
The main aim of this work is to conduct an analysis of the approximate controllability of Hilfer fractional (HF) neutral stochastic differential systems under the condition of an almost sectorial operator with delay. The theoretical ideas linked to stochastic analysis, fractional calculus and semigroup theory, along with the fixed-point technique, are utilized to establish the key results of this article. More precisely, the main theorem of this study is devoted to proving the fact that the relevant linear system is approximately controllable. Finally, to help this research be as comprehensive as possible, we provide a theoretical application and filter system.
Citation: Sivajiganesan Sivasankar, Ramalingam Udhayakumar, Arumugam Deiveegan, Reny George, Ahmed M. Hassan, Sina Etemad. Approximate controllability of Hilfer fractional neutral stochastic systems of the Sobolev type by using almost sectorial operators[J]. AIMS Mathematics, 2023, 8(12): 30374-30404. doi: 10.3934/math.20231551
[1] | Sivajiganesan Sivasankar, Ramalingam Udhayakumar, Abd Elmotaleb A.M.A. Elamin, R. Samidurai, Sina Etemad, Muath Awadalla . Attractive solutions for Hilfer fractional neutral stochastic integro-differential equations with almost sectorial operators. AIMS Mathematics, 2024, 9(5): 11486-11510. doi: 10.3934/math.2024564 |
[2] | Abdelkader Moumen, Ammar Alsinai, Ramsha Shafqat, Nafisa A. Albasheir, Mohammed Alhagyan, Ameni Gargouri, Mohammed M. A. Almazah . Controllability of fractional stochastic evolution inclusion via Hilfer derivative of fixed point theory. AIMS Mathematics, 2023, 8(9): 19892-19912. doi: 10.3934/math.20231014 |
[3] | Krishnan Kavitha, Velusamy Vijayakumar, Kottakkaran Sooppy Nisar, Anurag Shukla, Wedad Albalawi, Abdel-Haleem Abdel-Aty . Existence and controllability of Hilfer fractional neutral differential equations with time delay via sequence method. AIMS Mathematics, 2022, 7(7): 12760-12780. doi: 10.3934/math.2022706 |
[4] | Kanagaraj Muthuselvan, Baskar Sundaravadivoo, Kottakkaran Sooppy Nisar, Suliman Alsaeed . Discussion on iterative process of nonlocal controllability exploration for Hilfer neutral impulsive fractional integro-differential equation. AIMS Mathematics, 2023, 8(7): 16846-16863. doi: 10.3934/math.2023861 |
[5] | Abdelkader Moumen, Ramsha Shafqat, Ammar Alsinai, Hamid Boulares, Murat Cancan, Mdi Begum Jeelani . Analysis of fractional stochastic evolution equations by using Hilfer derivative of finite approximate controllability. AIMS Mathematics, 2023, 8(7): 16094-16114. doi: 10.3934/math.2023821 |
[6] | Noorah Mshary, Hamdy M. Ahmed, Ahmed S. Ghanem . Existence and controllability of nonlinear evolution equation involving Hilfer fractional derivative with noise and impulsive effect via Rosenblatt process and Poisson jumps. AIMS Mathematics, 2024, 9(4): 9746-9769. doi: 10.3934/math.2024477 |
[7] | Mohamed Adel, M. Elsaid Ramadan, Hijaz Ahmad, Thongchai Botmart . Sobolev-type nonlinear Hilfer fractional stochastic differential equations with noninstantaneous impulsive. AIMS Mathematics, 2022, 7(11): 20105-20125. doi: 10.3934/math.20221100 |
[8] | Rajesh Dhayal, Muslim Malik, Syed Abbas . Solvability and optimal controls of non-instantaneous impulsive stochastic neutral integro-differential equation driven by fractional Brownian motion. AIMS Mathematics, 2019, 4(3): 663-683. doi: 10.3934/math.2019.3.663 |
[9] | Wedad Albalawi, Muhammad Imran Liaqat, Fahim Ud Din, Kottakkaran Sooppy Nisar, Abdel-Haleem Abdel-Aty . Significant results in the $ \mathrm{p} $th moment for Hilfer fractional stochastic delay differential equations. AIMS Mathematics, 2025, 10(4): 9852-9881. doi: 10.3934/math.2025451 |
[10] | A. M. Sayed Ahmed, Hamdy M. Ahmed, Nesreen Sirelkhtam Elmki Abdalla, Assmaa Abd-Elmonem, E. M. Mohamed . Approximate controllability of Sobolev-type Atangana-Baleanu fractional differential inclusions with noise effect and Poisson jumps. AIMS Mathematics, 2023, 8(10): 25288-25310. doi: 10.3934/math.20231290 |
The main aim of this work is to conduct an analysis of the approximate controllability of Hilfer fractional (HF) neutral stochastic differential systems under the condition of an almost sectorial operator with delay. The theoretical ideas linked to stochastic analysis, fractional calculus and semigroup theory, along with the fixed-point technique, are utilized to establish the key results of this article. More precisely, the main theorem of this study is devoted to proving the fact that the relevant linear system is approximately controllable. Finally, to help this research be as comprehensive as possible, we provide a theoretical application and filter system.
Fractional calculus was introduced as a significant area of advanced calculus in 1695. The idea of fractional calculus has been effectively applied to a number of fields. Researchers in the fields of physics and mathematics have demonstrated that this calculus may accurately reflect a variety of non-local dynamics. The most common domains in which fractional calculus is used include elasticity, kinetic oscillations in identical and homogeneous constructions, aqueous waterways, imaging, viscoelasticity and other areas. The success of fractional structures has caused several researchers to re-evaluate their mathematical estimation techniques, because diagnostic configurations may not be available in many domains. The readers can discover some interesting findings on fractional dynamical systems in many research works about the theory and applications of fractional differential systems [1,2,3,4,5,6]. Particularly, partial neutral constructions with or without delays act as an overview of several partial neutral systems that appear in problems concerning heat transfer in components, viscoelasticity and a variety of natural events. Additionally, interested readers are able to review various books [7,8,9,10] and research articles [11,12,13,14,15,16,17] that focus on the most popular neutral structures.
Hilfer [18] pioneered fractional derivatives, including the Riemann-Liouville (RL) and Caputo derivatives. Additionally, some theoretical discussions on thermoelasticity in solid compounds, pharmaceutical manufacturing, rheological adaptive computing, mechanics and related areas have revealed the applicability of Hilfer fractional derivatives (HFDs). Gu and Trujillo [19], in 2015, used a measure of noncompactness method, along with the fixed-point criterion, to prove that the HFD evolution problem has an integral solution. They considered a new variable r∈[0,1], together with a fractional variable s, to indicate the derivative's order. As a result, r=0 gives the RL derivative, while r=1 gives the Caputo derivative. Numerous papers have been written in the context of Hilfer fractional calculus [20,21,22,23]. Jaiswal and Bahuguna [24] and Karthikeyan et al. [25] turned to the existence of a mild solution in relation to the Hilfer differential systems by using almost sectorial operators.
Due to the numerous applications of neutral differential equations in fields including electronics, chemical kinetics, biological modelling and fluid dynamics, this form of equation has attracted a lot of interest recently. We cite the publications [26,27,28] and the references therein for the theory and applications of neutral partial differential equations with non-local and classical circumstances. Due to the fact that neutral structures are prevalent in several areas of applied mathematics, recent years have seen an increase in interest in them.
According to what we already know, the condition of controllability is an essential qualitative and quantitative property of the control construction, and its characteristics are important in a range of control challenges for both restricted and limitless networks. Recently, this notion has sparked a lot of interest from researchers in the area of controllability of a wave equation of fractional order. See [29] for significant new findings on the exact and approximate controllability of nonlinear delay or non-delay dynamical systems. The approximate controllability of Atangana-Baleanu fractional neutral delay integro-differential stochastic systems with non-local conditions was established by Ma et al. [30] by using the fixed-point approach. A novel approach for such controllability of Sobolev-type Hilfer fractional (HF) differential equations was recently unveiled by Pandey et al. [31] in 2023.
In contrast to deterministic models, stochastic ones should be investigated since both natural and artificial systems are prone to noise and uncontrolled perturbations. Differential equations with stochastic components contain unpredictability in their mathematical depiction of a specific event. Recently, much attention has been paid to the application of stochastic differential equations (SDEs) to describe a variety of occurrences in population motion, science, technological engineering, environment, neuroscience, biological science and several other domains of science and technology. Infinite and finite dimensions can both be employed with SDEs. An overview of SDEs and their applications may be found in [32,33].
Numerous physical phenomena, like fluid movement through fractured rocks and thermodynamics, have mathematical structures that often reveal the Sobolev differential system. The debate about the approximate controllability of Hilfer neutral fractional stochastic differential inclusions of the Sobolev type was presented and developed by Dineshkumar et al. [32] in 2022. Also, a study on the existence of mild solutions has been carried out for the Hilfer neutral fractional SDE by Sivasankar and Udhayakumar [34] with the help of almost sectorial operators with a delay. Nevertheless, as far as we are aware, the literature does not describe any research on the topic of the approximate controllability of Hilfer neutral fractional stochastic differential systems of the Sobolev type under the condition of an almost sectorial operator with delay.
By taking inspiration from previous research, this study intends to address this gap. In other words, the aim of this manuscript is to establish the approximate controllability of Hilfer neutral fractional stochastic differential systems of the Sobolev type by using an almost sectorial operator with the delay in the following form:
{Dr,s0+[Fu(l)−ℵ(l,ul)]∈Au(l)+Yϰ(l)+G(l,ul)+∫l0H(e,ue)dW(e), l∈I′,I(1−r)(1−s)0+u(l)∣l=0=ξ∈Bp, l∈(−∞,0], | (1.1) |
where Dr,s0+ represents the HF derivative of order r∈(0,1) and of type s∈[0,1]. The state parameter u(⋅) takes values in a real separable Hilbert space Z. Moreover, ϰ(⋅)∈L2F(I,U) is the control parameter (U is a real Hilbert space) and Y∈L(U,Z) is bounded. Let I:=[0,c] and I′:=(0,c]. Let A:D(A)⊂Z→Z be the almost sectorial operator that denotes a strongly continuous semigroup {T(l)}l≥0 on Z that is uniformly bounded in Z. The function ul:(−∞,0]→Z is given by ul=u(l+θ), θ∈(−∞,0]. Note that ul∈B, and it is defined axiomatically. The functions ℵ, G and multi-function H will be subject to satisfying some suitable criteria to be defined in the sequel.
