If fk-Q(α), then

    (f)>[2G1(2β(1ν),1;1β+1;12)]1,

    or equivalently, k-Q(α)B(ν0), where

    ν0=[2G1(2β(1μ),1;1β+1;12)]1.

    Proof. For

    w=2β(1ν), x=1β, y=1β+1,

    we define

    ϝ(z)=(1+Dz)w10tx1(1+Dtz)wdt=Γ(x)Γ(y) 2G1(1,w,y;zz1). (3.7)

    To prove k-Q(α)B(ν0), it suffices to prove that

    inf|z|<1{(q(z))}=q(1),

    which need to show that

    (1/ϝ(z))1/ϝ(1).

    By Lemma 3 and (3.7), it follows that

    ϝ(z)=10ϝ(z,t)dε(t),

    where

    ϝ(z,t)=1z1(1t)z(0t1),

    and

    dε(t)=Γ(x)Γ(w)Γ(yw)tw1(1t)yw1dt,

    which is a positive measure on [0,1].

    It is clear that (ϝ(z,t))>0 and ϝ(r,t) is real for |z|r<1 and t[0,1]. Also

    (1ϝ(z,t))=(1(1t)z1z)1+(1t)r1+r=1ϝ(r,t)

    for |z|r<1. Therefore, by Lemma 3, we get

    (1/ϝ(z))1/ϝ(r).

    If we let r1, it follows that

    (1/ϝ(z))1/ϝ(1).

    Thus, we deduce that k-Q(α)B(ν0).

    Theorem 4. Let 0α<1 and k11α. If fk-Q(α), then

    f(z)s(z)=1g(z),

    where

    g(z)=2G1(2λ,1,1λ+1;zz1)(λ=1+αkk(1α)).

    Proof. Suppose that f=. From the proof of Theorem 1, we see that

    (z)+z(z)1λ(z)1+(12μ)z1z1+z1z(λ=1+αkk(1α);μ=kαk1k(1α)).

    If we set λ1=1λ, γ2=0, C=1 and D=1 in Lemma 4, then

    (z)s(z)=1g(z)=z1λ(1z)2λ1/λz0t(1/λ)1(1t)2/λdt.

    By putting t=uz, and using Lemma 5, we obtain

    (z)s(z)=1g(z)=11λ(1z)2λ10u(1/λ)1(1uz)2/λdu=[2G1(2λ,1,1λ+1;zz1)]1,

    which is the desired result of Theorem 4.

    The present investigation was supported by the Key Project of Education Department of Hunan Province under Grant no. 19A097 of the P. R. China. The authors would like to thank the referees for their valuable comments and suggestions, which was essential to improve the quality of this paper.

    The authors declare no conflict of interest.



    [1] S. Singh, Y. M. Tripathi, Acceptance sampling plans for inverse Weibull distribution based on truncated life test, Life Cycle Reliab. Safety Eng., 6 (2017), 169–178. https://doi.org/10.1007/s41872-017-0022-8 doi: 10.1007/s41872-017-0022-8
    [2] A. D. Al-Nasser, B. Y. Alhroub, Acceptance sampling plans using hypergeometric theory for finite population under Q-Weibull distribution, Electron. J. Appl. Stat. Anal., 15 (2022), 374–388. https://doi.org/10.3390/axioms11090438 doi: 10.3390/axioms11090438
    [3] A. Algarni, Group acceptance sampling plan based on new compounded three-parameter Weibull model, Axioms, 11 (2022), 438. https://doi.org/10.3390/axioms11090438 doi: 10.3390/axioms11090438
    [4] S. G. Nassr, A. S. Hassan, R. Alsultan, A. R. El-Saeed, Acceptance sampling plans for the three-parameter inverted Topp-Leone model, Math. Biosci. Eng., 19 (2022), 13628–13659. https://doi.org/10.3934/mbe.2022636
    [5] S. Shafiq, F. Jamal, C. Chesneau, M. Aslam, J. T. Mendy, On the odd Perks exponential model: An application to quality control data, Adv. Oper. Res., 2022 (2022). https://doi.org/10.1155/2022/5502216 doi: 10.1155/2022/5502216
    [6] D. C. Montgomery, Introduction to statistical quality control, John Wiley & Sons, 2007.
    [7] M. Mahdy, B. Ahmed, New distributions in designing of double acceptance sampling plan with application, Pak. J. Stat. Oper. Res., 2018,333–346. https://doi.org/10.18187/pjsor.v13i3.2060 doi: 10.18187/pjsor.v13i3.2060
    [8] C. Saranya, R. Vijayaraghavan, K. S. N. Sharma, Design of double sampling inspection plans for life tests under time censoring based on Pareto type IV distribution, Sci. Rep., 12 (2022), 1–11. https://doi.org/10.1038/s41598-022-11834-0 doi: 10.1038/s41598-022-11834-0
    [9] M. Saha, H. Tripathi, S. Dey, Single and double acceptance sampling plans for truncated life tests based on transmuted Rayleigh distribution, J. Indust. Prod. Eng., 38 (2021), 356–368. https://doi.org/10.1080/21681015.2021.1893843 doi: 10.1080/21681015.2021.1893843
    [10] M. S. Babu, G. S. Rao, K. Rosaiah, Double-acceptance sampling plan for exponentiated Frechet distribution with known shape parameters, Math. Probl. Eng., 2021 (2021). https://doi.org/10.1155/2021/7308454 doi: 10.1155/2021/7308454
    [11] N. Murugeswari, P. Jeyadurga, S. Balamurali, Optimal design of a skip-lot sampling reinspection plan with a double sampling plan as a reference plan, Sequential Anal., 40 (2021), 370–380. https://doi.org/10.1080/07474946.2021.1940499 doi: 10.1080/07474946.2021.1940499
    [12] F. Smarandache, Introduction to neutrosophic statistics, Sitech and Education Publisher, Craiova, 2014,123.
    [13] J. Chen, J. Ye, S. Du, Scale effect and anisotropy analyzed for neutrosophic numbers of rock joint roughness coefficient based on neutrosophic statistics, Symmetry, 9 (2017), 208. https://doi.org/10.3390/sym9100208 doi: 10.3390/sym9100208
    [14] J. Chen, J. Ye, S. Du, R. Yong, Expressions of rock joint roughness coefficient using neutrosophic interval statistical numbers, Symmetry, 9 (2017), 123. https://doi.org/10.3390/sym9070123 doi: 10.3390/sym9070123
    [15] W. H. Woodall, A. R. Driscoll, D. C. Montgomery, A review and perspective on neutrosophic statistical process monitoring methods, IEEE Access, 2022. https://doi.org/10.1109/ACCESS.2022.3207188 doi: 10.1109/ACCESS.2022.3207188
    [16] F. Smarandache, Neutrosophic statistics is an extension of interval statistics, while plithogenic statistics is the most general form of statistics, Int. J. Neutrosophic Sci., 2022. https://doi.org/10.5958/2320-3226.2022.00024.8
    [17] I. Gürkan, K. İhsan, Effects of neutrosophic binomial distribution on double acceptance sampling plans, Conf. P. Sci. Technol., 3 (2020), 68–76.
    [18] G. Işik, İ. Kaya, Design of single and double acceptance sampling plans based on neutrosophic sets, J. Intell. Fuzzy Syst., 42 (2022), 3349–3366. https://doi.org/10.3233/JIFS-211232
    [19] B. M. Hsu, M. H. Shu, B. S. Chen, Evaluating lifetime performance for the Pareto model with censored and imprecise information, J. Stat. Comput. Simul., 81 (2011), 1817–1833. https://doi.org/10.1080/00949655.2010.506439 doi: 10.1080/00949655.2010.506439
    [20] A. Paka, M. R. Mahmoudi, Estimation of lifetime distribution parameters with general progressive censoring from imprecise data, J. Data Sci., 13 (2015), 807–817. https://doi.org/10.6339/JDS.201510_13(4).0010 doi: 10.6339/JDS.201510_13(4).0010
    [21] N. B. Khoolenjani, F. Shahsanaie, Estimating the parameter of exponential distribution under type-Ⅱ censoring from fuzzy data, J. Stat. Theory Appl., 15 (2016), 181–195. https://doi.org/10.2991/jsta.2016.15.2.8 doi: 10.2991/jsta.2016.15.2.8
    [22] N. Abbas, S. Ahmad, M. Riaz, Reintegration of auxiliary information based control charts, Comput. Indust. Eng., 171 (2022), 108479. https://doi.org/10.1016/j.cie.2022.108479 doi: 10.1016/j.cie.2022.108479
    [23] M. Aslam, Testing average wind speed using sampling plan for Weibull distribution under indeterminacy, Sci. Rep., 11 (2021), 1–9. https://doi.org/10.1038/s41598-020-79139-8 doi: 10.1038/s41598-020-79139-8
    [24] M. Aslam, C. H. Jun, A double acceptance sampling plan for generalized log-logistic distributions with known shape parameters, J. Appl. Stat., 37 (2010), 405–414. https://doi.org/10.1080/02664760802698979 doi: 10.1080/02664760802698979
    [25] M. Aslam, C. Jun, M. Ahmad, A double acceptance sampling plan based on the truncated life tests in the Weibull model, J. Stat. Theory Appl., 8 (2009), 191–206.
    [26] A. Pak, G. A. Parham, M. Saraj, Inference for the Weibull distribution based on fuzzy data, Rev. Colomb. Estadíst., 36 (2013), 337–356.
  • This article has been cited by:

    1. A Certain Class of Function Analytic and Subordinate to the Modified Sigmoid Function, 2025, 2581-8147, 639, 10.34198/ejms.15425.639647
    2. Tamer M. Seoudy, Amnah E. Shammaky, Certain subfamily of multivalently Bazilevič and non-Bazilevič functions involving the bounded boundary rotation, 2025, 10, 2473-6988, 12745, 10.3934/math.2025574
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2131) PDF downloads(89) Cited by(1)

Figures and Tables

Figures(4)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog