Processing math: 100%
Research article Special Issues

q-rung logarithmic Pythagorean neutrosophic vague normal aggregating operators and their applications in agricultural robotics

  • The article explores multiple attribute decision making problems through the use of the Pythagorean neutrosophic vague normal set (PyNVNS). The PyNVNS can be generalized to the Pythagorean neutrosophic interval valued normal set (PyNIVNS) and vague set. This study discusses q-rung log Pythagorean neutrosophic vague normal weighted averaging (q-rung log PyNVNWA), q-rung logarithmic Pythagorean neutrosophic vague normal weighted geometric (q-rung log PyNVNWG), q-rung log generalized Pythagorean neutrosophic vague normal weighted averaging (q-rung log GPyNVNWA), and q-rung log generalized Pythagorean neutrosophic vague normal weighted geometric (q-rung log GPyNVNWG) sets. The properties of q-rung log PyNVNSs are discussed based on algebraic operations. The field of agricultural robotics can be described as a fusion of computer science and machine tool technology. In addition to crop harvesting, other agricultural uses are weeding, aerial photography with seed planting, autonomous robot tractors and soil sterilization robots. This study entailed selecting five types of agricultural robotics at random. There are four types of criteria to consider when choosing a robotics system: robot controller features, cheap off-line programming software, safety codes and manufacturer experience and reputation. By comparing expert judgments with the criteria, this study narrows the options down to the most suitable one. Consequently, q has a significant effect on the results of the models.

    Citation: Murugan Palanikumar, Chiranjibe Jana, Biswajit Sarkar, Madhumangal Pal. q-rung logarithmic Pythagorean neutrosophic vague normal aggregating operators and their applications in agricultural robotics[J]. AIMS Mathematics, 2023, 8(12): 30209-30243. doi: 10.3934/math.20231544

    Related Papers:

    [1] Afrah Ahmad Noman Abdou . Chatterjea type theorems for complex valued extended b-metric spaces with applications. AIMS Mathematics, 2023, 8(8): 19142-19160. doi: 10.3934/math.2023977
    [2] Rashid Ali, Faisar Mehmood, Aqib Saghir, Hassen Aydi, Saber Mansour, Wajdi Kallel . Solution of integral equations for multivalued maps in fuzzy b-metric spaces using Geraghty type contractions. AIMS Mathematics, 2023, 8(7): 16633-16654. doi: 10.3934/math.2023851
    [3] Samina Batul, Faisar Mehmood, Azhar Hussain, Dur-e-Shehwar Sagheer, Hassen Aydi, Aiman Mukheimer . Multivalued contraction maps on fuzzy b-metric spaces and an application. AIMS Mathematics, 2022, 7(4): 5925-5942. doi: 10.3934/math.2022330
    [4] Naeem Saleem, Salman Furqan, Mujahid Abbas, Fahd Jarad . Extended rectangular fuzzy b-metric space with application. AIMS Mathematics, 2022, 7(9): 16208-16230. doi: 10.3934/math.2022885
    [5] Siniša N. Ješić, Nataša A. Ćirović, Rale M. Nikolić, Branislav M. Ranƌelović . A fixed point theorem in strictly convex b-fuzzy metric spaces. AIMS Mathematics, 2023, 8(9): 20989-21000. doi: 10.3934/math.20231068
    [6] Badshah-e-Rome, Muhammad Sarwar, Thabet Abdeljawad . µ-extended fuzzy b-metric spaces and related fixed point results. AIMS Mathematics, 2020, 5(5): 5184-5192. doi: 10.3934/math.2020333
    [7] Abdolsattar Gholidahneh, Shaban Sedghi, Ozgur Ege, Zoran D. Mitrovic, Manuel de la Sen . The Meir-Keeler type contractions in extended modular b-metric spaces with an application. AIMS Mathematics, 2021, 6(2): 1781-1799. doi: 10.3934/math.2021107
    [8] Abdullah Shoaib, Poom Kumam, Shaif Saleh Alshoraify, Muhammad Arshad . Fixed point results in double controlled quasi metric type spaces. AIMS Mathematics, 2021, 6(2): 1851-1864. doi: 10.3934/math.2021112
    [9] Sumaiya Tasneem Zubair, Kalpana Gopalan, Thabet Abdeljawad, Nabil Mlaiki . Novel fixed point technique to coupled system of nonlinear implicit fractional differential equations in complex valued fuzzy rectangular b-metric spaces. AIMS Mathematics, 2022, 7(6): 10867-10891. doi: 10.3934/math.2022608
    [10] Yan Han, Shaoyuan Xu, Jin Chen, Huijuan Yang . Fixed point theorems for b-generalized contractive mappings with weak continuity conditions. AIMS Mathematics, 2024, 9(6): 15024-15039. doi: 10.3934/math.2024728
  • The article explores multiple attribute decision making problems through the use of the Pythagorean neutrosophic vague normal set (PyNVNS). The PyNVNS can be generalized to the Pythagorean neutrosophic interval valued normal set (PyNIVNS) and vague set. This study discusses q-rung log Pythagorean neutrosophic vague normal weighted averaging (q-rung log PyNVNWA), q-rung logarithmic Pythagorean neutrosophic vague normal weighted geometric (q-rung log PyNVNWG), q-rung log generalized Pythagorean neutrosophic vague normal weighted averaging (q-rung log GPyNVNWA), and q-rung log generalized Pythagorean neutrosophic vague normal weighted geometric (q-rung log GPyNVNWG) sets. The properties of q-rung log PyNVNSs are discussed based on algebraic operations. The field of agricultural robotics can be described as a fusion of computer science and machine tool technology. In addition to crop harvesting, other agricultural uses are weeding, aerial photography with seed planting, autonomous robot tractors and soil sterilization robots. This study entailed selecting five types of agricultural robotics at random. There are four types of criteria to consider when choosing a robotics system: robot controller features, cheap off-line programming software, safety codes and manufacturer experience and reputation. By comparing expert judgments with the criteria, this study narrows the options down to the most suitable one. Consequently, q has a significant effect on the results of the models.



    The study of differential equations and variational problems with nonstandard p(x)growth conditions is a new and interesting topic. It arises from nonlinear elasticity theory, electrorheological fluids, etc. (see [1,2,3,4,5,6,7,8,9]).

    In this paper, we consider the Neumann problem to the following initial parabolic equation with logarithmic source:

    {utdiv(|u|p2u)=|u|p2ulog|u|Ω|u|p2ulog|u|dx,xΩ,t>0,u(x,t)η=0,xΩ,t>0,u(x,0)=u0,xΩ,t>0, (1.1)

    where Ω is a bounded domain in RN with smooth boundary Ω, p (2,+), Ωu0dx=1|Ω|Ωu0dx=0 with u00.

    Problem (1.1) has been studied by many other authors in a more general form

    {utΔu=f(u)Ωf(u)dx,xΩ,t>0,u(x,t)η=0,xΩ,t>0,u(x,0)=u0,xΩ,t>0, (1.2)

    where Ω is a bounded domain in RN (N1) with |Ω| denoting its Lebesgue measure, N is the outer normal vector of Ω, and the function f(u) is usually taken to be a power of u.

    Wang. M, Wang, .Y in [10], studied the properties of positive solutions when f(u)=|u|p. The authors showed global existence and exponential decay in the case where |Ω| k and they obtained a blow-up result under the assumption that the initial data is bigger than some "Gaussian function" in the case where |Ω| >k.. When f(u)=u|u|p and Ωudx>0, non-global existence result is discussed by [11].

    C. Qu, X. Bai, S. Zheng [12] considered the nonlocal p-Laplace equation

    {utdiv(|u|p2u)=uqΩuqdx,xΩ,t>0,u(x,t)η=0,xΩ,t>0,u(x,0)=u0,xΩ,t>0, (1.3)

    where a critical blow-up solution is determined by q and the sign of the initial energy.

    More recently, L. Yan, Z. Yong [13] established a blow-up and non-extinction of solutions under appropriate conditions for (1.1) in the case p=2.

    Apart the aforesaid attention given to polynomial nonlinear terms, logarithmic nonlinearity has also received a great deal of interest from both physicists and mathematicians (see for example [14,15,16,17,18]). This type of nonlinearity was introduced in the nonrelativistic wave equations describing spinning particles moving in an external electromagnetic field and also in the relativistic wave equation for spinless particles [19]. Moreover, the logarithmic nonlinearity appears in several branches of physics such as inflationary cosmology [20], nuclear physics [21], optics [22] and geophysics [23]. With all those specific underlying meaning in physics, the global-in-time well-posedness of solution to the problem of evolution equation with such logarithmic type nonlinearity captures lots of attention. Birula and Mycielski ([24,25]) studied the following problem:

    {uttuxx+uεuln|u|2=0 in [a,b]×(0,T),u(a,t)=u(b,t)=0,(0,T),u(x,0)=u0(x), ut(x,0)=u1(x) in [a,b], (1.4)

    which is a relativistic version of logarithmic quantum mechanics and can also be obtained by taking the limit p goes to 1 for the p -adic string equation ([26]). In [27], Cazenave and Haraux considered

    uttΔu=uln|u|k in R3 (1.5)

    and established the existence and uniqueness of the solution for the Cauchy problem. Gorka [28] used some compactness arguments and obtained the global existence of weak solutions, for all

    (u0,u1)H10(Ω)×L2([a,b]),

    to the initial-boundary value problem (1.4) in the one-dimensional case. Bartkowski and Gorka, [29] proved the existence of classical solutions and investigated the weak solutions for the corresponding one-dimensional Cauchy problem for Equation (1.5). Hiramatsu et al. [30] introduced the following equation

    uttΔu+u+ut+|u|2u=uln|u| (1.6)

    to study the dynamics of Q-ball in theoretical physics and presented a numerical study. However, there was no theoretical analysis for the problem. In [31], Han proved the global existence of weak solutions, for all

    (u0,u1)H10(Ω)×L2(Ω), (1.7)

    to the initial boundary value problem (1.6) in R3.

    Motivated by the above studies, in this paper we investigate a blow up, non existence and decay of solutions of problem (1.1).

    It is necessary to note that the presence of the logarithmic nonlinearity causes some difficulties in deploying the potential well method. In order to handle this situation we need the following logarithmic Sobolev inequality which was introduced in [10].

    Lemma 1. Let p>1,μ>0, and uW1,p(Rn){0}. Then we have

    pRn|u(x)|plog(|u(x)|u(x)Lp(Rn))dx+nplog(pμenLp)Rn|u(x)|pdxμRn|u(x)|pdx,

    where

    Lp=pn(p1e)p1πp2[Γ(n2+1)Γ(np1p+1)]pn.

    We begin this section by introducing some notations that will be used throughout the paper

    up=uLP(Ω),u1,Ω=uW1,p0=up,

    for 1<p<+.We also we define X0=W1,p0(Ω){0}.

    Lemma 2. Let ϱ be a positive number. Then the following inequality holds

    logse1ϱsϱ,for alls[1,+].

    Lemma 3. (a) For any function uW1,p0(Ω), we have the inequality

    uqBq,pup,

    for all q[1,) if np, and 1qnpnp if n>p. Then the best constant depends Bq,p only on Ω,n,p and q.

    We will denote the constant Bp,p by Bp.

    (b) Let 2p<q<p. For any uW1,p0(Ω) we have

    uqCuαpu1αp,

    where C is a positive constant and

    α=(1p1q)(1n1p+1p)1.

    Remark 1. It follows from Lemma 2 that

    splogse1ϱsp+ϱ,forallϱ>0ands[1,+).

    Now we considering the functional J and I defined on X0 as follows

    J(u)=1pupp1pΩ|u|pln|u|dx+1p2upp. (2.1)
    I(u)=uppΩ|u|pln|u|dx. (2.2)

    The functions I and J are continuous (they are defined as in [32] with some modifications). Moreover, we have

    J(u)=1pI(u)+1p2upp. (2.3)

    Then it is obvious that

    ϕ={uX0:I(u)=0, upp0}.

    d=infuϕJ(u).

    M=Rpp2.

    From [33], we know dM.

    Nδ={uX0:Iδ(u)=0}.

    Theorem 1. (Local existence) Let u0X0. Then there exists a positive constant T0 such that the problem (1.1) has a weak solution u(x,t) on Ω× (0,T0). Furthermore, u(x,t) satisfies the energy inequality

    t0us(s)22ds+J(u(t))J(u0),t[t,T0). (2.4)

    Lemma 4. Suppose that θ>0, α>0, β>0 and h(t) is a nonnegative and absolutely continuous function satisfying h(t)+αhθ(t)β, then for 0<t<, it holds

    h(t)min{h(0),(βα)1θ}.

    Lemma 5. If 0<J(u0)<E1=1p2ebp, where b=nlog(p2enLp),, then there exists a positive constant α2>α1 such that

    upα2. (2.5)

    Proof. Using the logarithmic Sobolev inequality in Lemma 1 and μ=p, we have

    J(u)=1pup1pΩ|u|plog|u|dx+1p2upp[np3log(p2enLp)1plogup+1p2]upp, (2.6)

    Denote α=up, b=nlog(p2enLp), we have

    h(α)=[bp31plnα+1p2]αp. (2.7)

    Let h(α1)=0, E1= h(α1)=1p2ebp2

    h(α1)=0[bp3αp11pαp1logα+αp11p2]=0bp2logα1=0α1=ebp2.

    Furthermore, we get h(α) is increasing in (0,α1) and decreasing in (α1,). Since J(u0)<E1, there exists a positive constant α2>α1 such that J(u0) = h(α2). Let α0 =u02, from (2.6) and (2.7), we have

    h(α0)J(u0).

    Since α0, α2 α1, we get α0α2, so (2.5) holds for t=0.

    To prove (2.5) for t>0, we assume the contrary that u(.,t)2< α2 for some t0>0. By the continuity of u(.,t)2 and α1<α2, we may choose t0 such that u(.,t0)2 > α1, then it follows from (2.6)

    J(u0)=h(α2)<h(u(.,t0)2)J(u)(t0),

    which contradicts the fact that J(u) is nonincreasing in t by (2.4), so (2.5) is true.

    Lemma 6. Let H(u)=E1J(u),J(u0)<E1, then H(u) satisfies the following estimates

    0<H(u0)H(u).

    Proof. It is obvious that H(u)is nondecreasing in t, by (2.4), then it follows from J(u0)<E1that

    H(u)H(u0)=E1J(u0)>0.

    Let uX0 and consider the real function j :λ J(λu) for λ>0,

    The following Lemma shows that j(λ) has a unique positive critical point λ=λ(u) see [3].

    Lemma 7. Let uX0.Then it holds

    (1) limj(λ)λ0+=0 and limj(λ)λ+=,

    (2) there is a unique λ=λ(u)>0 such that j(λ)=0,

    (3) j(λ) is increasing on (0,λ), decreasing on (λ,+) and attains the maximum at λ,

    (4) I(λu)>0 for 0<λ<λ, I(λu)<0 for λ<λ<+ and I(λu)=0.

    Proof. For uX0, by the definition of j, It is clear that (1) holds due to up0, and by derivation of j, we have

    ddλj(λ)=λp1Ω[|u|p|u|plog|u|dx|u|plogλ]dx
    ddλj(λ)=0

    which implies that

    λ=expΩ[|u|pdx|u|plog|u|]dxΩ|u|pdx.

    the statements of (2) and (3) can be shown easily. The last property, (4), is only a simple corollary of the fact that

    I(λ)=λ[λp1Ω(|u|p|u|plog|u|dx|u|plogλ)dx]=λj(λ)=0.

    The proof of lemma is complete.

    Next we denote

    R=(p2enLp)np2,

    Lemma 8. (1) if I(u)>0 then 0<up<R,

    (2) if I(u)<0 then up>R,

    (3) if I(u)=0 then upR.

    Proof. By the definition of I(u), we have

    I(u)uppΩ|u|plog|u|dx=(1μp)upp+[μpuppΩ|u|plog(|u|up)dx]Ω|u|plogupdx,

    Choosing μ=p, and we apply the logarithmic Sobolev inequality (Lemma 1), we obtain

    I(u)(np2logp2enLplogup)upp,

    if I(u)>0, then

    logup<log(p2enLp)np2,

    that's mean

    up<(p2enLp)np2=R,

    and if I(u)<0, we obtain

    up>(p2enLp)np2=R.

    property (3) we can argue similarly the proof of (2).

    The proof of lemma is complete.

    Lemma 9. (see [34]) Let f : R+R+ be a nonincreasing function and σ is a nonnegative constant such that

    +tf1+σ(s)ds1ωfσ(0)f(t).t0.

    Then we have

    (a) f(t)f(0)e1ωt, for all t0, whenever σ=0,

    (b) f(t)f(0)(1+σ1+ωσt)1σ, for all t0, whenever σ>0.

    Remark 2. As in [33], we introduce the following set:

    W+1={uX0,I(u)>0}.W1={uX0,I(u)<0}.

    Theorem 2. if u0W+1,0<J(u0)<M=Rp2, Then the solution u(x,t) of problem (1.1) admits a global weak solution such that

    u(t)¯W+1,for0t<,

    satisfying the energy estimate

    t0us(s)22ds+J(u(t))J(u0),t[t,T0).

    Moreover, the solution decays polynomially, namely

    u2Cs(p2(1+ζs(p2)t))1p2,t0,,t0,

    where Cs and ζs are positives constants .

    Proof. Existence of global weak solutions

    It suffices to show that upp and upp are bounded independent of t.

    In the space W1,p0(Ω), we take a basis {wj}j=1 and define the finite dimensional space

    Vm=span{w1,w2,...wm,}.

    Let u0m be an element of Vm such that

    u0m=mj=1αmjwju0 strongly in W1,p0(Ω).  (3.1)

    as m+, We find the approximate solution um(x,t) of the problem (1.1) in the form

    um(x,t)=mj=1αmj(t)wj(x).

    where the coefficients αmj(1jm) where (αmj(0)=am,j), satisfy the system of ordinary differential equations

    (umt,wi)2+((|um|p2um),wi)2=(|um|pumlog|um|,wi)2(|um|pumlog|um|,wi)2. (3.2)

    We multiply both sides of (3.2) by αmi(t),and we take the sum, we get

    Ωαmm(t)umt(t)wm(x)dx+Ωαmm(t)|um(t)|p2u(t)wm(x)dx=Ωαmm(t)|um|p2(t)um(t)log|um(t)|wm(x)dx,

    that's mean

    Ω|umt(t)|2dx+Ω|um(t)|p2um(t)umt(t)dx=Ω|um|p2(t)um(t)umt(t)log|um(t)|dx,

    this implies that

    umt(t)2+ddt[1pum(t)p+1p2um(t)p1pΩ|um|p(t)log|um(t)|dx]=0,

    we deduce

    umt(t)2+ddtJ(um(t))=0, (3.3)

    by integrating (3.3) with respect to t on [0,t], we obtain the following equality

    t0umt(s)2ds+J(um(t))=J(um(0)),0tTm, (3.4)

    where Tm is the maximal existence time of solution umt(x,t).

    It follows from (3.1), (3.4), and the continuity of J that

    J(um(0))J(u0), oˊum+,

    with J(u0)<d and

    t0umt(s)2ds+J(um(t))<d, 0tTm, (3.5)

    for m large sufficiently large m, We will show that

    um(t)W+1, t0, (*)

    and for sufficiently large m, and assume that (*) does not hold and let t be the smallest time for which um(t)W+1. Then, by the continuity of um(t)W+1, we have

    J(um(t))=d, and I(um(t))=0, (3.6)

    Nevertheless, it is clear that (3.6)1 could not occur by (3.5) while if (3.6)2 holds then, by the definition of d, we have

    J(um(t))infuNδJ(u)=d, (**)

    which also contradicts with (3.5). Thus, (*) is true.

    On the other hand, since um(t)W+1, and

    J(um(t))=1pI(um(t))+1p2um(t)pp, t[0,Tm),

    we deduces from (3.5) that

    um(t)pp<p2d, and t0ums(s)22ds<d, (3.7)

    for sufficiently large m and t [0,Tm). Further, by the logarithmic inequality, we have

    um(t)pp=pJ(um(t))+Ω|um|p(t)log|um(t)|dx1pum(t)pppJ(um(0))+Ω|um|p(t)(log|um(t)|dxum(t)p+logum(t)p)dxpJ(um(0))+μpum(t)ppnp2log(pμenLp)um(t)pp+um(t)pplogum(t)p,

    This implies that

    (pμp)um(t)pppJ(um(0))+um(t)pplogum(t)pnp2log(pμenLp)um(t)pp

    Taking μ<p, we deduce that

    um(t)ppCd,t[0,Tm).

    Decay estimates

    We define

    M(t)=12u22.
    M(t)=Ωutudx=((|u|p2ulog|u|,u)2(Ω|u|p2ulog|u|dx,u)2+upp)=I(u) (3.8)

    for u(t)W+1 by using (2.3) and the energy inequality that, we know

    uppp2J(u)p2J(u0). (3.9)

    By using the logarithmic Sobolev inequality in Lemma 1 and we put μ=p, we have

    I(u)(np2log(p2enLp)logup)upp(log(p2nLp)np2logp2J(u0))upp=(log(p2nLp)np2p2J(u0))upp1l2,p(log(p2nLp)np2p2J(u0))up2=ζup2, (3.10)

    where l2,p is a constant in the embedding Lp(Ω)L2(Ω),p>2 and ζ=1l2,plogMJ(u0).

    From (3.8), we have

    TtI(u(s))ds=TtΩus(s)u(s)dxds=12u(T)22+12u(t)2212u22. (3.11)

    Combining (3.10) and (3.11), it follows that

    Ttup212ζu22, t[0,T]. (3.12)

    Let T+ and apply Lemma 9, such that f(t)=u(t)22,σ=p22,f(0)=1,ω=12ς

    we obtain the following decay estimate

    u2Cs(p2(1+ζs(p2)t))1p2,t0, (3.13)

    where Cs is positive constant and ζs=14ς.

    Definition 1. (Blow-up at+) Let u(x,t) be a weak solution of (1.1). We call u(x,t) blow-up at + if the maximal existence time T= + and

    limt+u(.,t)2=+

    Theorem 3. Assume J(u0)<0, then the solution u(x,t) of problem (1.1) is blow-up at +. Moreover, if u02(pJ(u0)l2,p)p, the lower bound for blow-up rate can be estimated by

    u22u022, (4.1)

    which is independent of t.

    Proof. By the definition of J(u) and (2.4), M(t) satisfies

    M(t)=Ωut,udx=upp+Ω(|u|plog|u||u|pulog|u|)dx=upp+Ω|u|plog|u|dx=pJ(u)+1pupppJ(u), (*)

    by using (2.4) defined in theorem 1 and the condition J(u0)<0, we have

    pJ(u)pt0us(s)22ds, (**)

    so by (*) and (**), we get

    M(t)pt0us(s)22ds, (4.2)

    And by the definition of weak solution, we know that uW1,p(Ω) For any t0>0, we claim that

    t00us22ds>0, (4.3)

    Otherwise, there exists t0>0 such that t00us22ds=0, and hence ut=0 for a.e., (x,t)Ω×(0,t0). Then it follows from (4.2) that

    |u|p+|u|plog|u|=0,

    for a.e., t(0,t0), and then we get from (2.1)

    J(u)=1p2Ω|u|pdx.

    Combining it with J(u)J(u0)0, we obtain up=0 for all t[0,t0], which contradicts the definition of u. Then (4.3) follows.

    Fix t0>0 and let δ=t0 u22ds, then we know that δ is a positive constant. Integrating (4.2) over (t0,t), we obtain

    M(t)M(t0)+ptt0t0 u(s)22dsdτM(t0)+ptt0δdτδ(tt0). (4.4)

    We have

    H(t)=J(t)=ut22,

    where H(t) defined in lemma 6

    Hence

    limtH(t)=limtM(t)=. (4.5)

    And from (4.2), we know

    M(t)=pJ(u)+1pupppJ(u0)+1pupp, (4.6)

    we have

    M(t)+l2,pMp2(t)1pupppJ(u0)+l2,pMp2(t)l2,ppup2pJ(u0)+l2,pup2l2,ppl2,ppup2pJ(u0)pJ(u0), (4.7)

    where l2,p is a constant in the embedding Lp(Ω)L2(Ω), p>2.

    By using Lemma 2.1, J(u0)<0, and u022 (pJ(u0)l2,p)2p, we have

    M(t)min{u022,(pJ(u0)l2,p)2p}u022,

    which means (4.1) is true.

    Definition 2. (Finite time blow-up) Let u(x,t) be a weak solution of (1.1).We call u(x,t) blow-up in finite time if the maximal existence time T is finite and

    limtTu(.,t)2=+.

    Lemma 10. Let ϕ be a positive, twice differentiable function satisfying the following conditions

    ϕ(¯t)>0,and ϕ(¯t)>0,

    for some ¯t[0,T), and the inequality

    ϕ(t)ϕ(t)α(ϕ(t))20,t[¯t,T], (4.8)

    where α>1. Then we have

    ϕ(t)(1ϕ1α(¯t)σ(t¯t)),t[¯t,T).

    with σ is a positive constant, and

    T=¯t+ϕ(t)(α1)ϕ(¯t).

    This implies

    limtTϕ(t)=.

    Theorem 4. Assume 0<J(u0)<M and uW1, then the solution u(x,t) of problem (1.1) is non-extinct in finite time, defined by

    T=¯t+t0u(s)22ds(p22)u(¯t)22,s[¯t,T).

    Proof. we define the functional

    Γ(t)=t0u(s)22ds. (4.9)

    Then one has

    Γ(t)=u(t)22, (4.10)

    and

    Γ(t)=2Ωutudx=2u(t)pp+2Ω|u|plog|u|dx=2pJ(u)+2pu(t)pp, (4.11)

    by using (2.4) in theorem 1, we have

    2pJ(u)2pJ(u0)+2pt0us(s)22ds, (4.12)

    by lemma 8 for I(u)<0, which implies

    u(t)ppR, (4.13)

    by (4.13) and (4.14), we get

    Γ(t)2pJ(u0)+2pt0us(s)22ds+2pu(t)pp=2p(1p2u(t)ppJ(u0))+2pt0us(s)22ds2p(MJ(u0))+2pt0us(s)22ds, (4.14)

    where M=Rp2.