The following describes the manuscript's structure: We give the theoretical principles in relation to fractional calculus that are relevant to our investigation in Section 2. We focus on the approximate controllability of the Hilfer neutral fractional stochastic differential system (1.1) in Section 3. To help our discussion be as applicable as possible, we offer the theoretical application in Section 4.1.
The complete probability space (Λ,F,P) is introduced by a complete family of right-continuous, non-decreasing sub-σ-algebras {Fl}l∈I fulfilling the condition that Fl∈F. We denote a collection of all strongly measurable, mean square-integrable Z-valued random parameters by
L2(Λ,F,P,Z)≡L2(Λ,Z), |
which is a Banach space associated with the norm ‖u(⋅)‖L2(Λ,Z)=(E‖u(⋅,W)‖2Z)12, where E denotes the expectation satisfying that E(u)=∫Λu(W)dP.
Take a real-valued sequence {Wn(l), l≥0, n∈N} of one-dimensional standard Wiener processes, which are mutually independent in Λ. Let K be a real distinct Hilbert space, and define
W(l)=∞∑n=1√βnWn(l)δn,l≥0, |
so that {βn≥0, n∈N} and {δn, n∈N} is a complete orthonormal basis of K. Moreover, take Q∈L(K,K) as an operator formulated by Qδn=βnδn, (n∈N), along with the finite trace Tr(Q)=∑∞n=1βn(<∞). Let ψ∈L(K,Z) and set
‖ψ‖2L02=∞∑j=1‖√βjψδj‖2. |
If ‖ψ‖L02<∞, in this case, ψ will be called the Q-Hilbert-Schmidt operator. Here, L02(K,Z) is the space of all Hilbert-Schmidt operators endowed with the norm ‖ψ‖2L02=⟨ψ,ψ⟩. Clearly, L02(K,Z) is a real separable Hilbert space. Furthermore, D(Aγ) is dense in Z.
Some important properties of Aγ are listed below.
Theorem 2.1. [35]
(1) Let 0<γ≤1. Zγ=D(Aγ) is a Banach space with ‖u‖γ=‖Aγu‖,(u∈Zγ).
(2) Let 0<κ<γ≤1. D(Aγ)→D(Aκ) is compact whenever A is compact.
(3) ∀γ∈(0,1] and ∃ Cγ>0 such that
‖AγM(l)‖≤Cγlγ, 0<l≤c. |
The linear operators A,F:D(A)⊂Z→Z are identified now based on the following criteria [36]:
(A1) F is bijective and D(F)⊂D(A).
(A2) A and F are closed.
(A3) F−1:Z→D(F) is continuous.
Additionally, for (A1) and (A2), F−1 is closed. Also, by (A3), along with the closed graph theorem, AF−1:Z→Z is bounded. Set ‖F−1‖=F1 and ‖F‖=F2.
Definition 2.2. [37] The RL-fractional integral of order r for ℏ:[c,∞)→R is defined as
Irc+ℏ(l)=1Γ(r)∫lcℏ(e)l−e1−rde,l>c; r>0. |
Definition 2.3. [37] The RL-fractional derivative of order r∈[m−1,m), m∈Z for ℏ:[c,∞)→R is
RLDrc+ℏ(l)=1Γ(1−r)dmdlm∫lcℏ(e)l−er+1−mde,l>c; m−1≤r<m. |
Definition 2.4. [37] The Caputo derivative of order r∈[m−1,m), m∈Z for ℏ:[c,∞)→R is defined as
CDrc+ℏ(l)=1Γ(m−r)∫lcℏm(e)(l−e)r+1−mde=Im−rc+ℏm(l), l>c; m−1≤r<m. |
Definition 2.5. [37] The HF derivative of order 0<r<1 and 0≤s≤1 for ℏ:[c,∞)→R is given by
Dr,sc+ℏ(l)=(Ir(1−s)c+D(I(1−r)(1−s)c+))(l). |
Remark 2.6. (1) If s=0, 0<r<1 and c=0, then the HF derivative corresponds to the classical RL-fractional derivative:
Dr,00+ℏ(l)=ddlI1−r0+ℏ(l)=LDr0+ℏ(l). |
(2) If s=1, 0<r<1 and c=0, then the HF derivative is equal to the classical Caputo fractional derivative:
Dr,10+ℏ(l)=I1−r0+ddlℏ(l)=CDr0+ℏ(l). |
The abstract phase space Bp is now described. Consider p:(−∞,0]→(0,+∞) to be continuous, along with ℓ=∫0−∞p(l)dl<+∞. Now, for every n>0, we have
Bp={χ:(−∞,0]→Z|∀ n>0, (E‖χ(θ)‖2)12 is bounded andmeasurable on [−n,0] & ∫0−∞p(ζ)sup0≤ζ≤1(E‖χ‖2[ζ,0]dζ<+∞}. |
For Bp, we consider
‖χ‖Bp=∫0−∞p(ζ)supζ≤θ≤0(E‖χ‖2)12dζ for all χ∈Bp. |
Therefore, (Bp,‖⋅‖) is a Banach space.
We assume that the space of all continuous Z-valued stochastic processes {z(l), l∈(−∞,c]} is C((−∞,c],Z) and
B′p={u:u belongs to C((−∞,c],Z), u0=ξ∈Bp}. |
Moreover, set the seminorm ‖⋅‖c in B′p as
‖u‖B′p=‖ξ‖Bp+sup0≤ζ≤c(E‖u(ζ)‖2)12, u∈B′p. |
Lemma 2.7. [21] Let u∈B′p. Then, ∀l∈I, ul∈Bp and
ℓ(E‖u(l)‖2)12≤‖ul‖Bp≤‖ξ‖Bp+ℓ(supζ∈[0,l]E‖u(ζ)‖2)12, |
so that ℓ=∫0−∞p(l)dl<+∞.
Definition 2.8. [24,38] Let 0<ϑ<1 and 0<ϖ<π2. We denote Ξ−ϑϖ(Z) as a family of the closed linear operators A:D(A)⊂Z→Z such that
(1) σ(A)⊂Sϖ={ν∈C∖{0}:|argν|≤ϖ}∪{0}, and
(2) ∀ μ∈(ϖ,π), ∃ Cμ such that
‖R(ν;A)‖L(Z)≤Cμ|ν|−ϑ, ∀ ν∈C∖Sμ, |
where R(ν;A)=(νA−I)−1, ν∈ϱ(A) is the resolvent operator of A. If the linear operator A is in the range Ξ−ϑϖ(Z), it will be referred to as an almost sectorial operator on Z.
Definition 2.9. [39] The Wright function Wr(β) is specified by the formula
Wr(β)=∑k∈N(−β)k−1Γ(1−rk)(k−1)!,β∈C, | (2.1) |
with the following characteristic:
∫∞0κιWr(κ)dκ=Γ(1+ι)Γ(1+rι),for ι≥0. |
Proposition 2.10. [38] Let O(l) be the compact semigroup and A∈Ξ−ϑϖ, where 0<ϖ<π2 and 0<ϑ<1. Then,
(1) O(l) is analytic and dndlnT(l)=(−A)nO(l), l∈Sπ2−ϖ;
(2) O(l+e)=O(l)O(e) for all e,l∈Sπ2−ϖ;
(3) ‖O(l)‖L(Z)≤S0lϑ−1, l>0, where S0>0 is a constant;
(4) ΣO={u∈Z:liml→0+O(l)u=u} gives D(Aγ)⊂ΣO whenever γ>1+ϑ;
(5) (μ−A)−1=∫∞0e−μeO(e)de, μ∈C, and Re(μ)>0.
Lemma 2.11. [39] For any fixed l>0, Or(l), Nr(l) and Mr,s(l) are linear operators and ∀ u∈Z,
‖Or(l)u‖≤L1lr(ϑ−1)‖u‖, ‖Nr(l)u‖≤L1lrϑ−1‖u‖ and ‖Mr,s(l)u‖≤L2l−1+s−rs+rϑ‖u‖, |
where
L1=S0Γ(ϑ)Γ(rϑ),L2=S0Γ(ϑ)Γ(s(1−r)+rϑ). |
Proposition 2.12. [34] Let r∈(0,1), γ∈(0,1] and u∈D(A); then, some Sγ>0 exists such that
AOr(l)u=A1−ˉvOr(l)Aˉvu,0≤l≤c,‖AγOr(l)u‖≤rSγΓ(2−γ)lrγΓ(1+r(1−γ))‖u‖,0<l≤c. |
Definition 2.13. An Fl-adopted and measurable stochastic process {u(l)}l∈I′ is named as a mild solution of the system (1.1) if u(0)=ξ∈L02(Λ,Z) and ϰ(⋅)∈L2F(I,U); also ∀ e∈[0,c), the function ANr(l−e)ℵ(e,ue) is integrable and
u(l)=F−1Mr,s(l)[Fξ(0)−ℵ(0,ξ)]+F−1ℵ(l,ul)+∫l0F−1Nr(l−e)Aℵ(e,ue)de+∫l0F−1Nr(l−e)G(e,ue)de+∫l0F−1Nr(l−e)(∫e0ℏ(ω,uω)dW(ω))de+∫l0F−1Nr(l−e)Yϰ(e)de,l∈I′. | (2.2) |
Since Nr(l)=lr−1Or(l), then (2.2) is equivalent to
u(l)=F−1Mr,s(l)[Fξ(0)−ℵ(0,ξ)]+F−1ℵ(l,ul)+∫l0F−1(l−e)r−1Or(l−e)Aℵ(e,ue)de+∫l0F−1(l−e)r−1Or(l−e)G(e,ue)de+∫l0F−1(l−e)r−1Or(l−e)(∫e0ℏ(ω,uω)dW(ω))de+∫l0F−1(l−e)r−1Or(l−e)Yϰ(e)de,l∈I′, | (2.3) |
where Mr,s(l)=Is(1−r)0+Nr(l), and accordingly,
Nr(l)=lr−1Or(l),Or(l)=∫∞0rκWr(κ)O(lrκ)dκ. |
We introduce the state value of (1.1) at the end time c related to the control ϰ and the actual value ξ by uc(u0;ϰ). Set
R(c,ξ)={uc(ξ;ϰ)(0):ϰ(⋅)∈L2Γ(I,U)}, |
which is the admissible set of system (1.1) at the end time c. Note that ¯R(c,ξ) stands for the closure of R(c,ξ) in Z.
Definition 2.14. [30] The Hilfer neutral fractional stochastic differential system of the Sobolev type (1.1) is approximately controllable on I if ¯R(c,ξ)=Z.
To conduct an analysis of the approximate controllability of the supposed nonlinear Sobolev-type Hilfer control system (1.1), in the first step, we should establish the property of the approximate controllability in the linear case, that is,
{Dr,s0+[Fu(l)−ℵ(l,ul)]∈Au(l)+Yϰ(l), l∈I=[0,c], c>0,u(l)=ξ∈L2(Λ,Bp), l∈(−∞,0]. | (2.4) |
To do this, we first need to introduce the pertinent operator
Γc0=∫c0F−1(l−e)(r−1)Or(l−e)YY∗O∗r(l−e)de, |
and the set
R(α,Γc0)=(αI+Γc0)−1 for α>0. |
In the aforementioned notions, O∗r(l) and Y∗ represent the adjoints of Or(l) and Y, respectively. It is notable that the linear operator Γc0 is easily proven to be bounded. Consider the following hypothesis:
(Hα) αR(α,Γc0)→0 as α→0+ w.r.t. the strong operator topology.
Based on (Theorem 2[14]), the linear Sobolev-type Hilfer control system (2.4) is approximately controllable on [0,c], which is close to the hypothesis (Hα).
Lemma 2.15. [40,41] Let Pcv,cl,bd(Z) be the collection of nonempty bounded closed and convex sets in Z and I be a compact real interval. Consider the L2-Caratheodory multi-valued function
ℏ∈SH,u={ℏ∈L2(L(K,Z)):ℏ(l,ul)∈H(l,ul) fora.e. l∈I}, |
which is nonempty. Moreover, let Σ be a linear continuous function that maps L2(I,Z) to ∁. Then,
Σ∘Sℏ:∁→Pcv,cl,bd(∁), u→(Σ∘Sℏ)(u)=Σ(SH,u) |
is a closed graph operator in ∁×∁.
Here, the property of approximate controllability is studied in relation to the given nonlinear Sobolev type Hilfer stochastic control system (1.1).
The following hypotheses are required to prove the main theorems.
(HO) O(l) is compact for every l≥0.
(Hℵ) The function ℵ:I×Bp→Z is continuous and ∃ 0<γ<1 such that ℵ∈D(Aγ). For any u∈Z and l∈I, Aγℵ(⋅,u) is strongly measurable. Moreover, ∃ Sℵ,S′ℵ>0 such that ∀u1,u2∈Z and Aγℵ(l,⋅) satisfies
E‖Aγℵ(l,u1(l))−Aγℵ(l,u2(l))‖2Z≤S′ℵl2(1−s+rs−rϑ)‖u1(l)−u2(l)‖2Bp,E‖Aγℵ(l,u)‖2Z≤Sℵ(1+l2(1−s+rs−rϑ)‖u‖2Bp). |
Take ‖A−γ‖=S.
(HG) For the function G:I×Bp→Z:
(1) l→G(l,u) is measurable for any u∈Bp,
(2) u→G(l,u) is continuous for almost every l∈I,
(3) For almost every l∈I and any u∈Bp,
E‖G(l,u)‖2≤q1(l)SG(l2(1−s+rs−rϑ)‖u‖2Bp), |
where q1∈L1(I,R+) and we have the continuous increasing function SG:R+→(0,∞).
(HH) For each (l,e)∈I, an L2-Caratheodory function H(l,⋅) mapping from Bp into Pcl,bd,cvL(K,Z) is continuous, and for any u∈Bp, the function H(⋅,u):I→Pbd,cl,cvL(K,Z) is strongly measurable. An integrable function q2:I→[0,∞) and ˉq>0 exist such that
∫l0E‖H(e,u)‖2L02de=sup{∫l0E‖ℏ(e,u)‖2de:ℏ∈H(l,u)}≤ˉqq2(l)SH(l2(1−s+rs−rϑ)‖u‖2Bp). |
Note that SH:[0,∞)→[0,∞) is continuous and increasing.
(HI) The following inequality holds:
∫c0Υ(e)de≤∫∞κ1SG(β(e))+SH(β(e))de, |
where
Υ(l)=a1max{q1(e),q2(e)}, l∈I,a1=(6+36αF21L41S4Y), ‖Y‖=SY |
and
κ=6l2(1−s+rs−rϑ){2F21L22l2(−1+s−rs+rϑ)[F22ξ(0)+F21Sℵ(1+‖ξ(0)‖2Bp)]+F21S2Sℵ(1+l2(1−s+rs−rϑ)‖ul‖2Bp)+F21S21−γ(rΓ(1+γ)Γ(1+r))2∫l0(l−e)2(r−rγ−1)Sℵ(1+l2(−1+s−rs+rϑ)‖ue‖2Bp)de+6α2F41L41S4Y∫l0(l−e)4(rϑ−1)[2[E‖u‖2+∫c0E‖ϕ(e)‖2L20de]+2F21L22c2(−1+s−rs+rϑ)[F22ξ(0)+F21Sℵ(1+‖ξ(0)‖2Bp)]+F21S2Sℵ(1+c2(1−s+rs−rϑ)‖uc‖2Bp)+F21S21−γ(rΓ(1+γ)Γ(1+r))2∫c0(c−e)2(r−rγ−1)Sℵ(1+c2(−1+s−rs+rϑ)‖ue‖2Bp)de](e)de}. |
Remark 3.1. [30] The following implications hold:
(a) ∀ u∈Z, SH,u=∅ if dimZ<∞.
(b) SH,u is nonempty ⟺ for η:I→R, we have
η(l)=inf{∫l0E‖ℏ(e,ul)‖2:ℏ∈H(l,ul)}∈L2(I,R). |
Note that the Hilfer stochastic control system of the Sobolev type (1.1) is approximately controllable if a continuous function u exists such that ∀α>0:
u(l)=F−1Mr,s(l)[Fξ(0)−ℵ(0,ξ)]+F−1ℵ(l,ul)+∫l0F−1(l−e)r−1Or(l−e)Aℵ(e,ue)de+∫l0F−1(l−e)r−1Or(l−e)G(e,ue)de+∫l0F−1(l−e)r−1Or(l−e)(∫e0ℏ(ω,uω)dW(ω))de+∫l0F−1(l−e)r−1Or(l−e)Yϰu(e)de,l∈I′, | (3.1) |
and
ϰu(⋅)=F−1(l−e)r−1Y∗O∗r(c−e)R(α,Γc0)q(u(⋅)), |
where
q(u(⋅))=ˉuc−F−1Mr,s(c)[Fξ(0)−ℵ(0,ξ)]−F−1ℵ(c,uc)−∫c0F−1(c−e)r−1Or(c−e)Aℵ(e,ue)de−∫c0F−1(c−e)r−1Or(c−e)G(e,uc)de−∫c0F−1(c−e)r−1Or(c−e)(∫e0ℏ(ω,uω)dW(ω))de. |
We first state an auxiliary lemma (it will be used later).
Lemma 3.2. [30] For any ˉuc∈L2(Γc,Z), some ϕ(⋅)∈L2F(Λ;L2(I;L02)) exists such that
ˉuc=Eˉuc+∫c0ϕ(e)dW(e). |
Define the operator Ψ mapping from B′p into 2B′p, denoted by Ψu, as the set y∈B′p so that
y(l)={ξ(l),l∈(−∞,0],F−1Mr,s(l)[Fξ(0)−ℵ(0,ξ)]+F−1ℵ(l,ul)+∫l0F−1(l−e)r−1Or(l−e)Aℵ(e,ue)de+∫l0F−1(l−e)r−1Or(l−e)G(e,ue)de+∫l0F−1(l−e)r−1Or(l−e)(∫e0ℏ(ω,uω)dW(ω))de+∫l0F−1(l−e)r−1Or(l−e)Yϰu(e)de,l∈[0,c], |
where ℏ∈SH,u. We shall show that Δ admits a fixed point that is the mild solution of the Hilfer stochastic control system of the Sobolev type (1.1). Obviously, uc=u(c)∈(Δu)(c), which means that ϰu(u,l) gives (1.1) as u0→uc in the finite time c.
Since φ∈Bp, we introduce ˆφ as follows:
ˆφ(l)={φ(l),l∈(−∞,0],F−1Mr,s(l)Fξ(0),l∈I. |
Thus, ˆφ∈B′p. Let u(l)=l1−s+rs−rϑ[v(l)+ˆφ(l)], −∞<l≤c. We consider v to satisfy (3.1) if and only if v satisfies v0=0 and
v(l)=F−1Mr,s(l)[−ℵ(0,ξ)]+F−1ℵ(l,l1−s+rs−rϑ[vl+ˆφl])+∫l0F−1(l−e)r−1Or(l−e)Aℵ(e,e1−s+rs−rϑ[ve+ˆφe])de+∫l0F−1(l−e)r−1Or(l−e)G(e,[ve+ˆφe])de+∫l0F−1(l−e)r−1Or(l−e)(∫e0ℏ(ω,e1−s+rs−rϑ[vω+ˆφω])dW(ω))de+∫l0F−1(l−e)r−1Or(l−e)YF−1(l−e)r−1Y∗O∗r(c−e)(αI+Γc0)−1[Eˉuc+∫c0ϕ(e)dW(e)−F−1Mr,s(c)[Fξ(0)−ℵ(0,ξ)]−F−1ℵ(c,c1−s+rs−rϑ[vc+ˆφc])−∫c0F−1(c−e)r−1Or(c−e)Aℵ(e,e1−s+rs−rϑ[ve+ˆφe])de−∫c0F−1(c−e)r−1Or(c−e)G(e,e1−s+rs−rϑ[ve+ˆφe])de−∫c0F−1(c−e)r−1Or(c−e)(∫e0ℏ(ω,ω1−s+rs−rϑ[vω+ˆφω])dW(ω))de]de, l∈I. |
Consider B″p={v∈B′p:v0=0∈Bp}. For any v∈B″p, we have
‖v‖c=‖v0‖Bp+sup0≤e≤c(E‖v(e)‖2)12=sup0≤e≤c(E‖v(e)‖2)12. |
Hence, (B″p,‖⋅‖) is a Banach space. Set Dr={v∈B″p:‖v‖2c≤r} for some r>0. Accordingly, Dr⊆B″p has the uniform boundedness property. If v∈Dr, from Lemma 2.7, we obtain
E‖vl+ˆφl‖2≤2‖vl‖2Bp+2‖ˆφl‖2Bp≤4(ℓ2supe∈[0,l]E‖v(e)‖2+‖v0‖2Bp+ℓ2supe∈[0,l]E‖ˆφ(e)‖2+‖ˆφ0‖2Bp)≤4ℓ2(r+F1L22l2(−1+s−rs+rϑ)F2E‖ξ(0)‖2Bp)+4‖ˆφ‖2Bp=r′. |
Define Δ:B″p→2B″p, denoted by Δv, as the set ˆy∈B″p such that
ˆy(l)={0,l∈(−∞,0],l1−s+rs−rϑ[F−1Mr,s(l)[−ℵ(0,ξ)]+F−1ℵ(l,l1−s+rs−rϑ[vl+ˆφl])+∫l0F−1(l−e)r−1Or(l−e)Aℵ(e,e1−s+rs−rϑ[ve+ˆφe])de+∫l0F−1(l−e)r−1Or(l−e)G(e,e1−s+rs−rϑ[ve+ˆφe])de+∫l0F−1(l−e)r−1Or(l−e)(∫e0ℏ(ω,ω1−s+rs−rϑ[vω+ˆφω])dW(ω))de+∫l0F−1(l−e)r−1Or(l−e)Yϰαv+ˆφ(e)de],l∈[0,c]. |
We begin the proofs by stating some theorems that will allow us to prove the main theorem on the approximate controllability.
Theorem 3.3. If the hypotheses (HO), (Hℵ), (HG), (HH) and (HI) are to be held, then the multi-valued map Δ:B″p→2B″p has the complete continuity and upper semi-continuity properties with the closed and convex values.
Proof. We know that a fixed point of Δ exists if and only if a fixed point of Π exists. We break the proof into several steps for the sake of simplicity.
Step 1: Δv is convex, ∀ v∈B′p: Indeed, when φ1,φ2∈Δv, then ∃ ℏ1,ℏ2∈SH,u such that
φi(l)=l1−s+rs−rϑ{F−1Mr,s(l)[−ℵ(0,ξ)]+F−1ℵ(l,l1−s+rs−rϑ[vl+ˆφl])+∫l0F−1(l−e)r−1Or(l−e)Aℵ(e,e1−s+rs−rϑ[ve+ˆφe])de+∫l0F−1(l−e)r−1Or(l−e)G(e,e1−s+rs−rϑ[ve+ˆφe])de+∫l0F−1(l−e)r−1Or(l−e)(∫e0ℏi(ω,ω1−s+rs−rϑ[vω+ˆφω])dW(ω))de+∫l0F−1(l−e)r−1Or(l−e)YF−1(l−e)r−1Y∗O∗r(c−e)(αI+Γc0)−1[Eˉuc+∫c0ϕ(e)dW(e)−F−1Mr,s(c)[Fξ(0)−ℵ(0,ξ)]−F−1ℵ(c,c1−s+rs−rϑ[vc+ˆφc])−∫c0F−1(c−e)r−1Or(c−e)Aℵ(e,e1−s+rs−rϑ[ve+ˆφe])de−∫c0F−1(c−e)r−1Or(c−e)G(e,e1−s+rs−rϑ[ve+ˆφe])de−∫c0F−1(c−e)r−1Or(c−e)(∫e0ℏi(ω,ω1−s+rs−rϑ[vω+ˆφω])dW(ω))de](e)de} |
for l∈I, i=1,2. Let μ∈[0,1]. In this case, ∀ l∈I, we have
μφ1(l)+(1−μ)φ2(l)=l1−s+rs−rϑ{F−1Mr,s(l)[−ℵ(0,ξ)]+F−1ℵ(l,l1−s+rs−rϑ[vl+ˆφl])+∫l0F−1(l−e)r−1Or(l−e)Aℵ(e,e1−s+rs−rϑ[ve+ˆφe])de+∫l0F−1(l−e)r−1Or(l−e)G(e,e1−s+rs−rϑ[ve+ˆφe])de+∫l0F−1(l−e)r−1Or(l−e)(∫e0[μℏ1(ω,ω1−s+rs−rϑ[vω+ˆφω])+(1−μ)ℏ2(ω,ω1−s+rs−rϑ[vω+ˆφω])]dW(ω))de+∫l0F−1(l−e)r−1Or(l−e)YF−1(l−e)r−1Y∗O∗r(c−e)(αI+Γc0)−1[Eˉuc+∫c0ϕ(e)dW(e)−F−1Mr,s(c)[Fξ(0)−ℵ(0,ξ)]−F−1ℵ(c,c1−s+rs−rϑ[vc+ˆφc])−∫c0F−1(c−e)r−1Or(c−e)Aℵ(e,e1−s+rs−rϑ[ve+ˆφe])de−∫c0F−1(c−e)r−1Or(c−e)G(e,e1−s+rs−rϑ[ve+ˆφe])de−∫c0F−1(c−e)r−1Or(c−e)(∫e0[μℏ1(ω,ω1−s+rs−rϑ[vω+ˆφω])+(1−μ)ℏ2(ω,ω1−s+rs−rϑ[vω+ˆφω])]dW(ω))de](e)de}. |
Since SH,u is convex, μφ1+(1−μ)φ2∈SH,u. Thus, (μφ1+(1−μ)φ2)∈Δv.
Step 2: Boundedness of Δv on the bounded sets of B″p:
It is enough to prove that some π>0 exists such that ∀ φ∈Δv, v∈Dr, we have ‖φ‖c≤π.
Subject to φ∈Δv, there exists ℏ∈SH,u such that, for any l∈I, and from (Hℵ), (HG), (HH) and (HI), we obtain
E‖φ(l)‖2≤E‖supl∈[0,c]l1−s+rs−rϑ(ˆy(l))‖2≤E‖supl∈[0,c]l1−s+rs−rϑ[F−1Mr,s(l)[−ℵ(0,ξ)]+F−1ℵ(l,l1−s+rs−rϑ[vl+ˆφl])+∫l0F−1(l−e)r−1Or(l−e)Aℵ(e,e1−s+rs−rϑ[ve+ˆφe])de+∫l0F−1(l−e)r−1Or(l−e)G(e,e1−s+rs−rϑ[ve+ˆφe])de+∫l0F−1(l−e)r−1Or(l−e)(∫e0ℏ(ω,ω1−s+rs−rϑ[vω+ˆφω])dW(ω))de+∫l0F−1(l−e)r−1Or(l−e)Yϰαv+ˆφ(e)de]‖2≤6l2(1−s+rs−rϑ)[E‖F−1Mr,s(l)[−ℵ(0,ξ)]‖2+E‖F−1ℵ(l,l1−s+rs−rϑ[vl+ˆφl])‖2+E‖∫l0F−1(l−e)r−1Or(l−e)Aℵ(e,e1−s+rs−rϑ[ve+ˆφe])de‖2+E‖∫l0F−1(l−e)r−1Or(l−e)G(e,e1−s+rs−rϑ[ve+ˆφe])de‖2+E‖∫l0F−1(l−e)r−1Or(l−e)(∫e0ℏ(ω,ω1−s+rs−rϑ[vω+ˆφω])dW(ω))de‖2+E‖∫l0F−1(l−e)r−1Or(l−e)Yϰαv+ˆφ(e)de‖2]≤6l1−s+rs−rϑ{F21L22l2(−1+s−rs+rϑ)Sℵ(1+‖ξ(0)‖2Bp)+F21S2Sℵ(1+l2(1−s+rs−rϑ)r′2)+F21SℵS21−γ(rΓ(1+γ)Γ(1+r))2(1+l2(−1+s−rs+rϑ)r′2)∫l0(l−e)2(r−rγ−1)de+F21L21SG(l2(1−s+rs−rϑ)r′2)∫l0(l−e)2(rϑ−1)q1(e)de+F21L21ˉqSH(l2(1−s+rs−rϑ)r′2)∫l0(l−e)2(rϑ−1)q2(e)de+1α2F41L41S4Y∫l0(l−e)4(rϑ−1)M∗(e)de}≤π, |
where
M∗=6{2[E‖u‖2+∫c0E‖ϕ(e)‖2L20de]+2F21L22c2(−1+s−rs+rϑ)[F22ξ(0)+F21Sℵ(1+‖ξ(0)‖2Bp)]+F21S2Sℵ(1+c2(1−s+rs−rϑ)r′2)+F21SℵS21−γ(rΓ(1+γ)Γ(1+r))2(1+c2(−1+s−rs+rϑ)r′2)∫c0(c−e)2(r−rγ−1)de+F21L21SG(c2(1−s+rs−rϑ)r′2)∫c0(c−e)2(rϑ−1)q1(e)de+F21L21ˉqSH(c2(1−s+rs−rϑ)r′2)∫c0(c−e)2(rϑ−1)q2(e)de}. |
Thus, for all φ∈Δ(Dr), we have that ‖φ‖c≤π.
Step 3: Δ maps the bounded sets into equicontinuous sets of B″P:
Assume that 0<l1<l2≤c. For every φ∈Δv in which v belongs to Dr={v∈B″p:‖v‖2c≤r}, there exists ℏ∈SH,u such that for any l∈I, we obtain
E‖φ(l2)−φ(l1)‖2≤E‖l1−s+rs−rϑ2[F−1Mr,s(l2)[−ℵ(0,ξ)]+F−1ℵ(l2,l1−s+rs−rϑ2[vl2+ˆφl2])+∫l20F−1(l2−e)r−1Or(l2−e)Aℵ(e,e1−s+rs−rϑ[ve+ˆφe])de+∫l20F−1(l2−e)r−1Or(l2−e)G(e,e1−s+rs−rϑ[ve+ˆφe])de+∫l20F−1(l2−e)r−1Or(l2−e)(∫e0ℏ(ω,ω1−s+rs−rϑ[vω+ˆφω])dW(ω))de+∫l20F−1(l2−e)r−1Or(l2−e)Yϰαv+ˆφ(e)de]−l1−s+rs−rϑ1[F−1Mr,s(l1)[−ℵ(0,ξ)]+F−1ℵ(l1,l1−s+rs−rϑ1[vl1+ˆφl1])+∫l10F−1(l1−e)r−1Or(l1−e)Aℵ(e,e1−s+rs−rϑ[ve+ˆφe])de+∫l10F−1(l1−e)r−1Or(l1−e)G(e,e1−s+rs−rϑ[ve+ˆφe])de |
+∫l10F−1(l1−e)r−1Or(l1−e)(∫e0ℏ(ω,ω1−s+rs−rϑ[vω+ˆφω])dW(ω))de+∫l10F−1(l1−e)r−1Or(l1−e)Yϰαv+ˆφ(e)de]‖2≤6E‖F−1[l1−s+rs−rϑ2Mr,s(l2)[−ℵ(0,ξ)]−l1−s+rs−rϑ1Mr,s(l1)[−ℵ(0,ξ)]]‖2+6E‖F−1[l1−s+rs−rϑ2ℵ(l2,l1−s+rs−rϑ2[vl2+ˆφl2])−l1−s+rs−rϑ1ℵ(l1,l1−s+rs−rϑ1[vl1+ˆφl1])]‖2+6E‖F−1[l1−s+rs−rϑ2∫l20(l2−e)r−1Or(l2−e)Aℵ(e,e1−s+rs−rϑ[ve+ˆφe])de−l1−s+rs−rϑ1∫l10(l1−e)r−1Or(l1−e)Aℵ(e,e1−s+rs−rϑ[ve+ˆφe])de]‖2 |
+6E‖F−1[l1−s+rs−rϑ2∫l20(l2−e)r−1Or(l2−e)G(e,e1−s+rs−rϑ[ve+ˆφe])de−l1−s+rs−rϑ1∫l10(l1−e)r−1Or(l1−e)G(e,e1−s+rs−rϑ[ve+ˆφe])de]‖2+6E‖F−1[l1−s+rs−rϑ2∫l20(l2−e)r−1Or(l2−e)(∫e0ℏ(ω,ω1−s+rs−rϑ[vω+ˆφω])dW(ω))de−l1−s+rs−rϑ1∫l10(l1−e)r−1Or(l1−e)(∫e0ℏ(ω,ω1−s+rs−rϑ[vω+ˆφω])dW(ω))de]‖2+6E‖F−1[l1−s+rs−rϑ2∫l20(l2−e)r−1Or(l2−e)Yϰαv+ˆφ(e)de−l1−s+rs−rϑ1∫l10(l1−e)r−1Or(l1−e)Yϰαv+ˆφ(e)de]‖2. |
When l2→l1, the right-hand side of the above inequality tends to 0, because Or(l) is an operator with the strong continuity, and because the compactness of Or(l) requires uniform continuity. As a result, the set {Δv:v∈Dr} is equicontinuous. The Arzela-Ascoli theorem and Steps 2 and 3 allow us to conclude that Δ is compact.
Step 4: Δ has a closed graph:
Suppose that {vn}⊂B″p is a sequence such that vn→v∗, and assume that {φn} is a sequence belonging to Δvn for any n∈N such that φn→φ∗. We shall demonstrate that φ∗∈Δv∗. Since φn∈Δvn, then there exists ℏn∈SH,un such that
φn(l)={0,l∈(−∞,0],l1−s+rs−rϑ[F−1Mr,s(l)[−ℵ(0,ξ)]+F−1ℵ(l,l1−s+rs−rϑ[vnl+ˆφl])+∫l0F−1(l−e)r−1Or(l−e)Aℵ(e,e1−s+rs−rϑ[vne+ˆφe])de+∫l0F−1(l−e)r−1Or(l−e)G(e,e1−s+rs−rϑ[vne+ˆφe])de+∫l0F−1(l−e)r−1Or(l−e)(∫e0ℏn(ω,ω1−s+rs−rϑ[vnω+ˆφω])dW(ω))de+∫l0F−1(l−e)r−1Or(l−e)Yϰαvn+ˆφ(e)de],l∈[0,c]. |
We must show that ∃ ℏ∗∈SH,u∗ such that
φ∗(l)={0,l∈(−∞,0],l1−s+rs−rϑ[F−1Mr,s(l)[−ℵ(0,ξ)]+F−1ℵ(l,l1−s+rs−rϑ[v∗l+ˆφl])+∫l0F−1(l−e)r−1Or(l−e)Aℵ(e,e1−s+rs−rϑ[v∗e+ˆφe])de+∫l0F−1(l−e)r−1Or(l−e)G(e,e1−s+rs−rϑ[v∗e+ˆφe])de+∫l0F−1(l−e)r−1Or(l−e)(∫e0ℏ∗(ω,ω1−s+rs−rϑ[v∗ω+ˆφω])dW(ω))de+∫l0F−1(l−e)r−1Or(l−e)Yϰαv∗+ˆφ(e)de],l∈[0,c]. |
Now, ∀ l∈I, since G is continuous, we have
E‖(φn(l)−l1−s+rs−rϑ[F−1Mr,s(l)[−ℵ(0,ξ)]+F−1ℵ(l,l1−s+rs−rϑ[vnl+ˆφl])+∫l0F−1(l−e)r−1Or(l−e)Aℵ(e,e1−s+rs−rϑ[vne+ˆφe])de+∫l0F−1(l−e)r−1Or(l−e)G(e,e1−s+rs−rϑ[vne+ˆφe])de+∫l0F−1(l−e)r−1Or(l−e)Yϰαvn+ˆφ(e)de])−(φ∗(l)−l1−s+rs−rϑ[F−1Mr,s(l)[−ℵ(0,ξ)]+F−1ℵ(l,l1−s+rs−rϑ[v∗l+ˆφl])+∫l0F−1(l−e)r−1Or(l−e)Aℵ(e,e1−s+rs−rϑ[v∗e+ˆφe])de+∫l0F−1(l−e)r−1Or(l−e)G(e,e1−s+rs−rϑ[v∗e+ˆφe])de+∫l0F−1(l−e)r−1Or(l−e)Yϰαv∗+ˆφ(e)de])‖2→0 as n→∞. |
Consider the linear continuous operator ℧:L2(I;Z)→C(I;Z) by
ℏ→(℧ℏ)(l)=∫l0F−1(l−e)r−1Or(l−e)(∫e0ℏ(ω,ω1−s+rs−rϑ[vω+ˆφω])dW(ω))de−∫l0F−1(l−e)r−1Or(l−e)YY∗O∗r(c−e)(αI+Γc0)−1×[∫l0F−1(l−e)r−1Or(l−e)(∫e0ℏ(ω,ω1−s+rs−rϑ[vω+ˆφω])dW(ω))de](e)de. |
Accordingly, by referring to Lemma 2.15, ℧∘Sℏ is a closed graph. Moreover,
(φn(l)−l1−s+rs−rϑ[F−1Mr,s(l)[−ℵ(0,ξ)]+F−1ℵ(l,l1−s+rs−rϑ[vnl+ˆφl])+∫l0F−1(l−e)r−1Or(l−e)Aℵ(e,e1−s+rs−rϑ[vne+ˆφe])de+∫l0F−1(l−e)r−1Or(l−e)G(e,e1−s+rs−rϑ[vne+ˆφe])de+∫l0F−1(l−e)r−1Or(l−e)Yϰαvn+ˆφ(e)de])∈℧(SH,un). |
Since vn→v∗, because of Lemma 2.15, we may write
(φ∗(l)−l1−s+rs−rϑ[F−1Mr,s(l)[−ℵ(0,ξ)]+F−1ℵ(l,l1−s+rs−rϑ[v∗l+ˆφl])+∫l0F−1(l−e)r−1Or(l−e)Aℵ(e,e1−s+rs−rϑ[v∗e+ˆφe])de+∫l0F−1(l−e)r−1Or(l−e)G(e,e1−s+rs−rϑ[v∗e+ˆφe])de+∫l0F−1(l−e)r−1Or(l−e)Yϰαv∗+ˆφ(e)de])∈℧(SH,u∗). |
Thus, Δ has a closed graph.
In view of the four previous steps, Δ is a completely continuous multi-valued map with upper semi-continuity and closed values that are convex.
Now, in order to use the Martelli fixed-point theorem, we choose a parameter η>1 and establish the following auxiliary problem:
{Dr,s0+[Fu(l)−1ηℵ(l,ul)]∈Au(l)+1ηYϰ(l)+1ηG(l,ul)+1η∫l0H(e,ue)dW(e), l∈I′,I(1−r)(1−s)0+u(l)∣l=0=ξ∈Bp, l∈(−∞,0]. | (3.2) |
Thus, by Definition 2.13, the mild solution of (3.2) can be defined in the following form:
u(l)={φ(l),l∈(−∞,0],F−1Mr,s(l)[Fξ(0)−ℵ(0,ξ)]+F−1ℵ(l,ul)+1η∫l0F−1(l−e)r−1Or(l−e)Aℵ(e,ue)de+1η∫l0F−1(l−e)r−1Or(l−e)G(e,ue)de+1η∫l0F−1(l−e)r−1Or(l−e)(∫e0ℏ(ω,uω)dW(ω))de+1η∫l0F−1(l−e)r−1Or(l−e)Yϰ(e)de,l∈[0,c], | (3.3) |
where ℏ∈SH,u={ℏ∈L2(L(K,Z)):ℏ(l)∈H(e,ue) for l∈I}.
Now, in this lemma, we can be sure of the above structure in relation to the mild solution of (3.2).
Lemma 3.4. Assume that (HO), (Hℵ), (HG), (HH) and (HI) are satisfied. Then, u is a mild solution of (3.2). Moreover, the priori bound ϵ>0 exists such that ‖ul‖Bp≤ϵ, ∀l∈I, where ϵ is only dependent on c, q1(⋅), q2(⋅), SG and SH.
Proof. From the structure (3.3), we may write
E‖u(l)‖2≤6l2(1−s+rs−rϑ)[E‖F−1Mr,s(l)[Fξ(0)−ℵ(0,ξ)]‖2+E‖F−1ℵ(l,ul)‖2+E‖∫l0F−1(l−e)r−1Or(l−e)Aℵ(e,ue)de‖2+E‖∫l0F−1(l−e)r−1Or(l−e)G(e,ue)de‖2+E‖∫l0F−1(l−e)r−1Or(l−e)(∫e0ℏ(ω,uω)dW(ω))de‖2+E‖∫l0F−1(l−e)r−1Or(l−e)Yϰαu(e)de‖2]≤6l2(1−s+rs−rϑ){2F21L22l2(−1+s−rs+rϑ)[F22ξ(0)+F21Sℵ(1+‖ξ(0)‖2Bp)]+F21S2Sℵ(1+l2(1−s+rs−rϑ)‖ul‖2Bp)+F21S21−γ(rΓ(1+γ)Γ(1+r))2∫l0(l−e)2(r−rγ−1)Sℵ(1+l2(−1+s−rs+rϑ)‖ue‖2Bp)de+F21L21∫l0(l−e)2(rϑ−1)q1(e)SG(l2(1−s+rs−rϑ)‖ue‖2Bp)de+F21L21∫l0(l−e)2(rϑ−1)ˉqq2(e)SH(l2(1−s+rs−rϑ)‖ue‖2Bp)de+6α2F41L41S4Y∫l0(l−e)4(rϑ−1)[2[E‖u‖2+∫c0E‖ϕ(e)‖2L20de]+2F21L22c2(−1+s−rs+rϑ)[F22ξ(0)+F21Sℵ(1+‖ξ(0)‖2Bp)]+F21S2Sℵ(1+c2(1−s+rs−rϑ)‖uc‖2Bp)+F21S21−γ(rΓ(1+γ)Γ(1+r))2∫c0(c−e)2(r−rγ−1)Sℵ(1+c2(−1+s−rs+rϑ)‖ue‖2Bp)de+F21L21∫c0(c−e)2(rϑ−1)q1(e)SG(c2(1−s+rs−rϑ)‖ue‖2Bp)de+F21L21∫c0(c−e)2(rϑ−1)ˉqq2(e)SH(c2(1−s+rs−rϑ)‖ue‖2Bp)de](e)de}. |
Therefore, by Lemma 2.7, we get
‖ul‖Bp≤ℓsupe∈[0,l](E‖u(e)‖2)12+‖ξ‖Bp≤6ℓl2(1−s+rs−rϑ){2F21L22l2(−1+s−rs+rϑ)[F22ξ(0)+F21Sℵ(1+‖ξ(0)‖2Bp)]+F21S2Sℵ(1+l2(1−s+rs−rϑ)‖ul‖2Bp)+F21S21−γ(rΓ(1+γ)Γ(1+r))2∫l0(l−e)2(r−rγ−1)Sℵ(1+l2(−1+s−rs+rϑ)‖ue‖2Bp)de+F21L21∫l0(l−e)2(rϑ−1)q1(e)SG(l2(1−s+rs−rϑ)‖ue‖2Bp)de+F21L21∫l0(l−e)2(rϑ−1)ˉqq2(e)SH(l2(1−s+rs−rϑ)‖ue‖2Bp)de+6α2F41L41S4Y∫l0(l−e)4(rϑ−1)[2[E‖u‖2+∫c0E‖ϕ(e)‖2L20de]+2F21L22c2(−1+s−rs+rϑ)[F22ξ(0)+F21Sℵ(1+‖ξ(0)‖2Bp)]+F21S2Sℵ(1+c2(1−s+rs−rϑ)‖uc‖2Bp)+F21S21−γ(rΓ(1+γ)Γ(1+r))2∫c0(c−e)2(r−rγ−1)Sℵ(1+c2(−1+s−rs+rϑ)‖ue‖2Bp)de+F21L21∫c0(c−e)2(rϑ−1)q1(e)SG(c2(1−s+rs−rϑ)‖ue‖2Bp)de+F21L21∫c0(c−e)2(rϑ−1)ˉqq2(e)SH(c2(1−s+rs−rϑ)‖ue‖2Bp)de](e)de}+‖ξ‖Bp. |
Assume that υ(l)=sup{l2(1−s+rs−rϑ)‖ue‖2Bp:0≤e≤l}. Furthermore, the function υ(l)∈I is non-decreasing, and we have
υ(l)≤ℓsupe∈[0,l](E‖u(e)‖2)12+‖ξ‖Bp≤ℓ(6l2(1−s+rs−rϑ){2F21L22l2(−1+s−rs+rϑ)[F22ξ(0)+F21Sℵ(1+‖ξ(0)‖2Bp)]+F21S2Sℵ(1+l2(1−s+rs−rϑ)‖ul‖2Bp)+F21S21−γ(rΓ(1+γ)Γ(1+r))2∫l0(l−e)2(r−rγ−1)Sℵ(1+l2(−1+s−rs+rϑ)‖ue‖2Bp)de+F21L21∫l0(l−e)2(rϑ−1)q1(e)SG(υ(e))de+F21L21∫l0(l−e)2(rϑ−1)ˉqq2(e)SH(υ(e))de+6α2F41L41S4Y∫l0(l−e)4(rϑ−1)[2[E‖u‖2+∫c0E‖ϕ(e)‖2L20de]+2F21L22c2(−1+s−rs+rϑ)[F22ξ(0)+F21Sℵ(1+‖ξ(0)‖2Bp)]+F21S2Sℵ(1+c2(1−s+rs−rϑ)‖uc‖2Bp)+F21S21−γ(rΓ(1+γ)Γ(1+r))2∫c0(c−e)2(r−rγ−1)Sℵ(1+c2(−1+s−rs+rϑ)‖ue‖2Bp)de+F21L21∫c0(c−e)2(rϑ−1)q1(e)SG(υ(e))de+F21L21∫c0(c−e)2(rϑ−1)ˉqq2(e)SH(υ(e))de](e)de})12+‖ξ‖Bp≤ℓ[κ(6+36αF21L41S4Y){F21L21∫l0(l−e)2(rϑ−1)q1(e)SG(υ(e))de+F21L21∫l0(l−e)2(rϑ−1)ˉqq2(e)SH(υ(e))de}]12+‖ξ‖Bp. |
We can conclude from the right-hand side of the above inequality that
μ(l)=κ+(6+36αF41L41S4Y){F21L21∫l0(l−e)2(rϑ−1)q1(e)SG(υ(e))de+F21L21∫l0(l−e)2(rϑ−1)ˉqq2(e)SH(υ(e))de},μ(0)=a1, υ(l)≤ℓ(μ(l))12+‖ξ‖Bp, l∈I, |
and
μ′(l)≤a1[q1(e)SG(ℓ(μ(l))12+‖ξ‖Bp)+ˉqq2SH(ℓ(μ(l))12+‖ξ‖Bp)]≤Υ(l)[SG(ℓ(μ(l))12+‖ξ‖Bp)2+SH(ℓ(μ(l))12+‖ξ‖Bp)2], |
where
Υ(l)=a1max{q1(e),q2(e)}. |
These inequalities imply, for each l∈I, that
∫μ=1μ(0)deSG(β(e))+SH(β(e))≤∫c0Υ(e)de<∫∞κdeSG(β(e))+SH(β(e)), l∈I, |
where μ(0)=κ and β(e)=(ℓ(μ(l))12+‖ξ‖Bp)2.
Hence, μ(l)<∞ and there exists a constant d such that μ(l)≤d for all l∈[0,c]. Thus, we have that ‖ul‖2Bp≤υ(l)≤μ(l)≤d,∀l∈I, where d is only dependent on c and the functions q1(⋅), q2(⋅), SG(⋅) and SH(⋅). This ends the proof.
Theorem 3.5. If (HO), (Hℵ), (HG), (HH) and (HI) hold, then the Hilfer stochastic control system of the Sobolev type (1.1) admits at least one mild solution on (−∞,c].
Proof. Let Φ={v∈B″p:ηv∈Λv, for some η>1}. Then, for all v∈Φ, we have
v(l)=F−1Mr,s(l)[−ℵ(0,ξ)]+F−1ℵ(l,ul)+1η∫l0F−1(l−e)r−1Or(l−e)Aℵ(e,ue)de+1η∫l0F−1(l−e)r−1Or(l−e)G(e,ue)de+1η∫l0F−1(l−e)r−1Or(l−e)(∫e0ℏ(ω,uω)dW(ω))de+1η∫l0F−1(l−e)r−1Or(l−e)Yϰ(e)de. |
Then, the function u=v+ˆφ will be a mild solution of the system (3.3); thus, by Lemmas 3.4 and 2.7, we estimate the following:
‖v(l)‖c=‖v0‖Bp+supe∈[0,c]E12‖v(e)‖2=supe∈[0,c]E12‖v(e)‖2≤supe∈[0,c]E12‖u(e)‖2+supe∈[0,c]E12‖ˆφ(e)‖2≤sup{ℓ−1‖ue‖Bp:e∈[0,c]}+supe∈[0,c]E12‖F−1Mr,sFξ(0)‖2≤ℓ−1κ+supe∈[0,c]E12‖F−1Mr,sFξ(0)‖2, |
which gives the boundedness of Φ.
Therefore, it gives, by Lemma 2.7 and the Martelli fixed-point theorem, that Λ admits a fixed point v∗∈B″p. Set u(l)=v∗+ˆφ(l), l∈[0,c]. Then, u is a fixed point of Ψ, which is a mild solution of the Hilfer stochastic control system of the Sobolev type (1.1).
By considering the previous theorems, we can now prove the approximate controllability for the main given stochastic system.
Theorem 3.6. If the hypotheses (HO), (Hℵ), (HG), (HH) and (HI) are satisfied and G and H have the uniform boundedness property, then the Hilfer stochastic control system of the Sobolev type (1.1) is approximately controllable on I.
Proof. Let uα(⋅)∈Dr be a fixed point of the operator Π. But, based on Theorem 3.3, we know that every fixed point of Π is a mild solution of the Hilfer stochastic control system of the Sobolev type (1.1). This shows that there is a uα such that uα∈Π(uα); that is, by the stochastic Fubini theorem, ∃ ℏα∈SG,uα so that
uα(c)=ˉuc−α(αI+Γc0)−1[Eˉuc+∫c0ϕ(e)dW(e)−F−1Mr,s(c)[Fξ(0)−ℵ(0,ξ)]−F−1ℵ(c,uc)−∫c0F−1(c−e)r−1Or(c−e)Aℵ(e,ue)de−∫c0F−1(c−e)r−1Or(c−e)G(e,ue)de−∫c0F−1(c−e)r−1Or(c−e)(∫e0ℏ(ω,uω)dW(ω))de]. |
Moreover, using the Dunford-Pettis theorem and the existing conditions on ℵ, G and ℏ, we find that ℵ(c,uc), G(e,uc) and ℏ(ω,uω) are weakly compact, respectively, in L2(I,Z), L2(I,Z), and L2(LQ(K,Z)). So, there are subsequences, denoted by ℵ(c,uc), G(e,uc) and ℏ(ω,uω), weakly converging to ℵ, G and ℏ, respectively, in L2(I,Z), L2(I,Z) and L2(LQ(K,Z)). Now, we write
E‖uα(c)−ˉuc‖2≤9E‖α(αI+Γc0)−1[Eˉuc−F−1Mr,s(c)[Fξ(0)−ℵ(0,ξ)]]‖2+9E‖α(αI+Γc0)−1F−1ℵ(c,uc)‖2+9E(∫c0‖α(αI+Γc0)−1ϕ(e)‖2L20de)2+9E‖∫c0α(αI+Γc0)−1(c−e)r−1Or(c−e)A[ℵ(e,ue)−ℵ(e)]de‖2+9E‖∫c0α(αI+Γc0)−1(c−e)r−1Or(c−e)Aℵ(e)de‖2+9E‖∫c0α(αI+Γc0)−1(c−e)r−1Or(c−e)[G(e,ue)−G(e)]de‖2+9E‖∫c0α(αI+Γc0)−1(c−e)r−1Or(c−e)G(e)de‖2+9E‖∫c0α(αI+Γc0)−1(c−e)r−1Or(c−e)∫e0[ℏ(ω,uω)−ℏ(ω)]dW(ω)de‖2+9E‖∫c0α(αI+Γc0)−1(c−e)r−1Or(c−e)∫e0ℏ(ω)dW(ω)de‖2. |
From (Hα), for each 0≤e≤c, we get that α(αI+Γc0)−1→0 strongly as α→0+. Accordingly, α(αI+Γc0)−1≤1. Consequently, we have that E‖uα(c)−ˉuc‖2→0 as α→0+ from Lebesgue's dominated convergence theorem and the compactness of Or(l). Hence, the Hilfer stochastic control system of the Sobolev type (1.1) is approximately controllable which completes the proof.
Here, we simulate the given Hilfer stochastic control system of the Sobolev-type (1.1) by defining some operators.
Let U=L2[0,π] and Y:D(Y)⊂U→U be an operator defined as
Yz=z″, z∈D(Y), |
so that
D(Y)={z∈U:z, z′ are absolutely continuous, z″∈U, z(0)=z(π)=0}. |
Suppose that A:D(A)⊂Z→Z and F:D(F)⊂Z→Z are two operators respectively given by Az=z″ and Fz=z−z″, in which, accordingly,
D(A)=D(F)={z∈Z:z,z′ are absolutely continuous, z(0)=z(π)=0}. |
Moreover, A and F respectively take the following forms:
Az=∞∑n=1n2⟨z,ϰn⟩ϰn, z∈D(A),Fz=∞∑n=1(1+n2)⟨z,ϰn⟩ϰn, z∈D(F), |
where ϰn(y)=√2πsin(ny), n=1,2,3,⋯ denotes the orthonormal vectors of A. Additionally, for u∈Z, we have
F−1u=∞∑n=11(1+n2)⟨u,ϰn⟩ϰn |
and
AF−1u=∞∑n=1n2(1+n2)⟨u,ϰn⟩ϰn. |
Note that Y admits the eigenvalues βn=−n2, n∈N, and that the corresponding eigenfunction is given by ϰn. Therefore, the spectral representation of Y is formulated by
Yu=∞∑n=1−n2⟨u,ϰn⟩, u∈D(Y). |
Further, define
M(l)u=∞∑n=1exp(−n2l)⟨u,ϰn⟩ϰn,ϰ∈U. |
Specify that
ˆU={υ∣υ=∞∑n=2υnϰn, with ∞∑n=2υ2n≤∞}, |
where ˆU is a space with the infinite dimension under the norm
‖υ‖ˆU=(∞∑n=2υ2n)12. |
In this step, we can define Y:ˆU→U as
Yυ=2υ2e1+∞∑n=2υnϰn, υ=∞∑n=2υnϰn∈ˆU, |
so that Y is a linear continuous map.
Now, by the above definitions, consider the following Hilfer stochastic control system of the Sobolev type as follows:
Dr,s0+[u(l,z)−∂2u(l,z)∂u2−¯ℵ(l,u(l,z))]=∂2u(l,z)∂u2+Yϰ(l,z)+¯G(l,u(l,z))+∫l0¯H(e,u(e,z))dW(e), 0≤l≤e,u(l,0)=u(l,π)=0, l>0,I(1−r)(1−s)0+(u(0,z))=u0(z), 0≤z≤π, | (4.1) |
where W(l) is the standard one-dimensional Brownian motion in Z belonging to the filtered probability space (Λ,F,P). Obviously, all assumptions (HO), (Hℵ), (HG), (HH) and (HI) hold; thus, the above Hilfer stochastic control system of the Sobolev type (4.1) is approximately controllable based on Theorem 3.6.
In this part, we examine the approximate controllability of Hilfer neutral fractional stochastic differential systems of the Sobolev type by using an almost sectorial operator with delay. Consider the mild solution of the system (2.3):
u(l)=F−1Mr,s(l)[Fξ(0)−ℵ(0,ξ)]+F−1ℵ(l,ul)+∫l0F−1(l−e)r−1Or(l−e)Aℵ(e,ue)de+∫l0F−1(l−e)r−1Or(l−e)G(e,ue)de+∫l0F−1(l−e)r−1Or(l−e)(∫e0ℏ(ω,uω)dW(ω))de+∫l0F−1(l−e)r−1Or(l−e)Yϰ(e)de,l∈I′. |
Motivated by the filter system presented in [22,42,43], we present the digital filter system corresponding to the mild solution in Figure 1. Digital filters are the backbone for any signal processing applications. Many biomedical signals related to the human body are currently being acquired for various informative feature extractions. Most of the aforementioned signals generally possess a low frequency by nature. These signals describe the information pertaining to various disorders or diseases for which the accuracy is of high concern. The efficiency of any digital signal-processing filtering system relies on the ability to reject the noise.
Figure 1 describes the following:
(1) The product modulator 1 accepts the input [Fξ(0)−ℵ(0,ξ)], and Mr,s at time l=0 produces the output Mr,s(l)[Fξ(0)−ℵ(0,ξ)].
(2) The product modulator 2 accepts the input ℵ(l), produces the output ℵ(l,ul).
(3) The product modulator 3 accepts the input ϰ(e) and Y and produces the output Yϰ(e).
(4) The product modulator 4 accepts the input u(e) and ℵ and gives output ℵ(e,ue).
(5) The product modulator 5 accepts the input u(e) and G and gives output G(e,ue).
(6) The product modulator 6 accepts the input u(ω) and ℏ and gives output ℏ(ω,uω).
(7) The integrator performs the integral of
F−1(l−e)r−1Or(l−e)[Aℵ(e,ue)+G(e,ue)+∫e0ℏ(ω,uω)dW(ω)+Yϰ(e)] |
over the period ξ.
Furthermore,
(1) Inputs F−1(l−e)r−1Or(l−e) and Aℵ(e,ue) are combined and multiplied with an output of the integrator over (0,e).
(2) Inputs F−1(l−e)r−1Or(l−e) and G(e,ue) are combined and multiplied with an output of the integrator over (0,e).
(3) Inputs F−1(l−e)r−1Or(l−e) and ∫e0ℏ(ω,uω)dW(ω) are combined and multiplied with an output of the integrator over (0,e).
(4) Inputs F−1(l−e)r−1Or(l−e) and Yϰ(e) are combined and multiplied with an output of the integrator over (0,e).
Finally, we move all of the outputs from the integrators to the summer network. Therefore, the output of u(l) is attained; it is bounded and controllable.
This paper focuses on the approximate controllability of a Hilfer stochastic neutral control system of the Sobolev type by using an almost sectorial operator with delay. The concepts of stochastic analysis, fractional calculus, semigroup theory and fixed-point technique are used to find the mild solutions of the mentioned system. More precisely, by defining some operators, and under some control conditions, we could prove the existence result for the mild solutions. Finally, we provided a theoretical example and filter system to effectively analyse our results. In future works, one can extend the control Hilfer stochastic neutral systems under some well-known boundary value conditions.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors extend their appreciation to Prince Sattam bin Abdulaziz University for funding this research work through the project number (PSAU/2023/01/9010).
The authors declare no conflict of interest.
[1] |
X. L. Ding, B. Ahmad, Analytical solutions to fractional evolution equations with almost sectorial operators, Adv. Differential Equ., 2016 (2016), 203. https://doi.org/10.1186/s13662-016-0927-y doi: 10.1186/s13662-016-0927-y
![]() |
[2] |
M. M. Raja, V. Vijayakumar, R. Udhayakumar, Results on the existence and controllability of fractional integro-differential system of order 1<r<2 via measure of noncompactness, Chaos Soliton. Fract., 139 (2020), 110299. https://doi.org/10.1016/j.chaos.2020.110299 doi: 10.1016/j.chaos.2020.110299
![]() |
[3] |
M. Rasheed, E. T. Eldin, N. A. Ghamry, M. A. Hashmi, M. Kamran, U. Rana, Decision-making algorithm based on Pythagorean fuzzy environment with probabilistic hesitant fuzzy set and Choquet integral, AIMS Math., 8 (2023), 12422–12455. https://doi.org/10.3934/math.2023624 doi: 10.3934/math.2023624
![]() |
[4] |
F. Hadi, R. Amin, I. Khan, J. Alzahrani, K. S. Nisar, A. S. Al-Johani, et al., Numerical solutions of nonlinear delay integro-differential equations using Haar wavelet collocation method, Fractals, 31 (2023), 2340039. https://doi.org/10.1142/S0218348X2340039X doi: 10.1142/S0218348X2340039X
![]() |
[5] |
J. Din, M. Shabir, N. A. Alreshidi, E. T. Eldin, Optimistic multigranulation roughness of a fuzzy set based on soft binary relations over dual universes and its application, AIMS Math., 8 (2023), 10303–10328. https://doi.org/10.3934/math.2023522 doi: 10.3934/math.2023522
![]() |
[6] |
Y. Zhou, Infinite interval problems for fractional evolution equations, Mathematics, 10 (2022), 900. https://doi.org/10.3390/math10060900 doi: 10.3390/math10060900
![]() |
[7] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006. |
[8] |
V. Lakshmikantham, A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal.-Theor., 69 (2008), 2677–2682. https://doi.org/10.1016/j.na.2007.08.042 doi: 10.1016/j.na.2007.08.042
![]() |
[9] | K. S. Miller, B. Ross, An introduction to the fractional calculus and differential equations, New York: Wiley, 1993. |
[10] | I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1999. |
[11] |
M. Adel, M. E. Ramadan, H. Ahmad, T. Botmart, Sobolev-type nonlinear Hilfer fractional stochastic differential equations with noninstantaneous impulsive, AIMS Math., 7 (2022), 20105–20125. https://doi.org/10.3934/math.20221100 doi: 10.3934/math.20221100
![]() |
[12] |
F. Li, Mild solutions for abstract differential equations with almost sectorial operators and infinite delay, Adv. Differential Equ., 2013 (2013), 327. https://doi.org/10.1186/1687-1847-2013-327 doi: 10.1186/1687-1847-2013-327
![]() |
[13] | M. Martelli, A Rothe's type theorem for noncompact acyclic-valued map, Boll. Un. Math. Ital., 2 (1975), 70–76. |
[14] |
N. I. Mahmudov, A. Denker, On controllability of linear stochastic systems, Int. J. Control, 73 (2000), 144–151. https://doi.org/10.1080/002071700219849 doi: 10.1080/002071700219849
![]() |
[15] |
R. Sakthivel, Y. Ren, A. Debbouche, N. I. Mahmudov, Approximate controllability of fractional stochastic differential inclusions with nonlocal conditions, Appl. Anal., 95 (2016), 2361–2382. https://doi.org/10.1080/00036811.2015.1090562 doi: 10.1080/00036811.2015.1090562
![]() |
[16] |
A. Boutiara, M. M. Matar, M. K. A. Kaabar, F. Martinez, S. Etemad, S. Rezapour, Some qualitative analyses of neutral functional delay differential equation with generalized Caputo operator, J. Funct. Space., 2021 (2021), 9993177. https://doi.org/10.1155/2021/9993177 doi: 10.1155/2021/9993177
![]() |
[17] |
S. Etemad, M. S. Souid, B. Telli, M. K. A. Kaabar, S. Rezapour, Investigation of the neutral fractional differential inclusions of Katugampola-type involving both retarded and advanced arguments via Kuratowski MNC technique, Adv. Differential Equ., 2021 (2021), 214. https://doi.org/10.1186/s13662-021-03377-x doi: 10.1186/s13662-021-03377-x
![]() |
[18] | R. Hilfer, Application of fractional calculus in physics, Singapore: World Scientific, 2000. https://doi.org/10.1142/3779 |
[19] |
H. Gu, J. J. Trujillo, Existence of mild solution for evolution equation with Hilfer fractional derivative, Appl. Math. Comput., 257 (2015), 344–354. https://doi.org/10.1016/j.amc.2014.10.083 doi: 10.1016/j.amc.2014.10.083
![]() |
[20] |
K. M. Furati, M. D. Kassim, N. Tatar, Existence and uniqueness for a problem involving Hilfer fractional derivative, Comput. Math. Appl., 64 (2012), 1616–1626. https://doi.org/10.1016/j.camwa.2012.01.009 doi: 10.1016/j.camwa.2012.01.009
![]() |
[21] |
K. Kavitha, V. Vijayakumar, R. Udhayakumar, K. S. Nisar, Results on the existence of Hilfer fractional neutral evolution equations with infinite delay via measures of noncompactness, Math. Method. Appl. Sci., 44 (2021), 1438–1455. https://doi.org/10.1002/mma.6843 doi: 10.1002/mma.6843
![]() |
[22] |
S. Sivasankar, R. Udhayakumar, M. H. Kishor, S. E. Alhazmi, S. Al-Omari, A new result concerning nonlocal controllability of Hilfer fractional stochastic differential equations via almost sectorial operators, Mathematics, 11 (2023), 159. https://doi.org/10.3390/math11010159 doi: 10.3390/math11010159
![]() |
[23] |
C. B. S. V. Bose, R. Udhayakumar, Existence of mild solutions for Hilfer fractional neutral integro-differential inclusions via almost sectorial operators, Fractal Fract., 6 (2022), 532. https://doi.org/10.3390/fractalfract6090532 doi: 10.3390/fractalfract6090532
![]() |
[24] |
A. Jaiswal, D. Bahuguna, Hilfer fractional differential equations with almost sectorial operators, Differ. Equat. Dyn. Sys., 31 (2023), 301–317. https://doi.org/10.1007/s12591-020-00514-y doi: 10.1007/s12591-020-00514-y
![]() |
[25] |
K. Karthikeyan, A. Debbouche, D. F. M. Torres, Analysis of Hilfer fractional integro-differential equations with almost sectorial operators, Fractal Fract., 5 (2021), 22. https://doi.org/10.3390/fractalfract5010022 doi: 10.3390/fractalfract5010022
![]() |
[26] |
S. Sivasankar, R. Udhayakumar, A note on approximate controllability of second-order neutral stochastic delay integro-differential evolution inclusions with impulses, Math. Method. Appl. Sci., 45 (2022), 6650–6676. https://doi.org/10.1002/mma.8198 doi: 10.1002/mma.8198
![]() |
[27] |
V. Vijayakumar, S. K. Panda, K. S. Nisar, H. M. Baskonus, Results on approximate controllability results for second-order Sobolev-type impulsive neutral differential evolution inclusions with infinite delay, Numer. Meth. Part. D. E., 37 (2021), 1200–1221. https://doi.org/10.1002/num.22573 doi: 10.1002/num.22573
![]() |
[28] |
M. Yang, Q. Wang, Approximate controllability of Caputo fractional neutral stochastic differential inclusions with state-dependent delay, IMA J. Math. Control I., 35 (2018), 1061–1085. https://doi.org/10.1093/imamci/dnx014 doi: 10.1093/imamci/dnx014
![]() |
[29] |
C. S. V. Bose, R. Udhayakumar, A. M. Elshenhab, M. S. Kumar, J. S. Ro, Discussion on the approximate controllability of Hilfer fractional neutral integro-differential inclusions via almost sectorial operators, Fractal Fract., 6 (2022), 607. https://doi.org/10.3390/fractalfract6100607 doi: 10.3390/fractalfract6100607
![]() |
[30] |
Y. K. Ma, C. Dineshkumar, V. Vijayakumar, R. Udhayakumar, A. Shukla, K. S. Nisar, Approximate controllability of Atangana-Baleanu fractional neutral delay integro-differential stochastic systems with nonlocal conditions, Ain Shams Eng. J., 14 (2023), 101882. https://doi.org/10.1016/j.asej.2022.101882 doi: 10.1016/j.asej.2022.101882
![]() |
[31] |
R. Pandey, C. Shukla, A. Shukla, A. K. Upadhyay, A. K. Singh, A new approach on approximate controllability of Sobolev-type Hilfer fractional differential equations, Int. J. Optim. Control Theor. Appl., 13 (2023), 130–138. https://doi.org/10.11121/ijocta.2023.1256 doi: 10.11121/ijocta.2023.1256
![]() |
[32] |
C. Dineshkumar, K. S. Nisar, R. Udhayakumar, V. Vijayakumar, A discussion on approximate controllability of Sobolev-type Hilfer neutral fractional stochastic differential inclusions, Asian J. Control, 24 (2022), 2378–2394. https://doi.org/10.1002/asjc.2650 doi: 10.1002/asjc.2650
![]() |
[33] | X. Mao, Stochastic differential equations and their applications, Chichester: Horwood Publishing, 1997. |
[34] |
S. Sivasankar, R. Udhayakumar, Discussion on existence of mild solutions for Hilfer fractional neutral stochastic evolution equations via almost sectorial operators with delay, Qual. Theor. Dyn. Syst., 22 (2023), 67. https://doi.org/10.1007/s12346-023-00773-4 doi: 10.1007/s12346-023-00773-4
![]() |
[35] | A. Pazy, Semigroups of linear operators and applications to partial differential equations, New York: Springer, 1983. https://doi.org/10.1007/978-1-4612-5561-1 |
[36] |
J. H. Lightbourne, S. M. Rankin, A partial functional differential equation of Sobolev type, J. Math. Anal. Appl., 93 (1983) 328–337. https://doi.org/10.1016/0022-247X(83)90178-6 doi: 10.1016/0022-247X(83)90178-6
![]() |
[37] | Y. Zhou, Basic theory of fractional differential equations, Singapore: World Scientific, 2014. https://doi.org/10.1142/9069 |
[38] |
F. Periago, B. Straub, A functional calculus for almost sectorial operators and applications to abstract evolution equations, J. Evol. Equ., 2 (2002), 41–68. https://doi.org/10.1007/s00028-002-8079-9 doi: 10.1007/s00028-002-8079-9
![]() |
[39] |
M. Zhou, C. Li, Y. Zhou, Existence of mild solutions for Hilfer fractional evolution equations with almost sectorial operators, Axioms, 11 (2022), 144. https://doi.org/10.3390/axioms11040144 doi: 10.3390/axioms11040144
![]() |
[40] | K. Deimling, Nonlinear functional analysis, New York: Springer-Verlag, 1985. https://doi.org/10.1007/978-3-662-00547-7 |
[41] | K. Deimling, The analysis of fractional differential equations, Lecture Notes in Mathematics, Springer, 2010. |
[42] |
C. S. V. Bose, R. Udhayakumar, S. Velmurugan, M. Saradha, B. Almarri, Approximate controllability of Ψ-Hilfer fractional neutral differential equation with infinite delay, Fractal Fract., 7 (2023), 537. https://doi.org/10.3390/fractalfract7070537 doi: 10.3390/fractalfract7070537
![]() |
[43] |
S. Zahoor, S. Naseem, Design and implementation of an efficient FIR digital filter, Cogent Eng., 4 (2017), 1323373. https://doi.org/10.1080/23311916.2017.1323373 doi: 10.1080/23311916.2017.1323373
![]() |
1. | Sivajiganesan Sivasankar, Ramalingam Udhayakumar, Abd Elmotaleb A.M.A. Elamin, R. Samidurai, Sina Etemad, Muath Awadalla, Attractive solutions for Hilfer fractional neutral stochastic integro-differential equations with almost sectorial operators, 2024, 9, 2473-6988, 11486, 10.3934/math.2024564 |