This paper addresses neutrosophic statistics that will be used to design a double- acceptance sampling plan. We will design the sampling plans when the lifetime of the product follows the neutrosophic Weibull distribution. The plan parameters of the proposed double sampling plan will be determined using nonlinear optimization at various indeterminacy values and parameters. The productivity of the double sampling plan using neutrosophic statistics over the sampling plan under classical statistics will be given. The presentation of the proposed double sampling plan will be given with the help of industrial data.
Citation: Ali Hussein AL-Marshadi, Muhammad Aslam, Abdullah Alharbey. Design of double acceptance sampling plan for Weibull distribution under indeterminacy[J]. AIMS Mathematics, 2023, 8(6): 13294-13305. doi: 10.3934/math.2023672
[1] | K. R. Karthikeyan, G. Murugusundaramoorthy, N. E. Cho . Some inequalities on Bazilevič class of functions involving quasi-subordination. AIMS Mathematics, 2021, 6(7): 7111-7124. doi: 10.3934/math.2021417 |
[2] | Muajebah Hidan, Abbas Kareem Wanas, Faiz Chaseb Khudher, Gangadharan Murugusundaramoorthy, Mohamed Abdalla . Coefficient bounds for certain families of bi-Bazilevič and bi-Ozaki-close-to-convex functions. AIMS Mathematics, 2024, 9(4): 8134-8147. doi: 10.3934/math.2024395 |
[3] | Ala Amourah, B. A. Frasin, G. Murugusundaramoorthy, Tariq Al-Hawary . Bi-Bazilevič functions of order ϑ+iδ associated with (p,q)− Lucas polynomials. AIMS Mathematics, 2021, 6(5): 4296-4305. doi: 10.3934/math.2021254 |
[4] | Mohsan Raza, Khalida Inayat Noor . Subclass of Bazilevič functions of complex order. AIMS Mathematics, 2020, 5(3): 2448-2460. doi: 10.3934/math.2020162 |
[5] | Bakhtiar Ahmad, Muhammad Ghaffar Khan, Basem Aref Frasin, Mohamed Kamal Aouf, Thabet Abdeljawad, Wali Khan Mashwani, Muhammad Arif . On q-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain. AIMS Mathematics, 2021, 6(4): 3037-3052. doi: 10.3934/math.2021185 |
[6] | Ahmad A. Abubaker, Khaled Matarneh, Mohammad Faisal Khan, Suha B. Al-Shaikh, Mustafa Kamal . Study of quantum calculus for a new subclass of q-starlike bi-univalent functions connected with vertical strip domain. AIMS Mathematics, 2024, 9(5): 11789-11804. doi: 10.3934/math.2024577 |
[7] | Aoen, Shuhai Li, Tula, Shuwen Li, Hang Gao . New subclass of generalized close-to-convex function related with quasi-subordination. AIMS Mathematics, 2025, 10(5): 12149-12167. doi: 10.3934/math.2025551 |
[8] | Kholood M. Alsager, Sheza M. El-Deeb, Ala Amourah, Jongsuk Ro . Some results for the family of holomorphic functions associated with the Babalola operator and combination binomial series. AIMS Mathematics, 2024, 9(10): 29370-29385. doi: 10.3934/math.20241423 |
[9] | Jianhua Gong, Muhammad Ghaffar Khan, Hala Alaqad, Bilal Khan . Sharp inequalities for q-starlike functions associated with differential subordination and q-calculus. AIMS Mathematics, 2024, 9(10): 28421-28446. doi: 10.3934/math.20241379 |
[10] | Muhammad Sabil Ur Rehman, Qazi Zahoor Ahmad, H. M. Srivastava, Nazar Khan, Maslina Darus, Bilal Khan . Applications of higher-order q-derivatives to the subclass of q-starlike functions associated with the Janowski functions. AIMS Mathematics, 2021, 6(2): 1110-1125. doi: 10.3934/math.2021067 |
This paper addresses neutrosophic statistics that will be used to design a double- acceptance sampling plan. We will design the sampling plans when the lifetime of the product follows the neutrosophic Weibull distribution. The plan parameters of the proposed double sampling plan will be determined using nonlinear optimization at various indeterminacy values and parameters. The productivity of the double sampling plan using neutrosophic statistics over the sampling plan under classical statistics will be given. The presentation of the proposed double sampling plan will be given with the help of industrial data.
Let A denote the class of functions f which are analytic in the open unit disk Δ={z∈C:|z|<1}, normalized by the conditions f(0)=f′(0)−1=0. So each f∈A has series representation of the form
f(z)=z+∞∑n=2anzn. | (1.1) |
For two analytic functions f and g, f is said to be subordinated to g (written as f≺g) if there exists an analytic function ω with ω(0)=0 and |ω(z)|<1 for z∈Δ such that f(z)=(g∘ω)(z).
A function f∈A is said to be in the class S if f is univalent in Δ. A function f∈S is in class C of normalized convex functions if f(Δ) is a convex domain. For 0≤α≤1, Mocanu [23] introduced the class Mα of functions f∈A such that f(z)f′(z)z≠0 for all z∈Δ and
ℜ((1−α)zf′(z)f(z)+α(zf′(z))′f′(z))>0(z∈Δ). | (1.2) |
Geometrically, f∈Mα maps the circle centred at origin onto α-convex arcs which leads to the condition (1.2). The class Mα was studied extensively by several researchers, see [1,10,11,12,24,25,26,27] and the references cited therein.
A function f∈S is uniformly starlike if f maps every circular arc Γ contained in Δ with center at ζ ∈Δ onto a starlike arc with respect to f(ζ). A function f∈C is uniformly convex if f maps every circular arc Γ contained in Δ with center ζ ∈Δ onto a convex arc. We denote the classes of uniformly starlike and uniformly convex functions by UST and UCV, respectively. For recent study on these function classes, one can refer to [7,9,13,19,20,31].
In 1999, Kanas and Wisniowska [15] introduced the class k-UCV (k≥0) of k-uniformly convex functions. A function f∈A is said to be in the class k-UCV if it satisfies the condition
ℜ(1+zf″(z)f′(z))>k|zf′(z)f′(z)|(z∈Δ). | (1.3) |
In recent years, many researchers investigated interesting properties of this class and its generalizations. For more details, see [2,3,4,14,15,16,17,18,30,32,35] and references cited therein.
In 2015, Sokół and Nunokawa [33] introduced the class MN, a function f∈MN if it satisfies the condition
ℜ(1+zf″(z)f′(z))>|zf′(z)f(z)−1|(z∈Δ). |
In [28], it is proved that if ℜ(f′)>0 in Δ, then f is univalent in Δ. In 1972, MacGregor [21] studied the class B of functions with bounded turning, a function f∈B if it satisfies the condition ℜ(f′)>0 for z∈Δ. A natural generalization of the class B is B(δ1) (0≤δ1<1), a function f∈B(δ1) if it satisfies the condition
ℜ(f′(z))>δ1(z∈Δ;0≤δ1<1), | (1.4) |
for details associated with the class B(δ1) (see [5,6,34]).
Motivated essentially by the above work, we now introduce the following class k-Q(α) of analytic functions.
Definition 1. Let k≥0 and 0≤α≤1. A function f∈A is said to be in the class k-Q(α) if it satisfies the condition
ℜ((zf′(z))′f′(z))>k|(1−α)f′(z)+α(zf′(z))′f′(z)−1|(z∈Δ). | (1.5) |
It is worth mentioning that, for special values of parameters, one can obtain a number of well-known function classes, some of them are listed below:
1. k-Q(1)=k-UCV;
2. 0-Q(α)=C.
In what follows, we give an example for the class k-Q(α).
Example 1. The function f(z)=z1−Az(A≠0) is in the class k-Q(α) with
k≤1−b2b√b(1+α)[b(1+α)+2]+4(b=|A|). | (1.6) |
The main purpose of this paper is to establish several interesting relationships between k-Q(α) and the class B(δ) of functions with bounded turning.
To prove our main results, we need the following lemmas.
Lemma 1. ([8]) Let h be analytic in Δ with h(0)=1, β>0 and 0≤γ1<1. If
h(z)+βzh′(z)h(z)≺1+(1−2γ1)z1−z, |
then
h(z)≺1+(1−2δ)z1−z, |
where
δ=(2γ1−β)+√(2γ1−β)2+8β4. | (2.1) |
Lemma 2. Let h be analytic in Δ and of the form
h(z)=1+∞∑n=mbnzn(bm≠0) |
with h(z)≠0 in Δ. If there exists a point z0(|z0|<1) such that |argh(z)|<πρ2(|z|<|z0|) and |argh(z0)|=πρ2 for some ρ>0, then z0h′(z0)h(z0)=iℓρ, where
ℓ:{ℓ≥n2(c+1c)(argh(z0)=πρ2),ℓ≤−n2(c+1c)(argh(z0)=−πρ2), |
and (h(z0))1/ρ=±ic(c>0).
This result is a generalization of the Nunokawa's lemma [29].
Lemma 3. ([37]) Let ε be a positive measure on [0,1]. Let ϝ be a complex-valued function defined on Δ×[0,1] such that ϝ(.,t) is analytic in Δ for each t∈[0,1] and ϝ(z,.) is ε-integrable on [0,1] for all z∈Δ. In addition, suppose that ℜ(ϝ(z,t))>0, ϝ(−r,t) is real and ℜ(1/ϝ(z,t))≥1/ϝ(−r,t) for |z|≤r<1 and t∈[0,1]. If ϝ(z)=∫10ϝ(z,t)dε(t), then ℜ(1/ϝ(z))≥1/ϝ(−r).
Lemma 4. ([22]) If −1≤D<C≤1, λ1>0 and ℜ(γ2)≥−λ1(1−C)/(1−D), then the differential equation
s(z)+zs′(z)λ1s(z)+γ2=1+Cz1+Dz(z∈Δ) |
has a univalent solution in Δ given by
s(z)={zλ1+γ2(1+Dz)λ1(C−D)/Dλ1∫z0tλ1+γ2−1(1+Dt)λ1(C−D)/Ddt−γ2λ1(D≠0),zλ1+γ2eλ1Czλ1∫z0tλ1+γ2−1eλ1Ctdt−γ2λ1(D=0). |
If r(z)=1+c1z+c2z2+⋯ satisfies the condition
r(z)+zr′(z)λ1r(z)+γ2≺1+Cz1+Dz(z∈Δ), |
then
r(z)≺s(z)≺1+Cz1+Dz, |
and s(z) is the best dominant.
Lemma 5. ([36,Chapter 14]) Let w, x and\ y≠0,−1,−2,… be complex numbers. Then, for ℜ(y)>ℜ(x)>0, one has
1. 2G1(w,x,y;z)=Γ(y)Γ(y−x)Γ(x)∫10sx−1(1−s)y−x−1(1−sz)−wds;
2. 2G1(w,x,y;z)= 2G1(x,w,y;z);
3. 2G1(w,x,y;z)=(1−z)−w2G1(w,y−x,y;zz−1).
Firstly, we derive the following result.
Theorem 1. Let 0≤α<1 and k≥11−α. If f∈k-Q(α), then f∈B(δ), where
δ=(2μ−λ)+√(2μ−λ)2+8λ4(λ=1+αkk(1−α);μ=k−αk−1k(1−α)). | (3.1) |
Proof. Let f′=ℏ, where ℏ is analytic in Δ with ℏ(0)=1. From inequality (1.5) which takes the form
ℜ(1+zℏ′(z)ℏ(z))>k|(1−α)ℏ(z)+α(1+zℏ′(z)ℏ(z))−1|=k|1−α−ℏ(z)+αℏ(z)−αzℏ′(z)ℏ(z)|, |
we find that
ℜ(ℏ(z)+1+αkk(1−α)zℏ(z)ℏ(z))>k−αk−1k(1−α), |
which can be rewritten as
ℜ(ℏ(z)+λzℏ(z)ℏ(z))>μ(λ=1+αkk(1−α);μ=k−αk−1k(1−α)). |
The above relationship can be written as the following Briot-Bouquet differential subordination
ℏ(z)+λzℏ′(z)ℏ(z)≺1+(1−2μ)z1−z. |
Thus, by Lemma 1, we obtain
ℏ≺1+(1−2δ)z1−z, | (3.2) |
where δ is given by (3.1). The relationship (3.2) implies that f∈B(δ). We thus complete the proof of Theorem 3.1.
Theorem 2. Let 0<α≤1, 0<β<1, c>0, k≥1, n≥m+1(m∈ N ), |ℓ|≥n2(c+1c) and
|αβℓ±(1−α)cβsinβπ2|≥1. | (3.3) |
If
f(z)=z+∞∑n=m+1anzn(am+1≠0) |
and f∈k-Q(α), then f∈B(β0), where
β0=min{β:β∈(0,1)} |
such that (3.3) holds.
Proof. By the assumption, we have
f′(z)=ℏ(z)=1+∞∑n=mcnzn(cm≠0). | (3.4) |
In view of (1.5) and (3.4), we get
ℜ(1+zℏ′(z)ℏ(z))>k|(1−α)ℏ(z)+α(1+zℏ′(z)ℏ(z))−1|. |
If there exists a point z0∈Δ such that
|argℏ(z)|<βπ2(|z|<|z0|;0<β<1) |
and
|argℏ(z0)|=βπ2(0<β<1), |
then from Lemma 2, we know that
z0ℏ′(z0)ℏ(z0)=iℓβ, |
where
(ℏ(z0))1/β=±ic(c>0) |
and
ℓ:{ℓ≥n2(c+1c)(argℏ(z0)=βπ2),ℓ≤−n2(c+1c)(argℏ(z0)=−βπ2). |
For the case
argℏ(z0)=βπ2, |
we get
ℜ(1+z0ℏ′(z0)ℏ(z0))=ℜ(1+iℓβ)=1. | (3.5) |
Moreover, we find from (3.3) that
k|(1−α)ℏ(z0)+α(1+z0ℏ′(z0)ℏ(z0))−1|=k|(1−α)(ℏ(z0)−1)+αz0ℏ′(z0)ℏ(z0)|=k|(1−α)[(±ic)β−1]+iαβℓ|=k√(1−α)2(cβcosβπ2−1)2+[αβℓ±(1−α)cβsinβπ2]2≥1. | (3.6) |
By virtue of (3.5) and (3.6), we have
ℜ(1+zℏ′(z0)ℏ(z0))≤k|(1−α)ℏ(z0)+α(1+z0ℏ(z0)ℏ(z0))−1|, |
which is a contradiction to the definition of k-Q(α). Since β0=min{β:β∈(0,1)} such that (3.3) holds, we can deduce that f∈B(β0).
By using the similar method as given above, we can prove the case
argℏ(z0)=−βπ2 |
is true. The proof of Theorem 2 is thus completed.
Theorem 3. If 0<β<1 and 0≤ν<1. If f∈k-Q(α), then
ℜ(f′)>[2G1(2β(1−ν),1;1β+1;12)]−1, |
or equivalently, k-Q(α)⊂B(ν0), where
ν0=[2G1(2β(1−μ),1;1β+1;12)]−1. |
Proof. For
w=2β(1−ν), x=1β, y=1β+1, |
we define
ϝ(z)=(1+Dz)w∫10tx−1(1+Dtz)−wdt=Γ(x)Γ(y) 2G1(1,w,y;zz−1). | (3.7) |
To prove k-Q(α)⊂B(ν0), it suffices to prove that
inf|z|<1{ℜ(q(z))}=q(−1), |
which need to show that
ℜ(1/ϝ(z))≥1/ϝ(−1). |
By Lemma 3 and (3.7), it follows that
ϝ(z)=∫10ϝ(z,t)dε(t), |
where
ϝ(z,t)=1−z1−(1−t)z(0≤t≤1), |
and
dε(t)=Γ(x)Γ(w)Γ(y−w)tw−1(1−t)y−w−1dt, |
which is a positive measure on [0,1].
It is clear that ℜ(ϝ(z,t))>0 and ϝ(−r,t) is real for |z|≤r<1 and t∈[0,1]. Also
ℜ(1ϝ(z,t))=ℜ(1−(1−t)z1−z)≥1+(1−t)r1+r=1ϝ(−r,t) |
for |z|≤r<1. Therefore, by Lemma 3, we get
ℜ(1/ϝ(z))≥1/ϝ(−r). |
If we let r→1−, it follows that
ℜ(1/ϝ(z))≥1/ϝ(−1). |
Thus, we deduce that k-Q(α)⊂B(ν0).
Theorem 4. Let 0≤α<1 and k≥11−α. If f∈k-Q(α), then
f′(z)≺s(z)=1g(z), |
where
g(z)=2G1(2λ,1,1λ+1;zz−1)(λ=1+αkk(1−α)). |
Proof. Suppose that f′=ℏ. From the proof of Theorem 1, we see that
ℏ(z)+zℏ′(z)1λℏ(z)≺1+(1−2μ)z1−z≺1+z1−z(λ=1+αkk(1−α);μ=k−αk−1k(1−α)). |
If we set λ1=1λ, γ2=0, C=1 and D=−1 in Lemma 4, then
ℏ(z)≺s(z)=1g(z)=z1λ(1−z)−2λ1/λ∫z0t(1/λ)−1(1−t)−2/λdt. |
By putting t=uz, and using Lemma 5, we obtain
ℏ(z)≺s(z)=1g(z)=11λ(1−z)2λ∫10u(1/λ)−1(1−uz)−2/λdu=[2G1(2λ,1,1λ+1;zz−1)]−1, |
which is the desired result of Theorem 4.
The present investigation was supported by the Key Project of Education Department of Hunan Province under Grant no. 19A097 of the P. R. China. The authors would like to thank the referees for their valuable comments and suggestions, which was essential to improve the quality of this paper.
The authors declare no conflict of interest.
[1] |
S. Singh, Y. M. Tripathi, Acceptance sampling plans for inverse Weibull distribution based on truncated life test, Life Cycle Reliab. Safety Eng., 6 (2017), 169–178. https://doi.org/10.1007/s41872-017-0022-8 doi: 10.1007/s41872-017-0022-8
![]() |
[2] |
A. D. Al-Nasser, B. Y. Alhroub, Acceptance sampling plans using hypergeometric theory for finite population under Q-Weibull distribution, Electron. J. Appl. Stat. Anal., 15 (2022), 374–388. https://doi.org/10.3390/axioms11090438 doi: 10.3390/axioms11090438
![]() |
[3] |
A. Algarni, Group acceptance sampling plan based on new compounded three-parameter Weibull model, Axioms, 11 (2022), 438. https://doi.org/10.3390/axioms11090438 doi: 10.3390/axioms11090438
![]() |
[4] | S. G. Nassr, A. S. Hassan, R. Alsultan, A. R. El-Saeed, Acceptance sampling plans for the three-parameter inverted Topp-Leone model, Math. Biosci. Eng., 19 (2022), 13628–13659. https://doi.org/10.3934/mbe.2022636 |
[5] |
S. Shafiq, F. Jamal, C. Chesneau, M. Aslam, J. T. Mendy, On the odd Perks exponential model: An application to quality control data, Adv. Oper. Res., 2022 (2022). https://doi.org/10.1155/2022/5502216 doi: 10.1155/2022/5502216
![]() |
[6] | D. C. Montgomery, Introduction to statistical quality control, John Wiley & Sons, 2007. |
[7] |
M. Mahdy, B. Ahmed, New distributions in designing of double acceptance sampling plan with application, Pak. J. Stat. Oper. Res., 2018,333–346. https://doi.org/10.18187/pjsor.v13i3.2060 doi: 10.18187/pjsor.v13i3.2060
![]() |
[8] |
C. Saranya, R. Vijayaraghavan, K. S. N. Sharma, Design of double sampling inspection plans for life tests under time censoring based on Pareto type IV distribution, Sci. Rep., 12 (2022), 1–11. https://doi.org/10.1038/s41598-022-11834-0 doi: 10.1038/s41598-022-11834-0
![]() |
[9] |
M. Saha, H. Tripathi, S. Dey, Single and double acceptance sampling plans for truncated life tests based on transmuted Rayleigh distribution, J. Indust. Prod. Eng., 38 (2021), 356–368. https://doi.org/10.1080/21681015.2021.1893843 doi: 10.1080/21681015.2021.1893843
![]() |
[10] |
M. S. Babu, G. S. Rao, K. Rosaiah, Double-acceptance sampling plan for exponentiated Frechet distribution with known shape parameters, Math. Probl. Eng., 2021 (2021). https://doi.org/10.1155/2021/7308454 doi: 10.1155/2021/7308454
![]() |
[11] |
N. Murugeswari, P. Jeyadurga, S. Balamurali, Optimal design of a skip-lot sampling reinspection plan with a double sampling plan as a reference plan, Sequential Anal., 40 (2021), 370–380. https://doi.org/10.1080/07474946.2021.1940499 doi: 10.1080/07474946.2021.1940499
![]() |
[12] | F. Smarandache, Introduction to neutrosophic statistics, Sitech and Education Publisher, Craiova, 2014,123. |
[13] |
J. Chen, J. Ye, S. Du, Scale effect and anisotropy analyzed for neutrosophic numbers of rock joint roughness coefficient based on neutrosophic statistics, Symmetry, 9 (2017), 208. https://doi.org/10.3390/sym9100208 doi: 10.3390/sym9100208
![]() |
[14] |
J. Chen, J. Ye, S. Du, R. Yong, Expressions of rock joint roughness coefficient using neutrosophic interval statistical numbers, Symmetry, 9 (2017), 123. https://doi.org/10.3390/sym9070123 doi: 10.3390/sym9070123
![]() |
[15] |
W. H. Woodall, A. R. Driscoll, D. C. Montgomery, A review and perspective on neutrosophic statistical process monitoring methods, IEEE Access, 2022. https://doi.org/10.1109/ACCESS.2022.3207188 doi: 10.1109/ACCESS.2022.3207188
![]() |
[16] | F. Smarandache, Neutrosophic statistics is an extension of interval statistics, while plithogenic statistics is the most general form of statistics, Int. J. Neutrosophic Sci., 2022. https://doi.org/10.5958/2320-3226.2022.00024.8 |
[17] | I. Gürkan, K. İhsan, Effects of neutrosophic binomial distribution on double acceptance sampling plans, Conf. P. Sci. Technol., 3 (2020), 68–76. |
[18] | G. Işik, İ. Kaya, Design of single and double acceptance sampling plans based on neutrosophic sets, J. Intell. Fuzzy Syst., 42 (2022), 3349–3366. https://doi.org/10.3233/JIFS-211232 |
[19] |
B. M. Hsu, M. H. Shu, B. S. Chen, Evaluating lifetime performance for the Pareto model with censored and imprecise information, J. Stat. Comput. Simul., 81 (2011), 1817–1833. https://doi.org/10.1080/00949655.2010.506439 doi: 10.1080/00949655.2010.506439
![]() |
[20] |
A. Paka, M. R. Mahmoudi, Estimation of lifetime distribution parameters with general progressive censoring from imprecise data, J. Data Sci., 13 (2015), 807–817. https://doi.org/10.6339/JDS.201510_13(4).0010 doi: 10.6339/JDS.201510_13(4).0010
![]() |
[21] |
N. B. Khoolenjani, F. Shahsanaie, Estimating the parameter of exponential distribution under type-Ⅱ censoring from fuzzy data, J. Stat. Theory Appl., 15 (2016), 181–195. https://doi.org/10.2991/jsta.2016.15.2.8 doi: 10.2991/jsta.2016.15.2.8
![]() |
[22] |
N. Abbas, S. Ahmad, M. Riaz, Reintegration of auxiliary information based control charts, Comput. Indust. Eng., 171 (2022), 108479. https://doi.org/10.1016/j.cie.2022.108479 doi: 10.1016/j.cie.2022.108479
![]() |
[23] |
M. Aslam, Testing average wind speed using sampling plan for Weibull distribution under indeterminacy, Sci. Rep., 11 (2021), 1–9. https://doi.org/10.1038/s41598-020-79139-8 doi: 10.1038/s41598-020-79139-8
![]() |
[24] |
M. Aslam, C. H. Jun, A double acceptance sampling plan for generalized log-logistic distributions with known shape parameters, J. Appl. Stat., 37 (2010), 405–414. https://doi.org/10.1080/02664760802698979 doi: 10.1080/02664760802698979
![]() |
[25] | M. Aslam, C. Jun, M. Ahmad, A double acceptance sampling plan based on the truncated life tests in the Weibull model, J. Stat. Theory Appl., 8 (2009), 191–206. |
[26] | A. Pak, G. A. Parham, M. Saraj, Inference for the Weibull distribution based on fuzzy data, Rev. Colomb. Estadíst., 36 (2013), 337–356. |
1. | A Certain Class of Function Analytic and Subordinate to the Modified Sigmoid Function, 2025, 2581-8147, 639, 10.34198/ejms.15425.639647 | |
2. | Tamer M. Seoudy, Amnah E. Shammaky, Certain subfamily of multivalently Bazilevič and non-Bazilevič functions involving the bounded boundary rotation, 2025, 10, 2473-6988, 12745, 10.3934/math.2025574 |