    In other hand we have

    Γ(t)=Γ(t)+t0Γ(s)ds2p(MJ(u0))t0,t[0,t], (4.15)

    also, we have

    14(Γ(t))2(t0Ωus(s)u(s)dxds)2t0u(s)22dst0us(s)22ds, (4.16)

    Now, multiplying (4.15) by Γ(t), we get

    Γ(t)Γ(t)2p(MJ(u0))Γ(t)+2pt0us(s)22dsΓ(t)=2p(MJ(u0))Γ(t)+2pt0us(s)22dst0u(s)22ds, (4.17)

    by using (4.17) in (4.18), we obtain

    Γ(t)Γ(t)2p(MJ(u0))Γ(t)+p2(Γ(t))2, for all t[0,T]. (4.18)

    This follows

    Γ(t)Γ(t)p2(Γ(t))22p(MJ(u0))Γ(t),for all t[0,T]. (4.19)

    By virtue of lemma 10, where α=p2>1, and ϕ(t)=Γ(t), we get

    there exists T>0 such that

    limtTΓ(t)=+,

    which implies

    limtTt0u(s)22ds=+,

    therefore, we get

    limtTu(t)22=+.

    This ends the proof.

    In this work, by using the logarithmic Sobolev inequality and potential wells method, we study the initial boundary value problem of a nonlocal heat equations with logarithmic nonlinearity in a bounded domain, where we obtain the decay, blow-up and non-extinction of solutions under some conditions, and the results extend the results of a recent paper Lijun Yan and Zuodong Yang [13]. In our next study, we will try to apply an alternative approach using the variational principle that has been presented in previous studies [35].

    The authors declare no conflict of interest.



    [1] A. Kaplan, M. Haenlein, Rulers of the world, unite! The challenges and opportunities of artificial intelligence, Bus. Horizons, 63 (2020), 37–50. http://doi.org/10.1016/j.bushor.2019.09.003 doi: 10.1016/j.bushor.2019.09.003
    [2] H. Margetts, C. Dorobantu, Rethink government with AI, Nature, 568 (2019), 163–165. http://doi.org/10.1038/d41586-019-01099-5 doi: 10.1038/d41586-019-01099-5
    [3] K. Cresswell, M. Callaghan, S. Khan, Z. Sheikh, H. Mozaffar, A. Sheikh, Investigating the use of data-driven artificial intelligence in computerised decision support systems for health and social care: A systematic review, Health Inf. J., 26 (2020), 2138–2147. https://doi.org/10.1177/1460458219900452 doi: 10.1177/1460458219900452
    [4] S. A. Yablonsky, Multidimensional data-driven artificial intelligence innovation, Technol. Innov. Magag. Rev., 9 (2019), 16–28.
    [5] J. Klinger, J. Mateos Garcia, K. Stathoulopoulos, Deep learning, deep change? Mapping the development of the artificial intelligence general purpose technology, Scientometrics, 126 (2021), 5589–5621. http://doi.org/10.1007/s11192-021-03936-9 doi: 10.1007/s11192-021-03936-9
    [6] V. Rasskazov, Financial and economic consequences of distribution of artificial intelligence as a general-purpose technology, Financ.: Theory Pract., 24 (2020), 120–132.
    [7] A. Agostini, C. Torras, F. Worgotter, Efficient interactive decision-making framework for robotic applications, Artif. Intell., 247 (2017), 187–212. http://doi.org/10.1016/j.artint.2015.04.004 doi: 10.1016/j.artint.2015.04.004
    [8] L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. http://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [9] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87–96. http://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3
    [10] M. Gorzalczany, A method of inference in approximate reasoning based on interval valued fuzzy sets, Fuzzy Sets Syst., 21 (1987), 1–17. http://doi.org/10.1016/0165-0114(87)90148-5 doi: 10.1016/0165-0114(87)90148-5
    [11] R. Biswas, Vague Groups, Int. J. Comput. Cogn., 4 (2006), 20–23.
    [12] R. R. Yager, Pythagorean membership grades in multi criteria decision-making, IEEE T. Fuzzy Sets Syst., 22 (2014), 958–965. http://doi.org/10.1109/TFUZZ.2013.2278989 doi: 10.1109/TFUZZ.2013.2278989
    [13] X. Peng, Y. Yang, Fundamental properties of interval valued Pythagorean fuzzy aggregation operators, Int. J. Int. Syst., 31 (2016), 444–487.
    [14] S. Ashraf, S. Abdullah, T. Mahmood, F. Ghani, T. Mahmood, Spherical fuzzy sets and their applications in multi-attribute decision making problems, J. Intell. Fuzzy Syst., 36 (2019), 2829–2844. http://doi.org/10.3233/JIFS-172009 doi: 10.3233/JIFS-172009
    [15] A. Nicolescu, M. Teodorescu, A unifying field in logics - Book review, Int. Lett. Soc. Humanistic Sci., 43 (2015), 48–59. http://doi.org/10.18052/www.scipress.com/ILSHS.43.48 doi: 10.18052/www.scipress.com/ILSHS.43.48
    [16] R. N. Xu, Regression prediction for fuzzy time series, Appl. Math. J. Chin. Univ. Ser. B, 16 (2001), 124376140.
    [17] R. R. Yager, Generalized orthopair fuzzy sets, IEEE T. Fuzzy Syst., 25 (2016), 1222–1230. http://doi.org/10.1109/TFUZZ.2016.2604005 doi: 10.1109/TFUZZ.2016.2604005
    [18] B. P. Joshi, A. Singh, P. K. Bhatt, K. S. Vaisla, Interval valued q-rung orthopair fuzzy sets and their properties, J. Intell. Fuzzy Syst., 35 (2018), 5225–5230. http://doi.org/10.3233/JIFS-169806 doi: 10.3233/JIFS-169806
    [19] R. R. Yager, Generalized orthopair fuzzy sets, IEEE T. Fuzzy Syst., 25 (2017), 1222–1230. http://doi.org/10.1109/TFUZZ.2016.2604005 doi: 10.1109/TFUZZ.2016.2604005
    [20] M. S. Habib, O. Asghar, A. Hussain, M. Imran, M. P. Mughal, B. Sarkar, A robust possibilistic programming approach toward animal fat-based biodiesel supply chain network design under uncertain environment, J. Clean. Prod., 278 (2021), 122403. http://doi.org/10.1016/j.jclepro.2020.122403 doi: 10.1016/j.jclepro.2020.122403
    [21] B. Sarkar, M. Tayyab, N. Kim, M. S. Habib, Optimal production delivery policies for supplier and manufacturer in a constrained closed-loop supply chain for returnable transport packaging through metaheuristic approach, Comput. Ind. Eng., 135 (2019), 987–1003. http://doi.org/10.1016/j.cie.2019.05.035 doi: 10.1016/j.cie.2019.05.035
    [22] D. Yadav, R. Kumari, N. Kumar, B. Sarkar, Reduction of waste and carbon emission through the selection of items with crossprice elasticity of demand to form a sustainable supply chain with preservation technology, J. Clean. Prod., 297 (2019), 126298. http://doi.org/10.1016/j.jclepro.2021.126298 doi: 10.1016/j.jclepro.2021.126298
    [23] B. K. Dey, S. Bhuniya, B. Sarkar, Involvement of controllable lead time and variable demand for a smart manufacturing system under a supply chain management, Expert Syst. Appl., 184 (2021), 115464. http://doi.org/10.1016/j.eswa.2021.115464 doi: 10.1016/j.eswa.2021.115464
    [24] B. C. Cuong, V. Kreinovich, Picture fuzzy sets-A new concept for computational intelligence problems, 2013 Third World Congress on Information and Communication Technologies, 2013. http://doi.org/10.1109/WICT.2013.7113099
    [25] M. Akram, W. A. Dudek, F. Ilyas, Group decision making based on Pythagorean fuzzy TOPSIS method, Int. J. Intell. Syst., 34 (2019), 1455–1475. http://doi.org/10.1002/int.22103 doi: 10.1002/int.22103
    [26] M. Akram, W. A. Dudek, J. M. Dar, Pythagorean Dombi Fuzzy Aggregation Operators with Application in Multi-criteria Decision-making, Int. J. Intell. Syst., 34 (2019), 3000–3019. http://doi.org/10.1002/int.22183 doi: 10.1002/int.22183
    [27] Z. Xu, Intuitionistic fuzzy aggregation operators, IEEE Transactions on Fuzzy Systems, (2007), 1179–1187.
    [28] W. F. Liu, J. Chang, X. He, Generalized Pythagorean fuzzy aggregation operators and applications in decision making, Control Decision, 31 (2016), 2280–2286. http://doi.org/10.13195/j.kzyjc.2015.1537 doi: 10.13195/j.kzyjc.2015.1537
    [29] K. Rahman, S. Abdullah, M. Shakeel, M. S. A. Khan, M. Ullah, Interval valued Pythagorean fuzzy geometric aggregation operators and their application to group decision-making problem, Cogent Math., 4 (2017), 1338638. http://doi.org/10.1080/23311835.2017.1338638 doi: 10.1080/23311835.2017.1338638
    [30] K. Rahman, A. Ali, S. Abdullah, F. Amin, Approaches to multi-attribute group decision-making based on induced interval valued Pythagorean fuzzy Einstein aggregation operator, New Math. Natural Comput., 14 (2018), 343–361. https://doi.org/10.1142/S1793005718500217 doi: 10.1142/S1793005718500217
    [31] Z. Yang, J. Chang, Interval-valued Pythagorean normal fuzzy information aggregation operators for multiple attribute decision making approach, IEEE Access, 8 (2020), 51295–51314. http://doi.org/10.1109/ACCESS.2020.2978976 doi: 10.1109/ACCESS.2020.2978976
    [32] K. G. Fatmaa, K. Cengiza, Spherical fuzzy sets and spherical fuzzy TOPSIS method, J. Intell. Fuzzy Syst., 36 (2019), 337–352. http://doi.org/10.3233/JIFS-181401 doi: 10.3233/JIFS-181401
    [33] P. Liu, G. Shahzadi, M. Akram, Specific types of q-rung picture fuzzy Yager aggregation operators for decision-making, Int. J. Comput. Intell. Syst., 13 (2020), 1072–1091. http://doi.org/10.2991/ijcis.d.200717.001 doi: 10.2991/ijcis.d.200717.001
    [34] Z. Yang, X. Li, Z. Cao, J. Li, q-rung orthopair normal fuzzy aggregation operators and their application in multi attribute decision-making, Mathematics, 7 (2019), 1142. http://doi.org/10.3390/math7121142 doi: 10.3390/math7121142
    [35] R. R. Yager, N. Alajlan, Approximate reasoning with generalized orthopair fuzzy sets, Inform. Fusion., 38 (2017), 65–73. http://doi.org/10.1016/j.inffus.2017.02.005 doi: 10.1016/j.inffus.2017.02.005
    [36] M. I. Ali, Another view on q-rung orthopair fuzzy sets, Int. J. Intell. Syst., 33 (2019), 2139–2153. http://doi.org/10.1002/int.22007 doi: 10.1002/int.22007
    [37] P. Liu, P. Wang, Some q-rung orthopair fuzzy aggregation operators and their applications to multiple-attribute decision making, Int. J. Intell. Syst., 33 (2018), 259–280. http://doi.org/10.1002/int.21927 doi: 10.1002/int.21927
    [38] P. Liu, J. Liu, Some q-rung orthopai fuzzy Bonferroni mean operators and their application to multi-attribute group decision making, Int. J. Intell. Syst., 33 (2018), 315–347. http://doi.org/10.1002/int.21933 doi: 10.1002/int.21933
    [39] C. Jana, G. Muhiuddin, M. Pal, Some Dombi aggregation of q-rung orthopair fuzzy numbers in multiple-attribute decision making, Int. J. Intell. Syst., 34 (2019), 3220–3240. http://doi.org/10.1002/int.22191 doi: 10.1002/int.22191
    [40] J. Wang, R. Zhang, X. Zhu, Z. Zhou, X. Shang, W. Li, Some q-rung orthopair fuzzy Muirhead means with their application to multi-attribute group decision making, J. Intell. Fuzzy Syst., 36 (2019), 1599–1614. http://doi.org/10.3233/JIFS-18607 doi: 10.3233/JIFS-18607
    [41] M. S. Yang, C. H. Ko, On a class of fuzzy c-numbers clustering procedures for fuzzy data, Fuzzy Sets. Syst., 84 (1996), 49–60. http://doi.org/10.1016/0165-0114(95)00308-8 doi: 10.1016/0165-0114(95)00308-8
    [42] A. Hussain, M. I. Ali, T. Mahmood, Hesitant q-rung orthopair fuzzy aggregation operators with their applications in multi-criteria decision making, Iran. J. Fuzzy Syst., 17 (2020), 117–134. http://doi.org/10.22111/IJFS.2020.5353 doi: 10.22111/IJFS.2020.5353
    [43] A. Hussain, M. I. Ali, T. Mahmood, M. Munir, Group based generalized q-rung orthopair average aggregation operators and their applications in multi-criteria decision making, Complex Intell. Syst., 7 (2021), 123–144. http://doi.org/10.1007/s40747-020-00176-x doi: 10.1007/s40747-020-00176-x
    [44] F. Smarandache, A unifying field in logics, Neutrosophy neutrosophic probability, set and logic, 2 Eds., Rehoboth: American Research Press, 1999.
    [45] J. Ye, Similarity measures between interval neutrosophic sets and their applications in Multi-criteria decision-making, J. Intell. Fuzzy Syst., 26 (2014), 165–172. http://doi.org/10.3233/IFS-120724 doi: 10.3233/IFS-120724
    [46] H. Zhang, J. Wang, X. Chen, Interval neutrosophic sets and its application in multi-criteria decision making problems, Sci. World J., 2014 (2014), 645953. http://doi.org/10.1155/2014/645953 doi: 10.1155/2014/645953
    [47] H. Bustince, P. Burillo, Vague sets are intuitionistic fuzzy sets, Fuzzy Sets Syst., 79 (1996), 403–405. http://doi.org/10.1016/0165-0114(95)00154-9 doi: 10.1016/0165-0114(95)00154-9
    [48] A. Kumar, S. P. Yadav, S. Kumar, Fuzzy system reliability analysis using T based arithmetic operations on LR type interval valued vague sets, Int. J. Qual. Reliab. Manag., 24 (2007), 846–860. http://doi.org/10.1108/02656710710817126 doi: 10.1108/02656710710817126
    [49] J. Wang, S. Y. Liu, J. Zhang, S. Y. Wang, On the parameterized OWA operators for fuzzy MCDM based on vague set theory, Fuzzy Optim. Decis. Making, 5 (2006), 5–20. http://doi.org/10.1007/s10700-005-4912-2 doi: 10.1007/s10700-005-4912-2
    [50] X. Zhang, Z. Xu, Extension of TOPSIS to multiple criteria decision-making with Pythagorean fuzzy sets, Int. J. Intell. Syst., 29 (2014), 1061–1078. http://doi.org/10.1002/int.21676 doi: 10.1002/int.21676
    [51] C. L. Hwang, K. Yoon, Multiple Attribute Decision Making-Methods and Applications, A State-of-the-Art Survey, Berlin, Heidelberg: Springer, 1981. http://doi.org/10.1007/978-3-642-48318-9
    [52] C. Jana, M. Pal, Application of bipolar intuitionistic fuzzy soft sets in decision-making problem, Int. J. Fuzzy Syst. Appl., 7 (2018), 32–55. http://doi.org/10.4018/IJFSA.2018070103 doi: 10.4018/IJFSA.2018070103
    [53] C. Jana, Multiple attribute group decision-making method based on extended bipolar fuzzy MABAC approach, Comput. Appl. Math., 40 (2021), 227. http://doi.org/10.1007/s40314-021-01606-3 doi: 10.1007/s40314-021-01606-3
    [54] C. Jana, M. Pal, A Robust single valued neutrosophic soft aggregation operators in multi criteria decision-making, Symmetry, 11 (2019), 110. http://doi.org/10.3390/sym11010110 doi: 10.3390/sym11010110
    [55] C. Jana, T. Senapati, M. Pal, Pythagorean fuzzy Dombi aggregation operators and its applications in multiple attribute decision-making, Int. J. Intell. Syst., 34 (2019), 2019–2038. http://doi.org/10.1002/int.22125 doi: 10.1002/int.22125
    [56] K. Ullah, T. Mahmood, Z. Ali, N. Jan, On some distance measures of complex Pythagorean fuzzy sets and their applications in pattern recognition, Comput. Intell. Syst., 6 (2020), 15–27. http://doi.org/10.1007/s40747-019-0103-6 doi: 10.1007/s40747-019-0103-6
    [57] C. Jana, M. Pal, F. Karaaslan, J. Q. Wang, Trapezoidal neutrosophic aggregation operators and their application to the multi-attribute decision-making process, Sci. Iran., 27 (2020), 1655–1673. http://doi.org/10.24200/SCI.2018.51136.2024 doi: 10.24200/SCI.2018.51136.2024
    [58] C. Jana, M. Pal, Multi criteria decision-making process based on some single valued neutrosophic dombi power aggregation operators, Soft Comput., 25 (2021), 5055–5072. http://doi.org/10.1007/s00500-020-05509-z doi: 10.1007/s00500-020-05509-z
    [59] M. Palanikumar, K. Arulmozhi, C. Jana, M. Pal, Multiple‐attribute decision-making spherical vague normal operators and their applications for the selection of farmers, Expert Syst., 40 (2023), e13188. http://doi.org/10.1111/exsy.13188 doi: 10.1111/exsy.13188
    [60] V. Uluçay, Q-neutrosophic soft graphs in operations management and communication network, Soft Comput., 25 (2021), 8441–8459. http://doi.org/10.1007/s00500-021-05772-8 doi: 10.1007/s00500-021-05772-8
    [61] V. Uluçay, Some concepts on interval-valued refined neutrosophic sets and their applications, J. Ambient Intell. Human. Comput., 12 (2021), 7857–7872. http://doi.org/10.1007/s12652-020-02512-y doi: 10.1007/s12652-020-02512-y
    [62] V. Uluçay, I. Deli, M. Şahin, Similarity measures of bipolar neutrosophic sets and their application to multiple criteria decision making, Neural Comput. Appl., 29 (2021), 739–748. http://doi.org/10.1007/s00521-016-2479-1 doi: 10.1007/s00521-016-2479-1
    [63] M. Sahin, N. Olgun, V. Uluçay, H. Acioglu, Some weighted arithmetic operators and geometric operators with SVNSs and their application to multi-criteria decision making problems, New Trends Neutrosophic Theory Appl., 2 (2018), 85–104. http://doi.org/10.5281/zenodo.1237953 doi: 10.5281/zenodo.1237953
    [64] M. Sahin, N. Olgun, V. Uluçay, A. Kargin, F. Smarandache, A new similarity measure based on falsity value between single valued neutrosophic sets based on the centroid points of transformed single valued neutrosophic numbers with applications to pattern recognition, Neutrosophic Sets Syst., 15 (2017), 31–48.
    [65] Y. Lu, Y. Xu, E. H. Viedma, Consensus progress for large-scale group decision making in social networks with incomplete probabilistic hesitant fuzzy information, Appl. Soft Comput., 126 (2022), 109249. http://doi.org/10.1016/j.asoc.2022.109249 doi: 10.1016/j.asoc.2022.109249
    [66] Y. Lu, Y. Xu, J. Huang, J. Wei, E. H. Viedma, Social network clustering and consensus-based distrust behaviors management for large scale group decision-making with incomplete hesitant fuzzy preference relations, Appl. Soft Comput., 117 (2022), 108373. http://doi.org/10.1016/j.asoc.2021.108373 doi: 10.1016/j.asoc.2021.108373
    [67] C. Jana, G. Muhiuddin, M. Pal, Multi-criteria decision-making approach based on SVTrN Dombi aggregation functions. Artif. Intell. Rev., 54 (2021), 3685–3723. http://doi.org/10.1007/s10462-020-09936-0 doi: 10.1007/s10462-020-09936-0
    [68] M. Palanikumar, K. Arulmozhi, C. Jana, Multiple attribute decision-making approach for Pythagorean neutrosophic normal interval-valued aggregation operators, Comput. Appl. Math., 41 (2022), 90. http://doi.org/10.1007/s40314-022-01791-9 doi: 10.1007/s40314-022-01791-9
    [69] X. Peng, H. Yuan, Fundamental properties of Pythagorean fuzzy aggregation operators, Int. J. Intell. Syst. 31 (2016), 444–487. http://doi.org/10.1002/int.21790 doi: 10.1002/int.21790
    [70] B. Sarkar, M. Omair, N. Kim, A cooperative advertising collaboration policy in supply chain management under uncertain conditions, Appl. Soft Comput., 88 (2020), 105948. http://doi.org/10.1016/j.asoc.2019.105948 doi: 10.1016/j.asoc.2019.105948
    [71] U. Mishra, J. Z. Wu, B. Sarkar, Optimum sustainable inventory management with backorder and deterioration under controllable carbon emissions, J. Clean. Prod., 279 (2021), 123699. http://doi.org/10.1016/j.jclepro.2020.123699 doi: 10.1016/j.jclepro.2020.123699
    [72] B. Sarkar, M. Sarkar, B. Ganguly, L. E. Cárdenas-Barrón, Combined effects of carbon emission and production quality improvement for fixed lifetime products in a sustainable supply chain management, Int. J. Prod. Econ., 231 (2021), 107867. http://doi.org/10.1016/j.ijpe.2020.107867 doi: 10.1016/j.ijpe.2020.107867
    [73] U. Mishra, J. Z. Wu, B. Sarkar, A sustainable production-inventory model for a controllable carbon emissions rate under shortages, J. Clean. Prod., 256 (2020), 120268. http://doi.org/10.1016/j.jclepro.2020.120268 doi: 10.1016/j.jclepro.2020.120268
    [74] M. Ullah, B. Sarkar, Recovery-channel selection in a hybrid manufacturing-remanufacturing production model with RFID and product quality, Int. J. Prod. Econ., 219 (2020), 360–374. http://doi.org/10.1016/j.ijpe.2019.07.017 doi: 10.1016/j.ijpe.2019.07.017
    [75] M. Ullah, I. Asghar, M. Zahid, M. Omair, A. AlArjani, B. Sarkar, Ramification of remanufacturing in a sustainable three-echelon closed-loop supply chain management for returnable products, J. Clean. Prod., 290 (2021), 125609. http://doi.org/10.1016/j.jclepro.2020.125609 doi: 10.1016/j.jclepro.2020.125609
  • This article has been cited by:

    1. Peng Shi, Min Jiang, Fugeng Zeng, Yao Huang, Initial boundary value problem for fractional p-Laplacian Kirchhoff type equations with logarithmic nonlinearity, 2021, 18, 1551-0018, 2832, 10.3934/mbe.2021144
    2. Radhouane Aounallah, Salah Boulaaras, Abderrahmane Zarai, Bahri Cherif, General decay and blow up of solution for a nonlinear wave equation with a fractional boundary damping, 2020, 43, 0170-4214, 7175, 10.1002/mma.6455
    3. Ahlem Mesloub, Abderrahmane Zara, Fatiha Mesloub, Bahri-Belkacem Cherif, Mohamed Abdalla, Kamyar Hosseini, The Galerkin Method for Fourth-Order Equation of the Moore–Gibson–Thompson Type with Integral Condition, 2021, 2021, 1687-9139, 1, 10.1155/2021/5532691
    4. Djamel Ouchenane, Zineb Khalili, Fares Yazid, Mohamed Abdalla, Bahri Belkacem Cherif, Ibrahim Mekawy, Liliana Guran, A New Result of Stability for Thermoelastic-Bresse System of Second Sound Related with Forcing, Delay, and Past History Terms, 2021, 2021, 2314-8888, 1, 10.1155/2021/9962569
    5. Fugeng Zeng, Yao Huang, Peng Shi, Initial boundary value problem for a class of p-Laplacian equations with logarithmic nonlinearity, 2021, 18, 1551-0018, 3957, 10.3934/mbe.2021198
    6. Muhammad Jawad, Rashid Jan, Salah Boulaaras, Ibni Amin, Niaz Ali Shah, Sahar Ahmed Idris, David Carf, Unsteady Electrohydrodynamic Stagnation Point Flow of Hybrid Nanofluid Past a Convective Heated Stretch/Shrink Sheet, 2021, 2021, 1687-9139, 1, 10.1155/2021/6229706
    7. Muhammad Jawad, Salah Boulaaras, Niaz Ali Shah, Rashid Jan, Sulima Ahmed Zubair, John D. Clayton, Analytic Simulation for Magnetohydrodynamic Unsteady Buongiorno Model Hybrid Nanofluid Flow over Stretching, 2022, 2022, 1687-9139, 1, 10.1155/2022/6423730
    8. Abdelbaki Choucha, Salah Boulaaras, Djamel Ouchenane, Mohamed Abdalla, Ibrahim Mekawy, Existence and uniqueness for Moore-Gibson-Thompson equation with, source terms, viscoelastic memory and integral condition, 2021, 6, 2473-6988, 7585, 10.3934/math.2021442
    9. Xiaorong Zhang, Zhoujin Cui, Feliz Minhos, Blow-Up Results for a Class of Quasilinear Parabolic Equation with Power Nonlinearity and Nonlocal Source, 2021, 2021, 2314-8888, 1, 10.1155/2021/2208818
    10. Zhoujin Cui, Zisen Mao, Xiaorong Zhang, 2020, Blow-up phenomena for a class of p-Laplacian heat equations with logarithmic nonlinearity term, 978-1-7281-6406-9, 1751, 10.1109/ICISCE50968.2020.00344
    11. N. Lakshmipriya, S. Gnanavel, K. Balachandran, Yong-Ki Ma, Existence and blow-up of weak solutions of a pseudo-parabolic equation with logarithmic nonlinearity, 2022, 2022, 1687-2770, 10.1186/s13661-022-01611-3
    12. Yaxin Zhao, Xiulan Wu, Asymptotic behavior and blow-up of solutions for a nonlocal parabolic equation with a special diffusion process, 2024, 9, 2473-6988, 22883, 10.3934/math.20241113
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1321) PDF downloads(52) Cited by(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog