In this work, an epidemic model of a susceptible, exposed, infected and recovered SEIR-type is established for the distinctive dynamic compartments and epidemic characteristics of COVID-19 as it spreads across a population with a heterogeneous rate. The proposed model is investigated using a novel approach of fractional calculus known as piecewise derivatives. The existence theory is demonstrated through the establishment of sufficient conditions. In addition, result related to Hyers-Ulam stability is also derived for the considered model. A numerical method based on modified Euler procedure is also constructed to simulate the approximate solutions of the proposed model by employing various values of fractional orders. We testified the numerical results by using real available data of Japan. In addition, some results for the SEIR-type model are also presented graphically using the stochastic process, and the obtained results are discussed.
Citation: Mdi Begum Jeelani, Kamal Shah, Hussam Alrabaiah, Abeer S. Alnahdi. On a SEIR-type model of COVID-19 using piecewise and stochastic differential operators undertaking management strategies[J]. AIMS Mathematics, 2023, 8(11): 27268-27290. doi: 10.3934/math.20231395
[1] | Dayang Dai, Dabuxilatu Wang . A generalized Liu-type estimator for logistic partial linear regression model with multicollinearity. AIMS Mathematics, 2023, 8(5): 11851-11874. doi: 10.3934/math.2023600 |
[2] | Muhammad Nauman Akram, Muhammad Amin, Ahmed Elhassanein, Muhammad Aman Ullah . A new modified ridge-type estimator for the beta regression model: simulation and application. AIMS Mathematics, 2022, 7(1): 1035-1057. doi: 10.3934/math.2022062 |
[3] | Sihem Semmar, Omar Fetitah, Mohammed Kadi Attouch, Salah Khardani, Ibrahim M. Almanjahie . A Bernstein polynomial approach of the robust regression. AIMS Mathematics, 2024, 9(11): 32409-32441. doi: 10.3934/math.20241554 |
[4] | Yanting Xiao, Wanying Dong . Robust estimation for varying-coefficient partially linear measurement error model with auxiliary instrumental variables. AIMS Mathematics, 2023, 8(8): 18373-18391. doi: 10.3934/math.2023934 |
[5] | Gaosheng Liu, Yang Bai . Statistical inference in functional semiparametric spatial autoregressive model. AIMS Mathematics, 2021, 6(10): 10890-10906. doi: 10.3934/math.2021633 |
[6] | Juxia Xiao, Ping Yu, Zhongzhan Zhang . Weighted composite asymmetric Huber estimation for partial functional linear models. AIMS Mathematics, 2022, 7(5): 7657-7684. doi: 10.3934/math.2022430 |
[7] | Xin Liang, Xingfa Zhang, Yuan Li, Chunliang Deng . Daily nonparametric ARCH(1) model estimation using intraday high frequency data. AIMS Mathematics, 2021, 6(4): 3455-3464. doi: 10.3934/math.2021206 |
[8] | Emrah Altun, Mustafa Ç. Korkmaz, M. El-Morshedy, M. S. Eliwa . The extended gamma distribution with regression model and applications. AIMS Mathematics, 2021, 6(3): 2418-2439. doi: 10.3934/math.2021147 |
[9] | Muhammad Amin, Saima Afzal, Muhammad Nauman Akram, Abdisalam Hassan Muse, Ahlam H. Tolba, Tahani A. Abushal . Outlier detection in gamma regression using Pearson residuals: Simulation and an application. AIMS Mathematics, 2022, 7(8): 15331-15347. doi: 10.3934/math.2022840 |
[10] | Zawar Hussain, Atif Akbar, Mohammed M. A. Almazah, A. Y. Al-Rezami, Fuad S. Al-Duais . Diagnostic power of some graphical methods in geometric regression model addressing cervical cancer data. AIMS Mathematics, 2024, 9(2): 4057-4075. doi: 10.3934/math.2024198 |
In this work, an epidemic model of a susceptible, exposed, infected and recovered SEIR-type is established for the distinctive dynamic compartments and epidemic characteristics of COVID-19 as it spreads across a population with a heterogeneous rate. The proposed model is investigated using a novel approach of fractional calculus known as piecewise derivatives. The existence theory is demonstrated through the establishment of sufficient conditions. In addition, result related to Hyers-Ulam stability is also derived for the considered model. A numerical method based on modified Euler procedure is also constructed to simulate the approximate solutions of the proposed model by employing various values of fractional orders. We testified the numerical results by using real available data of Japan. In addition, some results for the SEIR-type model are also presented graphically using the stochastic process, and the obtained results are discussed.
The field of mathematical analysis that deals with the study of arbitrary order integrals and derivatives is known as fractional calculus. Because of its numerous applications across a wide range of fields, this field has increased in importance and recognition over the past few years. According to researchers, this field is the most effective at identifying anomalous kinetics and has numerous uses in a variety of fields. Ordinary differential equations with fractional derivatives can be used to simulate a variety of issues, including statistical, mathematical, engineering, chemical, and biological issues. Several distinct forms of fractional integrals and derivative operators (see e.g., [1,2,3,4]), including Riemann-Liouville, Caputo, Riesz, Hilfer, Hadamard, Erdélyi-Kober, Saigo, Marichev-Saigo-Maeda and others, have been thoroughly investigated by researchers. From an application perspective, we suggest the readers to see the work related to the fractional differential equations presented by [5,6,7,8]. In [9], the authors studied symmetric and antisymmetric solitons in the defocused saturable nonlinearity and the PT-symmetric potential of the fractional nonlinear Schrödinger equation. In [10], the fractional exponential function approach is used to study a time-fractional Ablowitz-Ladik model, and bright and dark discrete soliton solutions, discrete exponential solutions, and discrete peculiar wave solutions are discovered. In [11], the authors presented the rich vector exact solutions for the coupled discrete conformable fractional nonlinear Schrödinger equations by taking into account the conformable fractional derivative.
On the other hand, special functions like Gamma, Beta, Mittag-Leffler, et al. play a vital part in the foundation of fractional calculus. Moreover, the Mittag-Leffler function is regarded as the fundamental function in fractional calculus. The Prabhakar fractional operator containing a three-parameter version of the aforementioned function in the kernel. The M-L function has been extensively studied to construct solutions of fractional PDEs, such as dynamical characteristic of analytical fractional solitons for the space-time fractional Fokas-Lenells equation, soliton dynamics based on exact solutions of conformable fractional discrete complex cubic Ginzburg-Landau equation and Abundant fractional soliton solutions of a space-time fractional perturbed Gerdjikov-Ivanov equation by a fractional mapping method, see [12,13,14]. Strong generalizations of the univariate and bivariate Mittag-Leffler functions, which are known to be important in fractional calculus, are the multivariate Mittag-Leffler functions.
The well-known one-parameter Mittag-Leffler (M-L) function is defined by [15,16] as follows
εa(z1)=∞∑l=0zl1Γ(al+1)(a∈C;ℜ(a)>0,z1∈C), | (1.1) |
where C represents the set of complex numbers and ℜ(a) denotes the real part of the complex number.
The generalization of (1.1) with two parameters is defined by [17,18] as
εa,b(z1)=∞∑l=0zl1Γ(al+b)(a,b∈C;ℜ(a)>0,ℜ(b)>0), | (1.2) |
Later on, Agarwal [19], Humbert [20] and Humbert and Agarwal [21] studied the properties and applications of M-L functions. In [22], the generalization of (1.1) and (1.2) is defined by
εca,b(z1)=∞∑l=0(c)lΓ(al+b)zl1l!(a,b,c∈C;ℜ(a)>0,ℜ(b)>0). | (1.3) |
In [23], the following generalization of the M-L function is defined by
εc,qa,b(z1)=∞∑l=0(c)lqΓ(al+b)zl1l!(a,b,c∈C;ℜ(a)>0,ℜ(b)>0,q>0). | (1.4) |
In [24], Rahman et al. proposed the following generalized of M-L function by
εc,q,da,b,p(z1)=∞∑l=0Bp(c+lq;d−c)(d)lqB(c,d−c)Γ(al+b)zl1l!, | (1.5) |
where a,b,c,d∈C;ℜ(c)>0,ℜ(a)>0,ℜ(b)>0,q>0 and Bp(x,y)=∫10tx−1(1−t)y−1e−t−ptdt is the extension of beta function (see [25]).
Gorenflo et al. [26] and Haubold et al. [27]) studied the various properties of generalized M-L function. In [28], a new generalization of M-L function (1.3) is presented by
εca,b,p(z1)=∞∑l=0(c;p)lΓ(al+b)zl1l!(p≥0,a,b,c∈C;,ℜ(a)>0,ℜ(b)>0,), | (1.6) |
where (λ;p)l is the Pochhammer symbol defined by Srivastava et al. [29,30] as
(λ;p)μ={Γp(λ+μ)Γ(λ);(p>0,λ,μ∈C)(λ)μ;(p=0, λ,μ∈C∖{0}. | (1.7) |
The researchers examined the developments of these extension, (1.6) and (1.7) and studied their related features and applications. In [30], Srivastava et al. proposed the following generalized hypergeometric function
sFt[(δ1;p),⋯,(δs);(ζ1),⋯,(ζt);z1]=∞∑l=0(δ1;p)l⋯(δs)l(ζ1)l⋯(ζt)l zl1l!, | (1.8) |
where δj∈C for j = 1, 2, ⋯, s, ζk∈C for k=1,2,⋯,t, and ζk≠ 0, -1, -2, ⋯.
The integral representation of (μ;p)η is explained by
(μ;p)η=1Γ(μ) ∫∞0 sμ+η−1 e−s−psds, | (1.9) |
where ℜ(ρ)>0 and ℜ(μ+η)>0. In particular, the related confluent hypergeometric function 1F1 and the Gauss hypergeometric function 2F1 are given by
2F1[(δ1;p),b;λ;z1]=∞∑l=0(δ1;p)l(b)l(λ)l zl1l!, | (1.10) |
and
1F1[(δ1;p);λ;z1]=Φ[(δ1;p);λ;z1]=∞∑l=0(δ1;p)l(λ)l zl1l!. | (1.11) |
The expansion of the generalised hypergeometric function rFs, which was studied by [30], has r numerator and s denominator parameters. Researchers recently developed several extensions of special functions, together with their corresponding characteristics and applications. Using extended beta functions as its foundation, Nisar et al. [31], Bohner et al. [32] and Rahman et al. [33] developed an enlargement of fractional derivative operators.
The multivariate M-L function is defined by [34] as follows:
E(cj)(aj),b(z1,z2,…,zj)=E(c1,c2,…,cj)(a1,a2,…,aj),b(z1,z2,…zj)=∞∑m1,m2,…,mj=0(c1)m1(c2)m2…(cj)mj(z1)m1…(zj)mjΓ(a1m1+a2m2+…ajmj+b)m1!…mj!, | (1.12) |
where zi,ai,b,ci∈C; i=1,2,…,j, ℜ(ai)>0, ℜ(b)>0 and ℜ(ci)>0.
In [35,36,37,38,39], the authors have studied various properties and applications of different type of generalized M-L functions. For real (complex) valued functions, the Lebesgue measurable space is defined by
L(r,s)={h:‖h‖1=∫sr|h(x)|dx<∞}. | (1.13) |
The left and right sides fractional integral operators of the Riemann-Liouville type are defined by [3,4] as follows:
(Iλr+h)(x)=1Γ(λ)x∫rh(ϱ)(x−ϱ)1−λdϱ,(x>r), | (1.14) |
and
(Iλs−h)(x)=1Γ(λ)s∫xh(ϱ)(ϱ−x)1−λdϱ,(x<s), |
where h∈L(r,s), λ∈C and ℜ(λ)>0.
The left and right sides Riemann-Liouville fractional derivatives for the function h(x)∈L(r,s), λ∈C, ℜ(λ)>0 and n=[ℜ(λ)]+1 are defined in [3,4] by
(Dλr+h)(x)=(ddx)n(In−λr+h)(x) | (1.15) |
and
(Dλs−h)(x)=(−ddx)n(In−λs−h)(x), |
respectively. The generalized differential operator Dλ,vr+ of order 0<λ<1 and type 0<v<1 with respect to x can be found in [2,4] as
(Dλ,vr+h)=(Iv(1−λ)r+ddx(I(1−v)(1−λ)r+h))(x). | (1.16) |
In particular, if v=0, then (1.16) will lead to the operator Dλr+ defined in (1.15).
We also take into account the aforementioned well-known results.
Theorem 1.1. In [40], the following result for the fractional integral is presented by
Iλr+(ϱ−r)η−1=Γ(η)Γ(λ+η)(x−r)λ+η−1, | (1.17) |
where λ, η∈C, ℜ(λ)>0, ℜ(η)>0,
Theorem 1.2. [41] Suppose that the function h(z) has a power series expansion h(z)=∞∑k=0knzk and it is analytic in the disc |z|<R, then we have the following result
Dλz{zη−1h(z)}=Γ(η)Γ(λ+η)∞∑n=0an(η)n(λ+η)nzn. |
Lemma 1.1. (Srivastava and Tomovski [42]) Suppose that x>r, λ∈(0,1), v∈[0,1], ℜ(η)>0 and ℜ(λ)>0, then we have
Dλr+[(ϱ−r)η−1](x)=Γ(η)Γ(η−λ)(x−r)η−λ−1. | (1.18) |
The generalized multivariate M-L function (1.12) is then defined in terms of the modified Pochhammer symbol (1.7) and its different features as well as the accompanying integral operators are examined. This is driven by the aforementioned modifications of special functions.
Motivated by the above results and literature, the paper has the following structure: First, we describe and investigate a novel generalization of the multivariate M-L function using a generalized Pochhammer symbol. Secondly, we offer a few differential and fractional integral formulas for the explored multivariate M-L function. By using the new form of the multivariate M-L function, a new generalization of the fractional integral operator is introduced, and some fundamental characteristics of the operator are discussed.
We are in a position to present the generalized multivariate M-L function by utilizing the extended Pochhammer symbol in (1.7) as follows:
ε(cj)(aj),b;p(z1,z2,⋯,zj)=∞∑l1,⋯,lj=0(c1;p)l1(c2)l2⋯(cj)ljΓ(a1l1+a2l2+⋯+cjlj+b)zl11zl22⋯zljjl1!⋯lj!, | (2.1) |
where ai,b,ci∈C;ℜ(ai)>0,ℜ(b)>0,,p≥0 for i=1,2,⋯,j. The special case for a1=1 and l2=⋯=lj=0 in (2.1) can be reduced to extended confluent hypergeometric function (1.11) as follows:
εc11,b;p(z1)=1Γ(b)1F1[(c1;p);b;z1]=1Γ(b)Φ[(c1;p);b;z1]. | (2.2) |
In coming results, we demonstrate some fundamental characteristics and integral representations of the generalized multivariate M-L function.
Theorem 2.1. For the multivariate M-L function defined in (2.1), the following relation holds true:
ε(cj)(aj),b;p(z1,z2,⋯,zj)=bε(cj)(aj),b+1;p(z1,z2,⋯,zj) | (2.3) |
+[a1z1ddz1+⋯+ajzjddzj]ε(cj)(aj),b+1;p(z1,⋯,zj), |
where ai,b,ci∈C;ℜ(ai)>0,ℜ(b)>0,,p≥0 for i=1,2,⋯,j.
Proof. From (2.1), we have
bε(cj)(aj),b+1,p(z1,⋯,zj)+[a1z1ddz1+⋯+ajzjddzj]ε(cj)(aj),b+1;p(z1,⋯,zj)=b∞∑l1,⋯,lj=0(c1,p)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b+1)zl11⋯zljjl1!⋯lj!+[a1z1ddz1+⋯+ajzjddzj]∞∑l1,⋯,lj=0(c1,p)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b+1)zl11⋯zljjl1!⋯lj!=b∞∑l1,⋯,lj=0(c1,p)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b+1)zl11⋯zljjl1!⋯lj!+[a1z1ddz1+⋯+ajzjddzj]∞∑l1,⋯,lj=0(c1,p)l1(c2)l2⋯(cj)ljΓ(a1l1+⋯+ajlj+b+1)zl11⋯zjljl1!⋯lj!=b∞∑l1,⋯,lj=0(c1,p)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b+1)zl11⋯zljjl1!⋯lj!+∞∑l1,⋯,lj=0(c1,p)l1(c2)l2⋯(cj)ljΓ(a1l1+⋯+ajlj+b+1)zl11⋯zljjl1!⋯lj!(a1l1+⋯+ajlj)=∞∑l1,⋯,lj=0(c1,p)l1(c2)l2⋯(cj)ljΓ(a1l1+⋯+ajlj+b+1)zl11⋯zljjl1!⋯lj!(a1l1+⋯+ajlj+b) (using Γ(z1+1)=z1Γ(z1))=∞∑l=0(c1,p)l1(c2)l2⋯(cj)ljΓ(a1l1+⋯+ajlj+b)zl11⋯zljjl1!⋯lj!=ε(cj)(aj),b,p(z1,z2,⋯,zj), |
which is the desired result (2.3).
Theorem 2.2. For the generalized multivariate M-L function defined in (1.12), the following relations hold true:
(ddz1)m⋯(ddzj)mε(cj)(aj),b;p(z1,z2,⋯,zj)=(c1)m⋯(cj)mε(cj)+m(aj),b+(aj)m;p(z1,⋯,zj), | (2.4) |
and
(ddz1)m[zb−11ε(cj)(aj),b;p(ϖ1za11,⋯,ϖjzaj1))]=zb−m−11ε(cj)(aj),b−m;p(ϖ1za11,⋯,ϖjzaj1), | (2.5) |
where ai,b,ci∈C;ℜ(ai)>0,ℜ(b)>0,,p≥0 for i=1,2,⋯,j, and ℜ(b−m)>0 with m∈N.
Proof. Differentiating (1.12) m times with respect to z1,z2,⋯,zj respectively, we get
(ddz1)m⋯(ddzj)mε(cj)(aj),b;p(z1,⋯,zj)=(ddz1)m⋯(ddzj)m∞∑l1=l2=⋯=lj=0(c1;p)l1(c2)l2⋯(cj)ljΓ(a1l1+⋯+ajlj+b)zl11⋯zljjl1!⋯lj!=∞∑l1=⋯=lj=m(c1;p)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b)l1!⋯lj! zl1−m1⋯zlj−mj(l1−m)!⋯(lj−m)! l1!⋯lj!=∞∑l1=⋯=lj=0(c1;p)l1+m⋯(cj)lj+mΓ(a1(l1+m)+⋯aj(lj+m)+b)zl11⋯zljjl1!⋯lj! (Replacing li by li+m)=∞∑l1=⋯=lj=0(c1)m⋯(cj)m (c1+m;p)l1⋯(cj+m)ljΓ(a1l1+⋯ajlj+b+(a1+⋯+aj)m)zl11⋯zljjl1!⋯lj!. |
Now using (λ;σ)μ+p=(λ)μ(λ+μ;σ)p and (λ)μ+p=(λ)μ(λ+μ)p, we get
(ddz1)m⋯(ddzj)mε(cj)(aj),b;p(z1,⋯,cj)=(c1)m⋯(cj)m∞∑l1=⋯=lj=0(c1+m;p)l1⋯(cj)ljΓ(a1l1+⋯ajlj+b+(a1+⋯+aj)m)zl1⋯zljjl1!⋯lj!=(c1)m⋯(cj)m ε(cj)+m(aj),b+(aj)m;p(z1,z2,⋯,zj), |
which is the desired result (2.4). Similarly, to prove (2.5), we have
(ddz1)m[zb−11ε(cj)(aj),b;p(ϖ1za11,⋯ϖjzajj)]=(ddz1)mzb−11∞∑l1=⋯=lj=0(c1;p)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b)(ϖ1za11)l1⋯(ϖjzaj1)ljl1!⋯lj!=(ddz1)m∞∑l1=⋯=lj=0(c1;p)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b)zb−1+a1l1+⋯+ajlj1l1!⋯lj!ϖl11⋯ϖljj=∞∑l1=⋯lj=0(c1;p)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b)ϖl11⋯ϖljjl1!⋯lj!(a1l1+⋯+ajlj+b−1)!(a1l1+⋯+ajlj+b−m−1)! za1l1+⋯+ajlj+b−m−11. |
Differentiating m times and using the relation l(l−1)!=l!, we get
(ddz1)m[zb−11ε(cj)(aj),b;p(ϖ1za11,⋯ϖjzajj)]=∞∑l1=⋯lj=0(c1;p)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b)Γ(a1l1+⋯+ajlj+b)Γ(a1l1+⋯+ajlj+b−m)ϖl11⋯ϖljjza1l1+⋯+ajlj+b−1−m1l1!⋯lj!=zb−m−11∞∑l1=⋯lj=0(c1;p)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b−m)(ϖ1za11)l1⋯(ϖ1zaj1)ljl1!⋯lj!=zb−m−11ε(cj)(aj),b−m;p(ϖ1za11,⋯,ϖjzaj1). |
The proof is completed.
Corollary 2.1. The generalized multivariate M-L function has the following integral representations:
∫z10tb−1ε(cj)(aj),b;p(ϖ1ta1,⋯,ϖjtaj)dt=zb1ε(cj)(aj),b+1;p(ϖ1za11,⋯,ϖjzaj1), |
where ai,b,ci,ϖi∈C;ℜ(ai)>0,ℜ(b)>0,p≥0 for i=1,2,⋯,j.
In this section, we present some fractional integration and differentiation formulas of generalized M-L function given in (2.1).
Theorem 3.1. Suppose x>r(r∈R+=[0,∞)), ai, b, ci, ϖ∈C, ℜ(ai)>0 and ℜ(ci)>0, ℜ(b)>0 and ℜ(λ)>0, then the following relations hold true:
Iλr+[(ϱ−r)b−1ε(cj)(aj),b;p(ϖ1(ϱ−r)a1,⋯,ϖj(ϱ−r)aj)](x)=(x−r)λ+b−1ε(ci)(ai),b+λ;p(ϖ1(x−r)a1,⋯,ϖj(x−r)aj), | (3.1) |
Dλr+[(ϱ−r)b−1ε(ci)(ai),b;p(ϖ1(ϱ−r)a1,⋯,ϖj(ϱ−r)aj)](x)=(x−r)b−λ−1ε(ci)(ai),b−λ;p(ϖ1(x−r)a1,⋯,ϖj(x−r)aj) | (3.2) |
and
Dλ,vr+[(ϱ−r)b−1ε(ci)(ai),b;p(ϖ1(x−r)a1,⋯,ϖj(x−r)aj)](x)=(x−r)b−λ−1ε(ci)(ai),b−λ;p(ϖ1(x−r)a1,⋯,ϖj(x−r)aj). | (3.3) |
Proof. Consider
Iλr+[(ϱ−r)b−1ε(ci)(ai),b;p(ϖ1(x−r)a1,⋯,ϖj(x−r)aj)](x)=1Γ(λ)∫xr(x−r)b−1ε(ci)(ai),b;p(ϖ1(ϱ−r)a1,⋯,ϖ1(ϱ−r)aj)(x−ϱ)1−λdϱ=1Γ(λ)∞∑n=0(c1;p,v)l1⋯(cj)lnϖl1⋯ϖljΓ(a1l1+⋯+ajlj+b)l1!⋯lj!∫xr(ϱ−r)b+a1l1+⋯+ajlj−1(x−ϱ)λ−1dϱ=∞∑n=0(c1;p,v)l1⋯(cj)lnϖl1⋯ϖljΓ(a1l1+⋯+ajlj+b)l1!⋯lj!(Iλr+[(ϱ−r)b+a1l1+⋯+ajlj−1]). |
By the use of (1.17), we have
Iλr+[(ϱ−r)b−1ε(ci)(ai),b;p(ϖ1(x−r)a1,⋯,ϖj(x−r)aj)](x)=∞∑n=0(c1;p,v)l1⋯(cj)lnϖl1⋯ϖljΓ(a1l1+⋯+ajlj+b)l1!⋯lj!(x−r)b+λ+a1l1+⋯+ajlj−1.Γ(a1l1+⋯+ajlj+b)Γ(a1l1+⋯+ajlj+b+λ)=(x−r)b+λ−1∞∑n=0(c1;p)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b+λ)[ϖl11(x−r)a1l1⋯ϖljj(x−r)ajlj]l1!⋯lj!=(x−r)b+λ−1ε(ci)(ai),b+λ;p(ϖ1(x−r)a1,⋯,ϖj(x−r)aj), |
which gives the proof of (3.1).
Next, we have
Dλr+[(ϱ−r)b−1ε(ci)(ai),b;p(ϖ1(ϱ−r)a1,⋯,ϖj(ϱ−r)aj)]=(ddx)n{In−λr+[(ϱ−r)b−1ε(ci)(ai),b;p(ϖ1(ϱ−r)a1,⋯,ϖj(ϱ−r)aj)]}, |
which on using (3.1) takes the following form:
Dλr+[(ϱ−r)b−1ε(ci)(ai),b;p(ϖ1(ϱ−r)a1,⋯,ϖj(ϱ−r)aj)]=(ddx)n{(x−r)b−λ+n−1ε(ci)(ai),b−λ+n;p(ϖ1(x−r)a1,⋯,ϖj(x−r)aj)}. |
Applying (2.5), we get
Dλr+[(ϱ−r)b−1ε(ci)(ai),b;p(ϖ1(x−r)a1,⋯,ϖj(x−r)aj)](x)={(x−r)η−λ−1ε(ci)(ai),b−λ;p(ϖ1(x−r)a1,⋯,ϖj(x−r)aj)}, |
which gives the proof of (3.2).
To obtain (3.3), we have
(Dλ,vr+[(ϱ−r)b−1ε(ci)(ai),b;p(ϖ1(ϱ−r)a1,⋯,ϖj(ϱ−r)aj)])(x)=(Dλ,vr+[∞∑l1=⋯=lj=0(c1;p,v)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b)ϖl1⋯ϖljl1!⋯lj!(ϱ−r)a1l1+⋯+ajlj+b−1])(x)=∞∑l1=⋯=lj=0(c1;p,v)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b)ϖl1⋯ϖljl1!⋯lj!×(Dλ,vr+[(ϱ−r)a1l1+⋯+ajlj+b−1])(x). |
By applying (1.18), we get
(Dλ,vr+[(ϱ−r)b−1ε(ci)(ai),b;p(ϖ1(ϱ−r)a1,⋯,ϖj(ϱ−r)aj)])(x)=∞∑l1=⋯=lj=0(c1;p,v)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b)ϖl1⋯ϖljl1!⋯lj!×Γ(a1l1+⋯+ajlj+b)Γ(a1l1+⋯+ajlj+b−λ)(x−r)a1l1+⋯+ajlj+b−λ−1=(x−r)b−λ−1∞∑l1=⋯=lj=0(c1;p,v)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b−λ)ϖl1(x−r)a1⋯ϖlj(x−r)ajl1!⋯lj!=(x−r)b−λ−1ε(ci)(ai),b−λ;p(ϖl1(x−r)a1,⋯,ϖlj(x−r)aj), |
which completes the required proof.
Remark 3.1. Applying Theorem 3.1 for p=0, then we obtain the result presented in [34].
In this section, we define a fractional integral involving newly defined multivariate M-L function and discuss its properties.
Definition 4.1. Let b,ai,ci,ϖi∈C, ℜ(ci)>0, ℜ(ai)>0 and ℜ(b)>0 and h∈L(r,s). Then the generalized left and right sided fractional integrals are defined by
(R(ϖi);(ci)r+;(ai),b;ph)(x)=∫xr(x−ϱ)b−1ε(ci)(ai),b;p(ϖ1(x−ϱ)a1,⋯,ϖj(x−ϱ)aj)h(ϱ)dϱ,(x>r) | (4.1) |
and
(R(ϖi);(ci)s−;(ai),b;ph)(x)=∫sx(ϱ−x)b−1ε(ci)(ai),b;p(ϖ1(ϱ−x)a1,⋯,ϖj(ϱ−x)aj)h(ϱ)dϱ,(x<s), | (4.2) |
respectively.
Remark 4.1. If we consider p=0, then the operators defined in (4.1) and (4.2) will take the form defined earlier by [34]. Similarly, if we consider p=0 and j=1, then the operators defined in (4.1) and (4.2) will take the form defined by [22]. If we take j=1, then the work done in this paper will lead to the work presented by [28]. Also, if we consider one of ϖi=0, for i=1,2,⋯,j, then the operators defined in (4.1) and (4.2) will take the form of the classical operators.
Next, we prove the following properties of integral operator defined in (4.1).
Theorem 4.1. Suppose that b,ai,λ,ci,ϖi∈C, ℜ(ai)>0, ℜ(b)>0, ℜ(λ)>0, p≥0 and ℜ(ci)>0 for i=1,2,⋯,j, then the following result holds true:
(R(ϖi);(ci)r+;(ai),b;p[(ϱ−r)λ−1])(x)=(x−r)λ+b−1Γ(λ)ε(ci);p(ai),b+λ(ϖ1(x−r)a1,⋯,ϖj(x−r)aj). |
Proof. By the use of definition (4.1), we have
(R(ϖi);(ci)r+;(ai),b;ph)(x)=∫xr(x−ϱ)b−1ε(ci)(ai),b(ϖ1(x−ϱ)a1,⋯,ϖj(x−ϱ)aj)h(ϱ)dϱ. |
Therefore, we get
(R(ϖi);(ci)r+;(ai),b;p[(ϱ−r)λ−1])(x)=∫xr(x−ϱ)b−1(ϱ−r)λ−1ε(ci)(ai),b;p(ϖ1(x−ϱ)a1,⋯,ϖj(x−ϱ)aj)dϱ=∞∑l1=⋯=lj=0(c1;p)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b))ϖl11⋯ϖljjl1!⋯lj!(∫xr(ϱ−r)λ−1(x−ϱ)λ+a1l1+⋯+ajlj−1dϱ)=∞∑l1=⋯=lj=0(c1;p)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b))ϖl11⋯ϖljjl1!⋯lj!Ia1l1+⋯+ajlj+br+[(ϱ−r)λ−1]=(x−r)b+λ−1∞∑l1=⋯=lj=0(c1;p)l1⋯(cj)ljΓ(a1l1+⋯+ajlj+b))[ϖ1(x−r)a1l1⋯ϖj(x−r)ajlj]l1!⋯lj!×Γ(λ)Γ(a1l1+⋯+ajlj+b)Γ(a1l1+⋯+ajlj+b+λ)=(x−r)b+λ−1Γ(λ)ε(ci)(ai),b+λ;p(ϖ1(x−r)a1,⋯,ϖj(x−r)aj), |
which gives the desired proof.
Theorem 4.2. Suppose that ci,ai,b,ϖi∈C, ℜ(ai)>0, ℜ(b)>0, p≥0 for i=1,2,⋯,j, then the following result holds true:
‖R(ϖi);(ci)r+;(ai),b;pΦ‖1≤K‖Φ‖1. |
Where
K:=(s−r)Re(b)∞∑l1=⋯=lj=0|(c1;p)l1⋯(cj)lj|Γ(a1l1+⋯+ajlj+b)(ℜ(b)+ℜ(a1)l1+⋯+ℜ(aj)lj)×|ϖl11(s−r)a1l1⋯ϖljj(s−r)ajlj|l1!⋯lj!. |
Proof. By the use of (1.13) and (4.1) and by interchanging integration and summation order, we have
‖R(ϖi);(ci)r+;(ai),b;pΦ‖1=s∫r|∫xr(x−ϱ)b−1ε(ci)(ai),b;p(ϖ1(x−ϱ)a1,⋯,ϖj(x−ϱ)aj)Φ(ϱ)dϱ|dx≤∫sr[∫xϱ(x−ϱ)ℜ(b)−1|ε(ci)(ai),b;p(ϖ1(x−ϱ)a1,⋯,ϖj(x−ϱ)aj)|dx]|Φ(ϱ)|dϱ=∫sr[∫x−ϱ0uℜ(b)−1|ε(ci)(ai),b;p(ϖ1ua1,⋯,ϖjuaj)|du]|Φ(ϱ)|dϱ, |
by setting u=x−ϱ. After simplification, we obtain
‖R(ϖi);(ci)r+;(ai),b;pΦ‖1≤∫sr[∞∑l1=⋯=lj=0|(c1;p)l1⋯(cj)lj|Γ(a1l1+⋯+ajlj+b)|ϖa11⋯ϖljj|l1!⋯lj!×((u)ℜ(b)+ℜ(a1)l1+⋯+ℜ(aj)lj(ℜ(b)+ℜ(a1)l1+⋯+ℜ(aj)lj))s−r0]|Φ(ϱ)|dϱ. |
It follows that
‖R(ϖi);(ci)r+;(ai),b;pΦ‖1≤{(s−r)ℜ(b)∞∑l1=⋯=lj=0|(c1;p)l1⋯(cj)lj|Γ(a1l1+⋯+ajlj+b)(ℜ(b)+ℜ(a1)l1+⋯+ℜ(aj)lj)×|ϖl11(s−r)a1l1⋯ϖljj(s−r)ajlj|l1!⋯lj!}s∫r|Φ(ϱ)|dϱ=K||Φ||1, |
where
K=(s−r)Re(b)∞∑l1=⋯=lj=0|(c1;p)l1⋯(cj)lj|Γ(a1l1+⋯+ajlj+b)(ℜ(b)+ℜ(a1)l1+⋯+ℜ(aj)lj)×|ϖl11(s−r)a1l1⋯ϖljj(s−r)ajlj|l1!⋯lj!, |
which gives the desired result.
Corollary 4.1. If we take ai,b,ci,ϖi∈C, ℜ(ai)>0, ℜ(b)>0, ℜ(ci)>0 with i=1,2,⋯,j, then the following result holds true:
(R(ϖi);(ci)r+;(ai),b;p1)(x)=(x−r)bε(ci)(ai),b+1;p(ϖ1(x−r)a1,⋯,ϖj(x−r)aj). |
Proof. Consider
(R(ϖi);(ci)r+;(ai),b1)(x)=∫xr(x−ϱ)b−1ε(ci)(ai),b;p(ϖ1(x−ϱ)a1,⋯,ϖj(x−r)aj)dϱ=∫xr(x−ϱ)b−1(∞∑l1=⋯=lj=0(c1;p)l1⋯(cj)ljϖl11(x−ϱ)a1l1⋯ϖljj(x−ϱ)ajljΓ(a1l1+⋯+ajlj+b)l1!⋯lj!)dϱ. |
It follows that
(R(ϖi);(ci)r+;(ai),b;p1)(x)=∞∑l1=⋯=lj=0(c1;p)l1⋯(cj)ljϖl11⋯ϖljjΓ(a1l1+⋯+ajlj+b)l1!⋯lj!∫xr(x−ϱ)b+a1l1+⋯+ajlj−1dϱ=(x−r)b∞∑l1=⋯=lj=0(c1;p)l1⋯(cj)ljϖl11(x−r)a1l1⋯ϖljj(x−r)ajljΓ(a1l1+⋯+ajlj+b)(a1l1+⋯+ajlj+b)l1!⋯lj!=(x−r)bε(ci)(ai),b+1;p(ϖ1(x−r)a1,⋯,ϖj(x−r)aj), |
which gives the desired proof.
Theorem 4.3. The generalized fractional operator can be represented in term of Riemann–Liouville fractional integrals for ci, ai, b, ϖi∈C with ℜ(ai)>0, ℜ(b)>0, ℜ(ci)>0 for i=1,2,⋯,j, p≥0 and x>r as follows:
(R(ϖi);(ci)r+;(ai),bh)(x)=∞∑l1=⋯=lj=0Γ(c1+l1;p)(c2)l2⋯(cj)ljϖa11⋯ϖajjΓ(c1)l1!⋯lj!Ia1l1+⋯+ajlj+br+h(x). |
Proof. By utilizing (2.1) in (4.1) and then interchanging the order of summation and integration, we have
(R(ϖi);(ci)r+;(ai),bh)(x)=∫xr(x−ϱ)b−1ε(ci)(ai),b;p(ϖ1(x−ϱ)a1,⋯,ϖj(x−ϱ)aj)h(ϱ)dϱ=∫xr(x−ϱ)b−1∞∑l1=⋯=lj=0Γ(c1+l1;p)(c2)l2⋯(cj)ljϖl11(x−ϱ)a1l1⋯ϖljj(x−ϱ)ajljΓ(c1)Γ(a1l1+⋯+ajlj+b)l1!⋯lj!h(ϱ)dϱ=∞∑l1=⋯=lj=0Γ(c1+l1;p)(c2)l2⋯(cj)ljϖa1l11⋯ϖajljjΓ(c1)l1!⋯lj!1Γ(a1l1+⋯+ajlj+b)×∫xr(x−ϱ)a1l1+⋯+ajlj+b−1h(ϱ)dϱ=∞∑l1=⋯=lj=0Γ(c1+l1;p)(c2)l2⋯(cj)ljϖa1l11⋯ϖajljjΓ(c1)l1!⋯lj!Ia1l1+⋯+ajlj+br+h(x), |
which gives the desired proof.
Theorem 4.4. For λ, ci, ai, b, ϖi∈C with ℜ(ai)>0, ℜ(b)>0, ℜ(ci)>0, ℜ(λ)>0, for i=1,2,⋯,j, p≥0 and x>r, then the following result holds true:
(Iλr+[R(ϖi);(ci)r+;(ai),b;ph])(x)=(R(ϖi);(ci)r+;(ai),b+λh)(x)=(R(ϖi);(ci)r+;(ai),b[Iλr+h])(x), | (4.3) |
where h∈L(r,s).
Proof. By employing (1.14) and (4.1), we have
(Iλr+[R(ϖi);(ci)r+;(ai),b;ph])(x)=1Γ(λ)∫xr[(R(ϖi);(ci)r+;(ai),b;ph)(ϱ)](x−ϱ)1−λdϱ=1Γ(λ)∫xr(x−ϱ)λ−1[∫ϱr(ϱ−u)b−1ε(ci)(ai),b;p(ϖ1(ϱ−u)a1,⋯,ϖj(ϱ−u)aj)h(u)du]dϱ. |
It follows that
(Iλr+[R(ϖi);(ci)r+;(ai),bh])(x)=∫xr[1Γ(λ)∫xu(x−ϱ)λ−1(ϱ−u)b−1ε(ci)(ai),b;p(ϖ1(ϱ−u)a1,⋯,ϖj(ϱ−u)aj)dϱ]h(u)du. |
By considering ϱ−u=θ, we get
(Iλr+[R(ϖi);(ci)r+;(ai),b;ph])(x)=∫xr[1Γ(λ)∫x−u0(x−u−θ)λ−1θb−1ε(ci)(ai),b;p(ϖ1θa1,⋯,ϖjθaj)dθ]h(u)du=∫xr[1Γ(λ)∫x−u0θb−1ε(ci)(ai),b;p(ϖ1θa1,⋯,ϖjθaj)(x−u−θ)1−λdθ]h(u)du. |
Hence, from (1.14) and applying (3.1), we obtain
(Iλr+[R(ϖi);(ci)r+;(ai),b;ph])(x)=∫xr[θλ+b−1ε(ci)(ai),b+λ;p(ϖ1θa1,⋯,ϖjθaj)]h(u)du=∫xr(x−u)λ+b−1ε(ci)(ai),b+λ(ϖ1(x−u)a1,⋯,ϖj(x−u)aj)h(u)du. |
Thus, we have
(Iλr+[R(ϖi);(ci)r+;(ai),b;ph])(x)=(R(ϖi);(ci)r+;(ai),b+λh)(x). | (4.4) |
Next, consider the right hand side of (4.3) and employing (4.1) to derive the second part, we have
(R(ϖi);(ci)r+;(ai),b;p[Iλr+h])(x)=∫xr(x−ϱ)b−1ε(ci)(ai),b;p(ϖ1(x−ϱ)a1,⋯,ϖj(x−ϱ)aj)[Iλr+h](ϱ)dϱ=∫xrε(ci)(ai),b;p(ϖ1(x−ϱ)a1,⋯,ϖj(x−ϱ)aj)(1Γ(λ)ϱ∫rh(u)(ϱ−u)1−λdu)dϱ. |
It follows that
(R(ϖi);(ci)r+;(ai),b[Iλr+h])(x)=x∫r1Γ(λ)[∫xu(x−ϱ)b−1(ϱ−u)λ−1ε(ci)(ai),b;p(ϖ1(x−ϱ)a1,⋯,ϖj(x−ϱ)aj)dϱ]h(u)du. |
By setting x−ϱ=θ, we get
(R(ϖi);(ci)r+;(ai),b[Iλr+h])(x)=∫xr1Γ(λ)[∫0x−uθb−1(x−θ−u)λ−1ε(ci)(ai),b;p(ϖ1θa1,⋯,ϖjθaj)(−dθ)]h(u)du=x∫r1Γ(λ)[∫x−u0θb−1(x−θ−u)λ−1ε(ci)(ai),b;p(ϖ1θa1,⋯,ϖjθaj)dθ]h(u)du. |
Further, by using (1.14) and applying (3.1), we obtain
(R(ϖi);(ci)r+;(ai),b;p[Iλr+h])(x)=(R(ϖi);(ci)r+;(ai),b+λh)(x). | (4.5) |
Thus, (4.4) and (4.5) gives the desired proof.
Nowadays, the theories are developed very rapidly. The scientists are introducing more advanced and generalized forms of the classical ones. In this present study, we introduced a generalized form of the multivariate M-L function (2.1) by employing the generalized Pochhammer symbol and its properties. By using this more extended form of M-L, we introduced a fractional integral operator and studied some of the basic properties of this operator. The special cases of the main results are if we take p=0, then the operators defined in (4.1) and (4.2) will reduce to the work done by [34]. Similarly, if we take j=1 and p=0, then the operators defined in (4.1) and (4.2) will lead to the work done by [22]. If we take j=1, then the work done in this paper will lead to the work presented by [28]. Moreover, if we consider one of ϖi=0, for i=1,2,⋯,j, then the operators defined in (4.1) and (4.2) will reduce to the classical R-L operators. We believe that our proposed operator will be more applicable in the fields of fractional integral inequalities and operator theory.
The author T. Abdeljawad would like to thank Prince Sultan University for supporting through TAS research lab. Manar A. Alqudah: Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R14), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
The authors declare no conflict of interest.
[1] |
Z. Ali, F. Rabiei, K. Shah, T. Khodadadi, Fractal-fractional order dynamical behavior of an HIV/AIDS epidemic mathematical model, Eur. Phys. J. Plus, 136 (2021), 36. https://doi.org/10.1140/epjp/s13360-020-00994-5 doi: 10.1140/epjp/s13360-020-00994-5
![]() |
[2] |
M. M. Amirian, Y. Jamali, The concepts and applications of fractional order differential calculus in modeling of viscoelastic systems: a primer, Crit. Rev. Biomed. Eng., 47 (2019), 249–276. https://doi.org/10.1615/CritRevBiomedEng.2018028368 doi: 10.1615/CritRevBiomedEng.2018028368
![]() |
[3] |
A. J. Arenas, G. Gonzalez-Parra, B. M. Chen-Charpentier, Construction of nonstandard finite difference schemes for the SI and SIR epidemic models of fractional order, Math. Comput. Simulat., 121 (2016), 48–63. https://doi.org/10.1016/j.matcom.2015.09.001 doi: 10.1016/j.matcom.2015.09.001
![]() |
[4] |
M. Arfan, K. Shah, A. Ullah, Fractal-fractional mathematical model of four species comprising of prey-predation, Phys. Scripta, 96 (2021), 124053. DOI 10.1088/1402-4896/ac2f37 doi: 10.1088/1402-4896/ac2f37
![]() |
[5] |
J. K. K. Asamoah, M. A. Owusu, Z. Jin, F. T. Oduro, A. Abidemi, E. O. Gyasi, Global stability and cost-effectiveness analysis of COVID-19 considering the impact of the environment: using data from Ghana, Chaos Soliton. Fract., 140 (2020), 110103. https://doi.org/10.1016/j.chaos.2020.110103 doi: 10.1016/j.chaos.2020.110103
![]() |
[6] |
J. K. K. Asamoah, E. Okyere, A. Abidemi, S. E. Moore, G. Q. Sun, Z. Jin, et al., Optimal control and comprehensive cost-effectiveness analysis for COVID-19, Results Phys., 33 (2022), 105177. https://doi.org/10.1016/j.rinp.2022.105177 doi: 10.1016/j.rinp.2022.105177
![]() |
[7] |
J. K. K. Asamoah, Z. Jin, G. Q. Sun, B. Seidu, E. Yankson, A. Abidemi, et al., Sensitivity assessment and optimal economic evaluation of a new COVID-19 compartmental epidemic model with control interventions, Chaos Soliton. Fract., 146 (2021), 110885. https://doi.org/10.1016/j.chaos.2021.110885 doi: 10.1016/j.chaos.2021.110885
![]() |
[8] |
J. K. K. Asamoah, C. S. Bornaa, B. Seidu, Z. Jin, Mathematical analysis of the effects of controls on transmission dynamics of SARS-CoV-2, Alex. Eng. J., 59 (2020), 5069–5078. https://doi.org/10.1016/j.aej.2020.09.033 doi: 10.1016/j.aej.2020.09.033
![]() |
[9] |
J. K. K. Asamoah, Fatmawati, A fractional mathematical model of heartwater transmission dynamics considering nymph and adult amblyomma ticks, Chaos Soliton. Fract., 174 (2023), 113905. https://doi.org/10.1016/j.chaos.2023.113905 doi: 10.1016/j.chaos.2023.113905
![]() |
[10] |
J. K. K. Asamoah, E. Okyere, E. Yankson, A. A. Opoku, A. Adom-Konadu, E. Acheampong, et al., Non-fractional and fractional mathematical analysis and simulations for Q fever, Chaos Soliton. Fract., 156 (2022), 111821. https://doi.org/10.1016/j.chaos.2022.111821 doi: 10.1016/j.chaos.2022.111821
![]() |
[11] |
J. K. K. Asamoah, Fractal-fractional model and numerical scheme based on Newton polynomial for Q fever disease under Atangana-Baleanu derivative, Results Phys., 34 (2022), 105189. https://doi.org/10.1016/j.rinp.2022.105189 doi: 10.1016/j.rinp.2022.105189
![]() |
[12] |
A. Atangana, S. I. Araz, Nonlinear equations with global differential and integral operators:existence, uniqueness with application to epidemiology, Results Phys., 20 (2021), 103593. https://doi.org/10.1016/j.rinp.2020.103593 doi: 10.1016/j.rinp.2020.103593
![]() |
[13] |
A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.48550/arXiv.1602.03408 doi: 10.48550/arXiv.1602.03408
![]() |
[14] |
M. A. Abdulwasaa, M. S. Abdo, K. Shah, T. A. Nofal, S. K. Panchal, S. V. Kawale, et al., Fractal-fractional mathematical modeling and forecasting of new cases and deaths of COVID-19 epidemic outbreaks in India, Results Phys., 20 (2021), 103702. https://doi.org/10.1016/j.rinp.2020.103702 doi: 10.1016/j.rinp.2020.103702
![]() |
[15] |
R. P. Agarwal, S. Arshad, D. Regan, V. Lupulescu, A Schauder fixed point theorem in semilinear spaces and applications, Fixed Point Theory Appl., 2013 (2013), 306. https://doi.org/10.1186/1687-1812-2013-306 doi: 10.1186/1687-1812-2013-306
![]() |
[16] |
A. Atangana, S. I. Araz, New concept in calculus: piecewise differential and integral operators, Chaos Soliton. Fract., 145 (2021), 110638. https://doi.org/10.1016/j.chaos.2020.110638 doi: 10.1016/j.chaos.2020.110638
![]() |
[17] |
A. J. Arenas, G. González-Parra, B. M. Chen-Charpentier, Construction of nonstandard finite difference schemes for the SI and SIR epidemic models of fractional order, Math. Comput. Simulat., 121 (2016), 48–63. https://doi.org/10.1016/j.matcom.2015.09.001 doi: 10.1016/j.matcom.2015.09.001
![]() |
[18] |
M. S. Arshad, D. Baleanu, M. B. Riaz, M. Abbas, A novel 2-stage fractional Runge-Kutta method for a time fractional logistic growth model, Discrete Dyn. Nat. Soc., 2020 (2020), 1020472. https://doi.org/10.1155/2020/1020472 doi: 10.1155/2020/1020472
![]() |
[19] |
S. Boccaletti, W. Ditto, G. Mindlin, A. Atangana, Modeling and forecasting of epidemic spreading: The case of Covid-19 and beyond, Chaos Soliton. Fract., 135 (2020), 109794. https://doi.org/10.1016/j.chaos.2020.109794 doi: 10.1016/j.chaos.2020.109794
![]() |
[20] |
S. Banihashemi, H. Jafari, A. Babaei, A stable collocation approach to solve a neutral delay stochastic differential equation of fractional order, J. Comput. Appl. Math., 403 (2022), 113845. https://doi.org/10.1016/j.cam.2021.113845 doi: 10.1016/j.cam.2021.113845
![]() |
[21] |
I. I. Bogoch, A. Watts, A. Thomas-Bachli, C. Huber, M. U. Kraemer, K. Khan, Pneumonia of unknown aetiology in Wuhan, China: potential for international spread via commercial air travel, J. Travel Med., 27 (2020), taaa008. https://doi.org/10.1093/jtm/taaa008 doi: 10.1093/jtm/taaa008
![]() |
[22] |
C. Celauro, C. Fecarotti, A. Pirrotta, A. C. Collop, Experimental validation of a fractional model for creep/recovery testing of asphalt mixtures, Constr. Build. Mater., 36 (2012), 458–466. https://doi.org/10.1016/j.conbuildmat.2012.04.028 doi: 10.1016/j.conbuildmat.2012.04.028
![]() |
[23] |
Y. Chen, F. Liu, Q. Yu, T. Li, Review of fractional epidemic models, Appl. Math. Model., 97 (2021), 281–307. https://doi.org/10.1016/j.apm.2021.03.044 doi: 10.1016/j.apm.2021.03.044
![]() |
[24] | A. Carpinteri, F. Mainardi, Fractals and fractional calculus in continuum mechanics, Vienna: Springer, 1997. https://doi.org/10.1007/978-3-7091-2664-6 |
[25] |
C.T. Deressa, G. F. Duressa, Analysis of Atangana-Baleanu fractional-order SEAIR epidemic model with optimal control, Adv. Differ. Equ., 2021 (2021), 174. https://doi.org/10.1186/s13662-021-03334-8 doi: 10.1186/s13662-021-03334-8
![]() |
[26] |
Z. Dai, Y. Peng, H. A. Mansy, R. H. Sandler, T. J. Royston, A model of lung parenchyma stress relaxation using fractional viscoelasticity, Med. Eng. Phys., 37 (2015), 752–758. https://doi.org/10.1016/j.medengphy.2015.05.003 doi: 10.1016/j.medengphy.2015.05.003
![]() |
[27] |
Z. J. Fu, Z. C. Tang, H. T. Zhao, P. W. Li, T. Rabczuk, Numerical solutions of the coupled unsteady nonlinear convection-diffusion equations based on generalized finite difference method, Eur. Phys. J. Plus, 134 (2019), 272. https://doi.org/10.1140/epjp/i2019-12786-7 doi: 10.1140/epjp/i2019-12786-7
![]() |
[28] |
A. B. Gumel, S. Ruan, T. Day, J. Watmough, F. Brauer, P. van den Driessche, et al., Modelling strategies for controlling SARS out breaks, Proc. R. Soc. Lond. B., 271 (2004), 2223–2232. https://doi.org/10.1098/rspb.2004.2800 doi: 10.1098/rspb.2004.2800
![]() |
[29] |
E. F. D. Goufo, Application of the Caputo-Fabrizio fractional derivative without singular kernel to Korteweg-de Vries-Burgers equation, Math. Model. Anal., 21 (2016), 188–198. https://doi.org/10.3846/13926292.2016.1145607 doi: 10.3846/13926292.2016.1145607
![]() |
[30] |
D. S. Hui, E. I. Azhar, T. A. Madani, F. Ntoumi, R. Kock, O. Dar, et al., The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health–The latest 2019 novel coronavirus outbreak in Wuhan, China, B. Math. Biol., 91 (2020), 264–66. https://doi.org/10.1016/j.ijid.2020.01.009 doi: 10.1016/j.ijid.2020.01.009
![]() |
[31] |
S. Hussain, E. N. Madi, H. Khan, H. Gulzar, S. Etemad, S. Rezapour, et al., On the stochastic modeling of COVID-19 under the environmental white noise, J. Funct. Space., 2022 (2022), 4320865. doilinkhttps://doi.org/10.1155/2022/4320865 doi: 10.1155/2022/4320865
![]() |
[32] |
A. A. Hamou, E. Azroul, Z. Hammouch, A. L. Alaoui, On dynamics of fractional incommensurate model of Covid-19 with nonlinear saturated incidence rate, MedRxiv, 2021 (2021), 07, https://doi.org/10.1101/2021.07.18.21260711 doi: 10.1101/2021.07.18.21260711
![]() |
[33] | M. T. Hoang, O. F. Egbelowo, Dynamics of a fractional-order hepatitis B epidemic model and its solutions by nonstandard numerical schemes, In: Mathematical modelling and analysis of infectious diseases, Cham: Springer, 2020,127–153. https://doi.org/10.1007/978-3-030-49896-2_5 |
[34] |
G. Jumarie, Stochastic differential equations with fractional Brownian motion input, Int. J. Syst. Sci., 24 (1993), 1113–1131. https://doi.org/10.1080/00207729308949547 doi: 10.1080/00207729308949547
![]() |
[35] |
S. Kumar, A. Kumar, B. Samet, H. Dutta, A study on fractional host-parasitoid population dynamical model to describe insect species, Numer. Meth. Part. D. E., 37 (2021), 1673–1692. https://doi.org/10.1002/num.22603 doi: 10.1002/num.22603
![]() |
[36] |
M. M. Khalsaraei, An improvement on the positivity results for 2-stage explicit Runge-Kutta methods, J. Comput. Appl. Math., 235 (2010), 137–143. https://doi.org/10.1016/j.cam.2010.05.020 doi: 10.1016/j.cam.2010.05.020
![]() |
[37] |
R. Kahn, I. Holmdahl, S. Reddy, J. Jernigan, M. J. Mina, R. B. Slayton, Mathematical modeling to inform vaccination strategies and testing approaches for voronavirus disease 2019 (COVID-19) in nursing homes, Clin. Infect. Dis., 74 (2022), 597–603. https://doi.org/10.1093/cid/ciab517 doi: 10.1093/cid/ciab517
![]() |
[38] |
M. A. Khan, A. Atangana, Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative, Alex. Eng. J., 59 (2020), 2379–2389. https://doi.org/10.1016/j.aej.2020.02.033 doi: 10.1016/j.aej.2020.02.033
![]() |
[39] |
M. A. Khan, A. Atangana, E. Alzahrani, E. Fatmawati, The dynamics of COVID-19 with quarantined and isolation, Adv. Differ. Equ., 2020 (2020), 425. https://doi.org/10.1186/s13662-020-02882-9 doi: 10.1186/s13662-020-02882-9
![]() |
[40] |
A. M. Lopes, J. T. Machado, Fractional order models of leaves, J. Vib. Control, 20 (2014), 998–1008. https://doi.org/10.1177/1077546312473323 doi: 10.1177/1077546312473323
![]() |
[41] |
R. Li, S. Zhong, C. Swartz, An improvement of the Arzela-Ascoli theorem, Topol. Appl., 159 (2012), 2058–2061. http://doi.org/10.1016/j.topol.2012.01.014 doi: 10.1016/j.topol.2012.01.014
![]() |
[42] |
R. Lewandowski, Z. Pawlak, Dynamic analysis of frames with viscoelastic dampers modelled by rheological models with fractional derivatives, J. Sound Vib., 330 (2011), 923–936. https://doi.org/10.1016/j.jsv.2010.09.017 doi: 10.1016/j.jsv.2010.09.017
![]() |
[43] |
B. Li, H. Liang, L. Shi, Q. He, Complex dynamics of Kopel model with nonsymmetric response between oligopolists, Chaos Soliton. Fract., 156 (2022), 111860. https://doi.org/10.1016/j.chaos.2022.111860 doi: 10.1016/j.chaos.2022.111860
![]() |
[44] |
F. Liu, K. Burrage, Novel techniques in parameter estimation for fractional dynamical models arising from biological systems, Comput. Math. Appl., 62 (2011), 822–833. https://doi.org/10.1016/j.camwa.2011.03.002 doi: 10.1016/j.camwa.2011.03.002
![]() |
[45] |
B. Li, H. Liang, Q. He, Multiple and generic bifurcation analysis of a discrete Hindmarsh-Rose model, Chaos Soliton. Fract., 146 (2021), 110856. https://doi.org/10.1016/j.chaos.2021.110856 doi: 10.1016/j.chaos.2021.110856
![]() |
[46] |
J. Mondal, S. Khajanchi, Mathematical modeling and optimal intervention strategies of the COVID-19 outbreak, Nonlinear Dyn., 109 (2022), 177–202. https://doi.org/10.1007/s11071-022-07235-7 doi: 10.1007/s11071-022-07235-7
![]() |
[47] |
J. T. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci., 16 (2011), 1140–1153. https://doi.org/10.1016/j.cnsns.2010.05.027 doi: 10.1016/j.cnsns.2010.05.027
![]() |
[48] |
F. C. Meral, T. J. Royston, R. Magin, Fractional calculus in viscoelasticity: an experimental study, Commun. Nonlinear Sci., 15 (2010), 939–945. https://doi.org/10.1016/j.cnsns.2009.05.004 doi: 10.1016/j.cnsns.2009.05.004
![]() |
[49] |
R. L. Magin, Fractional calculus in bioengineering, Crit. Rev. Biomed. Eng., 32 (2004), 1–104. https://doi.org/10.1615/critrevbiomedeng.v32.i1.10 doi: 10.1615/critrevbiomedeng.v32.i1.10
![]() |
[50] | R. L. Magin, Fractional Calculus in bioengineering, Redding: Begell House, 2006. |
[51] |
F. Mainardi, An historical perspective on fractional calculus in linear viscoelasticity, Fract. Calc. Appl. Anal., 15 (2012), 712–717. https://doi.org/10.2478/s13540-012-0048-6 doi: 10.2478/s13540-012-0048-6
![]() |
[52] |
I. Nesteruk, Statistics based predictions of coronavirus 2019-nCoV spreading in mainland China, MedRxiv, 4 (2020), 1988–1989. https://doi.org/10.1101/2020.02.12.20021931 doi: 10.1101/2020.02.12.20021931
![]() |
[53] |
O. A. Omar, R. A. Elbarkouky, H. M. Ahmed, Fractional stochastic modelling of COVID-19 under wide spread of vaccinations: Egyptian case study, Alex. Eng. J., 61 (2022), 8595–8609. https://doi.org/10.1016/j.aej.2022.02.002. doi: 10.1016/j.aej.2022.02.002
![]() |
[54] |
J. C. Pedjeu, G. S. Ladde, Stochastic fractional differential equations: Modeling, method and analysis, Chaos Soliton. Fract., 45 (2012), 279–293. https://doi.org/10.1016/j.chaos.2011.12.009 doi: 10.1016/j.chaos.2011.12.009
![]() |
[55] |
A. Y. Rossikhin, M. V. Shitikova, Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids, Appl. Mech. Rev., 50 (1997), 15–67. https://doi.org/10.1115/1.3101682 doi: 10.1115/1.3101682
![]() |
[56] |
A. Radulescu, C. Williams, K. Cavanagh, Management strategies in a SEIR-type model of COVID 19 community spread, Sci. Rep., 10 (2020), 21256. https://doi.org/10.1038/s41598-020-77628-4 doi: 10.1038/s41598-020-77628-4
![]() |
[57] |
Y. B. Sang, Critical Kirchhoff-Choquard system involving the fractional p-Laplacian operator and singular nonlinearities, Topol. Method. Nonl. An., 58 (2021), 233–274. https://doi.org/10.12775/TMNA.2020.070 doi: 10.12775/TMNA.2020.070
![]() |
[58] |
K. Shah, R. Din, W. Deebani, P. Kumam, Z. Shah, On nonlinear classical and fractional order dynamical system addressing COVID-19, Results Phys., 24 (2021), 104069. https://doi.org/10.1016/j.rinp.2021.104069 doi: 10.1016/j.rinp.2021.104069
![]() |
[59] |
M. Shimizu, W. Zhang, Fractional calculus approach to dynamic problems of viscoelastic materials, JSME International Journal Series C Mechanical Systems, Machine Elements and Manufacturing, 42 (1999), 825–837. https://doi.org/10.1299/jsmec.42.825 doi: 10.1299/jsmec.42.825
![]() |
[60] |
Y. B. Sang, S. H. Liang, Fractional Kirchhoff-Choquard equation involving Schrodinger term and upper critical exponent, J. Geom. Anal., 32 (2022), 5. https://doi.org/10.1007/s12220-021-00747-5 doi: 10.1007/s12220-021-00747-5
![]() |
[61] |
L. Stella, A. P. Martínez, D. Bauso, P. Colaneri, The role of asymptomatic infections in the COVID-19 epidemic via complex networks and stability analysis, SIAM J. Control Optim., 60 (2022), S119–S144. https://doi.org/10.1137/20M1373335 doi: 10.1137/20M1373335
![]() |
[62] |
D. Valério, J. T. Machado, V. Kiryakova, Some pioneers of the applications of fractional calculus, Fract. Calc. Appl. Anal., 17 (2014), 552–578. https://doi.org/10.2478/s13540-014-0185-1 doi: 10.2478/s13540-014-0185-1
![]() |
[63] |
Y. Wang, Z. Wei, J. Cao, Epidemic dynamics of influenza-like diseases spreading in complex networks, Nonlinear Dyn., 101 (2020), 1801–1820. https://doi.org/10.1007/s11071-020-05867-1 doi: 10.1007/s11071-020-05867-1
![]() |
[64] |
J. T. Wu, K. Leung, G. M. Leung, Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study, Lancet, 395 (2020), 689–697. https://doi.org/10.1016/S0140-6736(20)30260-9 doi: 10.1016/S0140-6736(20)30260-9
![]() |
[65] |
B. Wang, L. Li, Y. Wang, An efficient nonstandard finite difference scheme for chaotic fractional-order Chen system, IEEE Access, 8 (2020), 98410–98421. https://doi.org/10.1109/ACCESS.2020.2996271 doi: 10.1109/ACCESS.2020.2996271
![]() |
[66] |
G. C. Wu, M. Luo, L. L. Huang, S. Banerjee, Short memory fractional differential equations for new memristor and neural network design, Nonlinear Dyn., 100 (2020), 3611–3623. https://doi.org/10.1007/s11071-020-05572-z doi: 10.1007/s11071-020-05572-z
![]() |
[67] |
A. Zeb, A. Atangana, Z. A. Khan, S. Djillali, A robust study of a piecewise fractional order COVID-19 mathematical model, Alex. Eng. J., 61 (2022), 5649–5665. https://doi.org/10.1016/j.aej.2021.11.039 doi: 10.1016/j.aej.2021.11.039
![]() |
[68] |
S. Zhao, Q. Lin, J. Ran, S. S. Musa, G. Yang, W. Wang, et al., Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak, Int. J. Infect. Dis., 92 (2020), 214–217. https://doi.org/10.1016/j.ijid.2020.01.050 doi: 10.1016/j.ijid.2020.01.050
![]() |
[69] |
S. Zhao, S. S. Musa, Q. Lin, J. Ran, G. Yang, W. Wang, et al., Estimating the unreported number of novel coronavirus (2019-nCoV) cases in China in the first half of January 2020: A data-driven modelling analysis of the early outbreak, J. Clin. Med., 9 (2020), 388. http://doi.org/10.3390/jcm9020388 doi: 10.3390/jcm9020388
![]() |
[70] |
P. Zhou, X. L. Yang, X. G. Wang, B. Hu, L. Zhang, W. Zhang, et al., A pneumonia outbreak associated with a new coronavirus of probable bat origin, Nature, 579 (2020), 270–273. https://doi.org/10.1038/s41586-020-2012-7 doi: 10.1038/s41586-020-2012-7
![]() |
[71] |
Y. Zhang, H. Sun, H. H. Stowell, M. Zayernouri, S. E. Hansen, A review of applications of fractional calculus in Earth system dynamics, Chaos Soliton. Fract., 102 (2017), 29–46. https://doi.org/10.1016/j.chaos.2017.03.051 doi: 10.1016/j.chaos.2017.03.051
![]() |
[72] | Naming the coronavirus disease (COVID-19) and the virus that causes it, Available from: World Health Organization (WHO), 2019. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it. |
[73] | World Health Organization, Japan situation, 2020. Available from: https://covid19.who.int/region/wpro/country/jp. |
[74] | Japan COVID coronavirus statistics, 2023. Available from: https://www.worldometers.info/coronavirus/country/japan/. |
[75] | Japan COVID cases, 2021. Available from: https://www.nytimes.com/interactive/2021/world/japan-covid-cases.html. |