Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Research article

Certain new applications of Faber polynomial expansion for some new subclasses of υ-fold symmetric bi-univalent functions associated with q-calculus

  • In this article, we define the q-difference operator and Salagean q-differential operator for υ-fold symmetric functions in open unit disk U by first applying the concepts of q-calculus operator theory. Then, we considered these operators in order to construct new subclasses for υ-fold symmetric bi-univalent functions. We establish the general coefficient bounds |aυk+1| for the functions in each of these newly specified subclasses using the Faber polynomial expansion method. Investigations are also performed on Feketo-Sezego problems and initial coefficient bounds for the function h that belong to the newly discovered subclasses. To illustrate the relationship between the new and existing research, certain well-known corollaries of our main findings are also highlighted.

    Citation: Mohammad Faisal Khan. Certain new applications of Faber polynomial expansion for some new subclasses of υ-fold symmetric bi-univalent functions associated with q-calculus[J]. AIMS Mathematics, 2023, 8(5): 10283-10302. doi: 10.3934/math.2023521

    Related Papers:

    [1] Muhammad Farman, Ali Akgül, Kottakkaran Sooppy Nisar, Dilshad Ahmad, Aqeel Ahmad, Sarfaraz Kamangar, C Ahamed Saleel . Epidemiological analysis of fractional order COVID-19 model with Mittag-Leffler kernel. AIMS Mathematics, 2022, 7(1): 756-783. doi: 10.3934/math.2022046
    [2] Minghung Lin, Yiyou Hou, Maryam A. Al-Towailb, Hassan Saberi-Nik . The global attractive sets and synchronization of a fractional-order complex dynamical system. AIMS Mathematics, 2023, 8(2): 3523-3541. doi: 10.3934/math.2023179
    [3] Rahat Zarin, Amir Khan, Aurangzeb, Ali Akgül, Esra Karatas Akgül, Usa Wannasingha Humphries . Fractional modeling of COVID-19 pandemic model with real data from Pakistan under the ABC operator. AIMS Mathematics, 2022, 7(9): 15939-15964. doi: 10.3934/math.2022872
    [4] Pratap Anbalagan, Evren Hincal, Raja Ramachandran, Dumitru Baleanu, Jinde Cao, Michal Niezabitowski . A Razumikhin approach to stability and synchronization criteria for fractional order time delayed gene regulatory networks. AIMS Mathematics, 2021, 6(5): 4526-4555. doi: 10.3934/math.2021268
    [5] Muhammad Farman, Ali Akgül, Sameh Askar, Thongchai Botmart, Aqeel Ahmad, Hijaz Ahmad . Modeling and analysis of fractional order Zika model. AIMS Mathematics, 2022, 7(3): 3912-3938. doi: 10.3934/math.2022216
    [6] Jingfeng Wang, Chuanzhi Bai . Global Mittag-Leffler stability of Caputo fractional-order fuzzy inertial neural networks with delay. AIMS Mathematics, 2023, 8(10): 22538-22552. doi: 10.3934/math.20231148
    [7] Yuehong Zhang, Zhiying Li, Wangdong Jiang, Wei Liu . The stability of anti-periodic solutions for fractional-order inertial BAM neural networks with time-delays. AIMS Mathematics, 2023, 8(3): 6176-6190. doi: 10.3934/math.2023312
    [8] Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Nantapat Jarasthitikulchai, Marisa Kaewsuwan . A generalized Gronwall inequality via ψ-Hilfer proportional fractional operators and its applications to nonlocal Cauchy-type system. AIMS Mathematics, 2024, 9(9): 24443-24479. doi: 10.3934/math.20241191
    [9] Rana Safdar Ali, Saba Batool, Shahid Mubeen, Asad Ali, Gauhar Rahman, Muhammad Samraiz, Kottakkaran Sooppy Nisar, Roshan Noor Mohamed . On generalized fractional integral operator associated with generalized Bessel-Maitland function. AIMS Mathematics, 2022, 7(2): 3027-3046. doi: 10.3934/math.2022167
    [10] Yonghong Liu, Ghulam Farid, Dina Abuzaid, Hafsa Yasmeen . On boundedness of fractional integral operators via several kinds of convex functions. AIMS Mathematics, 2022, 7(10): 19167-19179. doi: 10.3934/math.20221052
  • In this article, we define the q-difference operator and Salagean q-differential operator for υ-fold symmetric functions in open unit disk U by first applying the concepts of q-calculus operator theory. Then, we considered these operators in order to construct new subclasses for υ-fold symmetric bi-univalent functions. We establish the general coefficient bounds |aυk+1| for the functions in each of these newly specified subclasses using the Faber polynomial expansion method. Investigations are also performed on Feketo-Sezego problems and initial coefficient bounds for the function h that belong to the newly discovered subclasses. To illustrate the relationship between the new and existing research, certain well-known corollaries of our main findings are also highlighted.



    As we all know, the study of variable exponent function space inspired by nonlinear elasticity theory and nonstandard growth differential equations is one of the key contents of harmonic analysis in the past three decades, attracting extensive attention from many scholars. In [19], the theory of function spaces with variable exponent was progressed since some elementary properties were established by Kováčik and Rákosník, and they studied many basic properties of variable exponent Lebesgue spaces and Sobolev spaces on Rn. Later, the Lebesgue spaces with variable exponent Lp()(Rn) were extensively investigated; see [7,8,22]. In [14], Izuki first introduced the Herz spaces with variable exponent ˙Kα,qp()(Rn), which are generalizations of the Herz spaces ˙Kα,qp(Rn), and considered the boundedness of commutators of fractional integrals on Herz spaces with variable exponent. In [13], Izuki introduced the Herz-Morrey spaces with variable exponent M˙Kα,λq,p()(Rn), which are generalizations of the Herz-Morrey spaces M˙Kα,λq,p(Rn), and studied the boundedness of vector valued sublinear operators on Herz-Morrey spaces with variable exponent M˙Kα,λq,p()(Rn). On the other hand, in the study of boundary value problems for the Laplace equation on Lipschitz domains, the classical theory of Muckenhoupt weights is a powerful tool in harmonic analysis; see [21]. Generalized Muckenhoupt weights with variable exponent have been intensively studied; see [4,5].

    In [11], Hardy defined the classical Hardy operators as:

    P(f)(x):=1xx0f(t)dt,x>0. (1.1)

    In [6], Christ and Grafakos defined the ndimensional Hardy operators as:

    H(f)(x):=1|x|n|t|<|x|f(t)dt,xRn{0}, (1.2)

    and established the boundedness of P(f)(x) in Lp(Rn), getting the best constants.

    In [9], under the condition of 0β<n and |x|=ni=1x2i, Fu et al. defined the ndimensional fractional Hardy operators and its adjoint operators as:

    Hβf(x):=1|x|nβ|t|<|x|f(t)dt,Hβf(x):=|t||x|f(t)|t|nβdt,xRn{0}, (1.3)

    and established the boundedness of their commutators in Lebesgue spaces and homogeneous Herz spaces.

    Let L1loc(Rn) be the collection of all locally integrable functions on Rn. Given a function bL1loc(Rn) and mN, Wang et al. [23] defined the mth order commutators of ndimensional fractional Hardy operators and adjoint operators as:

    Hmβ,bf(x):=1|x|nβ|t|<|x|(b(x)b(t))mf(t)dt (1.4)

    and

    Hmβ,bf(x):=|t||x|(b(x)b(t))mf(t)|t|nβdt,xRn{0}. (1.5)

    Obviously, when m=0, H0β,b=Hβ, H0β,b=Hβ, and when m=1, H1β,b=Hβ,b, H1β,b=Hβ,b. More important results with regard to these commutators, see [20,26,27].

    Due to the need of future calculation in this paper, let 0<β<n, and the fractional integral operator Iβ is defined as:

    Iβ(f)(x):=Rnf(y)|xy|nβdy,xRn. (1.6)

    Let 0β<n and fL1loc(Rn), and the fractional maximal operator Mβ is defined as:

    Mβf(x):=supxB1|B|1βnB|f(y)|dy,xRn, (1.7)

    where the supremum is taken over all balls BRn containing x. When β=0, we simply write M instead of M0, which is exactly the Hardy-Littlewood maximal function.

    Let fL1loc(Rn) and BMO(Rn) consist of all fL1loc(Rn) with BMO(Rn)<. b is a bounded mean oscillation function if , and the \|b\|_{\mathrm{BMO}} is defined as follow:

    \begin{align} \|b\|_{\mathrm{BMO}}: = \sup\limits_{B}\int_{B}|b(x)-b_{B}|\mathrm{d}x, \end{align} (1.8)

    where the supremum is taken all over the balls B\in \mathbb{R}^{n} and b_{B}: = |B|^{-1}\int_{B}b(y)\mathrm{d}y . For a comprehensive review of the bounded mean oscillation (BMO) space, please see the book [10].

    Recently, Muhammad Asim et al. established the estimates of fractional Hardy operators on weighted variable exponent Morrey-Herz spaces in [1]. Amjad Hussain et al. established the boundedness of the commutators of the Fractional Hardy operators on weighted variable Herz-Morrey spaces in [12]. Motivated by the mentioned work, in this paper, we will give the boundedness of the m th order commutators of n- dimensional fractional Hardy operators \mathcal{H}^{m}_{_{\beta, b}} and its adjoint operators \mathcal{H}_{\beta, b}^{\ast m} on weighted variable exponent Morrey-Herz space \mathrm{M\dot{K}}_{q, p(\cdot)}^{\alpha, \lambda}(\omega) .

    The paper is organized as follows. In Section 2, we provide some preliminary knowledge. The main results and their proofs are given in Section 3. In Section 4, we provide the conclusion of this paper. Throughout this paper, we use the following symbols and notations:

    (1) For a constant R > 0 and a point x\in \mathbb{R}^{n} , we write B(x, R): = \{y\in \mathbb{R}^{n}: |x-y| < R\} .

    (2) For any measurable set E\subset\mathbb{R}^{n} , |E| denotes the Lebesgue measure, and \chi_{E} means the characteristic function.

    (3) Given k\in \mathbb{Z} , we write B_{k}: = \overline{B(0, 2^{k})} = \{x\in \mathbb{R}^{n}: |x|\leq 2^{k}\} .

    (4) We define a family \{A_{k}\}_{k = -\infty}^{\infty} by A_{k}: = B_{k}\setminus B_{k-1} = \{x\in \mathbb{R}^{n}: 2^{k-1} < |x|\leq 2^{k}\} . Moreover \chi_{k} denotes the characteristic function of A_{k} , namely, \chi_{k}: = \chi_{A_{k}} .

    (5) For any index 1 < p(x) < \infty , p^{\prime}(x) denotes its conjugate index, namely, \frac{1}{p(x)}+\frac{1}{p^{\prime}(x)} = 1 .

    (6) If there exists a positive constant C independent of the main parameters such that A\leq CB , then we write A\lesssim B . Additionally, A\approx B means that both A\lesssim B and B\lesssim A hold.

    \mathbf{Definition\; 2.1.} ([7]) Let p(\cdot): \mathbb{R}^{n}\rightarrow [1, \infty) be a measurable function.

    (ⅰ) The Lebesgue space with variable exponent L^{p(\cdot)}(\mathbb{R}^{n}) is defined by

    L^{p(\cdot)}(\mathbb{R}^{n}): = \Big\{f\; \mathrm{is\; measurable\; function}:\int_{\mathbb{R}^{n}}\Big(\frac{|f(x)|}{\lambda}\Big)^{p(x)}\mathrm{d}x < \infty \; \mathrm{for\; some\; constant}\; \lambda > 0\Big\}.

    (ⅱ) The spaces with variable exponent L_{\mathrm{loc}}^{p(\cdot)}(\mathbb{R}^{n}) are defined by

    L^{p(\cdot)}_{\mathrm{loc}}(\mathbb{R}^{n}): = \{f\; \mathrm{is\; measurable\; function}:f\in L^{p(\cdot)}(K) \mathrm{\; for\; all\; compact\; subsets\; } K\subset \mathbb{R}^{n}\}.

    The Lebesgue space L^{p(\cdot)}(\mathbb{R}^{n}) is a Banach space with the norm defined by

    \|f\|_{L^{p(\cdot)}(\mathbb{R}^{n})}: = \inf\Big\{\lambda > 0:\int_{\mathbb{R}^{n}}\Big(\frac{|f(x)|}{\lambda}\Big)^{p(x)}\mathrm{d}x\leq 1 \Big\}.

    \mathbf{Definition\; 2.2.} ([7]) (ⅰ) The set \mathcal{P}(\mathbb{R}^{n}) consists of all measurable functions p(\cdot): \mathbb{R}^{n}\rightarrow [1, \infty) satisfying

    1 < p_{-}\leq p(x)\leq p_{+} < \infty,

    where

    p_{-}: = \mathrm{essinf}\{p(x): x\in \mathbb{R}^{n}\} > 1,\; \; \; p_{+}: = \mathrm{esssup}\{p(x): x\in \mathbb{R}^{n}\} < \infty.

    (ⅱ) The set \mathcal{B}(\mathbb{R}^{n}) consists of all measurable function p(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) satisfying that the Hardy-Littlewood maximal operator M is bounded on L^{p(\cdot)}(\mathbb{R}^{n}) .

    \mathbf{Definition\; 2.3.} ([7]) Suppose that p(\cdot) is a real-valued function on \mathbb{R}^{n} . We say that

    (ⅰ) \mathcal{C}_{\mathrm{loc}}^{\mathrm{log}}(\mathbb{R}^{n}) is the set of all local log-Hölder continuous functions p(\cdot) satisfying

    \begin{align} |p(x)-p(y)|\leq -\frac{C}{\mathrm{log}(|x-y|)},\; |x-y|\leq\frac{1}{2}, \; \; x,y\in \mathbb{R}^{n}. \end{align} (2.1)

    (ⅱ) \mathcal{C}_{0}^{\mathrm{log}}(\mathbb{R}^{n}) is the set of all local log-Hölder continuous functions p(\cdot) satisfying at origin

    \begin{align} |p(x)-p_{0}|\leq \frac{C}{\mathrm{log}(e+\frac{1}{|x|})},\; \; x\in \mathbb{R}^{n}. \end{align} (2.2)

    (ⅲ) \mathcal{C}_{\mathrm{\infty}}^{\mathrm{log}}(\mathbb{R}^{n}) is the set of all local log-Hölder continuous functions satisfying at infinity

    \begin{align} |p(x)-p_{\infty}|\leq \frac{C_{\infty}}{\mathrm{log}(e+|x|)},\; \; x\in \mathbb{R}^{n}. \end{align} (2.3)

    (ⅳ) \mathcal{C}^{\mathrm{log}}(\mathbb{R}^{n}) = \mathcal{C}_{\mathrm{\infty}}^{\mathrm{log}}(\mathbb{R}^{n})\cap \mathcal{C}_{\mathrm{loc}}^{\mathrm{log}}(\mathbb{R}^{n}) denotes the set of all global log-Hölder continuous functions p(\cdot) .

    It was proved in [7] that if p(\cdot)\in \mathcal{P}(\mathbb{R}^{n})\cap \mathcal{C}^{\mathrm{log}}(\mathbb{R}^{n}) , then the Hardy-Littlewood maximal operator M is bounded on L^{p(\cdot)}(\mathbb{R}^{n}) .

    \mathbf{Definition\; 2.4.} ([21]) Given a non-negative, measure function \omega , for 1 < p < \infty , \omega\in A_{p} if

    [\omega]_{A_{p}}: = \sup\limits_{B}\Big(\frac{1}{|B|}\int_{B}\omega(x)\mathrm{d}x\Big)\Big(\frac{1}{|B|}\int_{B}\omega(x)^{1-p^{\prime}}\mathrm{d}x\Big)^{p-1} < \infty,

    where the supremum is taken over all balls B\subset \mathbb{R}^{n} . Especially, we say \omega\in A_{1} if

    [\omega]_{A_{1}}: = \sup\limits_{B}\frac{\frac{1}{|B|}\int_{B}\omega(x)\mathrm{d}x}{\mathrm{essinf}\{\omega(x): x\in B\}} < \infty.

    These weights characterize the weighted norm inequalities for the Hardy-Littlewood maximal operator, that is, \omega\in A_{p} , 1 < p < \infty , if and only if M:L^{p}(\omega)\rightarrow L^{p}(\omega) .

    \mathbf{Definition\; 2.5.} ([15]) Suppose that p(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) . A weight \omega is in the class A_{p(\cdot)} if

    \begin{align} \sup\limits_{B:\mathrm{ball}}|B|^{-1}\|\omega^{\frac{1}{p(\cdot)}}\chi_{B}\|_{L^{p(\cdot)}}\|\omega^{-\frac{1}{p(\cdot)}}\chi_{B}\|_{L^{p^{\prime}(\cdot)}} < \infty. \end{align} (2.4)

    Obviously, if p(\cdot) = p, 1 < p < \infty , then the above definition reduces to the classical Muckenhoupt A_{p} class.

    From [15], if p(\cdot), q(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) , and p(\cdot)\leq q(\cdot) , then A_{1}\subset A_{p(\cdot)}\subset A_{q(\cdot)} .

    \mathbf{Definition\; 2.6.} ([15]) Let 0 < \beta < n and p_{1}(\cdot), p_{2}(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) such that \frac{1}{p_{2}(x)} = \frac{1}{p_{1}(x)}-\frac{\beta}{n} . A weight \omega is said to be an A(p_{1}(\cdot), p_{2}(\cdot)) weight if

    \begin{align} \|\chi_{B}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\|\chi_{B}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})^{\prime}}\leq C|B|^{1-\frac{\beta}{n}}. \end{align} (2.5)

    \mathbf{Definition\; 2.7.} ([25]) Let p(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) and \omega\in A_{p(\cdot)} . The weighted variable exponent Lebesgue space L^{p(\cdot)}(\omega) denotes the set of all complex-valued measurable functions f satisfying

    L^{p(\cdot)}(\omega): = \{f:f\omega^{\frac{1}{p(\cdot)}}\in L^{p(\cdot)}(\mathbb{R}^{n})\}.

    This is a Banach space equipped with the norm

    \|f\|_{L^{p(\cdot)}(\omega)}: = \|f\omega^{\frac{1}{p(\cdot)}}\|_{L^{p(\cdot)}(\mathbb{R}^{n})}.

    \mathbf{Definition\; 2.8.} ([1]) Let \omega be a weight on \mathbb{R}^{n} , 0\leq \lambda < \infty , 0 < q < \infty , p(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) , and \alpha(\cdot): \mathbb{R}^{n}\rightarrow \mathbb{R} with \alpha(\cdot)\in L^{\infty}(\mathbb{R}^{n}) . The weighted variable exponent Morrey-Herz space \mathrm{M\dot{K}}_{q, p(\cdot)}^{\alpha(\cdot), \lambda}(\omega) is the set of all measurable functions f given by

    \mathrm{M\dot{K}}_{q, p(\cdot)}^{\alpha(\cdot), \lambda}(\omega): = \{f\in L_{\mathrm{loc}}^{p(\cdot)}(\mathbb{R}^{n}\backslash\{0\}, \omega): \|f\|_{\mathrm{M\dot{K}}_{q, p(\cdot)}^{\alpha(\cdot), \lambda}(\omega)} < \infty \},

    where

    \|f\|_{\mathrm{M\dot{K}}_{q, p(\cdot)}^{\alpha(\cdot), \lambda}(\omega)}: = \sup\limits_{k_{0}\in \mathbb{Z}}2^{-k_{0}\lambda}\Big\{\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(\cdot) q}\|f\chi_{k}\|_{L^{p(\cdot)}(\omega)}^{q} \Big\}^{\frac{1}{q}}.

    It is noted that \mathrm{M\dot{K}}_{q, p(\cdot)}^{\alpha(\cdot), 0}(\omega) = \mathrm{\dot{K}}_{q, p(\cdot)}^{\alpha(\cdot)}(\omega) is the variable exponent weighted Herz space defined in [2].

    \mathbf{Definition\; 2.9.} ([15]) Let \mathcal{M} be the set of all complex-valued measurable functions defined on \mathbb{R}^{n} and X be a linear subspace of \mathcal{M} .

    (1) The space X is said to be a Banach function space if there exists a function \|\cdot\|_{X}:\mathcal{M}\rightarrow [0, \infty] satisfying the following properties: Let f, g, f_{j}\in\mathcal{M}\; (j = 1, 2, \ldots) . Then

    (a) f\in X holds if and only if \|f\|_{X} < \infty .

    (b) Norm property:

    ⅰ. Positivity: \|f\|_{X}\geq 0 .

    ⅱ. Strict positivity: \|f\|_{X} = 0 holds if and only if f(x) = 0 for almost every x\in \mathbb{R}^{n} .

    ⅲ. Homogeneity: \|\lambda f\|_{X} = |\lambda|\cdot\|f\|_{X} holds for all \lambda\in\mathbb{C} .

    ⅳ. Triangle inequality: \|f+g\|_{X}\leq \|f\|_{X}+\|g\|_{X} .

    (c) Symmetry: \|f\|_{X} = \||f|\|_{X} .

    (d) Lattice property: If 0\leq g(x)\leq f(x) for almost every x\in \mathbb{R}^{n} , then \|g\|_{X}\leq\|f\|_{X} .

    (e) Fatou property: If 0\leq f_{j}(x)\leq f_{j+1}(x) for all j , and f_{j}(x)\rightarrow f(x) as j\rightarrow \infty for almost every x\in \mathbb{R}^{n} , then \lim\limits_{j\rightarrow \infty}\|f_{j}\|_{X} = \|f\|_{X} .

    (f) For every measurable set F\subset \mathbb{R}^{n} such that |F| < \infty , \|\chi_{F}\|_{X} is finite. Additionally, there exists a constant C_{F} > 0 depending only on F so that \int_{F}|h(x)|\mathrm{d}x\leq C_{F}\|h\|_{X} holds for all h\in X .

    (2) Suppose that X is a Banach function space equipped with a norm \|\cdot\|_{X} . The associated space X^{\prime} is defined by

    X^{\prime}: = \{f\in \mathcal{M}:\|f\|_{X^{\prime}} < \infty\},

    where

    \|f\|_{X^{\prime}}: = \sup\limits_{g}\Big\{\Big|\int_{\mathbb{R}^{n}}f(x)g(x)\mathrm{d}x\Big|:\|g\|_{X}\leq 1 \Big\}.

    \mathbf{Lemma\; 2.1.} ([3]) Let X be a Banach function space, and then we have the following:

    (ⅰ) The associated space X^{\prime} is also a Banach function space.

    (ⅱ) \|\cdot\|_{(X^{\prime})^{\prime}} and \|\cdot\|_{X} are equivalent.

    (ⅲ) If g\in X and f\in X^{\prime} , then

    \begin{align} \int_{\mathbb{R}^{n}}|f(x)g(x)|\mathrm{d}x\leq \|f\|_{X}\|g\|_{X^{\prime}} \end{align} (2.6)

    is the generalized Hölder inequality.

    \mathbf{Lemma\; 2.2.} ([15]) If X is a Banach function space, then we have, for all balls B ,

    \begin{align} 1\leq |B|^{-1}\|\chi_{B}\|_{X}\|\chi_{B}\|_{X^{\prime}}. \end{align} (2.7)

    \mathbf{Lemma\; 2.3.} ([16]) Let X be a Banach function space. Suppose that the Hardy-Littlewood maximal operator M is weakly bounded on X , that is,

    \|\chi_{\{Mf > \lambda\}}\|_{X}\lesssim \lambda^{-1}\|f\|_{X}

    is true for all f\in X and all \lambda > 0 . Then, we have

    \begin{align} \sup\limits_{B:\mathrm{ball}}\frac{1}{|B|}\|\chi_{B}\|_{X}\|\chi_{B}\|_{X^{\prime}} < \infty. \end{align} (2.8)

    \mathbf{Lemma\; 2.4.} ([15]) Given a function W such that 0 < W(x) < \infty for almost every x\in \mathbb{R}^{n} , W\in X_{\mathrm{loc}}(\mathbb{R}^{n}) and W^{-1}\in (X^{\prime})_{\mathrm{loc}}(\mathbb{R}^{n}) ,

    (ⅰ) X(\mathbb{R}^{n}, W) is Banach function space equipped with the norm

    \begin{align} \|f\|_{X(\mathbb{R}^{n}, W)}: = \|fW\|_{X}, \end{align} (2.9)

    where

    \begin{align} X(\mathbb{R}^{n}, W): = \{f\in\mathcal{M}: fW\in X\}. \end{align} (2.10)

    (ⅱ) The associated space X^{\prime}(\mathbb{R}^{n}, W^{-1}) of X(\mathbb{R}^{n}, W) is also a Banach function space.

    \mathbf{Lemma\; 2.5.} ([15]) Let X be a Banach function space and M be bounded on X^{\prime} . Then, there exists a constant \delta\in(0, 1) for all B\subset \mathbb{R}^{n} and E\subset B ,

    \begin{align} \frac{\|\chi_{_{E}}\|_{X}}{\|\chi_{_{B}}\|_{X}}\leq \Big( \frac{|E|}{|B|}\Big)^{^{\delta}}. \end{align} (2.11)

    The paper [19] shows that L^{p(\cdot)}(\mathbb{R}^{n}) is a Banach function space and the associated space L^{p^{\prime}(\cdot)}(\mathbb{R}^{n}) with equivalent norm.

    \mathbf{Remark\; 2.6.} ([1]) Let p(\cdot)\in\mathcal{P}(\mathbb{R}^{n}) , and by comparing the L^{p(\cdot)}(\omega^{p(\cdot)}) and L^{p^{\prime}(\cdot)}(\omega^{-p^{\prime}(\cdot)}) with the definition of X(\mathbb{R}^{n}, W) , we have the following:

    (1) If we take W = \omega and X = L^{p(\cdot)}(\mathbb{R}^{n}) , then we get L^{p(\cdot)}(\mathbb{R}^{n}, \omega) = L^{p(\cdot)}(\omega^{p(\cdot)}) .

    (2) If we consider W = \omega^{-1} and X = L^{p^{\prime}(\cdot)}(\mathbb{R}^{n}) , then we get L^{p^{\prime}(\cdot)}(\mathbb{R}^{n}, \omega^{-1}) = L^{p^{\prime}(\cdot)}(\omega^{-p^{\prime}(\cdot)}) .

    By virtue of Lemma 2.4, we get

    (L^{p(\cdot)}(\mathbb{R}^{n}, \omega))^{\prime} = (L^{p(\cdot)}(\omega^{p(\cdot)}))^{\prime} = L^{p^{\prime}(\cdot)}(\omega^{-p^{\prime}(\cdot)}) = L^{p^{\prime}(\cdot)}(\mathbb{R}^{n}, \omega^{-1}).

    \mathbf{Lemma\; 2.7.} ([17]) Let p(\cdot)\in\mathcal{P}(\mathbb{R}^{n})\cap \mathcal{C}^{\mathrm{log}}(\mathbb{R}^{n}) be a log-Hölder continuous function both at infinity and at origin, if \omega^{p_{_{2}}(\cdot)}\in A_{p_{_{2}}(\cdot)} implies \omega^{-p^{\prime}_{_{2}}(\cdot)}\in A_{p^{\prime}_{_{2}}(\cdot)} . Thus, the Hardy-Littlewood operator is bounded on L^{p^{\prime}_{_{2}}(\cdot)}(\omega^{-p^{\prime}_{_{2}}(\cdot)}) , and there exist constants \delta_{1}, \delta_{2}\in (0, 1) such that

    \begin{align} \frac{\|\chi_{E}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}}{\|\chi_{B}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}} = \frac{\|\chi_{E}\|_{(L^{p^{\prime}_{2}(\cdot)}(\omega^{-p^{\prime}_{2}(\cdot)}))^{\prime}}}{\|\chi_{B}\|_{(L^{p^{\prime}_{2}(\cdot)}(\omega^{-p^{\prime}_{2}(\cdot)}))^{\prime}}} \leq C\Big(\frac{|E|}{|B|}\Big)^{\delta_{1}}, \end{align} (2.12)

    and

    \begin{align} \frac{\|\chi_{E}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))^{\prime}}}{\|\chi_{B}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))^{\prime}}}\leq C\Big(\frac{|E|}{|B|}\Big)^{\delta_{2}}, \end{align} (2.13)

    for all balls B\subset \mathbb{R}^{n} and all measurable sets E\subset B .

    \mathbf{Lemma\; 2.8.} ([15]) Let p_{1}(\cdot)\in \mathcal{P}(\mathbb{R}^{n})\cap \mathcal{C}^{\mathrm{log}}(\mathbb{R}^{n}) and 0 < \beta < \frac{n}{p_{1}^{+}} . Define p_{2}(\cdot) by \frac{1}{p_{1}(x)}-\frac{1}{p_{2}(\cdot)} = \frac{\beta}{n} . If \omega\in A(p_{1}(\cdot), p_{2}(\cdot)) , then I_{\beta} is bounded from L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}) to L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}) .

    \mathbf{Lemma\; 2.9.} ([24, Corollary 3.11]) Let b\in \mathrm{BMO}(\mathbb{R}^{n}), m\in \mathbb{N} , and k, j\in \mathbb{Z} with k > j . Then, we have

    \begin{align} C^{-1}\|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{m}\leq \sup\limits_{B}\frac{1}{\|\chi_{B}\|_{L^{p(\cdot)}(\omega)}}\|(b-b_{B})^{m}\chi_{B}\|_{L^{p(\cdot)}(\omega)}\leq C\|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{m}. \end{align} (2.14)
    \begin{align} \|(b-b_{B_{j}})^{m}\chi_{B_{k}}\|_{L^{p(\cdot)}(\omega)}\leq C(k-j)^{m}\|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{m}\|\chi_{B_{k}}\|_{L^{p(\cdot)}(\omega)}. \end{align} (2.15)

    \mathbf{Proposition\; 3.1.} ([12] Let q(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) , 0 < p < \infty , and 0\leq \lambda < \infty . If \alpha(\cdot)\in L^{\infty}(\mathbb{R}^{n})\cap \mathcal{C}^{\mathrm{log}}(\mathbb{R}^{n}) , then

    \begin{align*} \|f\|_{\mathrm{M\dot{K}}_{p, q(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{q(\cdot)})}^{p}& = \sup\limits_{k_{0}\in \mathbb{Z}}2^{-k_{0}\lambda p}\sum\limits_{j = -\infty}\limits^{k_{0}}2^{j\alpha(\cdot)p}\|f\chi_{j}\|^{p}_{L^{q(\cdot)}(\omega^{q(\cdot)})}\\ &\leq \max\Big\{\sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0} < 0}}2^{-k_{0}\lambda p}\Big(\sum\limits_{j = -\infty}\limits^{k_{0}}2^{j\alpha(0)p}\|f\chi_{j}\|^{p}_{L^{q(\cdot)}(\omega^{q(\cdot)})}\Big), \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0}\geq0}}\Big(2^{-k_{0}\lambda p}\Big(\sum\limits_{j = -\infty}\limits^{-1}2^{j\alpha(0)p}\|f\chi_{j}\|^{p}_{L^{q(\cdot)}(\omega^{q(\cdot)})}\Big)\\ &+2^{-k_{0}\lambda p}\Big(\sum\limits_{j = 0}\limits^{k_{0}}2^{j\alpha(\infty)p}\|f\chi_{j}\|^{p}_{L^{q(\cdot)}(\omega^{q(\cdot)})}\Big)\Big)\Big\}. \end{align*}

    \mathbf{Theorem\; 3.1.} Let 0 < q_{1}\leq q_{2} < \infty , p_{2}(\cdot)\in\mathcal{P}(\mathbb{R}^{n})\cap \mathcal{C}^{\mathrm{log}}(\mathbb{R}^{n}) and p_{1}(\cdot) be such that \frac{1}{p_{2}(\cdot)} = \frac{1}{p_{1}(\cdot)}-\frac{\beta}{n} . Also, let \omega^{p_{2}(\cdot)}\in A_{1} , b\in \mathrm{BMO}(\mathbb{R}^{n}) , \lambda > 0 and \alpha(\cdot)\in L^{\infty}(\mathbb{R}^{n})\cap \mathcal{C}^{\mathrm{log}}(\mathbb{R}^{n}) be log-Hölder continuous at the origin, with \alpha(0)\leq \alpha(\infty) < \lambda+n\delta_{2}-\beta , where \delta_{2}\in(0, 1) is the constant appearing in (2.13). Then,

    \begin{align} \|\mathcal{H}^{m}_{_{\beta,b}}f\|_{\mathrm{M\dot{K}}_{q_{2}, p_{2}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{2}(\cdot)})}\lesssim \|b\|^{m}_{\mathrm{BMO}}\|f\|_{\mathrm{M\dot{K}}_{q_{1}, p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}. \end{align} (3.1)

    Proof. For arbitrary f\in \mathrm{M\dot{K}}_{q_{1}, p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)}) , let f_{j} = f\cdot\chi_{j} = f\cdot\chi_{A_{j}} for every j\in \mathbb{Z} , and then

    \begin{align} f(x) = \sum\limits_{j = -\infty}^{\infty}f(x)\cdot\chi_{j}(x) = \sum\limits_{j = -\infty}^{\infty}f_{j}(x). \end{align} (3.2)

    By the inequality of C_{p} , it is not difficult to see that

    \begin{align*} |\mathcal{H}^{m}_{_{\beta,b}}f(x)\chi_{k}(x)|&\leq \frac{1}{|x|^{n-\beta}}\int_{|t| < |x|}|b(x)-b(t)|^{m}|f(t)|\mathrm{d}t\cdot\chi_{k}(x)\\ &\leq \frac{1}{|x|^{n-\beta}}\int_{B(0,|x|)}|b(x)-b(t)|^{m}|f(t)|\mathrm{d}t\cdot\chi_{k}(x)\\ &\leq \frac{1}{|x|^{n-\beta}}\int_{B_{k}}|b(x)-b(t)|^{m}|f(t)|\mathrm{d}t\cdot\chi_{k}(x)\\ &\leq 2^{-k(n-\beta)}\sum\limits_{j = -\infty}^{k}\int_{A_{j}}|b(x)-b(t)|^{m}|f(t)|\mathrm{d}t\cdot\chi_{k}(x)\\ &\lesssim 2^{-k(n-\beta)}\sum\limits_{j = -\infty}^{k}\int_{A_{j}}|b(x)-b_{A_{j}}|^{m}|f(t)|\mathrm{d}t\cdot\chi_{k}(x)\\ &\; \; \; +2^{-k(n-\beta)}\sum\limits_{j = -\infty}^{k}\int_{A_{j}}|b(t)-b_{A_{j}}|^{m}|f(t)|\mathrm{d}t\cdot\chi_{k}(x) = E_{1}+E_{2}. \end{align*} (3.3)

    For E_{1} , by the generalized Hölder inequality, we have

    \begin{align*} E_{1}& = 2^{-k(n-\beta)}\sum\limits_{j = -\infty}^{k}\int_{A_{j}}|b(x)-b_{A_{j}}|^{m}|f(t)|\mathrm{d}t\cdot\chi_{k}(x)\\ &\leq 2^{-k(n-\beta)}\sum\limits_{j = -\infty}^{k}|b(x)-b_{A_{j}}|^{m}\cdot\chi_{k}(x)\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}. \end{align*} (3.4)

    By taking the (L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})) -norm on both sides of (3.4) and using (2.15) of Lemma 2.9, we get

    \begin{align*} \|E_{1}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))} &\leq 2^{-k(n-\beta)}\sum\limits_{j = -\infty}^{k}\||b(x)-b_{A_{j}}|^{m}\cdot\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\\ &\lesssim 2^{-k(n-\beta)}\sum\limits_{j = -\infty}^{k}(k-j)^{m}\|b\|_{\mathrm{BMO}}^{m}\|\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}. \end{align*} (3.5)

    For E_{2} , by the generalized Hölder inequality, we have

    \begin{align*} E_{2}& = 2^{-k(n-\beta)}\sum\limits_{j = -\infty}^{k}\int_{A_{j}}|b(t)-b_{A_{j}}|^{m}|f(t)|\mathrm{d}t\cdot\chi_{k}(x)\\ &\leq 2^{-k(n-\beta)}\sum\limits_{j = -\infty}^{k}\||b(t)-b_{A_{j}}|^{m}\cdot\chi_{j}(x)\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\cdot\chi_{k}(x). \end{align*} (3.6)

    By taking the (L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})) -norm on both sides of (3.6) and using (2.14) of Lemma 2.9, we get

    \begin{align*} \|E_{2}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))} &\leq 2^{-k(n-\beta)}\sum\limits_{j = -\infty}^{k}\||b(x)-b_{A_{j}}|^{m}\cdot\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\|\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}\\ &\lesssim 2^{-k(n-\beta)}\sum\limits_{j = -\infty}^{k}\|b\|_{\mathrm{BMO}}^{m}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\|\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}. \end{align*} (3.7)

    Hence, from inequalities (3.3), (3.5) and (3.7), we get

    \begin{align*} &\|\mathcal{H}^{m}_{_{\beta,b}}f(x)\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}\\ &\lesssim 2^{-k(n-\beta)}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\Big\{\sum\limits_{j = -\infty}^{k}(k-j)^{m}\|b\|_{\mathrm{BMO}}^{m}\|\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\\ &+\sum\limits_{j = -\infty}^{k}\|b\|_{\mathrm{BMO}}^{m}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\|\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}\Big\}\\ &\lesssim 2^{-k(n-\beta)}\|b\|_{\mathrm{BMO}}^{m}\sum\limits_{j = -\infty}^{k}(k-j)^{m}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\|\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}. & \end{align*} (3.8)

    By virtue of Lemma 2.5, we have

    \begin{align} \frac{\|\chi_{B_{k}}\|_{X}}{\|\chi_{k}\|_{X}}\leq (\frac{|B_{k}|}{|A_{k}|})^{\delta} = C\; \Longrightarrow\; \|\chi_{B_{k}}\|_{X}\leq C\|\chi_{k}\|_{X}. \end{align} (3.9)

    Note that \|\chi_{j}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})} \leq\|\chi_{B_{j}}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})} and \chi_{B_{j}}(x)\lesssim 2^{-j\beta}I_{\beta}(\chi_{B_{j}}) (see [18, p. 350]). By applying (2.8), (3.9) and Lemma 2.8, we obtain

    \begin{align*} \|\chi_{j}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}&\leq\|\chi_{B_{j}}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\lesssim 2^{-j\beta}\|I_{\beta}(\chi_{B_{j}})\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\\ &\lesssim 2^{-j\beta}\|\chi_{B_{j}}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\lesssim 2^{-j\beta}\|\chi_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})} \lesssim 2^{j(n-\beta)}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}^{-1}. & \end{align*} (3.10)

    By virtue of (2.7) and (2.8), combining (2.13) and (3.10), we have

    \begin{align*} &2^{k(\beta-n)}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\|\chi_{k}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\\ &\; \; \; \; = 2^{k\beta}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}} 2^{-kn}\|\chi_{k}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\\ &\; \; \; \; \lesssim 2^{k\beta}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}} \|\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))^{\prime}}^{-1}\\ &\; \; \; \; = 2^{k\beta} \|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}} \|\chi_{j}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))^{\prime}}^{-1}\frac{ \|\chi_{j}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))^{\prime}}}{ \|\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))^{\prime}}}\\ &\; \; \; \; \lesssim 2^{k\beta}2^{n\delta_{2}(j-k)} \|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}} \|\chi_{j}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))^{\prime}}^{-1}\\ &\; \; \; \; \lesssim 2^{k\beta}2^{n\delta_{2}(j-k)}2^{j(n-\beta)} \|\chi_{j}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}^{-1} \|\chi_{j}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))^{\prime}}^{-1}\\ &\; \; \; \; = 2^{k\beta}2^{n\delta_{2}(j-k)}2^{-j\beta} \Big(2^{-jn}\|\chi_{j}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\|\chi_{j}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))^{\prime}}\Big)^{-1}\\ &\; \; \; \; \lesssim 2^{(\beta-n\delta_{2})(k-j)}. & \end{align*} (3.11)

    Hence by virtue of (3.8) and (3.11), we have

    \begin{align*} \|\mathcal{H}^{m}_{_{\beta,b}}f(x)\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}\lesssim \|b\|_{\mathrm{BMO}}^{m}\sum\limits_{j = -\infty}^{k}(k-j)^{m}2^{(\beta-n\delta_{2})(k-j)}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}. & \end{align*} (3.12)

    In order to estimate \|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})} , we consider two cases as below.

    Case 1: For j < 0 , we get

    \begin{align*} \|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}& = 2^{-j\alpha(0)}\Big(2^{j\alpha(0) q_{1}}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}^{q_{1}}\Big)^{\frac{1}{q_{1}}}\\ &\leq 2^{-j\alpha(0)}\Big(\sum\limits_{i = -\infty}^{j}2^{i\alpha(0) q_{1}}\|f_{i}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}^{q_{1}}\Big)^{\frac{1}{q_{1}}}\\ & = 2^{j(\lambda-\alpha(0))}\Big\{2^{-j\lambda}\Big(\sum\limits_{i = -\infty}^{j}2^{i\alpha(\cdot) q_{1}}\|f_{i}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}^{q_{1}}\Big)^{\frac{1}{q_{1}}}\Big\}\\ &\lesssim 2^{j(\lambda-\alpha(0))}\|f\|_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}. & \end{align*} (3.13)

    Case 2: For j\geq0 , we get

    \begin{align*} \|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}& = 2^{-j\alpha(\infty)}\Big(2^{j\alpha(\infty) q_{1}}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}^{q_{1}}\Big)^{\frac{1}{q_{1}}}\\ &\leq 2^{-j\alpha(\infty)}\Big(\sum\limits_{i = -\infty}^{j}2^{i\alpha(\infty) q_{1}}\|f_{i}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}^{q_{1}}\Big)^{\frac{1}{q_{1}}}\\ & = 2^{j(\lambda-\alpha(\infty))}\Big\{2^{-j\lambda}\Big(\sum\limits_{i = -\infty}^{j}2^{i\alpha(\cdot) q_{1}}\|f_{i}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}^{q_{1}}\Big)^{\frac{1}{q_{1}}}\Big\}\\ &\lesssim 2^{j(\lambda-\alpha(\infty))}\|f\|_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}. & \end{align*} (3.14)

    Now, by virtue of the condition q_{1}\leq q_{2} and the definition of weighted variable exponent Morrey-Herz space along with the use of Proposition 3.1, we get

    \begin{align*} \|\mathcal{H}^{m}_{_{\beta,b}}f\|^{q_{1}}_{\mathrm{M\dot{K}}_{q_{2},p_{2}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{2}(\cdot)})}& = \sup\limits_{k_{0}\in \mathbb{Z}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(\cdot) q_{1}}\|\mathcal{H}^{m}_{_{\beta,b}}f\chi_{k}\|^{q_{1}}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\\ &\leq \max\Big\{\sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0} < 0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(0) q_{1}}\|\mathcal{H}^{m}_{_{\beta,b}}f\chi_{k}\|^{q_{1}}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})},\\ &\; \; \; \; \; \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0}\geq0}}2^{-k_{0}\lambda q_{1}}\Big(\sum\limits_{k = -\infty}^{-1}2^{k\alpha(0) q_{1}}\|\mathcal{H}^{m}_{_{\beta,b}}f\chi_{k}\|^{q_{1}}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\\ &\; \; \; \; \; \; \; \; \; +\sum\limits_{k = 0}^{k_{0}}2^{k\alpha(\infty) q_{1}}\|\mathcal{H}^{m}_{\beta,b}f\chi_{k}\|^{q_{1}}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\Big)\Big\}\\ & = \max\{J_{1}, J_{2}+J_{3}\}, & \end{align*} (3.15)

    where

    \begin{align*} &J_{1} = \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0} < 0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(0) q_{1}}\|\mathcal{H}^{m}_{_{\beta,b}}f\chi_{k}\|^{q_{1}}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})},\\ &J_{2} = \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0}\geq0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = -\infty}^{-1}2^{k\alpha(0) q_{1}}\|\mathcal{H}^{m}_{_{\beta,b}}f\chi_{k}\|^{q_{1}}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})},\\ &J_{3} = \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0}\geq0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = 0}^{k_{0}}2^{k\alpha(\infty) q_{1}}\|\mathcal{H}^{m}_{_{\beta,b}}f\chi_{k}\|^{q_{1}}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}. \end{align*}

    First, we estimate J_{1} . Since \alpha(0)\leq \alpha(\infty) < n\delta_{2}+\lambda-\beta , combining (3.12) and (3.13), we get

    \begin{align*} J_{1}&\lesssim \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0} < 0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(0) q_{1}}\Big(\sum\limits_{j = -\infty}^{k}(k-j)^{m}\|b\|_{\mathrm{BMO}}^{m}2^{(\beta-n\delta_{2})(k-j)}\|f\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\Big)^{q_{1}}\\ &\lesssim \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0} < 0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(0) q_{1}}\Big(\sum\limits_{j = -\infty}^{k}(k-j)^{m}\|b\|_{\mathrm{BMO}}^{m}2^{(\beta-n\delta_{2})(k-j)}2^{j(\lambda-\alpha(0))}\|f\|_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}\Big)^{q_{1}}\\ &\lesssim \|b\|_{\mathrm{BMO}}^{mq_{1}}\|f\|^{q_{1}}_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}\sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0} < 0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(0) q_{1}}\Big(\sum\limits_{j = -\infty}^{k}(k-j)^{m}2^{(\beta-n\delta_{2})(k-j)}2^{j(\lambda-\alpha(0))}\Big)^{q_{1}}\\ &\lesssim \|b\|_{\mathrm{BMO}}^{mq_{1}}\|f\|^{q_{1}}_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}\sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0} < 0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = -\infty}^{k_{0}}2^{k\lambda q_{1}}\Big(\sum\limits_{j = -\infty}^{k}(k-j)^{m}2^{(j-k)(n\delta_{2}+\lambda-\beta-\alpha(0))}\Big)^{q_{1}}\\ &\lesssim \|b\|_{\mathrm{BMO}}^{mq_{1}}\|f\|^{q_{1}}_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}. \end{align*}

    The estimate of J_{2} is similar to that of J_{1} .

    Lastly, we estimate J_{3} . Since \alpha(0)\leq \alpha(\infty) < n\delta_{2}+\lambda-\beta , combining (3.12) and (3.14), we get

    \begin{align*} J_{3}&\lesssim \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0}\geq0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = 0}^{k_{0}}2^{k\alpha(\infty) q_{1}}\Big(\sum\limits_{j = -\infty}^{k}(k-j)^{m}\|b\|_{\mathrm{BMO}}^{m}2^{(\beta-n\delta_{2})(k-j)}\|f\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\Big)^{q_{1}}\\ &\lesssim \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0}\geq0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = 0}^{k_{0}}2^{k\alpha(\infty) q_{1}}\Big(\sum\limits_{j = -\infty}^{k}(k-j)^{m}\|b\|_{\mathrm{BMO}}^{m}2^{(\beta-n\delta_{2})(k-j)}2^{j(\lambda-\alpha(\infty))}\|f\|_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}\Big)^{q_{1}}\\ &\lesssim \|b\|_{\mathrm{BMO}}^{mq_{1}}\|f\|^{q_{1}}_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}\sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0}\geq0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = 0}^{k_{0}}2^{k\alpha(\infty) q_{1}}\Big(\sum\limits_{j = -\infty}^{k}(k-j)^{m}2^{(\beta-n\delta_{2})(k-j)}2^{j(\lambda-\alpha(\infty))}\Big)^{q_{1}}\\ &\lesssim \|b\|_{\mathrm{BMO}}^{mq_{1}}\|f\|^{q_{1}}_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}\sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0}\geq0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = 0}^{k_{0}}2^{k\lambda q_{1}}\Big(\sum\limits_{j = -\infty}^{k}(k-j)^{m}2^{(j-k)(n\delta_{2}+\lambda-\beta-\alpha(\infty))}\Big)^{q_{1}}\\ &\lesssim \|b\|_{\mathrm{BMO}}^{mq_{1}}\|f\|^{q_{1}}_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}. \end{align*}

    The desired result is obtained by combining the estimates of J_{1} , J_{2} and J_{3} .

    \mathbf{Theorem\; 3.2.} Let 0 < q_{1}\leq q_{2} < \infty , p_{2}(\cdot)\in\mathcal{P}(\mathbb{R}^{n})\cap \mathcal{C}^{\mathrm{log}}(\mathbb{R}^{n}) and p_{1}(\cdot) be such that \frac{1}{p_{2}(\cdot)} = \frac{1}{p_{1}(\cdot)}-\frac{\beta}{n} . Also, let \omega^{p_{2}(\cdot)}\in A_{1} , b\in \mathrm{BMO}(\mathbb{R}^{n}) , \lambda > 0 and \alpha(\cdot)\in L^{\infty}(\mathbb{R}^{n})\cap \mathcal{C}^{\mathrm{log}}(\mathbb{R}^{n}) be log-Hölder continuous at the origin, with \lambda-n\delta_{1} < \alpha(0)\leq\alpha(\infty) , where \delta_{1}\in(0, 1) is the constant appearing in (2.12). Then,

    \begin{align} \|\mathcal{H}^{\ast m}_{_{\beta,b}}f\|_{\mathrm{M\dot{K}}_{q_{2}, p_{2}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{2}(\cdot)})}\lesssim \|b\|^{m}_{\mathrm{BMO}}\|f\|_{\mathrm{M\dot{K}}_{q_{1}, p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}. \end{align} (3.16)

    Proof. From an application of the inequality of C_{p} , it is not difficult to see that

    \begin{align*} |\mathcal{H}^{\ast m}_{_{\beta,b}}f(x)\chi_{k}(x)|&\leq \int_{\mathbb{R}^{n}\setminus B_{k}}|t|^{\beta-n}|b(x)-b(t)|^{m}|f(t)|\mathrm{d}t\cdot\chi_{k}(x)\\ &\leq \sum\limits_{j = k+1}^{\infty}\int_{A_{j}}|t|^{\beta-n}|b(x)-b(t)|^{m}|f(t)|\mathrm{d}t\cdot\chi_{k}(x)\\ &\lesssim \sum\limits_{j = k+1}^{\infty}\int_{A_{j}}|t|^{\beta-n}|b(x)-b_{A_{j}}|^{m}|f(t)|\mathrm{d}t\cdot\chi_{k}(x)\\ &\; \; \; +\sum\limits_{j = k+1}^{\infty}\int_{A_{j}}|t|^{\beta-n}|b(t)-b_{A_{j}}|^{m}|f(t)|\mathrm{d}t\cdot\chi_{k}(x)\\ & = F_{1}+F_{2}. \end{align*} (3.17)

    For F_{1} , by the generalized Hölder inequality, we have

    \begin{align*} F_{1}&\leq\sum\limits_{j = k+1}^{\infty}2^{-j(n-\beta)}\int_{A_{j}}|b(x)-b_{A_{j}}|^{m}|f(t)|\mathrm{d}t\cdot\chi_{k}(x)\\ &\leq \sum\limits_{j = k+1}^{\infty}2^{-j(n-\beta)}|b(x)-b_{A_{j}}|^{m}\cdot\chi_{k}(x)\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}. \end{align*} (3.18)

    By taking the (L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})) -norm on both sides of (3.18) and using (2.15) of Lemma 2.9, we get

    \begin{align*} \|F_{1}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))} &\leq \sum\limits_{j = k+1}^{\infty}2^{-j(n-\beta)}\||b(x)-b_{A_{j}}|^{m}\cdot\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\\ &\lesssim \sum\limits_{j = k+1}^{\infty}2^{-j(n-\beta)}(j-k)^{m}\|b\|_{\mathrm{BMO}}^{m}\|\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}. \end{align*} (3.19)

    For F_{2} , by the generalized Hölder inequality, we have

    \begin{align*} F_{2}&\leq\sum\limits_{j = k+1}^{\infty}2^{-j(n-\beta)}\int_{A_{j}}|b(t)-b_{A_{j}}|^{m}|f(t)|\mathrm{d}t\cdot\chi_{k}(x)\\ &\leq \sum\limits_{j = k+1}^{\infty}2^{-j(n-\beta)}\||b(t)-b_{A_{j}}|^{m}\cdot\chi_{j}(x)\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\cdot\chi_{k}(x). \end{align*} (3.20)

    By taking the (L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})) -norm on both sides of (3.20) and using (2.15) of Lemma 2.9, we get

    \begin{align*} \|F_{2}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))} &\leq \sum\limits_{j = k+1}^{\infty}2^{-j(n-\beta)}\||b(t)-b_{A_{j}}|^{m}\cdot\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\|\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}\\ &\lesssim \sum\limits_{j = k+1}^{\infty}2^{-j(n-\beta)}\|b\|_{\mathrm{BMO}}^{m}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\|\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}. \end{align*} (3.21)

    Hence, from inequalities (3.17), (3.19) and (3.21), we get

    \begin{align*} &\|\mathcal{H}^{\ast m}_{_{\beta,b}}f(x)\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}\\ &\; \; \; \lesssim \|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\Big\{\sum\limits_{j = k+1}^{\infty}2^{-j(n-\beta)}(j-k)^{m}\|b\|_{\mathrm{BMO}}^{m}\|\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\\ &\; \; \; \; \; \; +\sum\limits_{j = k+1}^{\infty}2^{-j(n-\beta)}\|b\|_{\mathrm{BMO}}^{m}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\|\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}\Big\}\\ &\lesssim \|b\|_{\mathrm{BMO}}^{m}\sum\limits_{j = k+1}^{\infty}2^{-j(n-\beta)}(j-k)^{m}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\|\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}. & \end{align*} (3.22)

    On the other hand, by (2.7) and (2.8), combining (2.12) and (3.10), we have

    \begin{align*} & 2^{-j(n-\beta)}\|\chi_{k}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})} \|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\\ &\; \; \; \; = 2^{j\beta}\|\chi_{k}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})} 2^{-jn}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\\ &\; \; \; \; \lesssim 2^{j\beta}\|\chi_{k}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})} \|\chi_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}^{-1}\\ &\; \; \; \; = 2^{j\beta} \|\chi_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}^{-1} \|\chi_{j}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})} \frac{ \|\chi_{k}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}}{\|\chi_{j}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}}\\ &\; \; \; \; \lesssim 2^{j\beta}2^{n\delta_{1}(k-j)} \|\chi_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}^{-1} \|\chi_{j}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\\ &\; \; \; \; \lesssim 2^{j\beta}2^{n\delta_{1}(k-j)}2^{j(n-\beta)} \|\chi_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}^{-1} \|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}^{-1}\\ &\; \; \; \; = 2^{j\beta}2^{n\delta_{1}(k-j)}2^{-j\beta}\Big(2^{-jn}\|\chi_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\Big)^{-1} \lesssim 2^{n\delta_{1}(k-j)}. & \end{align*} (3.23)

    Hence combining (3.22) and (3.23), we obtain

    \begin{align*} \|\mathcal{H}^{\ast m}_{_{\beta,b}}f(x)\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}\lesssim \|b\|_{\mathrm{BMO}}^{m}\sum\limits_{j = k+1}^{\infty}(j-k)^{m}2^{n\delta_{1}(k-j)}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}. & \end{align*} (3.24)

    Next, by virtue of the condition q_{1}\leq q_{2} and the definition of weighted variable exponent Morrey-Herz space along with the use of Proposition 3.1, we get

    \begin{align*} \|\mathcal{H}^{\ast m}_{_{\beta,b}}f\|^{q_{1}}_{\mathrm{M\dot{K}}_{q_{2},p_{2}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{2}(\cdot)})}& = \sup\limits_{k_{0}\in \mathbb{Z}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(\cdot) q_{1}}\|\mathcal{H}^{\ast m}_{_{\beta,b}}f\chi_{k}\|^{q_{1}}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\\ &\leq \max\Big\{\sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0} < 0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(0) q_{1}}\|\mathcal{H}^{\ast m}_{_{\beta,b}}f\chi_{k}\|^{q_{1}}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})},\\ &\; \; \; \; \; \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0}\geq0}}2^{-k_{0}\lambda q_{1}}\Big(\sum\limits_{k = -\infty}^{-1}2^{k\alpha(0) q_{1}}\|\mathcal{H}^{\ast m}_{_{\beta,b}}f\chi_{k}\|^{q_{1}}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\\ &\; \; \; \; \; \; \; \; \; +\sum\limits_{k = 0}^{k_{0}}2^{k\alpha(\infty) q_{1}}\|\mathcal{H}^{\ast m}_{\beta,b}f\chi_{k}\|^{q_{1}}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\Big)\Big\}\\ & = \max\{Y_{1}, Y_{2}+Y_{3}\}, & \end{align*} (3.25)

    where

    \begin{align*} &Y_{1} = \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0} < 0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(0) q_{1}}\|\mathcal{H}^{\ast m}_{_{\beta,b}}f\chi_{k}\|^{q_{1}}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})},\\ &Y_{2} = \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0}\geq0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = -\infty}^{-1}2^{k\alpha(0) q_{1}}\|\mathcal{H}^{\ast m}_{_{\beta,b}}f\chi_{k}\|^{q_{1}}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})},\\ &Y_{3} = \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0}\geq0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = 0}^{k_{0}}2^{k\alpha(\infty) q_{1}}\|\mathcal{H}^{\ast m}_{_{\beta,b}}f\chi_{k}\|^{q_{1}}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}. \end{align*}

    First, we estimate Y_{1} . Since \lambda-n\delta_{1} < \alpha(0)\leq \alpha(\infty) , combining (3.24) and (3.13), we get

    \begin{align*} Y_{1}&\lesssim \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0} < 0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(0) q_{1}}\Big(\sum\limits_{j = k+1}^{\infty}(j-k)^{m}\|b\|_{\mathrm{BMO}}^{m}2^{n\delta_{1}(k-j)}\|f\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\Big)^{q_{1}}\\ &\lesssim \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0} < 0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(0) q_{1}}\Big(\sum\limits_{j = k+1}^{\infty}(j-k)^{m}\|b\|_{\mathrm{BMO}}^{m}2^{n\delta_{1}(k-j)}2^{j(\lambda-\alpha(0))}\|f\|_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}\Big)^{q_{1}}\\ &\lesssim \|b\|_{\mathrm{BMO}}^{mq_{1}}\|f\|^{q_{1}}_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}\sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0} < 0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(0) q_{1}}\Big(\sum\limits_{j = k+1}^{\infty}(j-k)^{m}2^{n\delta_{1}(k-j)}2^{j(\lambda-\alpha(0))}\Big)^{q_{1}}\\ &\lesssim \|b\|_{\mathrm{BMO}}^{mq_{1}}\|f\|^{q_{1}}_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}\sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0} < 0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = -\infty}^{k_{0}}2^{k\lambda q_{1}}\Big(\sum\limits_{j = k+1}^{\infty}(j-k)^{m}2^{(j-k)(\lambda-n\delta_{1}-\alpha(0))}\Big)^{q_{1}}\\ &\lesssim \|b\|_{\mathrm{BMO}}^{mq_{1}}\|f\|^{q_{1}}_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}. \end{align*}

    The estimate of Y_{2} is similar to that of Y_{1} .

    Lastly, we estimate Y_{3} . Since \lambda-n\delta_{1} < \alpha(0)\leq \alpha(\infty) , combining (3.24) and (3.14), we get

    \begin{align*} Y_{3}&\lesssim \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0}\geq0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = 0}^{k_{0}}2^{k\alpha(\infty) q_{1}}\Big(\sum\limits_{j = k+1}^{\infty}(j-k)^{m}\|b\|_{\mathrm{BMO}}^{m}2^{n\delta_{1}(k-j)}\|f\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\Big)^{q_{1}}\\ &\lesssim \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0}\geq0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = 0}^{k_{0}}2^{k\alpha(\infty) q_{1}}\Big(\sum\limits_{j = k+1}^{\infty}(j-k)^{m}\|b\|_{\mathrm{BMO}}^{m}2^{n\delta_{1}(k-j)}2^{j(\lambda-\alpha(\infty))}\|f\|_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}\Big)^{q_{1}}\\ &\lesssim \|b\|_{\mathrm{BMO}}^{mq_{1}}\|f\|^{q_{1}}_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}\sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0}\geq0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = 0}^{k_{0}}2^{k\alpha(\infty) q_{1}}\Big(\sum\limits_{j = k+1}^{\infty}(j-k)^{m}2^{n\delta_{1}(k-j)}2^{j(\lambda-\alpha(\infty))}\Big)^{q_{1}}\\ &\lesssim \|b\|_{\mathrm{BMO}}^{mq_{1}}\|f\|^{q_{1}}_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}\sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0}\geq0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = 0}^{k_{0}}2^{k\lambda q_{1}}\Big(\sum\limits_{j = k+1}^{\infty}(j-k)^{m}2^{(j-k)(\lambda-n\delta_{1}-\alpha(\infty))}\Big)^{q_{1}}\\ &\lesssim \|b\|_{\mathrm{BMO}}^{mq_{1}}\|f\|^{q_{1}}_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}. \end{align*}

    The desired result is obtained by combining the estimates of Y_{1} , Y_{2} and Y_{3} .

    This paper considers the boundedness for m th order commutators of n- dimensional fractional Hardy operators \mathcal{H}^{m}_{_{\beta, b}} and adjoint operators \mathcal{H}_{\beta, b}^{\ast m} on weighted variable exponent Morrey-Herz spaces \mathrm{M\dot{K}}_{q, p(\cdot)}^{\alpha(\cdot), \lambda}(\omega) . When m = 0 , our main result holds on weighted variable exponent Morrey-Herz space for fractional Hardy operators and generalizes the result of Asim et al. in [1, Theorems 4.2 and 4.3]. When m = 1 , our main result holds on weighted variable exponent Morrey-Herz space for commutators of the fractional Hardy operators and generalizes the result of Hussain et al. in [12, Theorems 18 and 19].

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This paper is supported by the National Natural Science Foundation of China (Grant No. 12161071), Qinghai Minzu University campus level project (Nos. 23GH29, 23GCC10).

    All authors declare that they have no conflicts of interest.



    [1] S. Agrawa, S. K. Sahoo, A generalization of starlike functions of order \alpha, Hokkaido Math. J., 46 (2017), 15–27. https://doi.org/10.14492/hokmj/1498788094 doi: 10.14492/hokmj/1498788094
    [2] H. Airault, Symmetric sums associated to the factorizations of Grunsky coefficients, In: Groups and symmetries: from Neolithic Scots to John McKay, American Mathematical Society, 2009. https://doi.org/10.1090/CRMP/047/02
    [3] H. Airault, Remarks on Faber polynomials, International Mathematical Forum, 3 (2008), 449–456.
    [4] H. Airault, A. Bouali, Differential calculus on the Faber polynomials, Bull. Sci. Math., 130 (2006), 179–222. https://doi.org/10.1016/j.bulsci.2005.10.002 doi: 10.1016/j.bulsci.2005.10.002
    [5] H. Aldweby, M. Darus, Some subordination results on q-analogue of ruscheweyh differential operator, Abstr. Appl. Anal., 2014 (2014), 958563. https://doi.org/10.1155/2014/958563 doi: 10.1155/2014/958563
    [6] S. Altinkaya, S. Yalcin, Faber polynomial coefficient bounds for a subclass of bi-univalent functions, C. R. Math., 353 (2015), 1075–1080. https://doi.org/10.1016/j.crma.2015.09.003 doi: 10.1016/j.crma.2015.09.003
    [7] S. Altinkaya, S. Yalcin, Faber polynomial coefficient bounds for a subclass of bi-univalent functions, Stud. Univ. Babe s-Bolyai Math., 61 (2016), 37–44.
    [8] R. P. Boas, Aspects of contemporary complex analysis, Society for Industrial and Applied Mathematics, 24 (1982), 369. https://doi.org/10.1137/1024093 doi: 10.1137/1024093
    [9] D. A. Brannan, T. S. Taha, On some classes of bi-univalent function, Mathematical Analysis and its Applications, 31 (1986), 70–77. https://doi.org/10.1016/B978-0-08-031636-9.50012-7 doi: 10.1016/B978-0-08-031636-9.50012-7
    [10] S. Bulut, Faber polynomial coefficient estimates for a comprehensive subclass of m-fold symmetric analytic bi-univalent functions, Journal of Fractional Calculus and Applications, 8 (2017), 108–117.
    [11] S. Bulut, Faber polynomial coefficients estimates for a comprehensive subclass of analytic bi-univalent functions, C. R. Math., 352 (2014), 479–484. https://doi.org/10.1016/j.crma.2014.04.004 doi: 10.1016/j.crma.2014.04.004
    [12] S. Bulut, N. Magesh, V. K. Balaji, Faber polynomial coefficient estimates for certain subclasses of meromorphic bi-univalent functions, C. R. Math., 353 (2015), 113–116. https://doi.org/10.1016/j.crma.2014.10.019 doi: 10.1016/j.crma.2014.10.019
    [13] P. L. Duren, Univalent Functions, In: Grundlehren der mathematischen Wissenschaften, Springer New York, 2001.
    [14] S. M. El-Deeb, T. Bulboaca, B. M. El-Matary, Maclaurin coefficient estimates of Bi-Univalent functions connected with the q-Derivative, Mathematics, 8 (2020), 418. https://doi.org/10.3390/math8030418 doi: 10.3390/math8030418
    [15] G. Faber, Uber polynomische Entwickelungen, Math. Ann., 57 (1903), 389–408. https://doi.org/10.1007/BF01444293 doi: 10.1007/BF01444293
    [16] S. Gong, The Bieberbach conjecture, American Mathematical Society, 1999. https://doi.org/10.1090/amsip/012
    [17] M. Govindaraj, S. Sivasubramanian, On a class of analytic functions related to conic domains involving q-calculus, Anal. Math., 43 (2017), 475–487. https://doi.org/10.1007/s10476-017-0206-5 doi: 10.1007/s10476-017-0206-5
    [18] S. G. Hamidi, S. A. Halim, J. M. Jahangiri, Faber polynomial coefficient estimates for meromorphic bi-starlike functions, International Journal of Mathematics and Mathematical Sciences, 2013 (2013), 498159. http://doi.org/10.1155/2013/498159 doi: 10.1155/2013/498159
    [19] S. G. Hamidi, J. M. Jahangiri, Unpredictability of the coefficients of m-fold symmetric bi-starlike functions, Int. J. Math., 25 (2014), 1450064. https://doi.org/10.1142/S0129167X14500645 doi: 10.1142/S0129167X14500645
    [20] S. G. Hamidi, J. M. Jahangiri, Faber polynomial coefficients of bi-subordinate functions, C. R. Math., 354 (2016), 365–370. https://doi.org/10.1016/j.crma.2016.01.013 doi: 10.1016/j.crma.2016.01.013
    [21] S. G. Hamidi, J. M. Jahangiri, Faber polynomials coefficient estimates for analytic bi-close-to-convex functions, C. R. Math., 352 (2014), 17–20. https://doi.org/10.1016/j.crma.2013.11.005 doi: 10.1016/j.crma.2013.11.005
    [22] S. G. Hamidi, J. M. Jahangiri, Faber polynomial coefficient estimates for bi-univalent functions defined by subordinations, B. Iran. Math. Soc., 41 (2015), 1103–1119.
    [23] T. Hayami, S. Owa, Coefficient bounds for bi-univalent functions, Pan. Amer. Math. J., 22 (2012), 15–26.
    [24] S. Hussain, S. Khan, M. A. Zaighum, M. Darus, Z. Shareef, Coefficients bounds for certain subclass of bi-univalent functions associated with Ruscheweyh q-differential operator, Journal of Complex Analysis, 2017 (2017), 2826514. https://doi.org/10.1155/2017/2826514 doi: 10.1155/2017/2826514
    [25] M. E. H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Variables, Theory and Application: An International Journal, 14 (1990), 77–84. https://doi.org/10.1080/17476939008814407 doi: 10.1080/17476939008814407
    [26] F. H. Jackson, On q-functions and a certain difference operator, Earth Env. Sci. T. R. So., 46 (1909), 253–281. https://doi.org/10.1017/S0080456800002751 doi: 10.1017/S0080456800002751
    [27] F. H. Jackson, q-Difference equations, American Journal of Mathematics, 32 (1910), 305–314. https://doi.org/10.2307/2370183 doi: 10.2307/2370183
    [28] S. Kanas, D. Raducanu, Some class of analytic functions related to conic domains, Math. Slovaca, 64 (2014), 1183–1196. https://doi.org/10.2478/s12175-014-0268-9 doi: 10.2478/s12175-014-0268-9
    [29] S. Khan, N. Khan, S. Hussain, Q. Z. Ahmad, M. A. Zaighum, Some classes of bi-univalent functions associated with Srivastava-Attiya operator, Bull. Math. Anal. Appl., 9 (2017), 37–44.
    [30] E. Lindelöf, Mémoire sur certaines inégalitis dans la théorie des functions monogénses etsur quelques propriétés nouvelles de ces fonctions dans levoisinage, dun point singulier essentiel, Ann. Soc. Sci. Fenn., 35 (1909), 1–35.
    [31] J. E. Littlewood, On inequalities in the theory of functions, P. Lond. Math. Soc., 23 (1925), 481–519. https://doi.org/10.1112/plms/s2-23.1.481 doi: 10.1112/plms/s2-23.1.481
    [32] M. Lewin, On a coefficient problem for bi-univalent functions, P. Am. Math. Soc., 18 (1967), 63–68.
    [33] S. Mahmood, J. Sokol, New subclass of analytic functions in conical domain associated with ruscheweyh q-differential operator, Results Math., 71 (2017), 1345–1357. https://doi.org/10.1007/s00025-016-0592-1 doi: 10.1007/s00025-016-0592-1
    [34] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in |z| < 1, Arch. Rational Mech. Anal., 32 (1967), 100–112. https://doi.org/10.1007/BF00247676 doi: 10.1007/BF00247676
    [35] W. Rogosinski, On subordination functions, Math. Proc. Cambridge, 35 (1939), 1–26. https://doi.org/10.1017/S0305004100020703 doi: 10.1017/S0305004100020703
    [36] W. Rogosinski, On the coefficients of subordinations, Proc. Lond. Math. Soc., 48 (1943), 48–82.
    [37] H. M. Srivastava, Univalent functions, fractional calculus, and associated generalized hypergeometric functions, In: Univalent functions, fractional calculus and their applications, New York: John Wiley and Sons, 1989,329–354.
    [38] H. M. Srivastava, S. Bulut, M. Caglar, N. Yagmur, Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat, 27 (2013), 831–842. https://doi.org/10.2298/FIL1305831S doi: 10.2298/FIL1305831S
    [39] H. M. Srivastava, S. M. El-Deeb, The Faber polynomial expansion method and the Taylor-Maclaurin coefficient estimates of bi-close-to-convex functions connected with the q-convolution, AIMS Math., 5 (2020), 7087–7106. https://doi.org/10.3934/math.2020454 doi: 10.3934/math.2020454
    [40] H. M. Srivastava, S. S. Eker, R. M. Ali, Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat, 29 (2015), 1839–1845. https://doi.org/10.2298/FIL1508839S doi: 10.2298/FIL1508839S
    [41] H. M. Srivastava, A. K. Mishra, P. Gochayat, Certain Subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23 (2010), 1188–1192. 10.2298/FIL1508839S doi: 10.2298/FIL1508839S
    [42] H. M. Srivastava, G. Murugusundaramoorthy, S. M. EL-Deeb, Faber Polynomial Coefficient estimates of bi-close-to-convex functions connected with the borel distribution of the Mittag-Leffler type, J. Nonlinear Var. Anal., 5 (2021), 103–118. https://doi.org/10.23952/jnva.5.2021.1.07 doi: 10.23952/jnva.5.2021.1.07
    [43] H. M. Srivastava, S. Sivasubramanian, R. Sivakumar, Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions, Tbilisi Math. J., 7 (2014), 1–10. https://doi.org/10.2478/tmj-2014-0011 doi: 10.2478/tmj-2014-0011
    [44] Q. H. Xu, H. G. Xiao, H. M. Srivastava, A certain general subclass of analytic and biunivalent functions and associated coefficient estimate problems, Appl. Math. Comput., 218 (2012), 11461–11465. https://doi.org/10.1016/j.amc.2012.05.034 doi: 10.1016/j.amc.2012.05.034
  • This article has been cited by:

    1. Rishi Kumar Pandey, Kottakkaran Sooppy Nisar, Enhanced numerical techniques for solving generalized rotavirus mathematical model via iterative method and ρ-Laplace transform, 2024, 12, 26668181, 100963, 10.1016/j.padiff.2024.100963
    2. Huda Alsaud, Muhammad Owais Kulachi, Aqeel Ahmad, Mustafa Inc, Muhammad Taimoor, Investigation of SEIR model with vaccinated effects using sustainable fractional approach for low immune individuals, 2024, 9, 2473-6988, 10208, 10.3934/math.2024499
    3. Cicik Alfiniyah, Tutik Utami, Nashrul Millah, Reuben Iortyer Gweryina, Optimal control and stability analysis of an alcoholism model with treatment centers, 2025, 22150161, 103311, 10.1016/j.mex.2025.103311
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1497) PDF downloads(67) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog