Research article Special Issues

Meshfree numerical approach for some time-space dependent order partial differential equations in porous media

  • In this article, the meshfree radial basis function method based on the Gaussian function is proposed for some time-space dependent fractional order partial differential equation (PDE) models. These PDE models have significant applications in chemical engineering and physical science. Some main advantages of the proposed method are that it is easy to implement, and the output response is quick and highly accurate, especially in the higher dimension. In this method, the time-dependent derivative terms are treated by Caputo fractional derivative while space-dependent derivative terms are treated by Riesz, Riemann-Liouville, and Grünwald-Letnikov derivatives. The proposed method is tested on some numerical examples and the accuracy is analyzed by L.

    Citation: Abdul Samad, Imran Siddique, Zareen A. Khan. Meshfree numerical approach for some time-space dependent order partial differential equations in porous media[J]. AIMS Mathematics, 2023, 8(6): 13162-13180. doi: 10.3934/math.2023665

    Related Papers:

    [1] Abdul Samad, Imran Siddique, Fahd Jarad . Meshfree numerical integration for some challenging multi-term fractional order PDEs. AIMS Mathematics, 2022, 7(8): 14249-14269. doi: 10.3934/math.2022785
    [2] Adisorn Kittisopaporn, Pattrawut Chansangiam . Approximate solutions of the $ 2 $D space-time fractional diffusion equation via a gradient-descent iterative algorithm with Grünwald-Letnikov approximation. AIMS Mathematics, 2022, 7(5): 8471-8490. doi: 10.3934/math.2022472
    [3] Fawaz K. Alalhareth, Seham M. Al-Mekhlafi, Ahmed Boudaoui, Noura Laksaci, Mohammed H. Alharbi . Numerical treatment for a novel crossover mathematical model of the COVID-19 epidemic. AIMS Mathematics, 2024, 9(3): 5376-5393. doi: 10.3934/math.2024259
    [4] Anwar Ahmad, Dumitru Baleanu . On two backward problems with Dzherbashian-Nersesian operator. AIMS Mathematics, 2023, 8(1): 887-904. doi: 10.3934/math.2023043
    [5] Zeshan Qiu . Fourth-order high-precision algorithms for one-sided tempered fractional diffusion equations. AIMS Mathematics, 2024, 9(10): 27102-27121. doi: 10.3934/math.20241318
    [6] Alessandra Jannelli, Maria Paola Speciale . On the numerical solutions of coupled nonlinear time-fractional reaction-diffusion equations. AIMS Mathematics, 2021, 6(8): 9109-9125. doi: 10.3934/math.2021529
    [7] Reetika Chawla, Komal Deswal, Devendra Kumar, Dumitru Baleanu . A novel finite difference based numerical approach for Modified Atangana- Baleanu Caputo derivative. AIMS Mathematics, 2022, 7(9): 17252-17268. doi: 10.3934/math.2022950
    [8] Jocelyn SABATIER, Christophe FARGES . Initial value problems should not be associated to fractional model descriptions whatever the derivative definition used. AIMS Mathematics, 2021, 6(10): 11318-11329. doi: 10.3934/math.2021657
    [9] Khalid K. Ali, K. R. Raslan, Amira Abd-Elall Ibrahim, Mohamed S. Mohamed . On study the fractional Caputo-Fabrizio integro differential equation including the fractional q-integral of the Riemann-Liouville type. AIMS Mathematics, 2023, 8(8): 18206-18222. doi: 10.3934/math.2023925
    [10] Ravi Agarwal, Snezhana Hristova, Donal O'Regan . Integral presentations of the solution of a boundary value problem for impulsive fractional integro-differential equations with Riemann-Liouville derivatives. AIMS Mathematics, 2022, 7(2): 2973-2988. doi: 10.3934/math.2022164
  • In this article, the meshfree radial basis function method based on the Gaussian function is proposed for some time-space dependent fractional order partial differential equation (PDE) models. These PDE models have significant applications in chemical engineering and physical science. Some main advantages of the proposed method are that it is easy to implement, and the output response is quick and highly accurate, especially in the higher dimension. In this method, the time-dependent derivative terms are treated by Caputo fractional derivative while space-dependent derivative terms are treated by Riesz, Riemann-Liouville, and Grünwald-Letnikov derivatives. The proposed method is tested on some numerical examples and the accuracy is analyzed by L.



    The advection-dispersion equation has arisen in many chemical engineering and physical models [1]. In earth sciences, it is used as a solute transport water flow in surface and subsurface, stream, groundwater, ocean currents and deep river flows. Solute transport in streams, groundwater and rivers is controlled by heterogeneity or physical features in different levels. In the past, the advection-dispersion equation has been successfully used for mobile-immobile or transient storage models. In recent times, researchers highlighted the necessity of transport models from which heterogeneity and connectivity of spatial features inside solute transport can be described better. In porous media, the transport flow is controlled by advection and dispersion equations which will predict a breakthrough curve [2].

    The study of numerical models of solute transport is a basic aspect in parameter reconnaissance at both field and micro scales. The characterization of motion of solute transport is measured by the application of the advection-dispersion equation in porous media. However, there is some evidence that the advection-dispersion model failed to explain transport in heterogeneous, fractured and even in homogeneous media. The advection-dispersion and mobile immobile have fitted in breakthrough curves [3]. In both fractured and porous media, the results show that the mobile-immobile model is better than the advection-dispersion model, especially in explaining long tails and peaks of breakthrough curves. Because of such reasons, in tough-walled fracture, the mobile-immobile model is more effective than in smooth-walled fracture. The single-rate mobile-immobile model appears as the advection-dispersion model transport in the mobile region, whereas the transport in the immobile region by diffusion, making physical non-equilibrium [3,4,5,6,7].

    Most scientific phenomena are formed through the fractional PDEs, which are either linear or nonlinear. PDEs with fractional orders are now becoming a useful study in the fields of physics, acoustics, engineering, chemistry, viscoelasticity, and biology [8,9,10,11,12].

    For solute transport, the fractional mobile immobile advection-dispersion equation assumes power law waiting in the immobile region, yielding a fractional order in terms of time derivative. The fractional-order models are equipollent to non-fractional mobile-immobile transport with power law memory functions. There are some numerical methods used to study the mobile-immobile advection-dispersion model (see [13,14,15,16,17]). The advection-dispersion mobile-immobile model [13] is given by

    r1wτ(ν,τ)+r2Dζ(ν,τ)τw(ν,τ)=r3Dξ1(ν,τ)νw(ν,τ)+r4Dξ2(ν,τ)νw(ν,τ)+R(ν,τ), (1.1)

    with the following initial and boundary conditions:

    w(ν,0)=f(ν),ν[a,b], (1.2)
    w(a,τ)=f1(τ),w(b,τ)=f2(τ),τ[0,T], (1.3)

    where r1, r2, r3 and r4 are constants, and R(ν,τ) is known function. Also, 0<ζ(ν,τ)1, 1<ξ1(ν,τ)2 and 0<ξ2(ν,τ)1 are the time and space-dependent derivative orders of corresponding terms of Eq (1.1), Dξ(ν,τ)ν w.r.t. ν in domain D.

    There are two types of numerical methods to deal with the PDE models. One is meshgrid method and the other one is meshfree method (see [18,19,20,21,22,23]). Currently, the meshfree methods are getting more attention of researchers to find numerical solutions to the PDEs, especially in fractional orders. Because meshfree methods do not require meshing, these methods only need uniform distributed nodes in the domain. The accuracy of meshfree methods is higher and less time-consuming than meshgrid methods. The homotopy analysis [24,25], Variational iteration method [26], Spectral method [27], Adomian decomposition method [28,29] and Radial basis function method [30,31] are some well known meshfree methods.

    In this research article, our focus is on the implementation of the radial basis function (RBF) method. Its implementation is easy in initial and boundary value problems and the choice of generating functions is also open. The meshfree radial basis function (RBF) method is used in both local and global forms. The RBF method is implemented through some generating functions such as multiquadric, inverse multiquadric, inverse quadric and Gaussian. The main issue of these functions is the choice of shape parameter, which is an open choice and necessary for the best numerical results. This issue sometimes creates problems to find the numerical results, especially in higher dimensions. However, in Gaussian, the choice of shape parameter is not very challenging. The shape parameter c=12σ2, where σ is the variance between scattered data {νi,i=1,2,,M} and mean or center ---ν of the data (see [32]). Many researchers implemented RBF method on various PDE models. For example, Hosseini et al. [33] used RBF method to find the approximate solution of the fractional telegraph equation. Samad et al. [34] used RBF method to find the numerical solution of multi-term fractional-order PDEs. Similarly, Wang et al. [35,36], Khan et al. [37], Ali et al. [38] and Nikan et al. [19,20] have used meshfree RBF method to test the numerical results of various PDE models.

    The current article covers the study of numerical solution of some time-space-dependent order PDE models using the Gaussian radial basis function (GA-RBF). The space derivatives are dealt with by Riesz fractional derivative and Grünwald-Letnikov derivative definitions. The time derivatives are iterated by the Caputo fractional derivative. The stability of the scheme is discussed in Section 3, whereas the numerical results are given in Section 4.

    Let δτ be the time interval for τ[0,T], then τn=nδτ for n=0,1,2,,N.

    Definition 2.1. For any variable order ζ(ν,τ), the Coimbra operator D is defined [39] by

    where 0<ζ(ν,τ)<1. The Caputo fractional derivative can be expressed from Coimbra fractional derivative operator if w(ν,τ0+)=w(ν,τ0), i.e.,

    Dζ(ν,τ)τw(ν,τ)=1Γ(1ζ(ν,τ))τ0+(τμ)ζ(ν,τ)w(ν,μ)μdμ.

    Using finite difference method to discretize the time fractional term of Eq (1.1),

    Thus, the time discretization for Eq (1.1) is

    r1wτ(ν,τ)+r2Dζ(ν,τ)τw(ν,τ)=r1δτ(wn+1wn)+r2δτζ(ν,τ)Γ(2ζ(ν,τ))(wn+1wn)+r2δτζ(ν,τ)Γ(2ζ(ν,τ))(nk=1δk(wn+1kwnk)), (2.1)

    where δk=(k+1)1ζ(ν,τ)k1ζ(ν,τ) and the truncation error ρn+1δτ is bounded (see [34]).

    Lemma 2.1. δk=(k+1)1ζ(ν,τ)k1ζ(ν,τ) has the following properties for k=0,1,2,.

    (i) δ0=1, δk>0,

    (ii) δkδk+1.

    Let R1=r1δτ and R2=r2δτζ(ν,τ)Γ(2ζ(ν,τ)), then Eq (2.1) is written as

    r1wτ(ν,τ)+r2Dζ(ν,τ)τw(ν,τ)=(R1+R2)[wn+1wn]+R2nk=1δk(wn+1kwnk). (2.2)

    Let the solution of Eq (1.1) at n-time level be

    w(ν,τn)=Mm=1μnmφ(rm), (2.3)

    where rm=ννm, νm are the centers of ν, and is the Euclidean norm. Then, for the collocation points {νi:1iM}, Eq (2.3) can be written as

    w(νi,τn)=Mm=1μnmφ(rim), (2.4)

    where rim=νiνm. The Gaussian function [32] for the proposed method is given by

    φ(rm)=exp(cr2m),

    where c is the shape parameter. The value of the shape parameter can be adjusted [32] by the equation c=12σ2, where σ2 is the variance between νi and the centers νm. Thus, the matrix form of Eq (2.4) is obtained by

    [w(ν1,τn)w(ν2,τn)w(νM,τn)]=[exp(cr211)exp(cr212)exp(cr21M)exp(cr221)exp(cr222)exp(cr22M)exp(cr2M1)exp(cr2M2)exp(cr2MM)]×[μn1μn2μnM]. (2.5)

    Let A={exp(cr2im),1i,mM}, wn={w(ν1,τn),w(ν2,τn),,w(νM,τn)}T and μn={μn1,μn2,,μnM}T. Then, equation (2.5) is obtained by

    wn=Aμn. (2.6)

    Since A is invertible (see [33,34,35,36]),

    μn=A1wn. (2.7)

    Also, A can be split into Ab and Ad such that Ab={φ(rim),i=1,M,1mM,0 elsewhere} and Ad={φ(rim),2iM1,1mM,0 elsewhere}.

    Applying θ-weighted method to Eq (1.1) at time levels n and n+1,

    r1wτ(ν,τn)+r2Dζ(ν,τn)τw(ν,τn)=θ(r3Dξ1(ν,τn+1)νw(ν,τn+1)+r4Dξ2(ν,τn+1)νw(ν,τn+1))+(1θ)(r3Dξ1(ν,τn)νw(ν,τn)+r4Dξ2(ν,τn)νw(ν,τn))+R(ν,τn+1), (2.8)

    where 0θ1.

    Lemma 2.2. If w(ν,τ)L1(Ω) and Dξ(ν,τ)νw(ν,τ)C(Ω), where 0p1<ξ(ν,τ)<p, then the normalized Grünwald-Letnikov approximation is obtained by

    aDξ(νi,τn)νw(νi,τn)=(δν)ξ(νi,τn)i1j=0ψj(ξ(νi,τn))w(νij,τn)+O(δν), (2.9)
    νDξ(νi,τn)bw(νi,τn)=(δν)ξ(νi,τn)Mij=0ψj(ξ(νi,τn))w(νi+j,τn)+O(δν), (2.10)

    where ψj(ξ(νi,τn))=Γ(jξ(νi,τn))Γ(j+1)Γ(ξ(νi,τn)), i=1,2,,M are the number of collocation nodes, j=0,1,2,.

    Lemma 2.3. For 1iM, 0nN, the coefficients ψj(ξni) satisfy the following properties for 1<ξ(ν,τ)2.

    (i) ψ0(ξni)=1, ψ1(ξni)<0,

    (ii) ψj(ξni)>0 for j2,

    (iii) j=0ψj(ξni)=0, λj=0ψj(ξni)<0 for λ1.

    Proof. Since for j0, ψj(ξni)=Γ(jξni)Γ(j+1)Γ(ξni), it is easy to verify (i) by putting j=0,1. Also,

    ψj+1(ξni)=Γ(j+1ξni)Γ(j+2)Γ(ξni)=(jξni)(j+1)Γ(jξni)Γ(j+1)Γ(ξni)=jξnij+1ψj(ξni),

    for 1<ξni2 it is clear from above that ψj(ξni)>0 for j0. Hence, (ii) is satisfied. Also, consider (1y)ξni=j=0ψj(ξni)yj and let y=1, we obtain j=0ψj(ξni)=0. Further, λj=0ψj(ξni)<0 for λ1.

    Lemma 2.4. For 0<ξ(ν,τ)1, the coefficients {ψj(ξni),  1iM,  0nN} satisfy the following properties:

    (i) ψ0(ξni)=1, ψj(ξni)<0 for j1,

    (ii) j=0ψj(ξni)=0, λj=0ψj(ξni)>0 for λ1.

    Proof. Similar to Lemma 2.3.

    Now, from Eqs (2.9) and (2.10), and according to the Riesz fractional derivative operator [40], we have

    Dξ(νi,τn)νw(νi,τn)=Cξ(νi,τn)(aDξ(νi,τn)ν+νDξ(νi,τn)b)w(νi,τn),

    where Cξ(νi,τn)=12cosπξ(νi,τn)2 . For i=1,2,,M and m=j+1, using Eq (2.9), we have

    aDξ(νi,τn)νw(νi,τn)=(hniGn(i,m))w(νi,τn), (2.11)

    and from Eq (2.10),

    νDξ(νi,τn)bw(νi,τn)=(hniGnT(i,m))w(νi,τn), (2.12)

    where shows the product of the i-th component of hi with corresponding row of either G(i,m) or GT(i,m) at n time level. hni=Cξ(νi,τn)(δν)ξ(νi,τn).

    G(i,m)={0,for  i<m,1,for  i=m,Γ(im+1ξ(νi,τn))Γ(im+2)Γ(ξ(νi,τn)),for  i>m,

    and GT is the transpose of order M matrix G. Thus,

    Dξ(νi,τn)νw(νi,τn)=hni(G+GT)wni. (2.13)

    Now, using Eq (2.13), we obtain from Eq (2.8) as

    r1wτ(ν,τn)+r2Dζ(ν,τn)τw(ν,τn)=θ(r3h(ξn+11)(Gξn+11+Gξn+11T)wn+1+r4h(ξn+12)(Gξn+12+Gξn+12T)wn+1)+(1θ)(r3h(ξn1)(Gξn1+Gξn1T)wn+r4h(ξn2)(Gξn2+Gξn2T)wn)+Rn+1+O(δν). (2.14)

    Let Wn1=Gξn1+Gξn1T and Wn2=Gξn2+Gξn2T, Eq (2.14) becomes

    r1wτ(ν,τn)+r2Dζ(ν,τn)τw(ν,τn)=θ(r3h(ξn+11)Wn+11wn+1+r4h(ξn+12)Wn+12wn+1)+(1θ)(r3h(ξn1)Wn1wn+r4h(ξn2)Wn2wn)+Rn+1+O(δν). (2.15)

    Comparing Eq (2.2) with Eq (2.15), we obtain

    (R1+R2)[wn+1wn]+R2nk=1δk(wn+1kwnk)=θ(r3h(ξn+11)Wn+11wn+1+r4h(ξn+12)Wn+12wn+1)+(1θ)(r3h(ξn1)Wn1wn+r4h(ξn2)Wn2wn)+Rn+1+O(δν). (2.16)

    After equation of the terms at n and n+1 time levels and using Eq (2.6), we obtain

    (R1+R2)Aμn+1θ(r3h(ξn+11)Wn+11Aμn+1+r4h(ξn+12)Wn+12Aμn+1)=(R1+R2)Aμn+(1θ)×(r3h(ξn1)Wn1Aμn+r4h(ξn2)Wn2Aμn)R2nk=1δk(wn+1kwnk)+Rn+1+Fn+1. (2.17)

    Thus,

    Pμn+1=QμnR2nk=1δk(wn+1kwnk)+Rn+1+Fn+1, (2.18)

    where

    P=(R1+R2)Aθ[r3h(ξn+11)Wn+11A+r4h(ξn+12)Wn+12A],
    Q=(R1+R2)A+(1θ)[r3h(ξn1)Wn1A+r4h(ξn2)Wn2A],
    Fn+1=[f1(a,τn+1),0,,0,f2(b,τn+1)]T.

    Let

    Φn+1=Rn+1+Fn+1R2nk=1δk(wn+1kwnk),

    then

    μn+1=P1Qμn+P1Φn+1. (2.19)

    Again using Eqs (2.6) and (2.7), Eq (2.19) can be written as

    wn+1=AP1QA1wn+AP1Φn+1. (2.20)

    Thus, Eq (2.20) is the required numerical scheme.

    The developed scheme for Eq (1.1) is the recurrence relation w(τn) and w(τn+1) for n=0,1,2,.....,N. The elements of the amplification matrix F=AP1QA1 are dependent on the constant number ci=δτζ(δν)(ξ1,ξ2), where ζ is the time order and ξ1,ξ2 are space order differential operators respectively. δτ is the time step size and δν is spatial step size at successive nodes. Now let us consider the exact solution of Eq (1.1) be Wn at τn.

    There are some important theorems from G. E. Fasshauer [32], whose statements are given below.

    Theorem 3.1.

    |Dαg(ν)DαPg(ν)|Cδνk|α|χ,ΩCΘ(x)|gϕ|,

    provided that δνχ,Ωδν0, where

    CΘ(ν)=maxα1,α2Ns0|α1|+|α2|=2kmaxw,νΩB(x,c2δνχ,Ω)|Dα1Dα2Θ(w,ν)|.

    Theorem 3.2. Let ΓRs be open and bounded which satisfies the interior cone condition, and let ΘC2k(Γ×Γ) be symmetric and strictly conditionally positive definite of order n on Rs. Assign the interpolant to gϕ(Γ) on the (n1) unisolvent set χ by Pg. Fix γNs0 taking |α|k. Then, there exist positive constants δν0 and C (independent of ν, g and Θ) such that

    |Dαg(ν)DαPg(ν)|Ck(δν)k|α||wϕ(Γ)|,

    where ϕ(Γ) represents the native space of RBF and gϕ(Γ). Since the Gaussian is an infinitely smooth function, application of the above theorem yields high algebraic convergence rates. So it is concluded that for every kN and |α|k, we have

    |DαW(ν)Dαw(ν)|Ck(δν)k|α||uϕ(Γ)|,

    where W and w are the respective exact and numerical solutions. Let us assume that Eq (2.20) is accurate with respect to space orders 1<ξ12 and 0<ξ21, then

    wn+1=Rwn+AP1Φn+1+O(δτ2ζ+δνξ1,ξ2),  δτ,δν0. (3.1)

    Let us define the residual by ep=Wpwp, then

    en+1=Ren+O(δτ2ζ+δνξ1,ξ2),  δτ,δν0. (3.2)

    Now, by Lax-Richtmyer definition of stability [18], the numerical model (2.20) is stable if

    R1. (3.3)

    If R is normal, then R=ρ(R); otherwise, ρ(R)R is always satisfied. Let us assume that δν and δτ are small enough such that the constant c=δτζδν(ξ1,ξ2). Therefore, there exists a constant such that

    en+1Ren+(δτζ+δνξ1,ξ2),  n0. (3.4)

    Now, e0=0, as en satisfies the initial condition and boundary condition. Thus, using mathematical induction, we obtain from Eq (3.4)

    en+1(1+R+R2++Rn)(δτζ+δνξ1,ξ2),  n0. (3.5)

    Using geometric series property, we obtain

    en+1(n+1)(δτζ+δνξ1,ξ2),  n0. (3.6)

    Thus, the numerical model given in Eq (2.20) is convergent.

    In this part, the numerical results are discussed for numerical model (Eq (2.19)) obtained from Eq (1.1) along with initial and boundary conditions. The accuracy of all examples is analyzed by the following equations:

    L=|Wnwn|,L=max(L), (4.1)

    where W and w are the exact and numerical solutions. The space and time convergence rates are measured by the following formulae:

    Example 4.1. Set r1=r2=r3=1 and r4=1 in Eq (1.1) and consider ζ(ν,τ)=10.5eντ, ξ1(ν,τ)=1.7+0.5eν21000τ501 and ξ2(ν,τ)=0.7+0.5eν21000τ501, where (ν,τ)=[0,1]×[0,1]. The initial and boundary conditions are

    w(ν,0)=0,w(0,τ)=0=w(1,τ),
    R(ν,τ)=R1(ν,τ)R2(ν,τ)+R3(ν,τ),

    where R1(ν,τ)=ν(1ν)(2τ+2τ1ζ(ν,τ)Γ(3ζ(ν,τ))), R2(ν,τ)=τ2(ν1ξ1(ν,τ)Γ(2ξ1(ν,τ))2ν2ξ1(ν,τ)Γ(3ξ1(ν,τ))), R3(ν,τ)=τ2(ν1ξ2(ν,τ)Γ(2ξ2(ν,τ))2ν2ξ2(ν,τ)Γ(3ξ2(ν,τ))), W(ν,τ)=τ2ν(1ν) is the exact solution. The numerical results vs exact solutions along with errors are shown in Table 1. The computed max(L) values are shown in Table 2 along with time and space convergence. The results are also shown in Figures 13. In Figure 1, δν=0.001 and δτ=0.001 for 3D surface plot, while δν=0.1 and δτ=0.1 for plot3 graph. In Figure 2, the error graphs are shown on 3D surfaces at N=50,500,1000 and δτ=0.001 where τ=1 while Figure 3 shows convergence rates w.r.t. space and time respectively.

    Table 1.  Absolute errors between exact and approximate solutions of Example 4.1.
    θ=0.5, δν=0.01, δτ=0.01, τ=1
    ν W wapprox. L
    0 0 0.000000000000415 0.000000000000415
    0.1 0.108900000000000 0.108874486938645 0.000025513061355
    0.2 0.193600000000000 0.193638457799857 0.000038457799857
    0.3 0.254100000000000 0.254174538846443 0.000074538846443
    0.4 0.290400000000000 0.290497098595359 0.000097098595359
    0.5 0.302500000000000 0.302610227369723 0.000110227369723
    0.6 0.290400000000000 0.290515689696830 0.000115689696830
    0.7 0.254100000000000 0.254214422815980 0.000114422815980
    0.8 0.193600000000000 0.193706992369054 0.000106992369054
    0.9 0.108900000000000 0.108993770701635 0.000093770701635
    1 0 0.000000000007030 0.000000000007030
    θ=1, δν=0.01, δτ=0.01, τ=1
    ν W wapprox. L
    0 0 0.000000000000321 0.000000000000321
    0.1 0.108900000000000 0.108876698600746 0.000023301399254
    0.2 0.193600000000000 0.193635404625688 0.000035404625687
    0.3 0.254100000000000 0.254168526166297 0.000068526166297
    0.4 0.290400000000000 0.290489234279579 0.000089234279579
    0.5 0.302500000000000 0.302601278404606 0.000101278404606
    0.6 0.290400000000000 0.290506276014470 0.000106276014470
    0.7 0.254100000000000 0.254205086239745 0.000105086239745
    0.8 0.193600000000000 0.193698227582199 0.000098227582200
    0.9 0.108900000000000 0.108986041356451 0.000086041356451
    1 0 0.000000000005442 0.000000000005442

     | Show Table
    DownLoad: CSV
    Table 2.  Numerical results of Example 4.1.
    L Convergence
    δτ=0.1 δτ=0.01 δτ=0.001 δνi L order δτi L order
    N=50 8.6648e3 6.6825e3 9.5234e4 150 9.5234e4 0.1 2.4704e5
    N=100 4.6451e4 4.0639e4 9.9494e5 1100 9.9494e5 1.3796 0.01 2.1616e5 0.0580
    θ=0.5 N=500 9.7890e5 8.5652e5 4.6397e5 1500 4.6397e5 0.4740 0.005 8.6636e6 -0.5602
    N=1000 2.4704e5 2.1616e5 3.2626e6 11000 3.2626e6 1.9507 0.001 3.2626e6 0.6068
    N=50 7.4450e3 4.4255e3 7.4450e4 150 7.4450e4 0.1 8.2645e6
    N=100 4.2574e4 3.5875e4 8.5517e5 1100 8.5517e5 1.2428 0.01 1.9091e6 0.6364
    θ=1 N=500 4.5149e5 3.8062e5 9.7387e6 1500 9.7387e6 0.5406 0.005 1.2633e6 0.5957
    N=1000 8.2645e6 1.9091e6 1.0752e6 11000 1.0752e6 3.1791 0.001 1.0752e6 0.1002

     | Show Table
    DownLoad: CSV
    Figure 1.  Numerical approximation for Example 4.1.
    Figure 2.  Numerical error for Example 4.1, N=1000 (left), N=500 (center), N=50 (right).
    Figure 3.  Time and Space convergence graphs for Example 4.1.

    Example 4.2. Put r1=r2=1, r3=3 and r4=2 and consider ζ(ν,τ)=0.750.5eντ, ξ1(ν,τ)=1.55+0.35cos(πντ) and ξ2(ν,τ)=0.65+0.25sin(πντ), where (ν,τ)=[0,1]×[0,1].

    The initial and boundary conditions are

    w(ν,0)=0,
    w(0,τ)=0=w(L,τ),R(ν,τ)=R1(ν,τ)3R2(ν,τ)+2R3(ν,τ),

    where R1(ν,τ)=ν2(1ν)(1+τ1ζ(ν,τ)Γ(2ζ(ν,τ))), R2(ν,τ)=(2ν2ξ1(ν,τ)Γ(3ξ1(ν,τ))6ν3ξ1(ν,τ)Γ(4ξ1(ν,τ)))τ, R3(ν,τ)=(2ν2ξ2(ν,τ)Γ(3ξ2(ν,τ))6ν3ξ2(ν,τ)Γ(4ξ2(ν,τ)))τ. Exact solution: W(ν,τ)=ν2(1ν)τ. The numerical approximation, exact solution and errors between exact solution and numerical approximation are shown in Table 3, while the maximum absolute errors are shown in Table 4 at different time and space intervals along with convergence rate. The results are also shown in Figures 46. The 3D surface plot is constructed on δν=δτ=0.001, while plot3 is constructed on δν=δτ=0.1 as shown in Figure 4. In Figure 5, the error plots are shown for N=100,500,1000 and δτ=0.001 at τ=1 on 3D surface, while Figure 6 shows the convergence rates w.r.t. space and time.

    Table 3.  Absolute errors between exact and approximate solutions of Example 4.2.
    θ=0.5, δν=0.01, δτ=0.01, τ=1
    ν W wapprox. L
    0 0 0 0
    0.1 0.009900000000000 0.009897086666315 0.000002913333685
    0.2 0.035200000000000 0.035198375282382 0.000001624717618
    0.3 0.069300000000000 0.069300025003365 0.000000025003365
    0.4 0.105600000000000 0.105601780133889 0.000001780133889
    0.5 0.137500000000000 0.137503500551076 0.000003500551076
    0.6 0.158400000000000 0.158405082491059 0.000005082491059
    0.7 0.161700000000000 0.161706438415009 0.000006438415009
    0.8 0.140800000000000 0.140807489496559 0.000007489496559
    0.9 0.089100000000000 0.089108162169441 0.000008162169441
    1 0 0 0
    θ=1, δν=0.01, δτ=0.01, τ=1
    ν W wapprox. L
    0 0 0 0
    0.1 0.009900000000000 0.009897305273084 0.000002694726916
    0.2 0.035200000000000 0.035198424184953 0.000001575815047
    0.3 0.069300000000000 0.069299852438873 0.000000147561127
    0.4 0.105600000000000 0.105601371899563 0.000001371899563
    0.5 0.137500000000000 0.137502870365957 0.000002870365957
    0.6 0.158400000000000 0.158404268963810 0.000004268963810
    0.7 0.161700000000000 0.161705503690809 0.000005503690809
    0.8 0.140800000000000 0.140806518530524 0.000006518530524
    0.9 0.089100000000000 0.089107262287949 0.000007262287949
    1 0 0 0

     | Show Table
    DownLoad: CSV
    Table 4.  Numerical results of Example 4.2.
    L Convergence
    δτ=0.1 δτ=0.01 δτ=0.001 δνi L order δτi L order
    N=50 5.9983e4 1.8694e4 1.6494e4 150 1.6494e4 0.1 3.0178e6
    N=100 1.8809e4 5.4232e5 4.6555e5 1100 4.6555e5 0.0543 0.01 8.6729e7 -0.0242
    θ=0.5 N=500 3.6432e5 3.1094e5 8.9269e6 1500 8.9269e6 0.2168 0.005 5.8049e7 0.5792
    N=1000 3.0178e6 8.6729e7 2.4916e7 11000 2.4916e7 3.2838 0.001 2.4916e7 1.0287
    N=50 8.7240e4 5.8862e4 1.7187e4 150 1.7187e4 0.1 8.2645e6
    N=100 5.3797e4 4.5481e5 3.0639e5 1100 3.0639e5 0.6086 0.01 7.9495e7 0.5874
    θ=1 N=500 3.3366e5 1.4355e5 8.8284e6 1500 8.8284e6 0.0362 0.005 1.8515e7 1.6496
    N=1000 8.9157e6 7.9495e7 1.1085e7 11000 1.1085e7 3.2678 0.001 1.1085e7 0.3187

     | Show Table
    DownLoad: CSV
    Figure 4.  Numerical approximation for Example 4.2.
    Figure 5.  Numerical error for Example 4.2, N=1000 (left), N=500 (center), N=100 (right).
    Figure 6.  Time and Space convergence graphs for Example 4.2.

    Example 4.3. Let us take ζ(ν,τ)=0.550.25eντ, ξ1(ν,τ)=1.55+0.35cos(3πντ), ξ2(ν,τ)=0.65+0.25sin(3πντ), r1=r2=r3=1 and r4=1. w(ν,0)=0 is the initial condition while w(0,τ)=0=w(L,τ) is the boundary condition. R(ν,τ)=R1(ν,τ)τR2(ν,τ), where R1(ν,τ)=(1+τ1ζ(ν,τ)Γ(2ζ(ν,τ)))sin(2πν), R2(ν,τ)=sin(2πν+π2ξ1(ν,τ))sin(2πν+π2ξ2(ν,τ)). The exact solution is W(ν,τ)=τsin(2πν). All results are shown in Tables 5, 6 and Figures 79.

    Table 5.  Absolute errors between exact and approximate solutions of Example 4.3.
    θ=0.5, δν=0.01, δτ=0.01, τ=1
    ν W wapprox. L
    0 0 0 0
    0.1 0.646563777521720 0.646563976092694 0.000000198570974
    0.2 1.046162167924669 1.046162715575450 0.000000547650781
    0.3 1.046162167924669 1.046162855471273 0.000000687546604
    0.4 0.646563777521721 0.646564342344714 0.000000564822993
    0.5 0.000000000000000 0.000000000000000 0.000000000000000
    0.6 0.646563777521720 0.646563976092694 0.000000198570974
    0.7 1.046162167924669 1.046162715575450 0.000000547650781
    0.8 1.046162167924669 1.046162855471273 0.000000687546604
    0.9 0.646563777521721 0.646564342344714 0.000000564822993
    1 0 0 0
    θ=1, δν=0.01, δτ=0.01, τ=1
    ν W wapprox. L
    0 0 0 0
    0.1 0.646563777521720 0.646563885272363 0.000000107750643
    0.2 1.046162167924669 1.046162549758231 0.000000381833562
    0.3 1.046162167924669 1.046162677993707 0.000000510069038
    0.4 0.646563777521721 0.646564220997199 0.000000443475479
    0.5 0.000000000000000 0.000000000000000 0.000000000000000
    0.6 0.646563777521720 0.646563885272363 0.000000107750643
    0.7 1.046162167924669 1.046162549758231 0.000000381833562
    0.8 1.046162167924669 1.046162677993707 0.000000510069038
    0.9 0.646563777521721 0.646564220997200 0.000000443475479
    1 0 0 0

     | Show Table
    DownLoad: CSV
    Table 6.  Numerical results of Example 4.3.
    L Convergence
    δτ=0.1 δτ=0.01 δτ=0.001 δνi L order δτi L order
    N=50 7.5449e4 4.4194e4 1.4712e4 150 1.4712e4 0.1 6.8770e7
    N=100 1.2950e4 9.8713e5 9.0805e5 1100 9.0805e5 0.0543 0.01 1.7226e7 -0.0242
    θ=0.5 N=500 1.5349e5 6.3320e6 1.2727e6 1500 1.2727e6 0.2168 0.005 1.1029e7 0.5792
    N=1000 6.8770e7 1.7226e7 4.3104e8 11000 4.3104e8 3.2838 0.001 4.3104e8 1.0287
    N=50 1.8739e4 7.7443e5 7.4214e5 150 7.4214e5 0.1 5.1276e7
    N=100 4.8074e5 1.2848e5 8.0955e6 1100 8.0955e6 0.6086 0.01 1.2845e7 0.5874
    θ=1 N=500 8.2614e6 2.0842e6 8.0035e7 1500 8.0035e7 0.0362 0.005 3.2142e8 1.6496
    N=1000 5.1276e7 1.2845e7 2.0574e8 11000 2.0574e8 3.2678 0.001 2.0574e8 0.3187

     | Show Table
    DownLoad: CSV
    Figure 7.  Numerical approximation for Example 5.3.
    Figure 8.  Numerical error for Example 4.3, N=1000 (left), N=500 (center), N=50 (right).
    Figure 9.  Time and Space convergence graphs for Example 4.3.

    Table 7 represents the L at N=50,100,500,1000 and δτ=0.001 vs CPU machine time. These results are computed by MATLAB 2018b software while the hardware machine is HP core i7, 11th generation processor, 16GB RAM, 2GB GPU.

    Table 7.  Numerical results vs machine time of all examples δτ=0.001.
    Example 4.1 Example 4.2 Example 4.3
    N L Machine time (sec) L Machine time (sec) L Machine time (sec)
    50 9.5234e4 12 1.6494e4 11.205 1.4712e4 11.5
    100 9.9494e5 19 4.6555e5 18 9.0805e5 21.223
    500 4.6397e5 265 8.9269e6 254 1.2727e6 291
    1000 3.2626e6 1184 2.4916e7 1126 4.3104e8 1201

     | Show Table
    DownLoad: CSV

    Meshfree RBF method based on the Gaussian function is used for the numerical solution of the time-space dependent order advection-dispersion mobile-immobile equation. Time derivatives are dealt with by Caputo derivative operator, while space derivatives are dealt with by Riesz, Grüwald-Letnikov derivative operators. The stability and convergence of the method are discussed and the efficiency is analyzed by the maximum norm. The method is tested through some examples and the results are shown in tables and figures. In the future, based on these results, it will be more interesting to see how the proposed method can work on such PDE models defined on irregular domains, complex function orders, and in case when the exact solution of the PDE model is unknown.

    The authors have no conflicts of interest.

    The work was supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R8), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.



    [1] M. M. Meerschaert, D. A. Benson, B. Bäumer, Multidimensional advection and fractional dispersion, Phys. Rev. E, 59 (1999), 5026. https://doi.org/10.1103/physreve.59.5026 doi: 10.1103/physreve.59.5026
    [2] J. Bear, Dynamics of fluids in porous media, New York: American Elsevier Publishing Company, 1972.
    [3] R. Schumer, D. A. Benson, M. M. Meerschaert, B. Baeumer, Fractal mobile/immobile solute transport, Water Resour. Res., 39 (2003), 1296. https://doi.org/10.1029/2003WR002141 doi: 10.1029/2003WR002141
    [4] K. H. Coats, B. D. Smith, Dead-end pore volume and dispersion in porous media, SPE J., 4 (1964), 73–84. https://doi.org/10.2118/647-PA doi: 10.2118/647-PA
    [5] F. Bauget, M. Fourar, Non-fickian dispersion in a single fracture, J. Contam. Hydrol., 100 (2008), 137–148. https://doi.org/10.1016/j.jconhyd.2008.06.005 doi: 10.1016/j.jconhyd.2008.06.005
    [6] B. Berkowitz, Charaterizing flow and transport in fractured geological media: a review, Adv. Water Resour., 25 (2002), 861–884. https://doi.org/10.1016/S0309-1708(02)00042-8 doi: 10.1016/S0309-1708(02)00042-8
    [7] H. Scher, M. Lax, Stochastic transport in a disordered solid. I. theory, Phys. Rev. B, 7 (1973), 4491. https://doi.org/10.1103/PhysRevB.7.4491 doi: 10.1103/PhysRevB.7.4491
    [8] I. Podulbny, Fractional differential equations, Academic Press, 1998.
    [9] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993.
    [10] D. Baleanu, J. A. T. Machado, A. C. J. Luo, Fractional dynamics and control, New York: Springer, 2012. https://doi.org/10.1007/978-1-4614-0457-6
    [11] V. E. Tarasov, Fractional dynamics: applications of fractional calculus to dynamics of particles, fields and media, Berlin, Heidelberg: Springer, 2010.
    [12] R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000. https://doi.org/10.1142/3779
    [13] M. A. Abdelkawy, M. A. Zaky, A. H. Bhrawy, D. Baleanu, Numerical simulation of time variable fractional order mobile-immobile advection-dispersion model, Rom. Rep. Phys., 67 (2015), 773–791.
    [14] B. Y. Wang, J. Y. Zhang, G. W. Yan, Numerical simulation of the fractional dispersion advection equations based on the lattice Boltzmann model, Math. Probl. Eng., 2020 (2020), 2570252. https://doi.org/10.1155/2020/2570252 doi: 10.1155/2020/2570252
    [15] I. I. Gorial, A reliable algorithm for multi-dimensional mobile/immobile advection-dispersion equation with variable order fractional, Indian J. Sci. Technol., 11 (2018), 1–9. https://doi.org/10.17485/ijst/2018/v11i30/127486 doi: 10.17485/ijst/2018/v11i30/127486
    [16] B. Yu, X. Y. Jiang, H. T. Qi, Numerical method for the estimation of the fractional parameters in the fractional mobile/immobile advection-diffusion model, Int. J. Comput. Math., 95 (2018), 1131–1150. https://doi.org/10.1080/00207160.2017.1378811 doi: 10.1080/00207160.2017.1378811
    [17] H. Pourbashash, D. Baleanu, M. M. A. Qurashi, On solving fractional mobile/immobile equation, Adv. Mech. Eng., 9 (2017), 1–12.
    [18] P. D. Lax, R. D. Richtmyer, Survey of the stability of linear finite difference equations, Commun. Pure Appl. Math., 9 (1956), 267–293. https://doi.org/10.1002/cpa.3160090206 doi: 10.1002/cpa.3160090206
    [19] O. Nikan, Z. Avazzadeh, J. A. T. Machado, Numerical approach for modeling fractional heat conduction in porous medium with the generalized Cattaneo model, Appl. Math. Model., 100 (2021), 107–124. https://doi.org/10.1016/j.apm.2021.07.025 doi: 10.1016/j.apm.2021.07.025
    [20] O. Nikan, Z. Avazzadeh, Numerical simulation of fractional evolution model arising in viscoelastic mechanics, Appl. Numer. Math., 169 (2021), 303–320. https://doi.org/10.1016/j.apnum.2021.07.008 doi: 10.1016/j.apnum.2021.07.008
    [21] X. T. Liu, H. G. Sun, Y. Zhang, Z. J. Fu, A scale-dependent finite difference approximation for time fractional differential equation, Comput. Mech., 63 (2019), 429–442. https://doi.org/10.1007/s00466-018-1601-x doi: 10.1007/s00466-018-1601-x
    [22] Z. C. Tang, Z. J. Fu, H. G. Sun, X. T. Liu, An efficient localized collocation solver for anomalous diffusion on surfaces, Fract. Calc. Appl. Anal., 24 (2021), 865–894. https://doi.org/10.1515/fca-2021-0037 doi: 10.1515/fca-2021-0037
    [23] Z. J. Fu, L. W. Yang, Q. Xi, C. S. Liu, A boundary collocation method for anomalous heat conduction analysis in functionally graded materials, Comput. Math. Appl., 88 (2021), 91–109. https://doi.org/10.1016/j.camwa.2020.02.023 doi: 10.1016/j.camwa.2020.02.023
    [24] H. Xu, S. J. Liao, X. C. You, Analysis of nonlinear fractional partial differential equations with the homotopy analysis method, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 1152–1156. https://doi.org/10.1016/j.cnsns.2008.04.008 doi: 10.1016/j.cnsns.2008.04.008
    [25] A. A. Ragab, K. M. Hemida, M. S. Mohamed, M. A. A. E. Salam, Solution of time-fractional Navier-Stokes equation by using homotopy analysis method, Gen. Math. Notes, 13 (2012), 13–21.
    [26] S. Chen, F. Liu, P. Zhuang, V. Anh, Finite difference approximations for the fractional Fokker-Planck equation, Appl. Math. Model., 33 (2009), 256–273. https://doi.org/10.1016/j.apm.2007.11.005 doi: 10.1016/j.apm.2007.11.005
    [27] Y. M. Lin, C. J. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), 1533–1552. https://doi.org/10.1016/j.jcp.2007.02.001 doi: 10.1016/j.jcp.2007.02.001
    [28] C. P. Li, Y. H. Wang, Numerical algorithm based on adomian decomposition for fractional differential equations, Comput. Math. Appl., 57 (2009), 1672–1681. https://doi.org/10.1016/j.camwa.2009.03.079 doi: 10.1016/j.camwa.2009.03.079
    [29] H. Fatoorehchi, R. Rach, H. Sakhaeinia, Explicit Frost-Kalkwarf type equations for calculation of vapour pressure of liquids from triple to critical point by the adomian decomposition method, Can. J. Chem. Eng., 95 (2017), 2199–2208. https://doi.org/10.1002/cjce.22853 doi: 10.1002/cjce.22853
    [30] A. Samad, J. Muhammad, Meshfree collocation method for higher order KdV equations, J. Appl. Comput. Mech., 7 (2021), 422–431. https://doi.org/10.22055/JACM.2020.34874.2493 doi: 10.22055/JACM.2020.34874.2493
    [31] P. Thounthong, M. N. Khan, I. Hussain, I. Ahmad, P. Kumam, Symmetric radial basis function method for simulation of elliptic partial differential equations, Mathematics, 6 (2018), 327. https://doi.org/10.3390/math6120327 doi: 10.3390/math6120327
    [32] G. E. Fasshauer, Meshfree approximation methods with Matlab, Word Scientific, 2007. https://doi.org/10.1142/6437
    [33] V. R. Hosseini, W. Chen, Z. Avazzadeh, Numerical solution of fractional telegraph equation by using radial basis functions, Eng. Anal. Bound. Elem., 38 (2014), 31–39. https://doi.org/10.1016/j.enganabound.2013.10.009 doi: 10.1016/j.enganabound.2013.10.009
    [34] A. Samad, I. Siddique, F. Jarad, Meshfree numerical integration for some challenging multi-term fractional order PDEs, AIMS Math., 7 (2022), 14249–14269. https://doi.org/10.3934/math.2022785 doi: 10.3934/math.2022785
    [35] F. Z. Wang, K. H. Zheng, I. Ahmad, H. Ahmad, Gaussian radial basis functions method for linear and nonlinear convection-diffusion models in physical phenomena, Open Phys., 19 (2021), 69–76. https://doi.org/10.1515/phys-2021-0011 doi: 10.1515/phys-2021-0011
    [36] F. Z. Wang, I. Ahmad, H. Ahmad, M. D. Alsulami, K. S. Alimgeer, C. Cesarano, et al., Meshless method based on RBFs for solving three-dimensional multi-term time fractional PDEs arising in engineering phenomenons, J. King Saud Univ. Sci., 33 (2021), 101604. https://doi.org/10.1016/j.jksus.2021.101604 doi: 10.1016/j.jksus.2021.101604
    [37] M. N. Khan, I. Ahmad, H. Ahmad, A radial basis function collocation method for space-dependent inverse heat problems, J. Appl. Comput. Mech., 6 (2020), 1187–1199.
    [38] A. Ali, S. Islam, S. Haq, A computational meshfree technique for the numerical solution of the two dimensional coupled Burgers' equations, Int. J. Comput. Methods Eng. Sci. Mech., 10 (2009), 406–422. https://doi.org/10.1080/15502280903108016 doi: 10.1080/15502280903108016
    [39] C. F. M. Coimbra, Mechanica with variable-order differential operators, Ann. Phys., 12 (2003), 692–703.
    [40] H. Jiang, F. Liu, I. Turner, K. Burrage, Analytical solutions for the multi-term time-space Caputo-Riesz fractional advection-diffusion equations on a finite domain, J. Math. Anal. Appl., 389 (2012), 1117–1127. https://doi.org/10.1016/j.jmaa.2011.12.055 doi: 10.1016/j.jmaa.2011.12.055
  • This article has been cited by:

    1. Asghar Ali, Rashida Hussain, Sara Javed, Exploring the dynamics of Lie symmetry, Bifurcation and Sensitivity analysis to the nonlinear Schrödinger model, 2024, 180, 09600779, 114552, 10.1016/j.chaos.2024.114552
    2. Muhammad Nadeem, Shamoona Jabeen, Omar Abu Arqub, Investigating the invariant solutions of (1+1)-dimensional Sawada–Kotera model using Lie symmetries analysis, 2024, 0217-9849, 10.1142/S0217984925500022
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1636) PDF downloads(87) Cited by(2)

Figures and Tables

Figures(9)  /  Tables(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog