Taking into account the delayed fear induced by predators on the birth rate of prey, the counter-predation sensitiveness of prey, and the direct consumption by predators with stage structure and interference impacts, we proposed a prey-predator model with fear, Crowley-Martin functional response, stage structure and time delays. By use of the functional differential equation theory and Sotomayor's bifurcation theorem, we established some criteria of the local asymptotical stability and bifurcations of the system equilibrium points. Numerically, we validated the theoretical findings and explored the effects of fear, counter-predation sensitivity, direct predation rate and the transversion rate of the immature predator. We found that the functional response as well as the stage structure of predators affected the system stability. The fear and anti-predation sensitivity have positive and negative impacts to the system stability. Low fear level and high anti-predation sensitivity are beneficial to the system stability and the survival of prey. Meanwhile, low anti-predation sensitivity can make the system jump from one equilibrium point to another or make it oscillate between stability and instability frequently, leading to such phenomena as the bubble, or bistability. The fear and mature delays can make the system change from unstable to stable and cause chaos if they are too large. Finally, some ecological suggestions were given to overcome the negative effect induced by fear on the system stability.
Citation: Weili Kong, Yuanfu Shao. The effects of fear and delay on a predator-prey model with Crowley-Martin functional response and stage structure for predator[J]. AIMS Mathematics, 2023, 8(12): 29260-29289. doi: 10.3934/math.20231498
[1] | Saad Ihsan Butt, Erhan Set, Saba Yousaf, Thabet Abdeljawad, Wasfi Shatanawi . Generalized integral inequalities for ABK-fractional integral operators. AIMS Mathematics, 2021, 6(9): 10164-10191. doi: 10.3934/math.2021589 |
[2] | Haoliang Fu, Muhammad Shoaib Saleem, Waqas Nazeer, Mamoona Ghafoor, Peigen Li . On Hermite-Hadamard type inequalities for n-polynomial convex stochastic processes. AIMS Mathematics, 2021, 6(6): 6322-6339. doi: 10.3934/math.2021371 |
[3] | Tekin Toplu, Mahir Kadakal, İmdat İşcan . On n-Polynomial convexity and some related inequalities. AIMS Mathematics, 2020, 5(2): 1304-1318. doi: 10.3934/math.2020089 |
[4] | Bandar Bin-Mohsin, Muhammad Uzair Awan, Muhammad Zakria Javed, Sadia Talib, Hüseyin Budak, Muhammad Aslam Noor, Khalida Inayat Noor . On some classical integral inequalities in the setting of new post quantum integrals. AIMS Mathematics, 2023, 8(1): 1995-2017. doi: 10.3934/math.2023103 |
[5] | Soubhagya Kumar Sahoo, Fahd Jarad, Bibhakar Kodamasingh, Artion Kashuri . Hermite-Hadamard type inclusions via generalized Atangana-Baleanu fractional operator with application. AIMS Mathematics, 2022, 7(7): 12303-12321. doi: 10.3934/math.2022683 |
[6] | M. Emin Özdemir, Saad I. Butt, Bahtiyar Bayraktar, Jamshed Nasir . Several integral inequalities for (α, s,m)-convex functions. AIMS Mathematics, 2020, 5(4): 3906-3921. doi: 10.3934/math.2020253 |
[7] | Sarah Elahi, Muhammad Aslam Noor . Integral inequalities for hyperbolic type preinvex functions. AIMS Mathematics, 2021, 6(9): 10313-10326. doi: 10.3934/math.2021597 |
[8] | Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441 |
[9] | Hong Yang, Shahid Qaisar, Arslan Munir, Muhammad Naeem . New inequalities via Caputo-Fabrizio integral operator with applications. AIMS Mathematics, 2023, 8(8): 19391-19412. doi: 10.3934/math.2023989 |
[10] | Muhammad Samraiz, Kanwal Saeed, Saima Naheed, Gauhar Rahman, Kamsing Nonlaopon . On inequalities of Hermite-Hadamard type via n-polynomial exponential type s-convex functions. AIMS Mathematics, 2022, 7(8): 14282-14298. doi: 10.3934/math.2022787 |
Taking into account the delayed fear induced by predators on the birth rate of prey, the counter-predation sensitiveness of prey, and the direct consumption by predators with stage structure and interference impacts, we proposed a prey-predator model with fear, Crowley-Martin functional response, stage structure and time delays. By use of the functional differential equation theory and Sotomayor's bifurcation theorem, we established some criteria of the local asymptotical stability and bifurcations of the system equilibrium points. Numerically, we validated the theoretical findings and explored the effects of fear, counter-predation sensitivity, direct predation rate and the transversion rate of the immature predator. We found that the functional response as well as the stage structure of predators affected the system stability. The fear and anti-predation sensitivity have positive and negative impacts to the system stability. Low fear level and high anti-predation sensitivity are beneficial to the system stability and the survival of prey. Meanwhile, low anti-predation sensitivity can make the system jump from one equilibrium point to another or make it oscillate between stability and instability frequently, leading to such phenomena as the bubble, or bistability. The fear and mature delays can make the system change from unstable to stable and cause chaos if they are too large. Finally, some ecological suggestions were given to overcome the negative effect induced by fear on the system stability.
The famous Young's inequality, as a classical result, state that: if a,b>0 and t∈[0,1], then
atb1−t≤ta+(1−t)b | (1.1) |
with equality if and only if a=b. Let p,q>1 such that 1/p+1/q=1. The inequality (1.1) can be written as
ab≤app+bqq | (1.2) |
for any a,b≥0. In this form, the inequality (1.2) was used to prove the celebrated Hölder inequality. One of the most important inequalities of analysis is Hölder's inequality. It contributes wide area of pure and applied mathematics and plays a key role in resolving many problems in social science and cultural science as well as in natural science.
Theorem 1 (Hölder inequality for integrals [11]). Let p>1 and 1/p+1/q=1. If f and g are real functions defined on [a,b] and if |f|p,|g|q are integrable functions on [a,b] then
∫ba|f(x)g(x)|dx≤(∫ba|f(x)|pdx)1/p(∫ba|g(x)|qdx)1/q, | (1.3) |
with equality holding if and only if A|f(x)|p=B|g(x)|q almost everywhere, where A and B are constants.
Theorem 2 (Hölder inequality for sums [11]). Let a=(a1,...,an) and b=(b1,...,bn) be two positive n-tuples and p,q>1 such that 1/p+1/q=1. Then we have
n∑k=1akbk≤(n∑k=1apk)1/p(n∑k=1bqk)1/q. | (1.4) |
Equality hold in (1.4) if and only if ap and bq are proportional.
In [10], İşcan gave new improvements for integral ans sum forms of the Hölder inequality as follow:
Theorem 3. Let p>1 and 1p+1q=1. If f and g are real functions defined on interval [a,b] and if |f|p, |g|q are integrable functions on [a,b] then
∫ba|f(x)g(x)|dx≤1b−a{(∫ba(b−x)|f(x)|pdx)1p(∫ba(b−x)|g(x)|qdx)1q+(∫ba(x−a)|f(x)|pdx)1p(∫ba(x−a)|g(x)|qdx)1q} | (1.5) |
Theorem 4. Let a=(a1,...,an) and b=(b1,...,bn) be two positive n-tuples and p,q>1 such that 1/p+1/q=1. Then
n∑k=1akbk≤1n{(n∑k=1kapk)1/p(n∑k=1kbqk)1/q+(n∑k=1(n−k)apk)1/p(n∑k=1(n−k)bqk)1/q}. | (1.6) |
Let E be a nonempty set and L be a linear class of real valued functions on E having the following properties
L1: If f,g∈L then (αf+βg)∈L for all α,β∈R;
L2: 1∈L, that is if f(t)=1,t∈E, then f∈L;
We also consider positive isotonic linear functionals A:L→R is a functional satisfying the following properties:
A1: A(αf+βg)=αA(f)+β A(g) for f,g∈L and α,β∈R;
A2: If f∈L, f(t)≥0 on E then A(f)≥0.
Isotonic, that is, order-preserving, linear functionals are natural objects in analysis which enjoy a number of convenient properties. Functional versions of well-known inequalities and related results could be found in [1,2,3,4,5,6,7,8,9,11,12].
Example 1. i.) If E=[a,b]⊆R and L=L[a,b], then
A(f)=∫baf(t)dt |
is an isotonic linear functional.
ii.)If E=[a,b]×[c,d]⊆R2 and L=L([a,b]×[c,d]), then
A(f)=∫ba∫dcf(x,y)dxdy |
is an isotonic linear functional.
iii.)If (E,Σ,μ) is a measure space with μ positive measure on E and L=L(μ) then
A(f)=∫Efdμ |
is an isotonic linear functional.
iv.)If E is a subset of the natural numbers N with all pk≥0, then A(f)=∑k∈Epkfk is an isotonic linear functional. For example; If E={1,2,...,n} and f:E→R,f(k)=ak, then A(f)=∑nk=1ak is an isotonic linear functional. If E={1,2,...,n}×{1,2,...,m} and f:E→R,f(k,l)=ak,l, then A(f)=∑nk=1∑ml=1ak,l is an isotonic linear functional.
Theorem 5 (Hölder's inequality for isotonic functionals [13]). Let L satisfy conditions L1, L2, and A satisfy conditions A1, A2 on a base set E. Let p>1 and p−1+q−1=1. If w,f,g≥0 on E and wfp,wgq,wfg∈L then we have
A(wfg)≤A1/p(wfp)A1/q(wgq). | (2.1) |
In the case 0<p<1 and A(wgq)>0 (or p<0 and A(wfp)>0), the inequality in (2.1) is reversed.
Remark 1. i.) If we choose E=[a,b]⊆R, L=L[a,b], w=1 on E and A(f)=∫ba|f(t)|dt in the Theorem 5, then the inequality (2.1) reduce the inequality (1.3).
ii.) If we choose E={1,2,...,n}, w=1 on E, f:E→[0,∞),f(k)=ak, and A(f)=∑nk=1ak in the Theorem 5, then the inequality (2.1) reduce the inequality (1.4).
iii.) If we choose E=[a,b]×[c,d],L=L(E), w=1 on E and A(f)=∫ba∫dc|f(x,y)|dxdy in the Theorem 5, then the inequality (2.1) reduce the following inequality for double integrals:
∫ba∫dc|f(x,y)||g(x,y)|dxdy≤(∫ba∫dc|f(x,y)|pdx)1/p(∫ba∫dc|g(x,y)|qdx)1/q. |
The aim of this paper is to give a new general improvement of Hölder inequality for isotonic linear functional. As applications, this new inequality will be rewritten for several important particular cases of isotonic linear functionals. Also, we give an application to show that improvement is hold for double integrals.
Theorem 6. Let L satisfy conditions L1, L2, and A satisfy conditions A1, A2 on a base set E. Let p>1 and p−1+q−1=1. If α,β,w,f,g≥0 on E, αwfg,βwfg,αwfp,αwgq,βwfp,βwgq,wfg∈L and α+β=1 on E, then we have
i.)
A(wfg)≤A1/p(αwfp)A1/q(αwgq)+A1/p(βwfq)A1/q(βwgq) | (3.1) |
ii.)
A1/p(αwfp)A1/q(αwgq)+A1/p(βwfp)A1/q(βwgq)≤A1/p(wfp)A1/q(wgq). | (3.2) |
Proof. ⅰ.) By using of Hölder inequality for isotonic functionals in (2.1) and linearity of A, it is easily seen that
A(wfg)=A(αwfg+βwfg)=A(αwfg)+A(βwfg)≤A1/p(αwfp)A1/q(αwgq)+A1/p(βwfp)A1/q(βwgq). |
ⅱ.) Firstly, we assume that A1/p(wfp)A1/q(wgq)≠0. then
A1/p(αwfp)A1/q(αwgq)+A1/p(βwfp)A1/q(βwgq)A1/p(wfp)A1/q(wgq)=(A(αwfp)A(wfp))1/p(A(αwgq)A(wgq))1/q+(A(βwfp)A(wfp))1/p(A(βwgq)A(wgq))1/q, |
By the inequality (1.1) and linearity of A, we have
A1/p(αwfp)A1/q(αwgq)+A1/p(βwfp)A1/q(βwgq)A1/p(wfp)A1/q(wgq)≤1p[A(αwfp)A(wfp)+A(βwfp)A(wfp)]+1q[A(αwgq)A(wgq)+A(βwgq)A(wgq)]=1. |
Finally, suppose that A1/p(wfp)A1/q(wgq)=0. Then A1/p(wfp)=0 or A1/q(wgq)=0, i.e. A(wfp)=0 or A(wgq)=0. We assume that A(wfp)=0. Then by using linearity of A we have,
0=A(wfp)=A(αwfp+βwfp)=A(αwfp)+A(βwfp). |
Since A(αwf),A(βwf)≥0, we get A(αwfp)=0 and A(βwfp)=0. From here, it follows that
A1/p(αwfp)A1/q(αwgq)+A1/p(βwfp)A1/q(βwgq)=0≤0=A1/p(wfp)A1/q(wgq). |
In case of A(wgq)=0, the proof is done similarly. This completes the proof.
Remark 2. The inequality (3.2) shows that the inequality (3.1) is better than the inequality (2.1).
If we take w=1 on E in the Theorem 6, then we can give the following corollary:
Corollary 1. Let L satisfy conditions L1, L2, and A satisfy conditions A1, A2 on a base set E. Let p>1 and p−1+q−1=1. If α,β,f,g≥0 on E, αfg,βfg,αfp,αgq,βfp,βgq,fg∈L and α+β=1 on E, then we have
i.)
A(fg)≤A1/p(αfp)A1/q(αgq)+A1/p(βfq)A1/q(βgq) | (3.3) |
ii.)
A1/p(αfp)A1/q(αgq)+A1/p(βfp)A1/q(βgq)≤A1/p(fp)A1/q(gq). |
Remark 3. i.) If we choose E=[a,b]⊆R, L=L[a,b], α(t)=b−tb−a,β(t)=t−ab−a on E and A(f)=∫ba|f(t)|dt in the Corollary 1, then the inequality (3.3) reduce the inequality (1.5).
ii.) If we choose E={1,2,...,n}, α(k)=kn,β(k)=n−kn on E, f:E→[0,∞),f(k)=ak, and A(f)=∑nk=1ak in the Theorem1, then the inequality (3.3) reduce the inequality (1.6).
We can give more general form of the Theorem 6 as follows:
Theorem 7. Let L satisfy conditions L1, L2, and A satisfy conditions A1, A2 on a base set E. Let p>1 and p−1+q−1=1. If αi,w,f,g≥0 on E, αiwfg,αiwfp,αiwgq,wfg∈L,i=1,2,...,m, and ∑mi=1αi=1 on E, then we have
i.)
A(wfg)≤m∑i=1A1/p(αiwfp)A1/q(αiwgq) |
ii.)
m∑i=1A1/p(αiwfp)A1/q(αiwgq)≤A1/p(wfp)A1/q(wgq). |
Proof. The proof can be easily done similarly to the proof of Theorem 6.
If we take w=1 on E in the Theorem 6, then we can give the following corollary:
Corollary 2. Let L satisfy conditions L1, L2, and A satisfy conditions A1, A2 on a base set E. Let p>1 and p−1+q−1=1. If αi,f,g≥0 on E, αifg,αifp,αigq,fg∈L,i=1,2,...,m, and ∑mi=1αi=1 on E, then we have
i.)
A(fg)≤m∑i=1A1/p(αifp)A1/q(αigq) | (3.4) |
ii.)
m∑i=1A1/p(αifp)A1/q(αigq)≤A1/p(fp)A1/q(gq). |
Corollary 3 (Improvement of Hölder inequality for double integrals). Let p,q>1 and 1/p+1/q=1. If f and g are real functions defined on E=[a,b]×[c,d] and if |f|p,|g|q∈L(E) then
∫ba∫dc|f(x,y)||g(x,y)|dxdy≤4∑i=1(∫ba∫dcαi(x,y)|f(x,y)|pdx)1/p(∫ba∫dcαi(x,y)|g(x,y)|qdx)1/q, | (3.5) |
where α1(x,y)=(b−x)(d−y)(b−a)(d−c),α2(x,y)=(b−x)(y−c)(b−a)(d−c),α3(x,y)=(x−a)(y−c)(b−a)(d−c),,α4(x,y)=(x−a)(d−y)(b−a)(d−c) on E
Proof. If we choose E=[a,b]×[c,d]⊆R2, L=L(E), α1(x,y)=(b−x)(d−y)(b−a)(d−c),α2(x,y)=(b−x)(y−c)(b−a)(d−c),α3(x,y)=(x−a)(y−c)(b−a)(d−c),α4(x,y)=(x−a)(d−y)(b−a)(d−c) on E and A(f)=∫ba∫dc|f(x,y)|dxdy in the Corollary 1, then we get the inequality (3.5).
Corollary 4. Let (ak,l) and (bk,l) be two tuples of positive numbers and p,q>1 such that 1/p+1/q=1. Then we have
n∑k=1m∑l=1ak,lbk,l≤4∑i=1(n∑k=1m∑l=1αi(k,l)apk,l)1/p(n∑k=1m∑l=1αi(k,l)bqk,l)1/q, | (3.6) |
where α1(k,l)=klnm,α2(k,l)=(n−k)lnm,α3(k,l)=(n−k)(m−l)nm,α4(k,l)=k(m−l)nm on E.
Proof. If we choose E={1,2,...,n}×{1,2,...,m}, α1(k,l)=klnm,α2(k,l)=(n−k)lnm,α3(k,l)=(n−k)(m−l)nm,α4(k,l)=k(m−l)nm on E, f:E→[0,∞),f(k,l)=ak,l, and A(f)=∑nk=1∑ml=1ak,l in the Theorem1, then we get the inequality (3.6).
In [14], Sarıkaya et al. gave the following lemma for obtain main results.
Lemma 1. Let f:Δ⊆R2→R be a partial differentiable mapping on Δ=[a,b]×[c,d] in R2with a<b and c<d. If ∂2f∂t∂s∈L(Δ), then the following equality holds:
f(a,c)+f(a,d)+f(b,c)+f(b,d)4−1(b−a)(d−c)∫ba∫dcf(x,y)dxdy−12[1b−a∫ba[f(x,c)+f(x,d)]dx+1d−c∫dc[f(a,y)+f(b,y)]dy]=(b−a)(d−c)4∫10∫10(1−2t)(1−2s)∂2f∂t∂s(ta+(1−t)b,sc+(1−s)d)dtds. |
By using this equality and Hölder integral inequality for double integrals, Sar\i kaya et al. obtained the following inequality:
Theorem 8. Let f:Δ⊆R2→R be a partial differentiable mapping on Δ=[a,b]×[c,d] in R2with a<b and c<d. If |∂2f∂t∂s|q,q>1, is convex function on the co-ordinates on Δ, then one has the inequalities:
|f(a,c)+f(a,d)+f(b,c)+f(b,d)4−1(b−a)(d−c)∫ba∫dcf(x,y)dxdy−A|≤(b−a)(d−c)4(p+1)2/p[|fst(a,c)|q+|fst(a,d)|q+|fst(b,c)|q+|fst(b,d)|q4]1/q, | (4.1) |
where
A=12[1b−a∫ba[f(x,c)+f(x,d)]dx+1d−c∫dc[f(a,y)+f(b,y)]dy], |
1/p+1/q=1 and fst=∂2f∂t∂s.
If Theorem 8 are resulted again by using the inequality (3.5), then we get the following result:
Theorem 9. Let f:Δ⊆R2→R be a partial differentiable mapping on Δ=[a,b]×[c,d] in R2with a<b and c<d. If |∂2f∂t∂s|q,q>1, is convex function on the co-ordinates on Δ, then one has the inequalities:
|f(a,c)+f(a,d)+f(b,c)+f(b,d)4−1(b−a)(d−c)∫ba∫dcf(x,y)dxdy−A|≤(b−a)(d−c)41+1/p(p+1)2/p{[4|fst(a,c)|q+2|fst(a,d)|q+2|fst(b,c)|q+|fst(b,d)|q36]1/q+[2|fst(a,c)|q+|fst(a,d)|q+4|fst(b,c)|q+2|fst(b,d)|q36]1/q+[2|fst(a,c)|q+4|fst(a,d)|q+|fst(b,c)|q+2|fst(b,d)|q36]1/q+[|fst(a,c)|q+2|fst(a,d)|q+2|fst(b,c)|q+4|fst(b,d)|q36]1/q}, | (4.2) |
where
A=12[1b−a∫ba[f(x,c)+f(x,d)]dx+1d−c∫dc[f(a,y)+f(b,y)]dy], |
1/p+1/q=1 and fst=∂2f∂t∂s.
Proof. Using Lemma 1 and the inequality (3.5), we find
|f(a,c)+f(a,d)+f(b,c)+f(b,d)4−1(b−a)(d−c)∫ba∫dcf(x,y)dxdy−A|≤(b−a)(d−c)4∫10∫10|1−2t||1−2s||fst(ta+(1−t)b,sc+(1−s))|dtds≤(b−a)(d−c)4{(∫10∫10ts|1−2t|p|1−2s|pdtds)1/p×(∫10∫10ts|fst(ta+(1−t)b,sc+(1−s))|qdtds)1/q+(∫10∫10t(1−s)|1−2t|p|1−2s|pdtds)1/p×(∫10∫10t(1−s)|fst(ta+(1−t)b,sc+(1−s))|qdtds)1/q+(∫10∫10(1−t)s|1−2t|p|1−2s|pdtds)1/p×(∫10∫10(1−t)s|fst(ta+(1−t)b,sc+(1−s))|qdtds)1/q+(∫10∫10(1−t)(1−s)|1−2t|p|1−2s|pdtds)1/p×(∫10∫10(1−t)(1−s)|fst(ta+(1−t)b,sc+(1−s))|qdtds)1/q}. | (4.3) |
Since |fst|q is convex function on the co-ordinates on Δ, we have for all t,s∈[0,1]
|fst(ta+(1−t)b,sc+(1−s))|q≤ts|fst(a,c)|q+t(1−s)|fst(a,d)|q+(1−t)s|fst(a,c)|q+(1−t)(1−s)|fst(a,c)|q | (4.4) |
for all t,s∈[0,1]. Further since
∫10∫10ts|1−2t|p|1−2s|pdtds=∫10∫10t(1−s)|1−2t|p|1−2s|pdtds=∫10∫10(1−t)s|1−2t|p|1−2s|pdtds | (4.5) |
=∫10∫10(1−t)(1−s)|1−2t|p|1−2s|pdtds=14(p+1)2, | (4.6) |
a combination of (4.3) - (4.5) immediately gives the required inequality (4.2).
Remark 4. Since η:[0,∞)→R,η(x)=xs,0<s≤1, is a concave function, for all u,v≥0 we have
η(u+v2)=(u+v2)s≥η(u)+η(v)2=us+vs2. |
From here, we get
I={[4|fst(a,c)|q+2|fst(a,d)|q+2|fst(b,c)|q+|fst(b,d)|q36]1/q+[2|fst(a,c)|q+|fst(a,d)|q+4|fst(b,c)|q+2|fst(b,d)|q36]1/q+[2|fst(a,c)|q+4|fst(a,d)|q+|fst(b,c)|q+2|fst(b,d)|q36]1/q+[|fst(a,c)|q+2|fst(a,d)|q+2|fst(b,c)|q+4|fst(b,d)|q36]1/q}≤2{[6|fst(a,c)|q+3|fst(a,d)|q+6|fst(b,c)|q+3|fst(b,d)|q72]1/q+[3|fst(a,c)|q+6|fst(a,d)|q+3|fst(b,c)|q+6|fst(b,d)|q72]1/q} |
≤4{[|fst(a,c)|q+|fst(a,d)|q+|fst(b,c)|q+|fst(b,d)|q16]1/q |
Thus we obtain
(b−a)(d−c)41+1/p(p+1)2/pI≤(b−a)(d−c)41+1/p(p+1)2/p4{[|fst(a,c)|q+|fst(a,d)|q+|fst(b,c)|q+|fst(b,d)|q16]1/q}≤(b−a)(d−c)4(p+1)2/p{[|fst(a,c)|q+|fst(a,d)|q+|fst(b,c)|q+|fst(b,d)|q4]1/q}. |
This shows that the inequality (4.2) is better than the inequality (4.1).
The aim of this paper is to give a new general improvement of Hölder inequality via isotonic linear functional. An important feature of the new inequality obtained here is that many existing inequalities related to the Hölder inequality can be improved. As applications, this new inequality will be rewritten for several important particular cases of isotonic linear functionals. Also, we give an application to show that improvement is hold for double integrals. Similar method can be applied to the different type of convex functions.
This research didn't receive any funding.
The author declares no conflicts of interest in this paper.
[1] | A. Lotka, Elements physical biology, Baltimore: Williams and Wilkins, 1924. |
[2] |
V. Volterra, Fluctuations in the abundance of a species considered mathematically, Nature, 118 (1926), 558–560. http://dx.doi.org/10.1038/118558a0 doi: 10.1038/118558a0
![]() |
[3] |
J. Collings, The effects of the functional response on the bifurcation behavior of a mite predator-prey interaction model, J. Math. Biol., 36 (1997), 149–168. http://dx.doi.org/10.1007/s002850050095 doi: 10.1007/s002850050095
![]() |
[4] |
T. Kar, Modelling and analysis of a harvested prey-predator system incorporating a prey refuge, J. Comput. Appl. Math., 185 (2006), 19–33. http://dx.doi.org/10.1016/j.cam.2005.01.035 doi: 10.1016/j.cam.2005.01.035
![]() |
[5] |
Y. Huang, F. Chen, Z. Li, Stability analysis of a prey-predator model with holling type III response function incorporating a prey refuge, Appl. Math. Comput., 182 (2006), 672–683. http://dx.doi.org/10.1016/j.amc.2006.04.030 doi: 10.1016/j.amc.2006.04.030
![]() |
[6] |
J. Dawes, M. Souza, A derivation of Hollings type I, II and III functional responses in predator-prey systems, J. Theor. Biol., 327 (2017), 11–22. http://dx.doi.org/10.1016/j.jtbi.2013.02.017 doi: 10.1016/j.jtbi.2013.02.017
![]() |
[7] |
K. Antwi-Fordjour, R. Parshad, M. Beauregard, Dynamics of a predator-prey model with generalized functional response and mutual interference, Math. Biosci., 360 (2020), 108407. http://dx.doi.org/10.1016/j.mbs.2020.108407 doi: 10.1016/j.mbs.2020.108407
![]() |
[8] |
J. Roy, D. Barman, S. Alam, Role of fear in a predator-prey system with ratio-dependent functional response in deterministic and stochastic environment, Biosystems, 197 (2020), 104176. http://dx.doi.org/10.1016/j.biosystems.2020.104176 doi: 10.1016/j.biosystems.2020.104176
![]() |
[9] |
P. Panja, Dynamics of a predator-prey model with Crowley-Martin functional response, refuge on predator and harvesting of super-predator, J. Biol. Syst., 29 (2021), 631–646. http://dx.doi.org/10.1142/S0218339021500121 doi: 10.1142/S0218339021500121
![]() |
[10] |
J. Danane, Stochastic predator-prey Lévy jump model with Crowley-Martin functional response and stage structure, J. Appl. Math. Comput., 67 (2021), 41–67. http://dx.doi.org/10.1007/s12190-020-01490-w doi: 10.1007/s12190-020-01490-w
![]() |
[11] |
J. Tripathi, S. Abbas, M. Thakur, Dynamical analysis of a prey-predator model with Beddington-DeAngelis type function response incorporating a prey refuge, Nonlinear Dyn., 80 (2015), 177–196. http://dx.doi.org/10.1007/s11071-014-1859-2 doi: 10.1007/s11071-014-1859-2
![]() |
[12] |
C. Xu, P. Li, Oscillations for a delayed predator-prey modelwith Hassell-Varley-type functional response, C. R. Biol., 338 (2015), 227–240. http://dx.doi.org/10.1016/j.crvi.2015.01.002 doi: 10.1016/j.crvi.2015.01.002
![]() |
[13] |
J. Tripathi, S. Tyagi, S. Abbas, Global analysis of a delayed density dependent predator-prey model with Crowley-Martin functional response, Commun. Nonlinear Sci., 30 (2016), 45–69. http://dx.doi.org/10.1016/j.cnsns.2015.06.008 doi: 10.1016/j.cnsns.2015.06.008
![]() |
[14] |
A. De Roos, L. Persson, H. Thieme, Emergent allee effects in top predators feeding on structured prey populations, Proc. R. Soc. Lond. B, 270 (2003), 611–618. http://dx.doi.org/10.1098/rspb.2002.2286 doi: 10.1098/rspb.2002.2286
![]() |
[15] |
V. Pavlovˊa, L. Berec, Impacts of predation on dynamics of age-structured prey: Allee effects and multi-stability, Theor. Ecol., 5 (2012), 533–544. http://dx.doi.org/10.1007/s12080-011-0144-y doi: 10.1007/s12080-011-0144-y
![]() |
[16] |
J. Cui, L. Chen, W. Wang, The effect of dispersal on population growth with stage-structure, Comput. Math. Appl., 39 (2000), 91–102. http://dx.doi.org/10.1016/S0898-1221(99)00316-8 doi: 10.1016/S0898-1221(99)00316-8
![]() |
[17] |
P. Panday, N. Pal, S. Samanta, P. Tryjanowski, J. Chattopadhyay, Dynamics of a stage-structured predator-prey model: cost and benefit of fear-induced group defense, J. Theor. Biol., 528 (2021), 110846. http://dx.doi.org/10.1016/j.jtbi.2021.110846 doi: 10.1016/j.jtbi.2021.110846
![]() |
[18] |
X. Sun, H. Huo, H. Xiang, Bifurcation and stability analysis in predator-prey model with a stage-structure for predator, Nonlinear Dyn., 58 (2009), 497–513. http://dx.doi.org/10.1007/s11071-009-9495-y doi: 10.1007/s11071-009-9495-y
![]() |
[19] |
T. Kostova, J. Li, M. Friedman, Two models for competition between age classes, Math. Biosci., 157 (1999), 65–89. http://dx.doi.org/10.1016/S0025-5564(98)10077-9 doi: 10.1016/S0025-5564(98)10077-9
![]() |
[20] | R. Taylor, Predation, New York: Chapman and Hall, 1984. |
[21] |
S. Lima, L. Dill, Behavioral decisions made under the risk of predation: a review and prospectus, Can. J. Zool., 68 (1990), 619–640. http://dx.doi.org/10.1139/z90-092 doi: 10.1139/z90-092
![]() |
[22] | J. Brown, Vigilance, patch use and habitat selection: foraging under predation risk, Evol. Ecol. Res., 1 (1999), 49–71. |
[23] |
W. Cresswell, Predation in bird populations, J. Ornithol., 152 (2011), 251–263. http://dx.doi.org/10.1007/s10336-010-0638-1 doi: 10.1007/s10336-010-0638-1
![]() |
[24] |
A. Wirsing, W. Ripple, A comparison of shark and wolf research reveals similar behavioral responses by prey, Front. Ecol. Environ., 9 (2011), 335–341. http://dx.doi.org/10.1890/090226 doi: 10.1890/090226
![]() |
[25] |
S. Mortoja, P. Panja, S. Mondal, Dynamics of a predator-prey model with stage-structure on both species and anti-predator behavior, Informatics in Medicine Unlocked, 10 (2018), 50–57. http://dx.doi.org/10.1016/j.imu.2017.12.004 doi: 10.1016/j.imu.2017.12.004
![]() |
[26] | W. Ripple, R. Beschta, Wolves and the ecology of fear: can predation risk structure ecosystems? BioScience, 54 (2004), 755–766. http://dx.doi.org/10.1641/0006-3568(2004)054[0755: WATEOF]2.0.CO; 2 |
[27] |
A. Sih, Optimal behavior: can foragers balance two conflicting demands, Science, 210 (1980), 1041–1043. http://dx.doi.org/10.1126/science.210.4473.1041 doi: 10.1126/science.210.4473.1041
![]() |
[28] | B. Pierce, R. Bowyer, V. Bleich, Habitat selection by mule deer: forage benefits or risk of predation? J. Wildl. Manage., 68 (2004), 533–541. http://dx.doi.org/10.2193/0022-541X(2004)068[0533: HSBMDF]2.0.CO; 2 |
[29] |
S. Creel, D. Christianson, S. Liley, J. Winnie, Predation risk affects reproductive physiology and demography of elk, Science, 315 (2007), 960. http://dx.doi.org/10.1126/science.1135918 doi: 10.1126/science.1135918
![]() |
[30] | Y. Kuang, Delay differential equations: with applications in population dynamics, New York: Academic Press, 1993. |
[31] |
S. Gourley, Y. Kuang, A stage structured predator-prey model and its dependence on maturation delay and death rate, J. Math. Biol., 49 (2019), 188–200. http://dx.doi.org/10.1007/s00285-004-0278-2 doi: 10.1007/s00285-004-0278-2
![]() |
[32] |
N. Pal, S. Samanta, S. Biswas, M. Alquran, K. Al-Khaled, J. Chattopadhyay, Stability and bifurcation analysis of a three-species food chain model with delay, Int. J. Bifurcat. Chaos, 25 (2015), 1550123. http://dx.doi.org/10.1142/S0218127415501230 doi: 10.1142/S0218127415501230
![]() |
[33] |
S. Pal, N. Pal, S. Samanta, J. Chattopadhyay, Effect of hunting cooperation and fear in a predator-prey model, Ecol. Complex., 39 (2019), 100770. http://dx.doi.org/10.1016/j.ecocom.2019.100770 doi: 10.1016/j.ecocom.2019.100770
![]() |
[34] |
Y. Shao, Global stability of a delayed predator-prey system with fear and Holling-type II functional response in deterministic and stochastic environments, Math. Comput. Simulat., 200 (2022), 65–77. http://dx.doi.org/10.1016/j.matcom.2022.04.013 doi: 10.1016/j.matcom.2022.04.013
![]() |
[35] |
B. Kumar Das, D. Sahoo, G. Samanta, Impact of fear in a delayed-induced predator-prey system with intraspecific competition within predator species, Math. Comput. Simulat., 191 (2022), 134–156. http://dx.doi.org/10.1016/j.matcom.2021.08.005 doi: 10.1016/j.matcom.2021.08.005
![]() |
[36] |
B. Dubey, S. Ankit Kumar, Stability switching and chaos in a multiple delayed prey-predator model with fear effect and anti-predator behavor, Math. Comput. Simulat., 188 (2021), 164–192. http://dx.doi.org/10.1016/j.matcom.2021.03.037 doi: 10.1016/j.matcom.2021.03.037
![]() |
[37] |
K. Chakraborty, S. Haldar, T. Kar, Global stability and bifurcation analysis of a delay induced prey-predator system with stage structure, Nonlinear Dyn., 73 (2013), 1307–1325. http://dx.doi.org/10.1007/s11071-013-0864-1 doi: 10.1007/s11071-013-0864-1
![]() |
[38] |
S. Mortoja, P. Panja, S. Mondal, Dynamics of a predator-prey model with nonlinear incidence rate, Crowley-Martin type functional response and disease in prey population, Ecological Genetics and Genomics, 10 (2019), 100035. http://dx.doi.org/10.1016/j.egg.2018.100035 doi: 10.1016/j.egg.2018.100035
![]() |
[39] |
Y. Shao, W. Kong, A predator-prey model with Beddington-DeAngelis functional response and multiple delays in deterministic and stochastic environments, Mathematics, 10 (2022), 3378. http://dx.doi.org/10.3390/math10183378 doi: 10.3390/math10183378
![]() |
[40] |
E. Beretta, Y. Kuang, Geometric stability switch criteria in delay differential systems with delay-dependent parameters, SIAM J. Math. Anal., 33 (2002), 1144–1165. http://dx.doi.org/10.1137/S0036141000376086 doi: 10.1137/S0036141000376086
![]() |
[41] | L. Perko, Differential equations and dynamical systems, New York: Springer, 2001. http://dx.doi.org/10.1007/978-1-4613-0003-8 |
[42] | V. Kolmanovskii, A. Myshkis, Applied theory of functional differential differential equations, Dordrecht: Springer, 1992. http://dx.doi.org/10.1007/978-94-015-8084-7 |
[43] |
A. Dhooge, W. Govaerts, Y. Kuznetsov, H. Meijer, B. Sautois, New features of the software matcont for bifurcation analysis of dynamical systems, Math. Comp. Model. Dyn., 14 (2007), 147–175. http://dx.doi.org/10.1080/13873950701742754 doi: 10.1080/13873950701742754
![]() |
[44] |
Y. Zhao, S. Yuan, Stability in distribution of a stochastic hybrid competitive Lotka-Volterra model with Lévy jumps, Chaos Soliton. Fract., 85 (2016), 98–109. http://dx.doi.org/10.1016/j.chaos.2016.01.015 doi: 10.1016/j.chaos.2016.01.015
![]() |
[45] |
S. Mondal, A. Maiti, G. Samanta, Effects of fear and additional food in a delayed predator-prey model, Biophysical Reviews and Letters, 13 (2018), 157–177. http://dx.doi.org/10.1142/S1793048018500091 doi: 10.1142/S1793048018500091
![]() |
[46] |
A. Thirthar, S. Majeed, M. Alqudah, P. Panja, T. Abdeljawad, Fear effect in a predator-prey model with additional food, prey refuge and harvesting on super predator, Chaos Soliton. Fract., 159 (2022), 112091. http://dx.doi.org/10.1016/j.chaos.2022.112091 doi: 10.1016/j.chaos.2022.112091
![]() |
1. | Ludmila Nikolova, Lars-Erik Persson, Sanja Varošanec, 2025, Chapter 2, 978-3-031-83371-7, 31, 10.1007/978-3-031-83372-4_2 |