Processing math: 34%
Research article Special Issues

q-rung logarithmic Pythagorean neutrosophic vague normal aggregating operators and their applications in agricultural robotics

  • The article explores multiple attribute decision making problems through the use of the Pythagorean neutrosophic vague normal set (PyNVNS). The PyNVNS can be generalized to the Pythagorean neutrosophic interval valued normal set (PyNIVNS) and vague set. This study discusses q-rung log Pythagorean neutrosophic vague normal weighted averaging (q-rung log PyNVNWA), q-rung logarithmic Pythagorean neutrosophic vague normal weighted geometric (q-rung log PyNVNWG), q-rung log generalized Pythagorean neutrosophic vague normal weighted averaging (q-rung log GPyNVNWA), and q-rung log generalized Pythagorean neutrosophic vague normal weighted geometric (q-rung log GPyNVNWG) sets. The properties of q-rung log PyNVNSs are discussed based on algebraic operations. The field of agricultural robotics can be described as a fusion of computer science and machine tool technology. In addition to crop harvesting, other agricultural uses are weeding, aerial photography with seed planting, autonomous robot tractors and soil sterilization robots. This study entailed selecting five types of agricultural robotics at random. There are four types of criteria to consider when choosing a robotics system: robot controller features, cheap off-line programming software, safety codes and manufacturer experience and reputation. By comparing expert judgments with the criteria, this study narrows the options down to the most suitable one. Consequently, q has a significant effect on the results of the models.

    Citation: Murugan Palanikumar, Chiranjibe Jana, Biswajit Sarkar, Madhumangal Pal. q-rung logarithmic Pythagorean neutrosophic vague normal aggregating operators and their applications in agricultural robotics[J]. AIMS Mathematics, 2023, 8(12): 30209-30243. doi: 10.3934/math.20231544

    Related Papers:

    [1] Meshari Alesemi . Innovative approaches of a time-fractional system of Boussinesq equations within a Mohand transform. AIMS Mathematics, 2024, 9(10): 29269-29295. doi: 10.3934/math.20241419
    [2] Azzh Saad Alshehry, Humaira Yasmin, Ali M. Mahnashi . Exploring fractional Advection-Dispersion equations with computational methods: Caputo operator and Mohand techniques. AIMS Mathematics, 2025, 10(1): 234-269. doi: 10.3934/math.2025012
    [3] Shabir Ahmad, Aman Ullah, Ali Akgül, Fahd Jarad . A hybrid analytical technique for solving nonlinear fractional order PDEs of power law kernel: Application to KdV and Fornberg-Witham equations. AIMS Mathematics, 2022, 7(5): 9389-9404. doi: 10.3934/math.2022521
    [4] Abdul Samad, Imran Siddique, Fahd Jarad . Meshfree numerical integration for some challenging multi-term fractional order PDEs. AIMS Mathematics, 2022, 7(8): 14249-14269. doi: 10.3934/math.2022785
    [5] Mamta Kapoor, Nehad Ali Shah, Wajaree Weera . Analytical solution of time-fractional Schrödinger equations via Shehu Adomian Decomposition Method. AIMS Mathematics, 2022, 7(10): 19562-19596. doi: 10.3934/math.20221074
    [6] Abdul Samad, Imran Siddique, Zareen A. Khan . Meshfree numerical approach for some time-space dependent order partial differential equations in porous media. AIMS Mathematics, 2023, 8(6): 13162-13180. doi: 10.3934/math.2023665
    [7] M. S. Alqurashi, Saima Rashid, Bushra Kanwal, Fahd Jarad, S. K. Elagan . A novel formulation of the fuzzy hybrid transform for dealing nonlinear partial differential equations via fuzzy fractional derivative involving general order. AIMS Mathematics, 2022, 7(8): 14946-14974. doi: 10.3934/math.2022819
    [8] Asif Khan, Tayyaba Akram, Arshad Khan, Shabir Ahmad, Kamsing Nonlaopon . Investigation of time fractional nonlinear KdV-Burgers equation under fractional operators with nonsingular kernels. AIMS Mathematics, 2023, 8(1): 1251-1268. doi: 10.3934/math.2023063
    [9] Muhammad Imran Liaqat, Sina Etemad, Shahram Rezapour, Choonkil Park . A novel analytical Aboodh residual power series method for solving linear and nonlinear time-fractional partial differential equations with variable coefficients. AIMS Mathematics, 2022, 7(9): 16917-16948. doi: 10.3934/math.2022929
    [10] Aliaa Burqan, Mohammed Shqair, Ahmad El-Ajou, Sherif M. E. Ismaeel, Zeyad AlZhour . Analytical solutions to the coupled fractional neutron diffusion equations with delayed neutrons system using Laplace transform method. AIMS Mathematics, 2023, 8(8): 19297-19312. doi: 10.3934/math.2023984
  • The article explores multiple attribute decision making problems through the use of the Pythagorean neutrosophic vague normal set (PyNVNS). The PyNVNS can be generalized to the Pythagorean neutrosophic interval valued normal set (PyNIVNS) and vague set. This study discusses q-rung log Pythagorean neutrosophic vague normal weighted averaging (q-rung log PyNVNWA), q-rung logarithmic Pythagorean neutrosophic vague normal weighted geometric (q-rung log PyNVNWG), q-rung log generalized Pythagorean neutrosophic vague normal weighted averaging (q-rung log GPyNVNWA), and q-rung log generalized Pythagorean neutrosophic vague normal weighted geometric (q-rung log GPyNVNWG) sets. The properties of q-rung log PyNVNSs are discussed based on algebraic operations. The field of agricultural robotics can be described as a fusion of computer science and machine tool technology. In addition to crop harvesting, other agricultural uses are weeding, aerial photography with seed planting, autonomous robot tractors and soil sterilization robots. This study entailed selecting five types of agricultural robotics at random. There are four types of criteria to consider when choosing a robotics system: robot controller features, cheap off-line programming software, safety codes and manufacturer experience and reputation. By comparing expert judgments with the criteria, this study narrows the options down to the most suitable one. Consequently, q has a significant effect on the results of the models.



    Mathematical methods have been used to represent a variety of real-world issues. For example, we can approximate a body's speed for a given distance and time by using the concept of rate of change. Specifically, we use the notion of differential calculus. Many complicated phenomena, such as chaos, solitons, asymptotic properties, singular formation, and others, are either poorly projected or have not yet been discovered [1,2,3]. Furthermore, the notion of calculus with differential operators and integrals is essential for describing physical phenomena and divining natural events connected to variation and changes. However, while researching issues with hereditary characteristics or memory, numerous researchers found numerous shortcomings and restrictions in integer-order calculus [4,5]. Later, new operators defined with the aid of fractional-order were proposed by mathematicians and physicists. Many researchers are drawn to fractional calculus (FC) while looking at different models [6,7,8].

    In many branches of physical science and engineering, fractional calculus, which deals with arbitrary order derivatives and integrals, is crucial [9]. Fractional calculus and its applications have developed rapidly in the last few years [10,11]. Significant issues in acoustics, fluid mechanics, electromagnetic, analytical chemistry, signal processing, biology, and many other engineering and physical science branches are modeled by nonlinear and linear partial differential equations (PDEs) [12]. Both nonlinear and linear FDEs have been solved analytically and numerically in recent years using a variety of techniques, including the Yang-Laplace transform [13], the Adomian decomposition method [14], the homotopy analysis method [15], and the Laplace decomposition method [16]. Furthermore, nonlinear and linear FDEs are also subjected to the local fractional variational iteration approach [17,18], the fractional complex transform method [19], the modified Laplace decomposition approach [16,20], and the cylindrical-coordinate method [21].

    Mathematical models known as fractional partial differential equations (FPDEs) depict physical processes that exhibit complicated dynamics and non-local effects. FPDEs represent an expansion of the traditional theory of partial differential equations. They enable non-integer orders of differentiation, which more accurately capture the non-local and nonlinear characteristics of an extensive range of physical systems [22,23]. These formulas are being used more and more frequently in several fields, such as biology, engineering, economics, and physics. These formulas are valuable resources for constructing intricate systems and examining the behavior of those operations. This article explores the concept of fractional-order partial differential equations, their applications, and the challenges associated with their analysis and numerical solution [24,25,26].

    In 2013, Al-Smadi proposed the Residual Power Series Method (RPSM) [27]. It is generated from the residual error function mixed with the Taylor series. The solution to the problem is an infinite convergence series [28,29,30]. Many DEs have inspired fresh RPSM algorithms [31,32,33]. Among these DEs are several Boussinesq DEs, fuzzy DEs, and KdV Burger's equation, among many others. These systems are built to generate exact and efficient approximations. We provide a technique to investigate the approximation of solutions to fractional PDEs and systems of PDEs using RPSM in the Mohand transform (MT) formulation. The computational series finds the exact solution after a few iterations [34,35,36,37].

    The computational complexity and effort necessary to implement the methods that were previously discussed are among the most significant constraints. The Mohand distinguishes our work transform iterative methodology (MTIM), which we developed as an iterative approach to addressing fractional PDEs and systems of PDEs. This technique is highly effective in reducing the amount of computational work and complexity necessary due to integrating the MT with the new iterative process.

    In this study, the Mohand residual power series method (MRPSM) and MTIM are used to solve fractional PDEs and systems of PDEs. The numerical values produced by these techniques are more precise when compared to those of other numerical procedures. This study includes a comparison study of the numerical data. A strong indicator of the efficacy and reliability of these methods is the fact that the results of the many approaches presented are compatible with one another. The attractiveness of fractional-order derivatives grows in direct correlation with their worth. Because of this, the algorithms can withstand spikes in computational error, are easy to use, and are quick and accurate. Discovering this will make solving many partial differential equations much easier for mathematicians.

    The portions that follow will cover the basic elements and ideas of the MT, providing the foundation for this operation.

    Definition 2.1. The MT of the function P(t) is defined as [38]

    M[P(t)]=R(s)=s2t0P(t)estdt,  k1sk2.

    The inverse Mohand transform (IMT) is defined as

    M1[R(s)]=P(t).

    Definition 2.2. ([39]). The derivative of fractional-order in the framework of MT is defined as

    M[PF(t)]=sFR(s)n1k=0Pk(0)sk(F+1), 0<Fn.

    Definition 2.3. The properties of MT are given as follows:

    (1) M[P(t)]=sR(s)s2R(0).

    (2) M[P(t)]=s2R(s)s3R(0)s2R(0).

    (3) M[Pn(t)]=snR(s)sn+1R(0)snR(0)snRn1(0).

    Lemma 2.4. Suppose there exists a function represented by P(R,t), having exponential order. M[R(s)]=P(R,t) denotes the MT in this case:

    M[DrFtP(R,t)]=srFR(s)r1j=0sF(rj)1DjFtP(R,0),0<F1, (2.1)

    where R=(R1,R2,,RF)RF, FN, and DrFt=DFt.DFt..DFt(rtimes).

    Proof. To validate Eq (2.4), we use the induction method. Taking r=1 in Eq (2.4):

    M[D2FtP(R,t)]=s2FR(s)s2F1P(R,0)sF1DFtP(R,0).

    Equation (2.4) is true for r=1 on the basis of Definition 2.2. Now, put r=2 in Eq (2.4) to obtain the following outcome:

    M[D2FrP(R,t)]=s2FR(s)s2F1P(R,0)sF1DFtP(R,0). (2.2)

    We obtain the next result from the LHS of Eq (2.2):

    L.H.S=M[D2FtP(R,t)]. (2.3)

    We may also write Eq (2.3) as

    L.H.S=M[DFtDFtP(R,t)]. (2.4)

    Assume

    z(R,t)=DFtP(R,t). (2.5)

    Putting Eq (2.5) in Eq (2.4),

    L.H.S=M[DFtz(R,t)]. (2.6)

    Using the derivative of Caputo, Eq (2.6) becomes

    L.H.S=M[J1Fz(R,t)]. (2.7)

    Applying the RL integral on Eq (2.7),

    L.H.S=M[z(R,t)]s1F. (2.8)

    The derivative property of MT is applied on Eq (2.8) to obtain the following result:

    L.H.S=sFZ(R,s)z(R,0)s1F. (2.9)

    Using Eq (2.5), we obtain

    Z(R,s)=sFR(s)P(R,0)s1F.

    As M[z(t,R)]=Z(R,s), we can write Eq (2.9) as

    L.H.S=s2FR(s)P(R,0)s12FDFtP(R,0)s1F. (2.10)

    Assume that Eq (2.4) is true for r=K. Taking r=K in Eq (2.4),

    M[DKFtP(R,t)]=sKFR(s)K1j=0sF(Kj)1DjFtDjFtP(R,0), 0<F1. (2.11)

    Next, we will have to show that Eq (2.4) for r=K+1 holds. Taking r=K+1 in Eq (2.4),

    M[D(K+1)FtP(R,t)]=s(K+1)FR(s)Kj=0sF((K+1)j)1DjFtP(R,0). (2.12)

    From the left-hand side of Eq (2.12), we derive

    L.H.S=M[DKFt(DKFt)]. (2.13)

    Letting DKFt=g(R,t), Eq (2.13) gives us

    L.H.S=M[DFtg(R,t)]. (2.14)

    Applying Caputo's derivative and the RL integral on Eq (2.14),

    L.H.S=sFM[DKFtP(R,t)]g(R,0)s1F. (2.15)

    On the basis of Eq (2.11), we can write Eq (2.15) as

    L.H.S=srFR(s)r1j=0sF(rj)1DjFtP(R,0). (2.16)

    Equation (2.16) can also be written as

    L.H.S=M[DrFtP(R,0)].

    Using mathematical induction, Eq (2.4) is true for r=K+1. Hence, it is proved that for all positive integers, Eq (2.4) holds.

    Lemma 2.5. Let assume that there exists an exponential-order function P(R,t). M[P(R,t)]=R(s) denotes the MT of P(R,t). The multiple fractional power series (MFPS) in MT is given as

    R(s)=r=0r(R)srF+1,s>0, (2.17)

    where, R=(s1,R2,,RF)RF, FN.

    Proof. Let us consider the Taylor series

    P(R,t)=0(R)+1(R)tFΓ[F+1]++2(R)t2FΓ[2F+1]+. (2.18)

    MT is subjected to Eq (2.18) to obtain

    M[P(R,t)]=M[0(R)]+M[1(R)tFΓ[F+1]]+M[1(R)t2FΓ[2F+1]]+.

    Utilizing the features of MT, we derive

    M[P(R,t)]=0(R)1s+1(R)Γ[F+1]Γ[F+1]1sF+1+2(R)Γ[2F+1]Γ[2F+1]1s2F+1.

    Thus, a new Taylor series form is obtained.

    Lemma 2.6. If M[P(R,t)]=R(s) denotes MT, then the new Taylor series form in MFPS is given as

    0(R)=limssR(s)=P(R,0). (2.19)

    Proof. Assume the Taylor's series

    0(R)=sR(s)1(R)sF2(R)s2F. (2.20)

    When the limit in Eq (2.19) is calculated and simplified, we get Eq (2.20).

    In this part, we construct the framework of the proposed method for the solution of fractional PDEs.

    Step 1. Let us assume the fractional PDE

    DFtP(R,t)+K(R)N(P)δ(R,P)=0. (3.1)

    Step 2. Applying the MT on both sides of Eq (3.1),

    M[DFtP(R,t)+K(R)N(P)δ(R,P)]=0. (3.2)

    On the basis of Lemma 2.4, we derive

    R(s)=q1j=0DjtP(R,0)sjF+1K(R)Y(s)sjF+F(R,s)sjF, (3.3)

    where, M[δ(R,P)]=F(R,s),M[N(P)]=Y(s).

    Step 3. The subsequent result is derived from Eq (3.3):

    R(s)=r=0r(R)srF+1, s>0.

    Step 4. To obtain series form solution use the following procedure step by step:

    0(R)=limssR(s)=P(R,0).

    Subsequently, we obtain

    1(R)=DFtP(R,0),2(R)=D2FtP(R,0),w(R)=DwFtP(R,0).

    Step 5. To obtain R(s) as a Kth truncated series, we use

    RK(s)=Kr=0r(R)srF+1, s>0,
    RK(s)=0(R)s+1(R)sF+1++w(R)swF+1+Kr=w+1r(R)srF+1.

    Step 6. The Mohand residual function (MRF) from (3.3) is solved separately from the Kth-truncated Mohand residual function

    MRes(R,s)=R(s)q1j=0DjtP(R,0)sjF+1+K(R)Y(s)sjFF(R,s)sjF,

    and

    MResK(R,s)=RK(s)q1j=0DjtP(R,0)sjF+1+K(R)Y(s)sjFF(R,s)sjF. (3.4)

    Step 7. In Eq (3.4), use RK(s) in place of its expansion form:

    MResK(R,s)=(0(R)s+1(R)sF+1++w(R)swF+1+Kr=w+1r(R)srF+1)q1j=0DjtP(R,0)sjF+1+K(R)Y(s)sjFF(R,s)sjF. (3.5)

    Step 8. Multiplying sKF+1 with Eq (3.5),

    sKF+1MResK(R,s)=sKF+1(0(R)s+1(R)sF+1++w(R)swF+1+Kr=w+1r(R)srF+1q1j=0DjtP(R,0)sjF+1+K(R)Y(s)sjFF(R,s)sjF). (3.6)

    Step 9. Taking the limit s of Eq (3.6),

    limssKF+1MResK(R,s)=limssKF+1(0(R)s+1(R)sF+1++w(R)swF+1+Kr=w+1r(R)srF+1q1j=0DjtP(R,0)sjF+1+K(R)Y(s)sjFF(R,s)sjF).

    Step 10. The values of K(R) are obtained by solving the following expression:

    lims(sKF+1MResK(R,s))=0,

    where K=1+w,2+w,.

    Step 11. Put K(R) in Eq (3.3).

    Step 12. To determine the required solution, take IMT to obtain RK(s) as PK(R,t).

    Mohand transform iterative method

    Suppose the PDE

    DFtP(R,t)=Υ(P(R,t),DηRP(R,t),D2ηRP(R,t),D3ηRP(R,t)), 0<F,η1, (3.7)

    with IC's

    P(k)(R,0)=hk, k=0,1,2,,m1, (3.8)

    where P(R,t) is a function to be determined and Υ(P(R,t),DηRP(R,t),D2ηRP(R,t),D3ηRP(R,t)) is operator of P(R,t),DηRP(R,t),D2ηRP(R,t) and D3ηRP(R,t). Equation (3.7) is subjected to MT to obtain

    M[P(R,t)]=1sF(m1k=0P(k)(R,0)s1F+k+M[Υ(P(R,t),DηRP(R,t),D2ηRP(R,t),D3ηRP(R,t))]). (3.9)

    The IMT gives us

    P(R,t)=M1[1sF(m1k=0P(k)(R,0)s1F+k+M[Υ(P(R,t),DηRP(R,t),D2ηRP(R,t),D3ηRP(R,t))])]. (3.10)

    The solution via the MTIM technique is represented as

    P(R,t)=i=0Pi. (3.11)

    The decomposition of the operator Υ(P,DηRP,D2ηRP,D3ηRP) is

    Υ(P,DηRP,D2ηRP,D3ηRP)=Υ(P0,DηRP0,D2ηRP0,D3ηRP0)+i=0(Υ(ik=0(Pk,DηRPk,D2ηRPk,D3ηRPk))Υ(i1k=1(Pk,DηRPk,D2ηRPk,D3ηRPk))). (3.12)

    Putting Eqs (3.11) and (3.12) into Eq (3.10), we obtain

    i=0Pi(R,t)=M1[1sF(m1k=0P(k)(R,0)s2F+k+M[Υ(P0,DηRP0,D2ηRP0,D3ηRP0)])]+M1[1sF(M[i=0(Υik=0(Pk,DηRPk,D2ηRPk,D3ηRPk))])]M1[1sF(M[(Υi1k=1(Pk,DηRPk,D2ηRPk,D3ηRPk))])] (3.13)
    P0(R,t)=M1[1sF(m1k=0P(k)(R,0)s2F+k)],P1(R,t)=M1[1sF(M[Υ(P0,DηRP0,D2ηRP0,D3ηRP0)])],Pm+1(R,t)=M1[1sF(M[i=0(Υik=0(Pk,DηRPk,D2ηRPk,D3ηRPk))])]M1[1sF(M[(Υi1k=1(Pk,DηRPk,D2ηRPk,D3ηRPk))])], m=1,2,. (3.14)

    The general solution of Eq (3.7) is given as

    P(R,t)=m1i=0Pi. (3.15)

    Example 4.1. Implementation of MRPSM

    Let us consider the fractional PDE

    DFtP(R,K,Z,t)+2P(R,K,Z,t)R2+2P(R,K,Z,t)K2+2P(R,K,Z,t)Z2=0, where  0<F1. (4.1)

    The initial condition is

    P(R,K,Z,0)=eR+K+Z, (4.2)

    with exact solution

    P(R,K,t)=eR+K+Z3t. (4.3)

    Equation (4.1) is subjected to MT, and using Eq (4.2) we get the following result:

    P(R,K,Z,s)eR+K+Zs+1sF[2P(R,K,Z,s)R2]+1sF[2P(R,K,Z,s)K2]+1sF[2P(R,K,Z,s)Z2]=0. (4.4)

    The kth term's series is represented as

    P(R,K,Z,s)=eR+K+Zs+kr=1fr(R,K,Z,s)srF+1,  r=1,2,3,4. (4.5)

    The residual function of Mohand is given by

    MtRes(R,K,Z,s)=P(R,K,Z,s)eR+K+Zs+1sF[2P(R,K,Z,s)R2]+1sF[2P(R,K,Z,s)K2]+1sF[2P(R,K,Z,s)Z2]=0, (4.6)

    and the kth-MRFs as

    MtResk(R,K,Z,s)=Pk(R,K,Z,s)eR+K+Zs+1sF[2Pk(R,K,Z,s)R2]+1sF[2Pk(R,K,Z,s)K2]+1sF[2Pk(R,K,Z,s)Z2]=0. (4.7)

    Now, we use these steps to find the values of fr(R,K,Z,s) for r=1,2,3,...: Take the rth-Mohand residual function Eq (4.7) for the rth-truncated series Eq (4.5), and then multiply the equation by srF+1 and solve lims(srF+1)MtResP,r(R,K,Z,s))=0 for r=1,2,3,. Using this procedure, we obtain the following terms:

    f1(R,K,Z,s)=3eR+K+Z, (4.8)
    f2(R,K,Z,s)=9eR+K+Z, (4.9)
    f3(R,K,Z,s)=27eR+K+Z, (4.10)

    and so on.

    The values of Eqs (4.9) and (4.10) are inserted in Eq (4.5) to obtain the following result:

    P(R,K,Z,s)=eR+K+Zs3eR+K+ZsF+1+9eR+K+Zs2F+127eR+K+Zs3F+1+. (4.11)

    Using IMT, we obtain the final solution

    P1(R,K,Z,t)=eR+K+Z3tFeR+K+ZΓ(F+1)+9t2FeR+K+ZΓ(2F+1)27t3FeR+K+ZΓ(3F+1). (4.12)

    Implementation of MTIM

    Consider the fractional PDE

    DFtP(R,K,Z,t)=2P(R,K,Z,t)R22P(R,K,Z,t)K22P(R,K,Z,t)Z2, where  0<F1. (4.13)

    The initial condition is

    P(R,K,Z,0)=eR+K+Z. (4.14)

    MT is used on Eq (4.13), giving

    M[DFtP(R,K,Z,t)]=1sF(m1k=0P(k)(R,K,Z,0)s2F+k+M[2P(R,K,Z,t)R22P(R,K,Z,t)K22P(R,K,Z,t)Z2)]). (4.15)

    Applying IMT on Eq (4.15), we obtain

    P(R,K,Z,t)=M1[1sF(m1k=0P(k)(R,K,Z,0)s2F+k+M[2P(R,K,Z,t)R22P(R,K,Z,t)K22P(R,K,Z,t)Z2])]. (4.16)

    Recursively applying the MT, we obtain

    P0(R,K,Z,t)=M1[1sF(m1k=0P(k)(R,K,Z,0)s2F+k)]=M1[P(R,K,Z,0)s2]=eR+K+Z.

    The RL integral is implemented on Eq (4.13), giving

    P(R,K,Z,t)=eR+K+Z+M[2P(R,K,Z,t)R22P(R,K,Z,t)K22P(R,K,Z,t)Z2]. (4.17)

    By using MTIM approach, we obtain the following terms:

    P0(R,K,Z,t)=eR+K+Z, (4.18)
    P1(R,K,Z,t)=3tFeR+K+ZΓ(F+1), (4.19)
    P2(R,K,Z,t)=9t2FeR+K+ZΓ(2F+1), (4.20)
    P3(R,K,Z,t)=27t3FeR+K+ZΓ(3F+1). (4.21)

    The final solution is represented as follows:

    P(R,K,Z,t)=P0(R,K,Z,t)+P1(R,Z,K,t)+P2(R,K,Z,t)+P3(R,K,Z,t)+, (4.22)
    P(R,K,Z,t)=eR+K+Z3tFeR+K+ZΓ(F+1)+9t2FeR+K+ZΓ(2F+1)27t3FeR+K+ZΓ(3F+1)+. (4.23)

    Example 4.2. Implementation of MRPSM

    Consider the system of nonlinear PDEs

    DFtP1(R,t)+3P1(R,t)R33P2(R,t)P2(R,t)R+6P1(R,t)P1(R,t)R=0,DFtP2(R,t)+3P2(R,t)R3+3P1(R,t)P2(R,t)R=0   where   0<F1. (4.24)

    The IC's are given as

    P1(R,0)=4c2ecR(ecR+1)2,P2(R,0)=4c2ecR(ecR+1)2. (4.25)

    Equation (4.24) is subjected to MT, and using Eq (4.25), we get the following result:

    P1(R,s)+4c2ecR(ecR+1)2s+1sF[3P1(R,s)R3]3sFMt[M1tP2(R,s)×M1tP2(R,s)R]+6sFMt[M1tP1(R,s)×M1tP1(R,s)R]=0,P2(R,s)4c2ecR(ecR+1)2s+1sF[3P2(R,s)R3]+3sFMt[M1tP1(R,s)×M1tP2(R,s)R]=0. (4.26)

    The kth term's series is represented as

    P1(R,s)=4c2ecR(ecR+1)2s+kr=1fr(R,s)srF+1,P2(R,s)=4c2ecR(ecR+1)2s+kr=1gr(R,s)srF+1,  r=1,2,3,4. (4.27)

    The residual function of Mohand is given by

    AtRes(R,s)=P1(R,s)+4c2ecR(ecR+1)2s+1sF[3P1(R,s)R3]3sFMt[M1tP2(R,s)×M1tP2(R,s)R]+6sFMt[M1tP1(R,s)×M1tP1(R,s)R]=0,AtRes(R,s)=P2(R,s)4c2ecR(ecR+1)2s+1sF[3P2(R,s)R3]+3sFMt[M1tP1(R,s)×M1tP2(R,s)R]=0, (4.28)

    and the kth-MRFs as

    AtResk(R,s)=P1k(R,s)+4c2ecR(ecR+1)2s+1sF[3P1k(R,s)R3]3sFMt[M1tP2k(R,s)×M1tP2k(R,s)R]+6sFMt[M1tP1k(R,s)×M1tP1k(R,s)R]=0,AtResk(R,s)=P2k(R,s)4c2ecR(ecR+1)2s+1sF[3P2k(R,s)R3]+3sFMt[M1tP1k(R,s)×M1tP2k(R,s)R]=0. (4.29)

    Now, we use these steps to find the values of fr(R,K,Z,s) and gr(R,K,Z,s) for r=1,2,3,...: Put the rth-Mohand residual function Eq (4.29) for the rth-truncated series Eq (4.27), and then multiply the equation by srF+1, and solve MtResP1,r(R,s)=0 and MtResP2,r(R,s)=0 for r=1,2,3,. Using this procedure, we obtain

    f1(R,s)=4c5ecR(ecR1)(ecR+1)3,g1(R,s)=4c5ecR(ecR1)(ecR+1)3, (4.30)
    f2(R,s)=4c8ecR(4ecR+e2cR+1)(ecR+1)4,g2(R,s)=4c8ecR(4ecR+e2cR+1)(ecR+1)4, (4.31)

    and so on.

    The values of Eqs (4.30) and (4.31) are inserted into Eq (4.27) to obtain the following result:

    P1(R,s)=4c2ecRs(ecR+1)2+4c5ecR(ecR1)sF+1(ecR+1)3+4c8ecR(4ecR+e2cR+1)s2F+1(ecR+1)4+,P2(R,s)=4c2ecRs(ecR+1)2+4c5ecR(ecR1)sF+1(ecR+1)3+4c8ecR(4ecR+e2cR+1)s2F+1(ecR+1)4+. (4.32)

    Using IMT, we obtain the final solution:

    P1(R,t)=4c2ecR(ecR+1)2+4c5tFecR(ecR1)Γ(F+1)(ecR+1)3+4c8t2FecR(4ecR+e2cR+1)Γ(2F+1)(ecR+1)4+,P2(R,t)=4c2ecR(ecR+1)2+4c5tFecR(ecR1)Γ(F+1)(ecR+1)3+4c8t2FecR(4ecR+e2cR+1)Γ(2F+1)(ecR+1)4+. (4.33)

    Implementation of MTIM

    Consider the system of nonlinear PDEs

    DFtP1(R,t)=3P1(R,t)R3+3P2(R,t)P2(R,t)R6P1(R,t)P1(R,t)R,DFtP2(R,t)=3P2(R,t)R33P1(R,t)P2(R,t)R,   where   0<F1. (4.34)

    The IC's are given as

    P1(R,0)=4c2ecR(ecR+1)2,P2(R,0)=4c2ecR(ecR+1)2. (4.35)

    MT is used on Eq (4.34), giving

    M[DFtP1(R,t)]=1sF(m1k=0P(k)1(R,0)s2F+k+M[3P1(R,t)R3+3P2(R,t)P2(R,t)R6P1(R,t)P1(R,t)R]),M[DFtP2(R,t)]=1sF(m1k=0P(k)2(R,0)s2F+k+M[3P2(R,t)R33P1(R,t)P2(R,t)R]). (4.36)

    Applying IMT on Eq (4.36), we obtain

    P1(R,t)=M1[1sF(m1k=0P(k)1(R,0)s2F+k+M[3P1(R,t)R3+3P2(R,t)P2(R,t)R6P1(R,t)P1(R,t)R])],P2(R,t)=M1[1sF(m1k=0P(k)2(R,0)s2F+k+M[3P2(R,t)R33P1(R,t)P2(R,t)R])]. (4.37)

    Recursively applying the MT, we obtain

    P10(R,t)=M1[1sF(m1k=0P(k)1(R,0)s2F+k)]=M1[P1(R,0)s2]=4c2ecR(ecR+1)2,
    P20(R,t)=M1[1sF(m1k=0P(k)2(R,0)s2F+k)]=M1[P2(R,0)s2]=4c2ecR(ecR+1)2.

    The RL integral is implemented on Eq (4.34), giving

    P1(R,t)=4c2ecR(ecR+1)2M[3P1(R,t)R3+3P2(R,t)P2(R,t)R6P1(R,t)P1(R,t)R],P2(R,t)=4c2ecR(ecR+1)2M[3P2(R,t)R33P1(R,t)P2(R,t)R]. (4.38)

    By using the MTIM approach, we obtain the following terms:

    P10(R,t)=4c2ecR(ecR+1)2,P11(R,t)=c5tFtanh(cR2)sech2(cR2)Γ(F+1),P12(R,t)=c8t2F(3sech2(cR2)2)(3c3tFΓ(2F+1)2tanh(cR2)sech2(cR2)+Γ(F+1)2Γ(3F+1))Γ(F+1)2Γ(2F+1)Γ(3F+1)(cosh(cR)+1). (4.39)
    \begin{equation} \begin{split} &{{\mathfrak{P}}_{2}}_{0}({{\mathfrak{R}}},{{\mathfrak{t}}}) = \frac{4 c^2 e^{c \mathfrak{R}}}{\left(e^{c \mathfrak{R}}+1\right)^2},\\ &{{\mathfrak{P}}_{2}}_{1}({{\mathfrak{R}}},{{\mathfrak{t}}}) = \frac{c^5 {{\mathfrak{t}}}^\mathfrak{F} \tanh \left(\frac{c {{\mathfrak{R}}}}{2}\right) \text{sech}^2\left(\frac{c {{\mathfrak{R}}}}{2}\right)}{\Gamma (\mathfrak{F}+1)},\\ &{{\mathfrak{P}}_{2}}_{2}({{\mathfrak{R}}},{{\mathfrak{t}}}) = -\frac{c^8 {{\mathfrak{t}}}^{2 \mathfrak{F}} \left(3 \text{sech}^2\left(\frac{c {{\mathfrak{R}}}}{2}\right)-2\right) \left(3 c^3 {{\mathfrak{t}}}^\mathfrak{F} \Gamma (2 \mathfrak{F}+1)^2 \tanh \left(\frac{c {{\mathfrak{R}}}}{2}\right) \text{sech}^2\left(\frac{c {{\mathfrak{R}}}}{2}\right)+\Gamma (\mathfrak{F}+1)^2 \Gamma (3 \mathfrak{F}+1)\right)}{\Gamma (\mathfrak{F}+1)^2 \Gamma (2 \mathfrak{F}+1) \Gamma (3 \mathfrak{F}+1) (\cosh (c {{\mathfrak{R}}})+1)}.\\ \end{split} \end{equation} (4.40)

    The final solution is represented as follows:

    \begin{equation} \begin{split} {\mathfrak{P}}_{1}({{\mathfrak{R}}},{{\mathfrak{t}}}) = {{\mathfrak{P}}_{1}}_{0}({{\mathfrak{R}}},{{\mathfrak{t}}})+{{\mathfrak{P}}_{1}}_{1}({{\mathfrak{R}}},{{\mathfrak{t}}})+{{\mathfrak{P}}_{1}}_{2}({{\mathfrak{R}}},{{\mathfrak{t}}})+\cdots, \end{split} \end{equation} (4.41)
    \begin{equation} \begin{split} {\mathfrak{P}}_{2}({{\mathfrak{R}}},{{\mathfrak{t}}}) = {{\mathfrak{P}}_{2}}_{0}({{\mathfrak{R}}},{{\mathfrak{t}}})+{{\mathfrak{P}}_{2}}_{1}({{\mathfrak{R}}},{{\mathfrak{t}}})+{{\mathfrak{P}}_{2}}_{2}({{\mathfrak{R}}},{{\mathfrak{t}}})+\cdots.\\ \end{split} \end{equation} (4.42)
    \begin{equation} \begin{split} &{\mathfrak{P}}_{1}({{\mathfrak{R}}},{{\mathfrak{t}}}) = \frac{4 c^2 e^{c \mathfrak{R}}}{\left(e^{c \mathfrak{R}}+1\right)^2}+\frac{c^5 {{\mathfrak{t}}}^\mathfrak{F} \tanh \left(\frac{c {{\mathfrak{R}}}}{2}\right) \text{sech}^2\left(\frac{c {{\mathfrak{R}}}}{2}\right)}{\Gamma (\mathfrak{F}+1)}\\&-\frac{c^8 {{\mathfrak{t}}}^{2 \mathfrak{F}} \left(3 \text{sech}^2\left(\frac{c {{\mathfrak{R}}}}{2}\right)-2\right) \left(3 c^3 {{\mathfrak{t}}}^\mathfrak{F} \Gamma (2 \mathfrak{F}+1)^2 \tanh \left(\frac{c {{\mathfrak{R}}}}{2}\right) \text{sech}^2\left(\frac{c {{\mathfrak{R}}}}{2}\right)+\Gamma (\mathfrak{F}+1)^2 \Gamma (3 \mathfrak{F}+1)\right)}{\Gamma (\mathfrak{F}+1)^2 \Gamma (2 \mathfrak{F}+1) \Gamma (3 \mathfrak{F}+1) (\cosh (c {{\mathfrak{R}}})+1)}+\cdots, \end{split} \end{equation} (4.43)
    \begin{equation} \begin{split} &{\mathfrak{P}}_{2}({{\mathfrak{R}}},{{\mathfrak{t}}}) = \frac{4 c^2 e^{c \mathfrak{R}}}{\left(e^{c \mathfrak{R}}+1\right)^2}+\frac{c^5 {{\mathfrak{t}}}^\mathfrak{F} \tanh \left(\frac{c {{\mathfrak{R}}}}{2}\right) \text{sech}^2\left(\frac{c {{\mathfrak{R}}}}{2}\right)}{\Gamma (\mathfrak{F}+1)}\\&-\frac{c^8 {{\mathfrak{t}}}^{2 \mathfrak{F}} \left(3 \text{sech}^2\left(\frac{c {{\mathfrak{R}}}}{2}\right)-2\right) \left(3 c^3 {{\mathfrak{t}}}^\mathfrak{F} \Gamma (2 \mathfrak{F}+1)^2 \tanh \left(\frac{c {{\mathfrak{R}}}}{2}\right) \text{sech}^2\left(\frac{c {{\mathfrak{R}}}}{2}\right)+\Gamma (\mathfrak{F}+1)^2 \Gamma (3 \mathfrak{F}+1)\right)}{\Gamma (\mathfrak{F}+1)^2 \Gamma (2 \mathfrak{F}+1) \Gamma (3 \mathfrak{F}+1) (\cosh (c {{\mathfrak{R}}})+1)}+\cdots.\\ \end{split} \end{equation} (4.44)

    The graphical and tabular results offer a comprehensive evaluation of the effectiveness and accuracy of the MTIM and MRPSM for solving FPDEs.

    Figures 1 and 2 demonstrate the influence of fractional order on the solutions of the equation \mathfrak{P}(\mathfrak{R}, \mathfrak{K}, \mathfrak{Z}, \mathfrak{t}) for specific values of the parameters \mathfrak{K} , \mathfrak{Z} , and \mathfrak{t} . Both 3D and 2D plots highlight the effectiveness of MTIM and MRPSM in accurately capturing the behavior of the solution for varying fractional orders. Figures 3 and 4 provide a comparison between the exact solution and the solutions obtained via MTIM and MRPSM. The close agreement between these solutions demonstrates the reliability of the proposed methods for fractional PDEs. Figures 5 and 6 offer further insights into the effect of fractional order on MRPSM solutions for two distinct cases, \mathfrak{P}{1} and \mathfrak{P}{2} . These plots indicate that MRPSM is highly sensitive to fractional-order variations, which enhances its adaptability for different problems. Figures 7 and 8 depict the results for MTIM in comparison with MRPSM for \mathfrak{P}{1} and \mathfrak{P}{2} under different conditions. The strong correlation between the solutions obtained by the two methods further validates the applicability of both techniques. Figures 9 and 10 show a direct comparison of MRPSM and MTIM for the same fractional order, demonstrating their consistency across both 2D and 3D perspectives. The graphical results affirm that the methods provide nearly identical results, emphasizing their robustness.

    Figure 1.  Graphical comparison of the fractional-order effect on our proposed method's solutions of \mathfrak{P}(\mathfrak{R}, \mathfrak{K}, \mathfrak{Z}, \mathfrak{t}) for \mathfrak{K} = \mathfrak{Z} = 0.1 and \mathfrak{t} = 0.01 in 3D.
    Figure 2.  Graphical comparison of the fractional-order effect on our proposed method's solutions of \mathfrak{P}(\mathfrak{R}, \mathfrak{K}, \mathfrak{Z}, \mathfrak{t}) for \mathfrak{K} = \mathfrak{Z} = 0.1 and \mathfrak{t} = 0.01 in 2D.
    Figure 3.  Graphical depiction of the exact solution and our proposed method's solutions of \mathfrak{P}(\mathfrak{R}, \mathfrak{K}, \mathfrak{Z}, \mathfrak{t}) for \mathfrak{K} = \mathfrak{Z} = 0.1 and \mathfrak{t} = 0.01 in 3D.
    Figure 4.  Graphical depiction of the exact solution and our proposed method's solutions of \mathfrak{P}(\mathfrak{R}, \mathfrak{K}, \mathfrak{Z}, \mathfrak{t}) for \mathfrak{K} = \mathfrak{Z} = 0.1 and \mathfrak{t} = 0.01 in 2D.
    Figure 5.  Graphical comparison of the fractional-order effect on the MRPSM solution of \mathfrak{P}_{1}(\mathfrak{R}, \mathfrak{t}) and \mathfrak{P}_{2}(\mathfrak{R}, \mathfrak{t}) for \mathfrak{t} = 0.1 in 3D.
    Figure 6.  Graphical comparison of the fractional-order effect on the MRPSM solution of \mathfrak{P}_{1}(\mathfrak{R}, \mathfrak{t}) and \mathfrak{P}_{2}(\mathfrak{R}, \mathfrak{t}) for \mathfrak{t} = 0.1 in 2D.
    Figure 7.  Graphical comparison of the fractional-order effect on the MTIM solution of \mathfrak{P}_{1}(\mathfrak{R}, \mathfrak{t}) and \mathfrak{P}_{2}(\mathfrak{R}, \mathfrak{t}) for \mathfrak{t} = 0.1 in 3D.
    Figure 8.  Graphical comparison of the fractional-order effect on the MTIM solution of \mathfrak{P}_{1}(\mathfrak{R}, \mathfrak{t}) and \mathfrak{P}_{2}(\mathfrak{R}, \mathfrak{t}) for \mathfrak{t} = 0.1 in 2D.
    Figure 9.  Graphical comparison of the MRPSM and MTIM solutions for \mathfrak{t} = 0.1 in 3D.
    Figure 10.  Graphical comparison of the MRPSM and MTIM solutions for \mathfrak{t} = 0.1 in 2D.

    Table 1 presents an absolute error comparison for the solutions of example 1 using MTIM and MRPSM. The minimal error values indicate that both methods provide highly accurate solutions, making them practical for solving complex fractional PDEs. Table 2 extends this error comparison to example 2, where both \mathfrak{P}{1} and \mathfrak{P}{2} are evaluated. Once again, the absolute errors are minimal, supporting the precision and reliability of MTIM and MRPSM for different cases. In conclusion, the graphical and tabular results strongly support the efficacy of the proposed methods. MTIM and MRPSM not only simplify the solution process for fractional PDEs, but also provide highly accurate and adaptable solutions. The methods demonstrate strong potential for application in various scientific and engineering fields requiring the analysis of fractional-order systems.

    Table 1.  Absolute error comparison for our proposed method's solutions for \mathfrak{P}(\mathfrak{R}, \mathfrak{K}, \mathfrak{Z}, \mathfrak{t}) for \mathfrak{K} = \mathfrak{Z} = 0.1 .
    \mathfrak{t} \mathfrak{R} MRPSM_{\mathfrak{F}=1} MTIM_{\mathfrak{F}=1} Exact MRPSM\ Error_{\mathfrak{F}=1} MTIM\ Error_{\mathfrak{F}=1}
    0.01 0.10 1.30996440544749 1.30996440544749 1.30996445073324 4.528574915063 \times 10^{-8} 4.528574915063 \times 10^{-8}
    0.35 1.68202759155083 1.68202759155083 1.68202764969888 5.814805303927 \times 10^{-8} 5.814805303927 \times 10^{-8}
    0.60 2.15976617912133 2.15976617912133 2.15976625378491 7.466357798691 \times 10^{-8} 7.466357798691 \times 10^{-8}
    0.85 2.77319466809436 2.77319466809436 2.77319476396429 9.586993199306 \times 10^{-8} 9.586993199306 \times 10^{-8}
    0.03 0.10 1.23367443521972 1.23367443521972 1.23367805995674 3.624737017871 \times 10^{-6} 3.624737017871 \times 10^{-6}
    0.35 1.58406933074002 1.58406933074002 1.58407398499448 4.654254460056 \times 10^{-6} 4.654254460056 \times 10^{-6}
    0.60 2.03398528246572 2.03398528246572 2.03399125864675 5.976181022049 \times 10^{-6} 5.976181022049 \times 10^{-6}
    0.85 2.61168879985479 2.61168879985479 2.61169647342311 7.673568327426 \times 10^{-6} 7.673568327426 \times 10^{-6}
    0.05 0.10 1.16180660244557 1.16180660244557 1.16183424272828 2.764028271173 \times 10^{-5} 2.764028271173 \times 10^{-5}
    0.35 1.49178920681574 1.49178920681574 1.49182469764127 3.549082552645 \times 10^{-5} 3.549082552645 \times 10^{-5}
    0.60 1.91549525789186 1.91549525789186 1.91554082901389 4.557112203484 \times 10^{-5} 4.557112203484 \times 10^{-5}
    0.85 2.45954459667798 2.45954459667798 2.45960311115694 5.851447895999 \times 10^{-5} 5.851447895999 \times 10^{-5}
    0.07 0.10 1.09406933762259 1.09406933762259 1.09417428370521 1.049460826105 \times 10^{-4} 1.049460826105 \times 10^{-4}
    0.35 1.40481283712613 1.40481283712613 1.40494759056359 1.347534374536 \times 10^{-4} 1.347534374536 \times 10^{-4}
    0.60 1.80381538855917 1.80381538855917 1.80398841539785 1.730268386763 \times 10^{-4} 1.730268386763 \times 10^{-4}
    0.85 2.31614480592246 2.31614480592246 2.31636697678109 2.221708586298 \times 10^{-4} 2.221708586298 \times 10^{-4}
    0.10 0.10 0.99957044701003 0.99957044701003 1.00000000000000 4.295529899697 \times 10^{-4} 4.295529899697 \times 10^{-4}
    0.35 1.28347385973080 1.28347385973080 1.28402541668774 5.515569569352 \times 10^{-4} 5.515569569352 \times 10^{-4}
    0.60 1.64801305754867 1.64801305754867 1.64872127070012 7.082131514557 \times 10^{-4} 7.082131514557 \times 10^{-4}
    0.85 2.11609065292577 2.11609065292577 2.11700001661267 9.093636869019 \times 10^{-4} 9.093636869019 \times 10^{-4}

     | Show Table
    DownLoad: CSV
    Table 2.  Absolute error comparison for our proposed method's solutions for {{\mathfrak{P}}_{1}}({\mathfrak{R}}, {\mathfrak{t}}) and {{\mathfrak{P}}_{2}}({\mathfrak{R}}, {\mathfrak{t}}) .
    {\mathfrak{t}} {\mathfrak{R}} MRPSM_{\mathfrak{F}=0.7} MTIM_{\mathfrak{F}=0.7} MRPSM_{\mathfrak{F}=1.0} MTIM_{\mathfrak{F}=1.0} |MRPSM-MTIM|_{\mathfrak{F}=0.7} |MRPSM-MTIM|_{\mathfrak{F}=1.0}
    0.1 0.10 0.2499527853 0.2499526861 0.2499121337 0.2499121276 9.9242792095 \times 10^{-8} 6.0831994996 \times 10^{-8}
    0.35 0.2486293113 0.2486289768 0.2483568594 0.2483568389 3.3452402567 \times 10^{-7} 2.0505029479 \times 10^{-8}
    0.60 0.2454001942 0.2453996649 0.2449043498 0.2449043174 5.2929990035 \times 10^{-7} 3.2444037623 \times 10^{-8}
    0.85 0.2403639798 0.2403633177 0.2396597476 0.2396597070 6.6212486968 \times 10^{-7} 4.0585694638 \times 10^{-8}
    0.3 0.10 0.2499229699 0.2499219730 0.2499903237 0.2499901595 9.9690462096 \times 10^{-7} 1.6424638585 \times 10^{-7}
    0.35 0.2490954767 0.2490921164 0.2488224297 0.2488218760 3.3603301558 \times 10^{-6} 5.5363579581 \times 10^{-7}
    0.60 0.2463478586 0.2463425417 0.2457429414 0.2457420654 5.3168749624 \times 10^{-6} 8.7598901432 \times 10^{-7}
    0.85 0.2417642150 0.2417575638 0.2408460059 0.2408449101 6.6511162011 \times 10^{-6} 1.0958137564 \times 10^{-6}
    0.5 0.10 0.2497783238 0.2497754095 0.2499905839 0.2499898235 2.9143115888 \times 10^{-6} 7.6039993426 \times 10^{-7}
    0.35 0.2493515651 0.2493417416 0.2492122418 0.2492096786 9.8234564366 \times 10^{-6} 2.5631286842 \times 10^{-6}
    0.60 0.2469966017 0.2469810585 0.2465102198 0.2465061643 1.5543142236 \times 10^{-5} 4.0555046959 \times 10^{-6}
    0.85 0.2427855197 0.2427660760 0.2419673860 0.2419623128 1.9443610367 \times 10^{-5} 5.0732118353 \times 10^{-6}
    0.7 0.10 0.2495611717 0.2495552642 0.2499129141 0.2499108276 5.9075153423 \times 10^{-6} 2.0865374195 \times 10^{-6}
    0.35 0.2494909149 0.2494710021 0.2495262957 0.2495192624 1.9912839737 \times 10^{-5} 7.0332251095 \times 10^{-6}
    0.60 0.2474879230 0.2474564159 0.2472061853 0.2471950570 3.1507046666 \times 10^{-5} 1.1128304885 \times 10^{-5}
    0.85 0.2436133438 0.2435739303 0.2430238880 0.2430099671 3.9413570944 \times 10^{-5} 1.3920893276 \times 10^{-5}
    1.0 0.10 0.2491344789 0.2491219850 0.2496502911 0.2496442079 1.2493927289 \times 10^{-5} 6.0831994737 \times 10^{-6}
    0.35 0.2495497378 0.2495076238 0.2498553300 0.2498348249 4.2114079676 \times 10^{-5} 2.0505029473 \times 10^{-5}
    0.60 0.2480300251 0.2479633902 0.2481164215 0.2480839774 6.6634909492 \times 10^{-5} 3.2444037567 \times 10^{-5}
    0.85 0.2446212213 0.2445378648 0.2444869946 0.2444464089 8.3356582432 \times 10^{-5} 4.0585694683 \times 10^{-5}

     | Show Table
    DownLoad: CSV

    In conclusion, this study has demonstrated the efficacy of MTIM and MRPSM in solving fractional-order PDEs and systems of PDEs. By employing the Caputo operator to define fractional derivatives, we have shown that these methods provide a powerful and flexible framework for tackling complex problems in applied mathematics. The results obtained through our examples confirm that MTIM and MRPSM not only simplify the solution process, but also improve the accuracy and reliability of the solutions. These methods hold significant potential for application in various scientific and engineering disciplines, particularly in situations where traditional approaches may fall short. Future work can extend these techniques to more complex and higher-dimensional problems, further establishing their utility in the field of fractional calculus and beyond.

    A.S.A and H.Y Conceptualization, A.M.M; formal analysis, A.S.A. investigation, A.S.A. project administration, A.S.A. validation, visualization, H.Y. writing-review & editing; A.M.M; Data curation, H.Y. resources, A.M.M; validation, H.Y. software, H.Y. visualization, A.M.M; resources, H.Y. project administration, H.Y. writing-review & editing, H.Y. funding. All authors have read and agreed to the published version of the manuscript.

    This work was supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R183), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia (KFU242276).

    This work was supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R183), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Saudi Arabia (KFU242276).

    The authors declare that they have no conflicts of interest.



    [1] A. Kaplan, M. Haenlein, Rulers of the world, unite! The challenges and opportunities of artificial intelligence, Bus. Horizons, 63 (2020), 37–50. http://doi.org/10.1016/j.bushor.2019.09.003 doi: 10.1016/j.bushor.2019.09.003
    [2] H. Margetts, C. Dorobantu, Rethink government with AI, Nature, 568 (2019), 163–165. http://doi.org/10.1038/d41586-019-01099-5 doi: 10.1038/d41586-019-01099-5
    [3] K. Cresswell, M. Callaghan, S. Khan, Z. Sheikh, H. Mozaffar, A. Sheikh, Investigating the use of data-driven artificial intelligence in computerised decision support systems for health and social care: A systematic review, Health Inf. J., 26 (2020), 2138–2147. https://doi.org/10.1177/1460458219900452 doi: 10.1177/1460458219900452
    [4] S. A. Yablonsky, Multidimensional data-driven artificial intelligence innovation, Technol. Innov. Magag. Rev., 9 (2019), 16–28.
    [5] J. Klinger, J. Mateos Garcia, K. Stathoulopoulos, Deep learning, deep change? Mapping the development of the artificial intelligence general purpose technology, Scientometrics, 126 (2021), 5589–5621. http://doi.org/10.1007/s11192-021-03936-9 doi: 10.1007/s11192-021-03936-9
    [6] V. Rasskazov, Financial and economic consequences of distribution of artificial intelligence as a general-purpose technology, Financ.: Theory Pract., 24 (2020), 120–132.
    [7] A. Agostini, C. Torras, F. Worgotter, Efficient interactive decision-making framework for robotic applications, Artif. Intell., 247 (2017), 187–212. http://doi.org/10.1016/j.artint.2015.04.004 doi: 10.1016/j.artint.2015.04.004
    [8] L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. http://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [9] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87–96. http://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3
    [10] M. Gorzalczany, A method of inference in approximate reasoning based on interval valued fuzzy sets, Fuzzy Sets Syst., 21 (1987), 1–17. http://doi.org/10.1016/0165-0114(87)90148-5 doi: 10.1016/0165-0114(87)90148-5
    [11] R. Biswas, Vague Groups, Int. J. Comput. Cogn., 4 (2006), 20–23.
    [12] R. R. Yager, Pythagorean membership grades in multi criteria decision-making, IEEE T. Fuzzy Sets Syst., 22 (2014), 958–965. http://doi.org/10.1109/TFUZZ.2013.2278989 doi: 10.1109/TFUZZ.2013.2278989
    [13] X. Peng, Y. Yang, Fundamental properties of interval valued Pythagorean fuzzy aggregation operators, Int. J. Int. Syst., 31 (2016), 444–487.
    [14] S. Ashraf, S. Abdullah, T. Mahmood, F. Ghani, T. Mahmood, Spherical fuzzy sets and their applications in multi-attribute decision making problems, J. Intell. Fuzzy Syst., 36 (2019), 2829–2844. http://doi.org/10.3233/JIFS-172009 doi: 10.3233/JIFS-172009
    [15] A. Nicolescu, M. Teodorescu, A unifying field in logics - Book review, Int. Lett. Soc. Humanistic Sci., 43 (2015), 48–59. http://doi.org/10.18052/www.scipress.com/ILSHS.43.48 doi: 10.18052/www.scipress.com/ILSHS.43.48
    [16] R. N. Xu, Regression prediction for fuzzy time series, Appl. Math. J. Chin. Univ. Ser. B, 16 (2001), 124376140.
    [17] R. R. Yager, Generalized orthopair fuzzy sets, IEEE T. Fuzzy Syst., 25 (2016), 1222–1230. http://doi.org/10.1109/TFUZZ.2016.2604005 doi: 10.1109/TFUZZ.2016.2604005
    [18] B. P. Joshi, A. Singh, P. K. Bhatt, K. S. Vaisla, Interval valued q-rung orthopair fuzzy sets and their properties, J. Intell. Fuzzy Syst., 35 (2018), 5225–5230. http://doi.org/10.3233/JIFS-169806 doi: 10.3233/JIFS-169806
    [19] R. R. Yager, Generalized orthopair fuzzy sets, IEEE T. Fuzzy Syst., 25 (2017), 1222–1230. http://doi.org/10.1109/TFUZZ.2016.2604005 doi: 10.1109/TFUZZ.2016.2604005
    [20] M. S. Habib, O. Asghar, A. Hussain, M. Imran, M. P. Mughal, B. Sarkar, A robust possibilistic programming approach toward animal fat-based biodiesel supply chain network design under uncertain environment, J. Clean. Prod., 278 (2021), 122403. http://doi.org/10.1016/j.jclepro.2020.122403 doi: 10.1016/j.jclepro.2020.122403
    [21] B. Sarkar, M. Tayyab, N. Kim, M. S. Habib, Optimal production delivery policies for supplier and manufacturer in a constrained closed-loop supply chain for returnable transport packaging through metaheuristic approach, Comput. Ind. Eng., 135 (2019), 987–1003. http://doi.org/10.1016/j.cie.2019.05.035 doi: 10.1016/j.cie.2019.05.035
    [22] D. Yadav, R. Kumari, N. Kumar, B. Sarkar, Reduction of waste and carbon emission through the selection of items with crossprice elasticity of demand to form a sustainable supply chain with preservation technology, J. Clean. Prod., 297 (2019), 126298. http://doi.org/10.1016/j.jclepro.2021.126298 doi: 10.1016/j.jclepro.2021.126298
    [23] B. K. Dey, S. Bhuniya, B. Sarkar, Involvement of controllable lead time and variable demand for a smart manufacturing system under a supply chain management, Expert Syst. Appl., 184 (2021), 115464. http://doi.org/10.1016/j.eswa.2021.115464 doi: 10.1016/j.eswa.2021.115464
    [24] B. C. Cuong, V. Kreinovich, Picture fuzzy sets-A new concept for computational intelligence problems, 2013 Third World Congress on Information and Communication Technologies, 2013. http://doi.org/10.1109/WICT.2013.7113099
    [25] M. Akram, W. A. Dudek, F. Ilyas, Group decision making based on Pythagorean fuzzy TOPSIS method, Int. J. Intell. Syst., 34 (2019), 1455–1475. http://doi.org/10.1002/int.22103 doi: 10.1002/int.22103
    [26] M. Akram, W. A. Dudek, J. M. Dar, Pythagorean Dombi Fuzzy Aggregation Operators with Application in Multi-criteria Decision-making, Int. J. Intell. Syst., 34 (2019), 3000–3019. http://doi.org/10.1002/int.22183 doi: 10.1002/int.22183
    [27] Z. Xu, Intuitionistic fuzzy aggregation operators, IEEE Transactions on Fuzzy Systems, (2007), 1179–1187.
    [28] W. F. Liu, J. Chang, X. He, Generalized Pythagorean fuzzy aggregation operators and applications in decision making, Control Decision, 31 (2016), 2280–2286. http://doi.org/10.13195/j.kzyjc.2015.1537 doi: 10.13195/j.kzyjc.2015.1537
    [29] K. Rahman, S. Abdullah, M. Shakeel, M. S. A. Khan, M. Ullah, Interval valued Pythagorean fuzzy geometric aggregation operators and their application to group decision-making problem, Cogent Math., 4 (2017), 1338638. http://doi.org/10.1080/23311835.2017.1338638 doi: 10.1080/23311835.2017.1338638
    [30] K. Rahman, A. Ali, S. Abdullah, F. Amin, Approaches to multi-attribute group decision-making based on induced interval valued Pythagorean fuzzy Einstein aggregation operator, New Math. Natural Comput., 14 (2018), 343–361. https://doi.org/10.1142/S1793005718500217 doi: 10.1142/S1793005718500217
    [31] Z. Yang, J. Chang, Interval-valued Pythagorean normal fuzzy information aggregation operators for multiple attribute decision making approach, IEEE Access, 8 (2020), 51295–51314. http://doi.org/10.1109/ACCESS.2020.2978976 doi: 10.1109/ACCESS.2020.2978976
    [32] K. G. Fatmaa, K. Cengiza, Spherical fuzzy sets and spherical fuzzy TOPSIS method, J. Intell. Fuzzy Syst., 36 (2019), 337–352. http://doi.org/10.3233/JIFS-181401 doi: 10.3233/JIFS-181401
    [33] P. Liu, G. Shahzadi, M. Akram, Specific types of q-rung picture fuzzy Yager aggregation operators for decision-making, Int. J. Comput. Intell. Syst., 13 (2020), 1072–1091. http://doi.org/10.2991/ijcis.d.200717.001 doi: 10.2991/ijcis.d.200717.001
    [34] Z. Yang, X. Li, Z. Cao, J. Li, q-rung orthopair normal fuzzy aggregation operators and their application in multi attribute decision-making, Mathematics, 7 (2019), 1142. http://doi.org/10.3390/math7121142 doi: 10.3390/math7121142
    [35] R. R. Yager, N. Alajlan, Approximate reasoning with generalized orthopair fuzzy sets, Inform. Fusion., 38 (2017), 65–73. http://doi.org/10.1016/j.inffus.2017.02.005 doi: 10.1016/j.inffus.2017.02.005
    [36] M. I. Ali, Another view on q-rung orthopair fuzzy sets, Int. J. Intell. Syst., 33 (2019), 2139–2153. http://doi.org/10.1002/int.22007 doi: 10.1002/int.22007
    [37] P. Liu, P. Wang, Some q-rung orthopair fuzzy aggregation operators and their applications to multiple-attribute decision making, Int. J. Intell. Syst., 33 (2018), 259–280. http://doi.org/10.1002/int.21927 doi: 10.1002/int.21927
    [38] P. Liu, J. Liu, Some q-rung orthopai fuzzy Bonferroni mean operators and their application to multi-attribute group decision making, Int. J. Intell. Syst., 33 (2018), 315–347. http://doi.org/10.1002/int.21933 doi: 10.1002/int.21933
    [39] C. Jana, G. Muhiuddin, M. Pal, Some Dombi aggregation of q-rung orthopair fuzzy numbers in multiple-attribute decision making, Int. J. Intell. Syst., 34 (2019), 3220–3240. http://doi.org/10.1002/int.22191 doi: 10.1002/int.22191
    [40] J. Wang, R. Zhang, X. Zhu, Z. Zhou, X. Shang, W. Li, Some q-rung orthopair fuzzy Muirhead means with their application to multi-attribute group decision making, J. Intell. Fuzzy Syst., 36 (2019), 1599–1614. http://doi.org/10.3233/JIFS-18607 doi: 10.3233/JIFS-18607
    [41] M. S. Yang, C. H. Ko, On a class of fuzzy c-numbers clustering procedures for fuzzy data, Fuzzy Sets. Syst., 84 (1996), 49–60. http://doi.org/10.1016/0165-0114(95)00308-8 doi: 10.1016/0165-0114(95)00308-8
    [42] A. Hussain, M. I. Ali, T. Mahmood, Hesitant q-rung orthopair fuzzy aggregation operators with their applications in multi-criteria decision making, Iran. J. Fuzzy Syst., 17 (2020), 117–134. http://doi.org/10.22111/IJFS.2020.5353 doi: 10.22111/IJFS.2020.5353
    [43] A. Hussain, M. I. Ali, T. Mahmood, M. Munir, Group based generalized q-rung orthopair average aggregation operators and their applications in multi-criteria decision making, Complex Intell. Syst., 7 (2021), 123–144. http://doi.org/10.1007/s40747-020-00176-x doi: 10.1007/s40747-020-00176-x
    [44] F. Smarandache, A unifying field in logics, Neutrosophy neutrosophic probability, set and logic, 2 Eds., Rehoboth: American Research Press, 1999.
    [45] J. Ye, Similarity measures between interval neutrosophic sets and their applications in Multi-criteria decision-making, J. Intell. Fuzzy Syst., 26 (2014), 165–172. http://doi.org/10.3233/IFS-120724 doi: 10.3233/IFS-120724
    [46] H. Zhang, J. Wang, X. Chen, Interval neutrosophic sets and its application in multi-criteria decision making problems, Sci. World J., 2014 (2014), 645953. http://doi.org/10.1155/2014/645953 doi: 10.1155/2014/645953
    [47] H. Bustince, P. Burillo, Vague sets are intuitionistic fuzzy sets, Fuzzy Sets Syst., 79 (1996), 403–405. http://doi.org/10.1016/0165-0114(95)00154-9 doi: 10.1016/0165-0114(95)00154-9
    [48] A. Kumar, S. P. Yadav, S. Kumar, Fuzzy system reliability analysis using T based arithmetic operations on LR type interval valued vague sets, Int. J. Qual. Reliab. Manag., 24 (2007), 846–860. http://doi.org/10.1108/02656710710817126 doi: 10.1108/02656710710817126
    [49] J. Wang, S. Y. Liu, J. Zhang, S. Y. Wang, On the parameterized OWA operators for fuzzy MCDM based on vague set theory, Fuzzy Optim. Decis. Making, 5 (2006), 5–20. http://doi.org/10.1007/s10700-005-4912-2 doi: 10.1007/s10700-005-4912-2
    [50] X. Zhang, Z. Xu, Extension of TOPSIS to multiple criteria decision-making with Pythagorean fuzzy sets, Int. J. Intell. Syst., 29 (2014), 1061–1078. http://doi.org/10.1002/int.21676 doi: 10.1002/int.21676
    [51] C. L. Hwang, K. Yoon, Multiple Attribute Decision Making-Methods and Applications, A State-of-the-Art Survey, Berlin, Heidelberg: Springer, 1981. http://doi.org/10.1007/978-3-642-48318-9
    [52] C. Jana, M. Pal, Application of bipolar intuitionistic fuzzy soft sets in decision-making problem, Int. J. Fuzzy Syst. Appl., 7 (2018), 32–55. http://doi.org/10.4018/IJFSA.2018070103 doi: 10.4018/IJFSA.2018070103
    [53] C. Jana, Multiple attribute group decision-making method based on extended bipolar fuzzy MABAC approach, Comput. Appl. Math., 40 (2021), 227. http://doi.org/10.1007/s40314-021-01606-3 doi: 10.1007/s40314-021-01606-3
    [54] C. Jana, M. Pal, A Robust single valued neutrosophic soft aggregation operators in multi criteria decision-making, Symmetry, 11 (2019), 110. http://doi.org/10.3390/sym11010110 doi: 10.3390/sym11010110
    [55] C. Jana, T. Senapati, M. Pal, Pythagorean fuzzy Dombi aggregation operators and its applications in multiple attribute decision-making, Int. J. Intell. Syst., 34 (2019), 2019–2038. http://doi.org/10.1002/int.22125 doi: 10.1002/int.22125
    [56] K. Ullah, T. Mahmood, Z. Ali, N. Jan, On some distance measures of complex Pythagorean fuzzy sets and their applications in pattern recognition, Comput. Intell. Syst., 6 (2020), 15–27. http://doi.org/10.1007/s40747-019-0103-6 doi: 10.1007/s40747-019-0103-6
    [57] C. Jana, M. Pal, F. Karaaslan, J. Q. Wang, Trapezoidal neutrosophic aggregation operators and their application to the multi-attribute decision-making process, Sci. Iran., 27 (2020), 1655–1673. http://doi.org/10.24200/SCI.2018.51136.2024 doi: 10.24200/SCI.2018.51136.2024
    [58] C. Jana, M. Pal, Multi criteria decision-making process based on some single valued neutrosophic dombi power aggregation operators, Soft Comput., 25 (2021), 5055–5072. http://doi.org/10.1007/s00500-020-05509-z doi: 10.1007/s00500-020-05509-z
    [59] M. Palanikumar, K. Arulmozhi, C. Jana, M. Pal, Multiple‐attribute decision-making spherical vague normal operators and their applications for the selection of farmers, Expert Syst., 40 (2023), e13188. http://doi.org/10.1111/exsy.13188 doi: 10.1111/exsy.13188
    [60] V. Uluçay, Q-neutrosophic soft graphs in operations management and communication network, Soft Comput., 25 (2021), 8441–8459. http://doi.org/10.1007/s00500-021-05772-8 doi: 10.1007/s00500-021-05772-8
    [61] V. Uluçay, Some concepts on interval-valued refined neutrosophic sets and their applications, J. Ambient Intell. Human. Comput., 12 (2021), 7857–7872. http://doi.org/10.1007/s12652-020-02512-y doi: 10.1007/s12652-020-02512-y
    [62] V. Uluçay, I. Deli, M. Şahin, Similarity measures of bipolar neutrosophic sets and their application to multiple criteria decision making, Neural Comput. Appl., 29 (2021), 739–748. http://doi.org/10.1007/s00521-016-2479-1 doi: 10.1007/s00521-016-2479-1
    [63] M. Sahin, N. Olgun, V. Uluçay, H. Acioglu, Some weighted arithmetic operators and geometric operators with SVNSs and their application to multi-criteria decision making problems, New Trends Neutrosophic Theory Appl., 2 (2018), 85–104. http://doi.org/10.5281/zenodo.1237953 doi: 10.5281/zenodo.1237953
    [64] M. Sahin, N. Olgun, V. Uluçay, A. Kargin, F. Smarandache, A new similarity measure based on falsity value between single valued neutrosophic sets based on the centroid points of transformed single valued neutrosophic numbers with applications to pattern recognition, Neutrosophic Sets Syst., 15 (2017), 31–48.
    [65] Y. Lu, Y. Xu, E. H. Viedma, Consensus progress for large-scale group decision making in social networks with incomplete probabilistic hesitant fuzzy information, Appl. Soft Comput., 126 (2022), 109249. http://doi.org/10.1016/j.asoc.2022.109249 doi: 10.1016/j.asoc.2022.109249
    [66] Y. Lu, Y. Xu, J. Huang, J. Wei, E. H. Viedma, Social network clustering and consensus-based distrust behaviors management for large scale group decision-making with incomplete hesitant fuzzy preference relations, Appl. Soft Comput., 117 (2022), 108373. http://doi.org/10.1016/j.asoc.2021.108373 doi: 10.1016/j.asoc.2021.108373
    [67] C. Jana, G. Muhiuddin, M. Pal, Multi-criteria decision-making approach based on SVTrN Dombi aggregation functions. Artif. Intell. Rev., 54 (2021), 3685–3723. http://doi.org/10.1007/s10462-020-09936-0 doi: 10.1007/s10462-020-09936-0
    [68] M. Palanikumar, K. Arulmozhi, C. Jana, Multiple attribute decision-making approach for Pythagorean neutrosophic normal interval-valued aggregation operators, Comput. Appl. Math., 41 (2022), 90. http://doi.org/10.1007/s40314-022-01791-9 doi: 10.1007/s40314-022-01791-9
    [69] X. Peng, H. Yuan, Fundamental properties of Pythagorean fuzzy aggregation operators, Int. J. Intell. Syst. 31 (2016), 444–487. http://doi.org/10.1002/int.21790 doi: 10.1002/int.21790
    [70] B. Sarkar, M. Omair, N. Kim, A cooperative advertising collaboration policy in supply chain management under uncertain conditions, Appl. Soft Comput., 88 (2020), 105948. http://doi.org/10.1016/j.asoc.2019.105948 doi: 10.1016/j.asoc.2019.105948
    [71] U. Mishra, J. Z. Wu, B. Sarkar, Optimum sustainable inventory management with backorder and deterioration under controllable carbon emissions, J. Clean. Prod., 279 (2021), 123699. http://doi.org/10.1016/j.jclepro.2020.123699 doi: 10.1016/j.jclepro.2020.123699
    [72] B. Sarkar, M. Sarkar, B. Ganguly, L. E. Cárdenas-Barrón, Combined effects of carbon emission and production quality improvement for fixed lifetime products in a sustainable supply chain management, Int. J. Prod. Econ., 231 (2021), 107867. http://doi.org/10.1016/j.ijpe.2020.107867 doi: 10.1016/j.ijpe.2020.107867
    [73] U. Mishra, J. Z. Wu, B. Sarkar, A sustainable production-inventory model for a controllable carbon emissions rate under shortages, J. Clean. Prod., 256 (2020), 120268. http://doi.org/10.1016/j.jclepro.2020.120268 doi: 10.1016/j.jclepro.2020.120268
    [74] M. Ullah, B. Sarkar, Recovery-channel selection in a hybrid manufacturing-remanufacturing production model with RFID and product quality, Int. J. Prod. Econ., 219 (2020), 360–374. http://doi.org/10.1016/j.ijpe.2019.07.017 doi: 10.1016/j.ijpe.2019.07.017
    [75] M. Ullah, I. Asghar, M. Zahid, M. Omair, A. AlArjani, B. Sarkar, Ramification of remanufacturing in a sustainable three-echelon closed-loop supply chain management for returnable products, J. Clean. Prod., 290 (2021), 125609. http://doi.org/10.1016/j.jclepro.2020.125609 doi: 10.1016/j.jclepro.2020.125609
  • This article has been cited by:

    1. Yousef Jawarneh, Humaira Yasmin, Ali M. Mahnashi, A new solitary wave solution of the fractional phenomena Bogoyavlenskii equation via Bäcklund transformation, 2024, 9, 2473-6988, 35308, 10.3934/math.20241678
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1374) PDF downloads(52) Cited by(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog