The susceptible, exposed, infected, quarantined and vaccinated (SEIQV) population is accounted for in a mathematical model of COVID-19. This model covers the therapy for diseased people as well as therapeutic measures like immunization for susceptible people to enable understanding of the dynamics of the disease's propagation. Each of the equilibrium points, i.e., disease-free and endemic, has been proven to be globally asymptotically stable under the assumption that R0 is smaller or larger than unity, respectively. Although vaccination coverage is high, the basic reproduction number depends on the vaccine's effectiveness in preventing disease when R0>0. The Jacobian matrix and the Routh-Hurwitz theorem are used to derive the aforementioned analysis techniques. The results are further examined numerically by using the standard second-order Runge-Kutta (RK2) method. In order to visualize the global dynamics of the aforementioned model, the proposed model is expanded to examine some piecewise fractional order derivatives. We may comprehend the crossover behavior in the suggested model's illness dynamics by using the relevant derivative. To numerical present the results, we use RK2 method.
Citation: Mdi Begum Jeelani, Abeer S Alnahdi, Rahim Ud Din, Hussam Alrabaiah, Azeem Sultana. Mathematical model to investigate transmission dynamics of COVID-19 with vaccinated class[J]. AIMS Mathematics, 2023, 8(12): 29932-29955. doi: 10.3934/math.20231531
[1] | A. Q. Khan, Ibraheem M. Alsulami . Discrete Leslie's model with bifurcations and control. AIMS Mathematics, 2023, 8(10): 22483-22506. doi: 10.3934/math.20231146 |
[2] | Xiongxiong Du, Xiaoling Han, Ceyu Lei . Dynamics of a nonlinear discrete predator-prey system with fear effect. AIMS Mathematics, 2023, 8(10): 23953-23973. doi: 10.3934/math.20231221 |
[3] | Fatao Wang, Ruizhi Yang, Yining Xie, Jing Zhao . Hopf bifurcation in a delayed reaction diffusion predator-prey model with weak Allee effect on prey and fear effect on predator. AIMS Mathematics, 2023, 8(8): 17719-17743. doi: 10.3934/math.2023905 |
[4] | Abdul Qadeer Khan, Ayesha Yaqoob, Ateq Alsaadi . Neimark-Sacker bifurcation, chaos, and local stability of a discrete Hepatitis C virus model. AIMS Mathematics, 2024, 9(11): 31985-32013. doi: 10.3934/math.20241537 |
[5] | Xiaoming Su, Jiahui Wang, Adiya Bao . Stability analysis and chaos control in a discrete predator-prey system with Allee effect, fear effect, and refuge. AIMS Mathematics, 2024, 9(5): 13462-13491. doi: 10.3934/math.2024656 |
[6] | Ahmad Suleman, Rizwan Ahmed, Fehaid Salem Alshammari, Nehad Ali Shah . Dynamic complexity of a slow-fast predator-prey model with herd behavior. AIMS Mathematics, 2023, 8(10): 24446-24472. doi: 10.3934/math.20231247 |
[7] | Weili Kong, Yuanfu Shao . Bifurcations of a Leslie-Gower predator-prey model with fear, strong Allee effect and hunting cooperation. AIMS Mathematics, 2024, 9(11): 31607-31635. doi: 10.3934/math.20241520 |
[8] | Ali Al Khabyah, Rizwan Ahmed, Muhammad Saeed Akram, Shehraz Akhtar . Stability, bifurcation, and chaos control in a discrete predator-prey model with strong Allee effect. AIMS Mathematics, 2023, 8(4): 8060-8081. doi: 10.3934/math.2023408 |
[9] | Abdul Qadeer Khan, Ayesha Yaqoob, Ateq Alsaadi . Discrete Hepatitis C virus model with local dynamics, chaos and bifurcations. AIMS Mathematics, 2024, 9(10): 28643-28670. doi: 10.3934/math.20241390 |
[10] | Fethi Souna, Salih Djilali, Sultan Alyobi, Anwar Zeb, Nadia Gul, Suliman Alsaeed, Kottakkaran Sooppy Nisar . Spatiotemporal dynamics of a diffusive predator-prey system incorporating social behavior. AIMS Mathematics, 2023, 8(7): 15723-15748. doi: 10.3934/math.2023803 |
The susceptible, exposed, infected, quarantined and vaccinated (SEIQV) population is accounted for in a mathematical model of COVID-19. This model covers the therapy for diseased people as well as therapeutic measures like immunization for susceptible people to enable understanding of the dynamics of the disease's propagation. Each of the equilibrium points, i.e., disease-free and endemic, has been proven to be globally asymptotically stable under the assumption that R0 is smaller or larger than unity, respectively. Although vaccination coverage is high, the basic reproduction number depends on the vaccine's effectiveness in preventing disease when R0>0. The Jacobian matrix and the Routh-Hurwitz theorem are used to derive the aforementioned analysis techniques. The results are further examined numerically by using the standard second-order Runge-Kutta (RK2) method. In order to visualize the global dynamics of the aforementioned model, the proposed model is expanded to examine some piecewise fractional order derivatives. We may comprehend the crossover behavior in the suggested model's illness dynamics by using the relevant derivative. To numerical present the results, we use RK2 method.
The topic of boundary value problems is an interesting area of research in view of its applications in applied and technical sciences. In the recent years, the class of nonlocal fractional order boundary value problems involving different fractional derivatives (such as Riemann-Liouville, Caputo, etc.) received an overwhelming interest from many researchers. For the details of a variety of nonlocal single-valued and multivalued boundary value problems involving different types of fractional order derivative operators, we refer the reader to the text [1], articles [2,3,4,5,6,7] and the references cited therein. There has been shown a great enthusiasm in developing the existence theory for Hilfer, ψ-Hilfer and (k,ψ) Hilfer type fractional differential equations equipped with different types of boundary conditions, for instance, see [8,9,10,11,12,13,14,15,16].
Nonlocal boundary conditions are found to be more plausible and practical in contrast to the classical boundary conditions in view of their applicability to describe the changes happening within the given domain. Closed boundary conditions are found to be of great help in describing the situation when there is no fluid flow along the boundary or through it. The free slip condition is also a type of the closed boundary conditions which describes the situation when there is a flow along the boundary, but there is no flow perpendicular to it. Such conditions are also useful in the study of sandpile model [17,18], honeycomb lattice [19], deblurring problems [20], closed-aperture wavefield decomposition in solid media [21], vibration analysis of magneto-electro-elastic cylindrical composite panel [22], etc.
Now we review some works on the boundary value problems with closed boundary conditions. In [23], the authors studied the single-valued and multivalued fractional boundary value problems with open and closed boundary conditions. A three-dimensional Neumann boundary value problem with a generalized boundary condition in a domain with a smooth closed boundary was discussed in [24]. For some interesting results on impulsive fractional differential equations with closed boundary conditions, see the articles [25,26].
The objective of the present work is to investigate a new class of mixed nonlinear boundary value problems involving a right Caputo fractional derivative, mixed Riemann-Liouville fractional integral operators, and multipoint variant of closed boundary conditions. In precise terms, we consider the following fractional order nonlocal and nonlinear problem:
CDαT−y(t)+λIρT−Iσ0+h(t,y(t))=f(t,y(t)),t∈J:=[0,T], | (1.1) |
y(T)=m∑ı=1(piy(ξi)+Tqiy′(ξi)),Ty′(T)=m∑ı=1(riy(ξi)+Tviy′(ξi)), | (1.2) |
where CDαT− denote the right Caputo fractional derivative of order α∈(1,2], IρT− and Iσ0+ represent the right and left Riemann-Liouville fractional integral operators of orders ρ,σ>0 respectively, f,h:[0,T]×R→R are given continuous functions and λ,pi,qi,ri,vi∈R,i∈{1,2,3,...,m}, and ξi∈(0,T). Notice that the integro-differential Eq (1.1) contains the usual and mixed Riemann-Liouville integrals type nonlinearities. The boundary conditions (1.2) can be interpreted as the values of the unknown function and its derivative at the right end-point T of the interval [0,T] are proportional to a linear combination of these values at arbitrary nonlocal positions ξi∈(0,T). Physically, the nonlocal multipoint closed boundary conditions provide a flexible mechanism to close the boundary at arbitrary positions in the given domain instead of the left end-point of the domain.
Here we emphasize that much of the literature on fractional differential equations contains the left-sided fractional derivatives and there are a few works dealing with the right-sided fractional derivatives. For instance, the authors in [27,28] studied the problems involving the right-handed Riemann–Liouville fractional derivative operators, while a problem containing the right-handed Caputo fractional derivative was considered in [29]. The problem studied in the present paper is novel in the sense that it solves an integro-differential equation with a right Caputo fractional derivative and mixed nonlinearities complemented with a new concept of nonlocal multipoint closed boundary conditions. The results accomplished for the problems (1.1) and (1.2) will enrich the literature on boundary value problems involving the right-sided fractional derivative operators. The present work is also significant as it produces several new results as special cases as indicated in the last section.
The rest of the paper is arranged as follows. In Section 2, we present an auxiliary lemma which is used to transform the given nonlinear problem into a fixed-point problem. Section 3 contains the main results and illustrative examples. Some interesting observations are presented in the last Section 4.
Let us begin this section with some definitions [30].
Definition 2.1. The left and right Riemann-Liouville fractional integrals of order β>0 for g∈L1[a,b], existing almost everywhere on [a,b], are respectively defined by
Iβa+g(t)=∫ta(t−s)β−1Γ(β)g(s)dsandIβb−g(t)=∫bt(s−t)β−1Γ(β)g(s)ds. |
Definition 2.2. For g∈ACn[a,b], the right Caputo fractional derivative of order β∈(n−1,n],n∈N, existing almost everywhere on [a,b], is defined by
CDβb−g(t)=(−1)n∫bt(s−t)n−β−1Γ(n−β)g(n)(s)ds. |
In the following lemma, we solve a linear variant of the fractional integro-differential equation (1.1) supplemented with multipoint closed boundary conditions (1.2).
Lemma 2.1. Let H,F∈C[0,T] and Δ≠0. Then the linear problem
{CDαT−y(t)+λIρT−Iσ0+H(t)=F(t),t∈J:=[0,T],y(T)=m∑ı=1(piy(ξi)+Tqiy′(ξi)),Ty′(T)=m∑ı=1(riy(ξi)+Tviy′(ξi)),0<ξi<T, | (2.1) |
is equivalent to the integral equation
y(t)=∫Tt(s−t)α−1Γ(α)[F(s)−λIρT−Iσ0+H(s)]ds+b1(t){m∑ı=1pi∫Tξi(s−ξi)α−1Γ(α)[F(s)−λIρT−Iσ0+H(s)]ds−Tm∑ı=1qi∫Tξi(s−ξ)α−2Γ(α−1)[F(s)−λIρT−Iσ0+H(s)]ds}+b2(t){m∑ı=1ri∫Tξi(s−ξi)α−1Γ(α)[F(s)−λIρT−Iσ0+H(s)]ds−Tm∑i=1vi∫Tξi(s−ξi)α−2Γ(α−1)[F(s)−λIρT−Iσ0+H(s)]ds}, | (2.2) |
where
b1(t)=1Δ(tS6−S7−TS9+T),b2(t)=1Δ[(1−S1)t+S2+TS4−T],Δ=(S1−1)(S7+TS9−T)−S6(S2+TS4−T),S1=m∑ı=1pi,S2=m∑ı=1piξi,S3=m∑ı=1piAi,S4=m∑ı=1qi,S5=m∑ı=1qiBi,S6=m∑ı=1ri,S7=m∑ı=1riξi,S8=m∑ı=1riAi,S9=m∑ı=1vi,S10=m∑ı=1viBi,Ai=IαT−[F(ξi)−λIρT−Iσ0+H(ξi)],Bi=−Iα−1T−[F(ξi)−λIρT−Iσ0+H(ξi)]. | (2.3) |
Proof. Applying the right fractional integral operator IαT− to the integro-differential equation in (2.1), we get
y(t)=IαT−F(t)−λIα+ρT−Iσ0+H(t)−c0−c1t, | (2.4) |
where c0 and c1 are unknown arbitrary constants. Using (2.4) in the nonlocal closed boundary conditions of (2.1), we obtain
{(S1−1)c0+(S2+TS4−T)c1=S3+TS5,S6c0+(S7+TS9−T)c1=S8+TS10, | (2.5) |
where Si,i=1,…,10, are given in (2.3).
Solving the system (2.5) for c0 and c1, we find that
c0=1Δ[(S7+TS9−T)(S3+TS5)−(S2+TS4−T)(S8+TS10)],c1=1Δ[−S6(S3+TS5)+(S1−1)(S8+TS10)], |
where Δ is given in (2.3). Substituting the above values of c0 and c1 in (2.4) together with the notation (2.3), we obtain the solution (2.2). The converse of this lemma can be obtained by direct computation. This completes the proof.
This section is devoted to our main results concerning the existence and uniqueness of solutions for the problems (1.1) and (1.2).
In order to convert the problems (1.1) and (1.2) into a fixed point problem, we define an operator V:X→X by using Lemma 2.1 as follows:
Vy(t)=∫Tt(s−t)α−1Γ(α)[f(s,y(s))−λIρT−Iσ0+h(s,y(s))]ds+b1(t){m∑ı=1pi∫Tξi(s−ξi)α−1Γ(α)[f(s,y(s))−λIρT−Iσ0+h(s,y(s))]ds−Tm∑ı=1qi∫Tξi(s−ξ)α−2Γ(α−1)[f(s,y(s))−λIρT−Iσ0+h(s,y(s))]ds}+b2(t){m∑ı=1ri∫Tξi(s−ξi)α−1Γ(α)[f(s,y(s))−λIρT−Iσ0+h(s,y(s))]ds−Tm∑i=1vi∫Tξi(s−ξi)α−2Γ(α−1)[f(s,y(s))−λIρT−Iσ0+h(s,y(s))]ds},t∈J, | (3.1) |
where X=C([0,T],R) denotes the Banach space of all continuous functions from [0,T]→R equipped with the norm ‖y‖=sup{|y(t)|:t∈[0,T]}. Notice that the fixed point problem Vy(t)=y(t) is equivalent to the boundary value problems (1.1) and (1.2) and the fixed points of the operator V are its solutions.
In the forthcoming analysis, we use the following estimates:
∫Tt(s−t)α+ρ−1Γ(α+ρ)Iσ0+ds=∫Tt(s−t)α+ρ−1Γ(α+ρ)∫s0(s−u)σ−1Γ(σ)duds≤Tσ(T−t)α+ρΓ(σ+1)Γ(α+ρ+1),∫Tξi(s−ξi)α+ρ−1Γ(α+ρ)Iσ0+ds=∫Tξi(s−ξi)α+ρ−1Γ(α+ρ)∫s0(s−u)σ−1Γ(σ)duds≤Tσ(T−ξi)α+ρΓ(σ+1)Γ(α+ρ+1), |
where we have used uσ≤Tσ,ρ,σ>0.
In the sequel, we set
Ω1=1Γ(α+1){Tα+¯b1[m∑ı=1|pi|(T−ξi)α+αTm∑ı=1|qi|(T−ξi)α−1]+¯b2[m∑ı=1|ri|(T−ξi)α+αTm∑ı=1|vi|(T−ξi)α−1]},Ω2=|λ|TσΓ(σ+1)Γ(α+ρ+1){Tα+ρ+¯b1[m∑ı=1|pi|(T−ξi)α+ρ+(α+ρ)Tm∑ı=1|qi|(T−ξi)α+ρ−1]+¯b2[m∑ı=1|ri|(T−ξi)α+ρ+(α+ρ)Tm∑ı=1|vi|(T−ξi)α+ρ−1]}, | (3.2) |
where
¯b1=maxt∈[0,T]|b1(t)|,¯b2=maxt∈[0,T]|b2(t)|. |
In the following, Krasnosel'ski∨i's fixed point theorem [31] is applied to prove our first existence result for the problems (1.1) and (1.2).
Theorem 3.1. Assume that:
(H1) There exists L>0 such that |f(t,x)−f(t,y)|≤L|x−y|,∀t∈[0,T],x,y∈R;
(H2) There exists K>0 such that |h(t,x)−h(t,y)|≤K|x−y|,∀t∈[0,T],x,y∈R;
(H3) |f(t,y)|≤δ(t) and |h(t,y)|≤θ(t), where δ,θ∈C([0,T],R+).
Then, the problems (1.1) and (1.2) has at least one solution on [0,T] if Lγ1+Kγ2<1, where
γ1=TαΓ(α+1),γ2=|λ|Tα+ρ+σΓ(σ+1)Γ(α+ρ+1). | (3.3) |
Proof. Introduce the ball Bη={y∈X:‖y‖≤η}, with
η≥‖δ‖Ω1+‖θ‖Ω2. | (3.4) |
Now we verify the hypotheses of Krasnosel'ski∨i's fixed point theorem in three steps by splitting the operator V:X→X defined by (3.1) on Bη as V=V1+V2, where
V1y(t)=∫Tt(s−t)α−1Γ(α)[f(s,y(s))−λIρT−Iσ0+h(s,y(s))]ds,t∈J,V2y(t)=b1(t){m∑ı=1pi∫Tξi(s−ξi)α−1Γ(α)[f(s,y(s))ds−λIρT−Iσ0+h(s,y(s))]ds−Tm∑ı=1qi∫Tξi(s−ξ)α−2Γ(α−1)[f(s,y(s))−λIρT−Iσ0+h(s,y(s))]ds}+b2(t){m∑ı=1ri∫Tξi(s−ξi)α−1Γ(α)[f(s,y(s))−λIρT−Iσ0+h(s,y(s))]ds−Tm∑i=1vi∫Tξi(s−ξi)α−2Γ(α−1)[f(s,y(s))−λIρT−Iσ0+h(s,y(s))]ds},t∈J. |
(i) For y,x∈Bη, we have
‖V1y+V2x‖≤supt∈[0,T]{∫Tt(s−t)α−1Γ(α)[|f(s,y(s))|+|λ|IρT−Iσ0+|h(s,y(s))|]ds+|b1(t)|{m∑ı=1|pi|∫Tξi(s−ξi)α−1Γ(α)[|f(s,x(s))|+|λ|IρT−Iσ0+|h(s,x(s))|]ds+Tm∑ı=1|qi|∫Tξi(s−ξi)α−2Γ(α−1)[|f(s,x(s))|+|λ|IρT−Iσ0+|h(s,x(s))|]ds}+|b2(t)|{m∑ı=1|ri|∫Tξi(s−ξi)α−1Γ(α)[|f(s,x(s))|+|λ|IρT−Iσ0+|h(s,x(s))|]ds+Tm∑ı=1|vi|∫Tξi(s−ξi)α−2Γ(α−1)[|f(s,x(s))|+|λ|IρT−Iσ0+|h(s,x(s))|]ds}}≤‖δ‖supt∈[0,T]{∫Tt(s−t)α−1Γ(α)ds+|b1(t)|[m∑ı=1|pi|∫Tξi(s−ξi)α−1Γ(α)ds+Tm∑ı=1|qi|∫Tξi(s−ξi)α−2Γ(α−1)ds]+|b2(t)|[m∑ı=1|ri|∫Tξi(s−ξi)α−1Γ(α)ds+Tm∑ı=1|vi|∫Tξi(s−ξi)α−2Γ(α−1)ds]}+‖θ‖|λ|supt∈[0,T]{∫Tt(s−t)α+ρ−1Γ(α+ρ)Iσ0+ds+|b1(t)|[m∑ı=1∫Tξi(s−ξi)α+ρ−1Γ(α+ρ)Iσ0+ds+Tm∑ı=1|qi|∫Tξi(s−ξi)α+ρ−2Γ(α+ρ−1)Iσ0+ds]+|b2(t)|[m∑ı=1|ri|∫Tξi(s−ξi)α+ρ−1Γ(α+ρ)Iσ0+ds+Tm∑ı=1|vi|∫Tξi(s−ξi)α+ρ−2Γ(α+ρ−1)Iσ0+ds]}≤‖δ‖supt∈[0,T]{(T−t)αΓ(α+1)+|b1(t)|[m∑ı=1|pi|(T−ξi)αΓ(α+1)+Tm∑ı=1|qi|(T−ξi)α−1Γ(α)]+|b2(t)|[m∑ı=1|ri|(T−ξi)αΓ(α+1)+Tm∑ı=1|vi|(T−ξi)α−1Γ(α)]}+‖θ‖|λ|TσΓ(σ+1)supt∈[0,T]{(T−t)α+ρΓ(α+ρ+1)ds+|b1(t)|[m∑ı=1(T−ξi)α+ρΓ(α+ρ+1)+Tm∑ı=1|qi|(T−ξi)α+ρ−1Γ(α+ρ)]+|b2(t)|[m∑ı=1|ri|(T−ξi)α+ρΓ(α+ρ+1)+Tm∑ı=1|vi|(T−ξi)α+ρ−1Γ(α+ρ)]}≤‖δ‖Γ(α+1){Tα+¯b1[m∑ı=1|pi|(T−ξi)α+αTm∑ı=1|qi|(T−ξi)α−1]+¯b2[m∑ı=1|ri|(T−ξi)α+αTm∑ı=1|vi|(T−ξi)α−1]}+‖θ‖|λ|TσΓ(σ+1)Γ(α+ρ+1){Tα+ρ+¯b1[m∑ı=1|pi|(T−ξi)α+ρ+(α+ρ)Tm∑ı=1|qi|(T−ξi)α+ρ−1]+¯b2[m∑ı=1|ri|(T−ξi)α+ρ+(α+ρ)Tm∑ı=1|vi|(T−ξi)α+ρ−1]}≤‖β‖Ω1+‖θ‖Ω2<η, |
where we used (3.4). Thus V1y+V2x∈Bη.
(ii) Using (H1) and (H2), it is easy to show that
‖V1y−V1x‖≤supt∈[0,T]{∫Tt(s−t)α−1Γ(α)|f(s,y(s))−f(s,x(s))|ds+|λ|∫Tt(s−t)α+ρ−1Γ(α+ρ)Iσ0+|h(s,y(s))−h(s,x(s))|ds}≤(Lγ1+Kγ2)‖y−x‖, |
which, in view of the condition Lγ1+Kγ2<1, implies that the operator V1 is a contraction.
(iii) Continuity of the functions f,h implies that the operator V2 is continuous. In addition, V2 is uniformly bounded on Bη as
‖V2y‖≤supt∈[0,T]{|b1(t)|[m∑ı=1|pi|∫Tξi(s−ξi)α−1Γ(α)|f(s,y(s))|ds+|λ|m∑ı=1|pi|∫Tξi(s−ξi)α+ρ−1Γ(α+ρ)Iσ0+|h(s,y(s))|ds+Tm∑ı=1|qi|∫Tξi(s−ξi)α−2Γ(α−1)|f(s,y(s))|ds+|λ|Tm∑ı=1|qi|∫Tξi(s−ξi)α+ρ−2Γ(α+ρ−1)Iσ0+|h(s,y(s))|ds]+|b2(t)|[m∑ı=1|ri|∫Tξi(s−ξi)α−1Γ(α)|f(s,y(s))|+|λ|m∑ı=1|ri|∫Tξi(s−ξi)α+ρ1(α+ρ)Iσ0+|h(s,y(s))|ds+Tm∑ı=1|vi|∫Tξi(s−ξi)α−2Γ(α−1)|f(s,y(s))|ds+|λ|Tm∑ı=1|vi|∫Tξi(s−ξi)α+ρ−2)Γ(α+ρ−1)|h(s,y(s))|ds]}≤‖δ‖supt∈[0,T]{|b1(t)|[m∑ı=1|pi|∫Tξi(s−ξi)α−1Γ(α)ds+Tm∑ı=1|qi|∫Tξi(s−ξi)α−2Γ(α−1)ds]+|b2(t)|[m∑ı=1|ri|∫Tξi(s−ξi)α−1Γ(α)ds+Tm∑ı=1|vi|∫Tξi(s−ξi)α−2Γ(α−1)ds]}+|λ|‖θ‖supt∈[0,T]{|b1(t)|[m∑ı=1|pi|∫Tξi(s−ξi)α+ρ−1Γ(α+ρ)Iσ0+ds+Tm∑ı=1|qi|∫Tξi(s−ξi)α+ρ−2Γ(α+ρ−1)Iσ0+ds]+|b2(t)|[m∑ı=1|ri|∫Tξi(s−ξi)α+ρ−1Γ(α+ρ)Iσ0+ds+Tm∑ı=1|vi|∫Tξi(s−ξi)α+ρ−2)Γ(α+ρ−1)Iσ0+ds]}≤‖δ‖supt∈[0,T]{|b1(t)|[m∑ı=1|pi|(T−ξi)αΓ(α+1)+Tm∑ı=1|qi|(T−ξi)α−1Γ(α)]+|b2(t)|[m∑ı=1|ri|(T−ξi)αΓ(α+1)+Tm∑ı=1|vi|(T−ξi)α−1Γ(α)]+|λ|‖θ‖TσΓ(σ+1)supt∈[0,T]{|b1(t)|[m∑ı=1|pi|(T−ξi)α+ρΓ(α+ρ+1)+Tm∑ı=1|qi|(T−ξi)α+ρ−1Γ(α+ρ)]+|b2(t)|[m∑ı=1|ri|(T−ξi)α+ρΓ(α+ρ+1)+Tm∑ı=1|vi|(T−ξi)α+ρ−1)Γ(α+ρ)]}≤‖δ‖(Ω1−γ1)+‖θ‖(Ω2−γ2), |
where Ωi, and γi, i=1,2, are defined in (3.2) and (3.3), respectively. To show the compactness of V2, we fix sup(t,y)∈[0,T]×Bη|f(t,y)|=¯f, sup(t,y)∈[0,T]×Bη|h(t,y)|=¯h. Then, for 0<t1<t2<T, we have
|(V2y)(t2)−(V2y)(t1)|≤|b1(t2)−b1(t1)|{m∑ı=1|pi|∫Tξi(s−ξi)α−1Γ(α)[|f(s,y(s))|+|λ|IρT−Iσ0+|h(s,y(s))|]ds+Tm∑ı=1|qi|∫Tξi(s−ξi)α−2Γ(α−1)[|f(s,y(s))|+|λ|IρT−Iσ0+|h(s,y(s))|]ds}+|b2(t2)−b2(t1)|{m∑ı=1|ri|∫Tξ(s−ξ)α−1Γ(α)[|f(s,y(s))|+λ|IρT−Iσ0+|h(s,y(s))|ds]+Tm∑ı=1|vi|∫Tξi(s−ξi)α−2Γ(α−1)[|f(s,y(s))|+|λ|IρT−Iσ0+|h(s,y(s))|]ds}≤|S6||t2−t1||Δ|{¯fΓ(α+1)[m∑ı=1|pi|(T−ξi)α+αTm∑i=1|qi|(T−ξi)α−1]+¯h|λ|TσΓ(σ+1)Γ(α+ρ+1)[m∑ı=1|pi|(T−ξi)α+ρ+(α+ρ)Tm∑i=1|qi|(T−ξi)α+ρ−1]}+|S1−1||t2−t1||Δ|{¯fΓ(α+1)[m∑ı=1|ri|(T−ξi)α+αTm∑i=1|vi|(T−ξi)α−1]+¯h|λ|TσΓ(σ+1)Γ(α+ρ+1)[m∑ı=1|ri|(T−ξi)α+ρ+(α+ρ)Tm∑i=1|vi|(T−ξi)α+ρ−1]}, |
which tends to zero, independent of y, as t2→t1. This shows that V2 is equicontinuous. It is clear from the foregoing arguments that the operator V2 is relatively compact on Bη. Hence, by the Arzelá-Ascoli theorem, V2 is compact on Bη.
In view of the foregoing arguments (i)–(iii), the hypotheses of the Krasnosel'ski∨i's fixed point theorem [31] are satisfied. Hence, the operator V1+V2=V has a fixed point, which implies that the problems (1.1) and (1.2) has at least one solution on [0,T]. The proof is finished.
Remark 3.1. Interchanging the roles of the operators V1 and V2 in the previous result, the condition Lγ1+Kγ2<1 changes to the following one:
L(Ω1−γ1)+K(Ω2−γ2)<1, |
where Ω1,Ω2 and γ1,γ2 are defined in (3.2) and (3.3) respectively.
The following existence result relies on Leray-Schauder nonlinear alternative [32].
Theorem 3.2. Suppose that the following conditions hold:
(H4) There exist continuous nondecreasing functions ϕ1,ϕ2:[0,∞)→(0,∞) such that ∀(t,y)∈[0,1]×R, |f(t,y)|≤ω1(t)ϕ1(‖y‖) and |h(t,y)|≤ω2(t)ϕ2(‖y‖), where ω1,ω2∈C([0,T],R+);
(H5)There exists a constant M>0 such that
M‖ω1‖ϕ1(M)Ω1+‖ω2‖ϕ2(M)Ω2>1. |
Then, the problems (1.1) and (1.2) has at least one solution on [0,T].
Proof. We firstly show that the operator V:X→X defined by (3.1) is completely continuous.
(i) V maps bounded sets into bounded sets in X.
Let y∈Br={y∈X:‖y‖≤r}, where r is a fixed number. Then, using the strategy employed in the proof of Theorem 3.1, we obtain
‖Vy‖≤‖ω1‖ϕ1(r)Γ(α+1){Tα+¯b1[m∑ı=1|pi|(T−ξi)α+αTm∑ı=1|qi|(T−ξi)α−1]+¯b2[m∑ı=1|ri|(T−ξi)α+αTm∑ı=1|vi|(T−ξi)α−1]}+|λ|Tσ‖ω2‖ϕ2(r)Γ(σ+1)Γ(α+ρ+1){Tα+ρ+¯b1[m∑ı=1|pi|(T−ξi)α+ρ+(α+ρ)Tm∑ı=1|qi|(T−ξi)α+ρ−1]+¯b2[m∑ı=1|ri|(T−ξi)α+ρ+(α+ρ)Tm∑ı=1|vi|(T−ξi)α+ρ−1]}=‖ω1‖ϕ1(r)Ω1+‖ω2‖ϕ2(r)Ω2<∞. |
(ii) V maps bounded sets into equicontinuous sets.
Let 0<t1<t2<T and y∈Br. Then, we obtain
|Vy(t2)−Vy(t1)|≤|∫Tt2(s−t2)α−1−(s−t1)α−1Γ(α)f(s,y(s))ds+∫t2t1(s−t1)α−1Γ(α)f(s,y(s))ds−λ∫Tt2(s−t2)α+ρ−1−(s−t1)α+ρ−1Γ(α+ρ)Iσ0+h(s,y(s))ds−λ∫t2t1(s−t1)α+ρ−1Γ(α+ρ)Iσ0+h(s,y(s))ds|+|b1(t2)−b1(t1)|{|m∑ı=1pi∫Tξi(s−ξ)α−1Γ(α)[f(s,y(s))−λIρT−Iσ0+h(s,y(s))]ds|+|Tm∑ı=1qi∫Tξi(s−ξi)α−2Γ(α−1)[f(s,y(s))−λIρT−Iσ0+h(s,y(s))]ds|}+|b2(t2)−b2(t1)|{|m∑ı=1ri∫Tξi(s−ξ)α−1Γ(α)[f(s,y(s))−λIρT−Iσ0+h(s,y(s))]ds|+|Tm∑ı=1vi∫Tξi(s−ξi)α−2Γ(α−1)[f(s,y(s))−λIρT−Iσ0+h(s,y(s))]ds|}≤|∫Tt2(s−t2)α−1−(s−t1)α−1Γ(α)f(s,y(s))ds+∫t2t1(s−t1)α−1Γ(α)f(s,y(s))ds|+|λ∫Tt2(s−t2)α+ρ−1−(s−t1)α+ρ−1Γ(α+ρ)Iσ0+h(s,y(s))ds+λ∫t2t1(s−t1)α+ρ−1Γ(α+ρ)Iσ0+h(s,y(s))ds|+|S6||t2−t1|Δ|{|m∑ı=1pi∫Tξi(s−ξi)α−1Γ(α)[f(s,y(s))−λIρT−Iσ0+h(s,y(s))]ds|+|Tm∑ı=1qi∫Tξi(s−ξi)α−2Γ(α−1)[f(s,y(s))−λIρT−Iσ0+h(s,y(s))]ds|}+|S1−1||t2−t1|Δ{|m∑ı=1ri∫Tξi(s−ξi)α−1Γ(α)[f(s,y(s))−λIρT−Iσ0+h(s,y(s))]ds|+|Tm∑ı=1vi∫Tξi(s−ξi)α−2Γ(α−1)[f(s,y(s))−λIρT−Iσ0+h(s,y(s))]ds|}≤ω1(t)Φ1(r)Γ(α+1){|(T−t2)α−(T−t1)α|+2|(t2−t1)α|+|t2−t1||Δ|[|S6|(m∑ı=1|pi|(T−ξi)α+αTm∑ı=1|qi|(T−ξi)α−1)+|S1−1|(m∑ı=1|ri|(T−ξi)α+αTm∑ı=1|vi|(T−ξi)α−1)]}+|λ|Tσω2(t)ϕ2(r)Γ(σ+1)Γ(α+ρ+1){|(T−t2)α+ρ−(T−t1)α+ρ+2|t2−t1|α+ρ+|t2−t1||Δ|[|S6|(m∑ı=1|pi|(T−ξi)α+ρ+(α+ρ)Tm∑ı=1|qi|(T−ξi)α+ρ−1)+|S1−1|(m∑ı=1|ri|(T−ξi)α+ρ+(α+ρ)Tm∑ı=1|vi|(T−ξi)α+ρ−1)]}. |
Notice that the right-hand side of the above inequality tends to 0 as t2→t1, independent of y∈Br. Thus, it follows by the Arzelá–Ascoli theorem that the operator V:X→X is completely continuous.
The conclusion of the Leray-Schauder nonlinear alternative [32] will be applicable once it is shown that there exists an open set U⊂C([0,T],R) with y≠νVy for ν∈(0,1) and y∈∂U. Let y∈C([0,T],R) be such that y=νVy for ν∈(0,1). As argued in proving that the operator V is bounded, one can obtain that
|y(t)|=|νVy(t)|≤|ω1(t)|ϕ(‖y‖)Ω1+|ω2(t)|ψ(‖y‖)Ω2, |
which can be written as
‖y‖‖ω1‖ϕ(‖y‖)Ω1+‖ω2‖ψ(‖y‖)Ω2≤1. |
On the other hand, we can find a positive number M such that ‖y‖≠M by assumption (H5). Let us set
W={y∈X:‖y‖<M}. |
Clearly, ∂W contains a solution only when ‖y‖=M. In other words, we cannot find a solution y∈∂W satisfying y=νVy for some ν∈(0,1). In consequence, the operator V has a fixed point y∈¯W, which is a solution of the problems (1.1) and (1.2). The proof is finished.
Here we apply Banach contraction mapping principle to establish the uniqueness of solutions for the problems (1.1) and (1.2).
Theorem 3.3. If the conditions (H1) and (H2) hold, then the problems (1.1) and (1.2) has a unique solution on [0,T] if
LΩ1+KΩ2<1, | (3.5) |
where Ω1 and Ω2 are defined in (3.2).
Proof. In the first step, we show that VBκ⊂Bκ, where Bκ={y∈X:‖y‖≤κ} with
κ≥f0Ω1+h0Ω21−(LΩ1+KΩ2),f0=supt∈[0,T]|f(t,0)|,h0=supt∈[0,T]|h(t,0)|. |
For y∈Bκ and using the condition (H1), we have
|f(t,y)|=|f(t,y)−f(t,0)+f(t,0)|≤|f(t,y)−f(t,0)|+|f(t,0)|≤L‖y‖+f0≤Lr+f0. | (3.6) |
Similarly, using (H2), we get
|h(t,y)|≤Kr+h0. | (3.7) |
In view of (3.6) and (3.7), we obtain
‖Vy‖≤supt∈[0,T]|Vy(t)|≤supt∈[0,T]{∫Tt(s−t)α−1Γ(α)[|f(s,y(s))|+|λ|IρT−Iσ0+|h(s,y(s))|]ds+|b1(t)|{m∑ı=1pi∫Tξi(s−ξi)α−1Γ(α)[|f(s,y(s))|+|λ|IρT−Iσ0+|h(s,y(s))|]ds+Tm∑ı=1|qi|∫Tξi(s−ξi)α−2Γ(α−1)[|f(s,y(s))|+|λ|IρT−Iσ0+|h(s,y(s))|]ds}+|b2(t)|{m∑ı=1ri∫Tξi(s−ξi)α−1Γ(α)[|f(s,y(s))|+|λ|IρT−Iσ0+|h(s,y(s))|]ds+Tm∑i=1|vi|∫Tξi(s−ξi)α−2Γ(α−1)[|f(s,y(s))|+|λ|IρT−Iσ0+|h(s,y(s))|]ds}}≤(Lr+f0)supt∈[0,T]{∫Tt(s−t)α−1Γ(α)ds+|b1(t)|[m∑i=1|pi|∫Tξi(s−ξi)α−1Γ(α)ds+Tm∑ı=1|qi|∫Tξi(s−ξi)α−2Γ(α−1)ds]+|b2(t)|[m∑i=1|ri|∫Tξi(s−ξi)α−1Γ(α)ds+Tm∑ı=1|vi|∫Tξi(s−ξi)α−2Γ(α−1)ds]}+|λ|(Kr+h0)supt∈[0,T]{∫Tt(s−t)α+ρ−1Γ(α+ρ)Iσ0+ds+|b1(t)|[m∑i=1|pi|∫Tξi(s−ξi)α+ρ−1Γ(α+ρ)Iσ0+ds+Tm∑ı=1|qi|∫Tξi(s−ξi)α+ρ−2Γ(α+ρ−1)Iσ0+ds]+|b2(t)|[m∑i=1|ri|∫Tξi(s−ξi)α+ρ−1Γ(α+ρ)Iσ0+ds+Tm∑ı=1|vi|∫Tξi(s−ξi)α+ρ−2Γ(α+ρ−1)Iσ0+ds]}≤(Lr+f0)Γ(α+1){Tα+¯b1[m∑ı=1|pi|(T−ξi)α+αTm∑ı=1|qi|(T−ξi)α−1]+¯b2[m∑ı=1|ri|(T−ξi)α+αTm∑ı=1|vi|(T−ξi)α−1]}+Tσ|λ|(Kr+h0)Γ(σ)Γ(α+ρ+1){Tα+ρ+¯b1[m∑ı=1|pi|(T−ξi)α+ρ+(α+ρ)Tm∑ı=1|qi|(T−ξi)α+ρ−1]+¯b2[m∑ı=1|ri|(T−ξi)α+ρ+(α+ρ)Tm∑ı=1|vi|(T−ξi)α+ρ−1]}=(Lr+f0)Ω1+(Kr+h0)Ω2<κ, |
which implies that Vy∈Bκ, for any y∈Bκ. Therefore, VBκ⊂Bκ.
Next, we prove that V is a contraction. For that, let x,y∈X and t∈[0,T]. Then, by the conditions (H1) and (H2), we obtain
‖Vy−Vx‖=supt∈[0,T]|(Vy)(t)−(Vx)(t)|≤supt∈[0,T]{∫Tt(s−t)α−1Γ(α)|f(s,y(s))−f(s,x(s))|ds+|λ|∫Tt(s−t)α+ρ−1Γ(α+ρ)Iσ0+|h(s,y(s))−h(s,x(s))|ds+|b1(t)|[m∑ı=1|pi|(∫Tξi(s−ξi)α−1Γ(α)|f(s,y(s))−f(s,x(s))|ds+|λ|∫Tξi(s−ξi)α+ρ−1Γ(α+ρ)Iσ0+|h(s,y(s))−h(s,x(s))|ds)+Tm∑ı=1|qi|(∫Tξi(s−ξi)α−2Γ(α−1)|f(s,y(s))−f(s,x(s))|ds+|λ|∫Tξi(s−ξi)α+ρ−2Γ(α+ρ−1)Iσ0+|h(s,y(s))−h(s,x(s))|ds)]+|b2(t)|[m∑ı=1|ri|(∫Tξi(s−ξi)α−1Γ(α)|f(s,y(s))−f(s,x(s))|ds+|λ|∫Tξi(s−ξi)α+ρ−1Γ(α+ρ)Iσ0+|h(s,y(s))−h(s,x(s))|ds)+Tm∑ı=1|vi|(∫Tξi(s−ξi)α−2Γ(α−1)|f(s,y(s))−f(s,x(s))|ds+|λ|∫Tξi(s−ξi)α+ρ−2Γ(α+ρ−1)Iσ0+|h(s,y(s))−h(s,x(s))|ds)]}≤LΓ(α+1){Tα+¯b1[m∑ı=1|pi|(T−ξi)α+αTm∑ı=1|qi|(T−ξi)α−1]+¯b2[m∑ı=1|ri|(T−ξi)α+αTm∑ı=1|vi|(T−ξi)α−1]}+Tσ|λ|KΓ(σ+1)Γ(α+ρ+1){Tα+ρ+¯b1[m∑ı=1|pi|(T−ξi)α+ρ+(α+ρ)Tm∑ı=1|qi|(T−ξi)α+ρ−1]+¯b2[m∑ı=1|ri|(T−ξi)α+ρ+(α+ρ)Tm∑ı=1|vi|(T−ξi)α+ρ−1]}‖y−x‖=(LΩ1+KΩ2)‖y−x‖, |
which shows that V is a contraction in view of the condition (3.5). Therefore, we deduce by Banach contraction mapping principle that there exists a unique fixed point for the operator V, which corresponds to a unique solution for the problems (1.1) and (1.2) on [0,T]. The proof is completed.
In this subsection, we construct examples for illustrating the abstract results derived in the last two subsections. Let us consider the following problem:
{D9/81−y(t)+3I7/31−I3/40+h(t,y(t))=f(t,y(t)), t∈J:=[0,1],y(T)=3∑ı=1piy(ξi)+3∑ı=1qiy′(ξi),y′(T)=3∑ı=1riy(ξi)+3∑ı=1viy′(ξi),,0<ξi<1. | (3.8) |
Here α=9/8,ρ=7/3,σ=3/4,λ=3,ξ1=3/7,ξ2=2/3,ξ3=4/5,p1=1/2,p2=1/3,p3=1/4,q1=−2,q2=−3,q3=−4,r1=1,r2=−1,r3=3,v1=−2/7,v2=−3/7,v3=−4/7. Using the given data, it is found that
¯b1=maxt∈[0,1]|b1(t)|=|b1(t)|t=1≈0.1112461491,¯b2=maxt∈[0,1]|b2(t)|=|b2(t)|t=1≈0.3364235041. |
In consequence, we get Ω1≈2.517580993,Ω2≈0.3543113654 (Ω1, Ω2 are defined in (3.2)).
(i) For illustrating Theorem 3.1, we consider the functions
f(t,y)=m12t+25(y21+y2+cos3t+1),h(t,y)=m23√t2+64(2tan−1y+sint+e−t/2), | (3.9) |
where m1 and m2 are finite positive real numbers. Observe that
|f(t,y)|≤δ(t)=m1(2+cos3t)2t+25,|h(t,y)|≤θ(t)=m2(π+sint+e−t/2)3√t2+64, |
and f(t,y) and h(t,y) respectively satisfy the conditions (H1) and (H2) with L=2m1/25 and K=m2/24. Moreover, γ1≈0.9438765902 and γ2≈0.2972831604. By the condition Lγ1+Kγ2<1, we get
0.0755101272m1+0.0123867984m2<1 | (3.10) |
For the values of m1 and m2 satisfying the inequality (3.10), the hypothesis of Theorem 3.1 is satisfied. Hence, it follows by the conclusion of Theorem 3.1 that the problem (3.8) with f(t,y) and h(t,y) given in (3.9) has at least one solution on [0,1]. If the values m1 and m2 do not satisfy the inequality (3.10), then Theorem 3.1 does not guarantee the existence of at least one solution to the problem (3.8) with f(t,y) and h(t,y) given in (3.9) for such values of m1 and m2.
(ii) In order to illustrate Theorem 3.2, we take the following functions (instead of (3.9)) in the problem (3.8):
f(t,y)=e−3tt2+3[siny+1/5],h(t,y)=27√t3+1(|y|1+|y||y|+π/4). | (3.11) |
Observe that the assumption (H4) is satisfied as |f(t,y)|≤ω1(t)ϕ1(‖y‖) and |h(t,y)|≤ω2(t)ϕ2(‖y‖), where ω1(t)=e−3t/(t2+3), ϕ1(‖y‖)=(‖y‖+1/5), ω2(t)=2/(7√t3+1), ϕ2(‖y‖)=(‖y‖+π/4). It is easy to see that ‖ω1‖=1/3 and ω2‖=2/7. By the condition (H5), we find that M>4.151876169. Thus, all the conditions of Theorem 3.2 are satisfied and hence the problem (3.8) with f(t,y) and h(t,y) given by (3.11) has at least one solution on [0,1].
(iii) The conditions (H1) and (H2) are respectively satisfied by f(t,y) and h(t,y) defined in (3.9) with L=2m1/25 and K=m2/24. By the condition (3.5), we have
0.20140647944m1+0.0147629736m2<1. | (3.12) |
Clearly, all the assumptions of Theorem 3.3 hold true with the values of m1 and m2 satisfying the inequality (3.12). In consequence, the problem (3.8) with f(t,y) and h(t,y) given in (3.11) has a unique solution on [0,1]. In case, we take m1=m2=m in (3.9), then the condition (3.12) implies the existence of a unique solution for the problem at hand for m<4.62600051. One can notice that Theorem 3.1 does not guarantee the existence of a unique solution to the problem (3.8) with f(t,y) and h(t,y) given in (3.9) for the values of m1 and m2, which do not satisfy the inequality (3.12).
In this study, we discussed the existence and uniqueness of solutions under different assumptions for a boundary value problem involving a right Caputo fractional derivative with usual and mixed Riemann-Liouville integrals type nonlinearities, equipped with nonlocal multipoint version of the closed boundary conditions. Our results are not only new in the given configuration, but also yield some new results as special cases. Here are some examples.
● If λ=0 in (1.1), then our results correspond to the fractional differential equation CDαT−y(t)=f(t,y(t)) with the boundary conditions (1.2).
● In case, we take qi=0,ri=0,∀i=1,…,m in the results of this paper, we obtain the ones for the Eq (1.1) supplemented with boundary conditions: y(T)=m∑ı=1piy(ξi),y′(T)=m∑ı=1viy′(ξi).
● We get the results for the Eq (1.1) complemented with boundary conditions: y(T)=Tm∑ı=1qiy′(ξi),Ty′(T)=m∑ı=1riy(ξi) by taking pi=0,vi=0,∀i=1,…,m in the obtained results.
The Deanship of Scientific Research (DSR) at King Abdulaziz University (KAU), Jeddah, Saudi Arabia, has funded this project under grant No. (KEP-PhD: 35-130-1443).
The authors declare no conflict of interest.
[1] | Naming the coronavirus disease (COVID-19) and the virus that causes it, Available from: World Health Organization (WHO), 2020, https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it. |
[2] |
S. Zhao, S. S. Musa, Q. Lin, J. Ran, G. Yang, W. Wang, et al., Estimating the unreported number of novel coronavirus (2019-nCoV) cases in China in the first half of January 2020, a data-driven modelling analysis of the early outbreak, J. Clin. Med., 9 (2020), 388. https://doi.org/10.3390/jcm9020388 doi: 10.3390/jcm9020388
![]() |
[3] |
I. Nesteruk, Statistics based predictions of coronavirus 2019-nCoV spreading in mainland China, MedRxiv, 4 (2020), 1988–1989. https://doi.org/10.1101/2020.02.12.20021931 doi: 10.1101/2020.02.12.20021931
![]() |
[4] |
D. S. Hui, E. I. Azhar, T. A. Madani, F. Ntoumi, R. Kock, O. Dar, et al., The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health–The latest 2019 novel coronavirus outbreak in Wuhan, China, Int. J. Infect. Dis., 91 (2020), 264–266. https://doi.org/10.1016/j.ijid.2020.01.009 doi: 10.1016/j.ijid.2020.01.009
![]() |
[5] |
S. Zhao, Q. Lin, J. Ran, S. S. Musa, G. Yang, W. Wang, et al., Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, Int. J. Infect. Dis., 92 (2020), 214–217. https://doi.org/10.1016/j.ijid.2020.01.050 doi: 10.1016/j.ijid.2020.01.050
![]() |
[6] |
K. Shah, R. Din, W. Deebani, P. Kumam, Z. Shah, On nonlinear classical and fractional order dynamical system addressing COVID-19, Results Phys., 24 (2021), 104069. https://doi.org/10.1016/j.rinp.2021.104069 doi: 10.1016/j.rinp.2021.104069
![]() |
[7] |
A. J. Lotka, Contribution to the theory of periodic reactions, J. Phys. Chem., 14 (1910), 271–274. https://doi.org/10.1021/j150111a004 doi: 10.1021/j150111a004
![]() |
[8] |
N. S. Goel, S. C. MAITRA, E. W. MONTROLL, On the Volterra and other nonlinear models of interacting populations, Rev. Mod. Phys., 43 (1971), 231. https://doi.org/10.1103/RevModPhys.43.231 doi: 10.1103/RevModPhys.43.231
![]() |
[9] |
P. Zhou, X. L. Yang, X. G. Wang, B. Hu, L. Zhang, W. Zhang, et al., A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature, 579 (2020), 270–273. https://doi.org/10.1038/s41586-020-2012-7 doi: 10.1038/s41586-020-2012-7
![]() |
[10] |
Q. Li, X. Guan, P. Wu, X. Wang, L. Zhou, Y. Tong, et al., Early transmission dynamics in Wuhan, China, of novel coronavirus infected pneumonia, N. Engl. J. Med., 382 (2020), 1199–1207. https://doi.org/10.1056/NEJMoa2001316 doi: 10.1056/NEJMoa2001316
![]() |
[11] |
I. I. Bogoch, A. Watts, A. Thomas-Bachli, C. Huber, M. U. G. Kraemer, K. Khan, Pneumonia of unknown aetiology in Wuhan, China: potential for international spread via commercial air travel, J. Travel Med., 27 (2020), taaa008. https://doi.org/10.1093/jtm/taaa008 doi: 10.1093/jtm/taaa008
![]() |
[12] |
C. Lu, H. Liu, D. Zhang, Dynamics and simulations of a second order stochastically perturbed SEIQV epidemic model with saturated incidence rate, Chaos Soliton. Fract., 152 (2021), 111312. https://doi.org/10.1016/j.chaos.2021.111312 doi: 10.1016/j.chaos.2021.111312
![]() |
[13] |
X. Liu, L. Yang, Stability analysis of a SEIQV epidemic model with saturated incidence rate, Nonlinear Anal. Real, 13 (2012), 2671–2679. https://doi.org/10.1016/j.nonrwa.2012.03.010 doi: 10.1016/j.nonrwa.2012.03.010
![]() |
[14] |
A. B. Gumel, S. Ruan, T. Day, J. Watmough, F. Brauer, P. van den Driessche, et al., Modelling strategies for controlling SARS out breaks, Proc. R. Soc. Lond. B, 271 (2004), 2223–2232. https://doi.org/10.1098/rspb.2004.2800 doi: 10.1098/rspb.2004.2800
![]() |
[15] |
A. Atangana, S. I. Araz, Modeling third waves of Covid-19 spread with piecewise differential and integral operators: Turkey, Spain and Czechia, Results Phys., 29 (2021), 104694. https://doi.org/10.1016/j.rinp.2021.104694 doi: 10.1016/j.rinp.2021.104694
![]() |
[16] |
Z. Zhang, A. Zeb, S. Hussain, E. Alzahrani, Dynamics of COVID-19 mathematical model with stochastic perturbation, Adv. Differ. Equ., 2020 (2020), 451. https://doi.org/10.1186/s13662-020-02909-1 doi: 10.1186/s13662-020-02909-1
![]() |
[17] |
A. Atangana, S. I. Araz, Mathematical model of COVID-19 spread in Turkey and South Africa: theory, methods, and applications, Adv. Differ. Equ., 2020 (2020), 659. https://doi.org/10.1186/s13662-020-03095-w doi: 10.1186/s13662-020-03095-w
![]() |
[18] |
N. H. Alharthi, M. B. Jeelani, A Fractional model of COVID-19 in the frame of environmental transformation with caputo fractional derivative, Adv. Appl. Stat., 88 (2023), 225–244. https://doi.org/10.17654/0972361723047 doi: 10.17654/0972361723047
![]() |
[19] |
M. B. Jeelani, Stability and computational analysis of COVID-19 using a higher order galerkin time discretization scheme, Adv. Appl. Stat., 86 (2023), 167–206. https://doi.org/10.17654/0972361723022 doi: 10.17654/0972361723022
![]() |
[20] |
C. A. B. Pearson, F. Bozzani, S. R. Procter, N. G. Davies, M. Huda, H. T. Jensen, et al., COVID-19 vaccination in Sindh Province, Pakistan: A modelling study of health impact and cost-effectiveness, PLoS Med., 18 (2021), e1003815. https://doi.org/10.1371/journal.pmed.1003815 doi: 10.1371/journal.pmed.1003815
![]() |
[21] |
R. P. Curiel, H. G. Ramírez, Vaccination strategies against COVID-19 and the diffusion of anti-vaccination views, Sci. Rep., 11 (2021), 6626. https://doi.org/10.1038/s41598-021-85555-1 doi: 10.1038/s41598-021-85555-1
![]() |
[22] |
J. T. Wu, K. Leung, G. M. Leung, Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study, The Lancet, 395 (2020), 689–697. https://doi.org/10.1016/S0140-6736(20)30260-9 doi: 10.1016/S0140-6736(20)30260-9
![]() |
[23] |
M. S. Arshad, D. Baleanu, M. B. Riaz, M. Abbas, A novel 2-stage fractional Runge-kutta method for a time-fractional logistic growth model, Discrete Dyn. Nat. Soc., 2000 (2000), 1020472. https://doi.org/10.1155/2020/1020472 doi: 10.1155/2020/1020472
![]() |
[24] |
T. Abdeljawad, Q. M. Al-Mdallal, F. Jarad, Fractional logistic models in the frame of fractional operators generated by conformable derivatives, Chaos Soliton. Fract., 119 (2019), 94–101. https://doi.org/10.1016/j.chaos.2018.12.015 doi: 10.1016/j.chaos.2018.12.015
![]() |
[25] |
O. A. Omar, R. A. Elbarkouky, H. M. Ahmed, Fractional stochastic modelling of COVID-19 under wide spread of vaccinations: Egyptian case study, Alex. Eng. J., 61 (2022), 8595–8609. https://doi.org/10.1016/j.aej.2022.02.002 doi: 10.1016/j.aej.2022.02.002
![]() |
[26] |
S. Saha, A. K. Saha, Modeling the dynamics of COVID-19 in the presence of Delta and Omicron variants with vaccination and non-pharmaceutical interventions, Heliyon, 9 (2023), e17900. https://doi.org/10.1016/j.heliyon.2023.e17900 doi: 10.1016/j.heliyon.2023.e17900
![]() |
[27] |
H. M. Ahmed, R. A. Elbarkouky, O. A. M. Omar, M. A. Ragusa, Models for COVID-19 daily confirmed cases in different countries, Mathematics, 9 (2021), 659. https://doi.org/10.3390/math9060659 doi: 10.3390/math9060659
![]() |
[28] |
F. Liu, K. Burrage, Novel techniques in parameter estimition for fractinal dynamical models arising from biological systems, Comput. Math. Appl., 62 (2011), 822–833. https://doi.org/10.1016/j.camwa.2011.03.002 doi: 10.1016/j.camwa.2011.03.002
![]() |
[29] | M. T. Hoang, O. F. Egbelowo, Dynamics of a fractional-order hepatitis b epidemic model and its solutions by nonstandard numerical schemes, In: Mathematical modelling and analysis of infectious diseases, Cham: Springer, 2020,127–153. https://doi.org/10.1007/978-3-030-49896-2_5 |
[30] |
A. Zeb, E. Alzahrani, V. S. Erturk, G. Zaman, Mathematical model for coronavirus disease 2019 (COVID-19) containing isolation class, BioMed Res. Int., 2020 (2020), 3452402. https://doi.org/10.1155/2020/3452402 doi: 10.1155/2020/3452402
![]() |
[31] |
K. Shah, A. Ali, S. Zeb, A. Khan, M. A. Alqudah, T. Abdeljawad, Study of fractional order dynamics of nonlinear mathematical model, Alex. Eng. J., 61 (2022), 11211–11224. https://doi.org/10.1016/j.aej.2022.04.039 doi: 10.1016/j.aej.2022.04.039
![]() |
[32] |
S. Boccaletti, W. Ditto, G. Mindlin, A. Atangana, Modeling and forecasting of epidemic spreading: The case of Covid-19 and beyond, Chaos Soliton. Fract., 135 (2020), 109794. https://doi.org/10.1016/j.chaos.2020.109794 doi: 10.1016/j.chaos.2020.109794
![]() |
[33] |
E. Atangana, A. Atangana, Facemasks simple but powerful weapons to protect against COVID-19 spread: Can they have sides effects, Results Phys., 19 (2020), 103425. https://doi.org/10.1016/j.rinp.2020.103425 doi: 10.1016/j.rinp.2020.103425
![]() |
[34] |
S. T. M. Thabet, M. S. Abdo, K. Shah, T. Abdeljawad, Study of transmission dynamics of COVID-19 mathematical model under ABC fractional order derivative, Results Phys., 19 (2020), 103507. https://doi.org/10.1016/j.rinp.2020.103507 doi: 10.1016/j.rinp.2020.103507
![]() |
[35] |
A. Al Elaiw, F. Hafeez, M. B. Jeelani, M. Awadalla, K. Abuasbeh, Existence and uniqueness results for mixed derivative involving fractional operators, AIMS Mathematics, 8 (2023), 7377–7393. https://doi.org/10.3934/math.2023371 doi: 10.3934/math.2023371
![]() |
[36] |
A. Moumen, R. Shafqat, A. Alsinai, H. Boulares, M. Cancan, M. B. Jeelani, Analysis of fractional stochastic evolution equations by using Hilfer derivative of finite approximate controllability, AIMS Mathematics, 8 (2023), 16094–16114. https://doi.org/10.3934/math.2023821 doi: 10.3934/math.2023821
![]() |
[37] |
J. T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci., 16 (2011), 1140–1153. https://doi.org/10.1016/j.cnsns.2010.05.027 doi: 10.1016/j.cnsns.2010.05.027
![]() |
[38] |
F. C. Meral, T. J. Royston, R. Magin, Fractional calculus in viscoelasticity: an experimental study, Commun. Nonlinear Sci., 15 (2010), 939–945. https://doi.org/10.1016/j.cnsns.2009.05.004 doi: 10.1016/j.cnsns.2009.05.004
![]() |
[39] |
L. M. Richard, Fractional calculus in bioengineering, part 1, Critical Reviews in Biomedical Engineering, 32 (2004), 104. https://doi.org/10.1615/CritRevBiomedEng.v32.i1.10 doi: 10.1615/CritRevBiomedEng.v32.i1.10
![]() |
[40] | M. Dalir, M. Bashour, Applications of fractional calculus, Appl. Math. Sci., 4 (2010), 1021–1032. |
[41] |
A. S. Alnahdi, M. B. Jeelani, H. A. Wahash, M. A. Abdulwasaa, A Detailed Mathematical Analysis of the Vaccination Model for COVID-19, Computer Modeling in Engineering Sciences, 135 (2022), 1315–1343. https://doi.org/10.32604/cmes.2022.023694 doi: 10.32604/cmes.2022.023694
![]() |
[42] | K. Dehingia, M. B. Jeelani, A. Das, Artificial intelligence and machine learning: A smart science approach for cancer control, In: Advances in deep learning for medical image analysis, Boca Raton: CRC Press, 2022. https://doi.org/10.1201/9781003230540 |
[43] |
M. B. Jeelani, A. S. Alnahdi, M. A. Almalahi, M. S. Abdo, H. A. Wahash, N. H. Alharthi, Qualitative analyses of fractional integro-differential equations with a variable order under the Mittag-Leffler power law, J. Funct. Space., 2022 (2022), 6387351. https://doi.org/10.1155/2022/6387351 doi: 10.1155/2022/6387351
![]() |
[44] | R. L. Magin, Fractional calculus in bioengineering: A tool to model complex dynamics, In: Proceedings of the 13th International Carpathian Control Conference (ICCC), High Tatras, Slovakia, 2012,464–469. https://doi.org/10.1109/CarpathianCC.2012.6228688 |
[45] | Y. A. Rossikhin, M. V. Shitikova, Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids, 50 (1997), 15–67. https://doi.org/10.1115/1.3101682 |
[46] | A. Carpinteri, F. Mainardi, Fractals and fractional calculus in continuum mechanics, Vienna: Springer, 1997. https://doi.org/10.1007/978-3-7091-2664-6 |
[47] |
L. M. Richard, Fractional calculus models of complex dynamics in biological tissues, Comput. Math. Appl., 59 (2010), 1586–1593. https://doi.org/10.1016/j.camwa.2009.08.039 doi: 10.1016/j.camwa.2009.08.039
![]() |
[48] |
M. Shimizu, W. Zhang, Fractional calculus approach to dynamic problems of viscoelastic materials, JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 42 (1999), 825–837. https://doi.org/10.1299/jsmec.42.825 doi: 10.1299/jsmec.42.825
![]() |
[49] |
F. Mainardi, An historical perspective on fractional calculus in linear viscoelasticity, Fract. Calc. Appl. Anal., 15 (2012), 712–717. https://doi.org/10.2478/s13540-012-0048-6 doi: 10.2478/s13540-012-0048-6
![]() |
[50] |
Z. Dai, Y. Peng, H. A. Mansy, R. H. Sandler, T. J. Royston, A model of lung parenchyma stress relaxation using fractional viscoelasticity, Med. Eng. Phys., 37 (2015), 752–758. https://doi.org/10.1016/j.medengphy.2015.05.003 doi: 10.1016/j.medengphy.2015.05.003
![]() |
[51] |
M. A. Matlob, Y. Jamali, The concepts and applications of fractional order differential calculus in modeling of viscoelastic systems, Critical Reviews in Biomedical Engineering, 47 (2019), 249–276. https://doi.org/10.1615/CritRevBiomedEng.2018028368 doi: 10.1615/CritRevBiomedEng.2018028368
![]() |
[52] |
W. Grzesikiewicz, A. Wakulicz, A. Zbiciak, Non-linear problems of fractional calculus in modeling of mechanical systems, Int. J. Mech. Sci., 70 (2013), 90–98. https://doi.org/10.1016/j.ijmecsci.2013.02.007 doi: 10.1016/j.ijmecsci.2013.02.007
![]() |
[53] |
C. Celauro, C. Fecarotti, A. Pirrotta, A. C. Collop, Experimental validation of a fractional model for creep/recovery testing of asphalt mixtures, Constr. Build. Mater., 36 (2012), 458–466. https://doi.org/10.1016/j.conbuildmat.2012.04.028 doi: 10.1016/j.conbuildmat.2012.04.028
![]() |
[54] |
W. Adel, A. Elsonbaty, A. Aldurayhim, A. El-Mesady, Investigating the dynamics of a novel fractional-order monkeypox epidemic model with optimal control, Alex. Eng. J., 73 (2023), 519–542. https://doi.org/10.1016/j.aej.2023.04.051 doi: 10.1016/j.aej.2023.04.051
![]() |
[55] |
A. El-Mesady, A. Elsonbaty, W. Adel, On nonlinear dynamics of a fractional order monkeypox virus model, Chaos Soliton. Fract., 164 (2022), 112716. https://doi.org/10.1016/j.chaos.2022.112716 doi: 10.1016/j.chaos.2022.112716
![]() |
[56] |
N. Ahmed, A. Elsonbaty, A. Raza, M. Rafiq, W. Adel, Numerical simulation and stability analysis of a novel reaction-diffusion COVID-19 model, Nonlinear Dyn., 106 (2021), 1293–1310. https://doi.org/10.1007/s11071-021-06623-9 doi: 10.1007/s11071-021-06623-9
![]() |
[57] |
A. M. R. Elsonbaty, Z. Sabir, R. Ramaswamy, W. Adel, Dynamical analysis of a novel discrete fractional SITRS model for COVID-19, Fractals, 29 (2021), 2140035. https://doi.org/10.1142/S0218348X21400351 doi: 10.1142/S0218348X21400351
![]() |
[58] |
A. El-Mesady, A. Waleed Adel, A. A. Elsadany, A. Elsonbaty, Stability analysis and optimal control strategies of a fractional-order Monkeypox virus infection model, Phys. Scr., 98 (2023), 095256. https://doi.org/10.1088/1402-4896/acf16f doi: 10.1088/1402-4896/acf16f
![]() |
[59] |
M. M. Khalsaraei, An improvement on the positivity results for 2-stage explicit Runge-Kutta methods, J. Comput. Appl. Math., 235 (2010), 137–143. https://doi.org/10.1016/j.cam.2010.05.020 doi: 10.1016/j.cam.2010.05.020
![]() |
[60] |
Z. J. Fu, Z. C. Tang, H. T. Zhao, P. W. Li, T. Rabczuk, Numerical solutions of the coupled unsteady nonlinear convection-diffusion equations based on generalized finite difference method, Eur. Phys. J. Plus, 134 (2019), 272. https://doi.org/10.1140/epjp/i2019-12786-7 doi: 10.1140/epjp/i2019-12786-7
![]() |
[61] |
A. Atangana, S. I. Araz, New concept in calculus: piecewise differential and integral operators, Chaos Soliton. Fract., 145 (2021), 110638. https://doi.org/10.1016/j.chaos.2020.110638 doi: 10.1016/j.chaos.2020.110638
![]() |
[62] | Current information about COVID-19 in Pakistan, 2021, Available from: https://www.worldometers.info. |
[63] | Pakistan COVID-19 Corona tracker, 2021, Available from: https://www.coronatracker.com/country/pakistan/. |
[64] |
F. Chamchod, N. F. Britton, On the dynamics of a two-strain influenza model with isolation, Math. Model. Nat. Phenom., 7 (2012), 49–61. https://doi.org/10.1051/mmnp/20127305 doi: 10.1051/mmnp/20127305
![]() |
[65] | Pakistan population, Available from: Worldometer, https://www.worldometers.info/world-population/pakistan-population/. |
[66] |
S. Ahmad, A. Ullah, Q. M. Al-Mdallal, H. Khan, K. Shah, A. Khan, Fractional order mathematical modeling of COVID-19 transmission, Chaos Soliton. Fract., 139 (2020), 110256. https://doi.org/10.1016/j.chaos.2020.110256 doi: 10.1016/j.chaos.2020.110256
![]() |
[67] | Vaccines, Available from: UNICEF Pakistan, https://www.unicef.org/pakistan/topics/vaccines |
[68] |
S. Mwalili, M. Kimathi, V. Ojiambo, D. Gathungu, R. Mbogo, SEIR model for COVID-19 dynamics incorporating the environment and social distancing, BMC Res. Notes, 13 (2020), 352. https://doi.org/10.1186/s13104-020-05192-1 doi: 10.1186/s13104-020-05192-1
![]() |
1. | Bashir Ahmad, Muhammed Aldhuain, Ahmed Alsaedi, Existence Results for a Right-Caputo Type Fractional Differential Equation with Mixed Nonlinearities and Nonlocal Multipoint Sub-strips Type Closed Boundary Conditions, 2024, 45, 1995-0802, 6457, 10.1134/S1995080224606969 |