Processing math: 39%
Research article

A computational method for investigating a quantum integrodifferential inclusion with simulations and heatmaps

  • Received: 07 August 2023 Revised: 26 August 2023 Accepted: 03 September 2023 Published: 25 September 2023
  • MSC : 34A08, 34A12

  • We aim to investigate an integro-differential inclusion using a novel computational approach in this research. The use of quantum calculus, and consequently the creation of discrete space, allows the computer and computational algorithms to solve our desired problem. Furthermore, to guarantee the existence of the solution, we use the endpoint property based on fixed point methods, which is one of the most recent techniques in fixed point theory. The above will show the novelty of our work, because most researchers use classical fixed point techniques in continuous space. Moreover, the sensitivity of the parameters involved in controlling the existence of the solution can be recognized from the heatmaps. For a better understanding of the issue and validation of the results, we presented numerical algorithms, tables and some figures in our examples that are presented at the end of the work.

    Citation: Shahram Rezapour, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez, Mehran Ghaderi. A computational method for investigating a quantum integrodifferential inclusion with simulations and heatmaps[J]. AIMS Mathematics, 2023, 8(11): 27241-27267. doi: 10.3934/math.20231394

    Related Papers:

    [1] Muhammed Jamil, Rahmat Ali Khan, Kamal Shah, Bahaaeldin Abdalla, Thabet Abdeljawad . Application of a tripled fixed point theorem to investigate a nonlinear system of fractional order hybrid sequential integro-differential equations. AIMS Mathematics, 2022, 7(10): 18708-18728. doi: 10.3934/math.20221029
    [2] Asghar Ahmadkhanlu, Hojjat Afshari, Jehad Alzabut . A new fixed point approach for solutions of a $ p $-Laplacian fractional $ q $-difference boundary value problem with an integral boundary condition. AIMS Mathematics, 2024, 9(9): 23770-23785. doi: 10.3934/math.20241155
    [3] Gul Sana, Muhmmad Aslam Noor, Dumitru Baleanu . Novel higher order iterative schemes based on the $ q- $Calculus for solving nonlinear equations. AIMS Mathematics, 2022, 7(3): 3524-3553. doi: 10.3934/math.2022196
    [4] Changlong Yu, Jing Li, Jufang Wang . Existence and uniqueness criteria for nonlinear quantum difference equations with $ p $-Laplacian. AIMS Mathematics, 2022, 7(6): 10439-10453. doi: 10.3934/math.2022582
    [5] Nattapong Kamsrisuk, Donny Passary, Sotiris K. Ntouyas, Jessada Tariboon . Quantum calculus with respect to another function. AIMS Mathematics, 2024, 9(4): 10446-10461. doi: 10.3934/math.2024510
    [6] Bashir Ahmad, Badrah Alghamdi, Ahmed Alsaedi, Sotiris K. Ntouyas . Existence results for Riemann-Liouville fractional integro-differential inclusions with fractional nonlocal integral boundary conditions. AIMS Mathematics, 2021, 6(7): 7093-7110. doi: 10.3934/math.2021416
    [7] Reny George, Sina Etemad, Fahad Sameer Alshammari . Stability analysis on the post-quantum structure of a boundary value problem: application on the new fractional $ (p, q) $-thermostat system. AIMS Mathematics, 2024, 9(1): 818-846. doi: 10.3934/math.2024042
    [8] Varaporn Wattanakejorn, Sotiris K. Ntouyas, Thanin Sitthiwirattham . On a boundary value problem for fractional Hahn integro-difference equations with four-point fractional integral boundary conditions. AIMS Mathematics, 2022, 7(1): 632-650. doi: 10.3934/math.2022040
    [9] Raniyah E. Alsulaiman, Mohamed A. Abdou, Eslam M. Youssef, Mai Taha . Solvability of a nonlinear integro-differential equation with fractional order using the Bernoulli matrix approach. AIMS Mathematics, 2023, 8(3): 7515-7534. doi: 10.3934/math.2023377
    [10] Nusrat Raza, Mohammed Fadel, Kottakkaran Sooppy Nisar, M. Zakarya . On 2-variable $ q $-Hermite polynomials. AIMS Mathematics, 2021, 6(8): 8705-8727. doi: 10.3934/math.2021506
  • We aim to investigate an integro-differential inclusion using a novel computational approach in this research. The use of quantum calculus, and consequently the creation of discrete space, allows the computer and computational algorithms to solve our desired problem. Furthermore, to guarantee the existence of the solution, we use the endpoint property based on fixed point methods, which is one of the most recent techniques in fixed point theory. The above will show the novelty of our work, because most researchers use classical fixed point techniques in continuous space. Moreover, the sensitivity of the parameters involved in controlling the existence of the solution can be recognized from the heatmaps. For a better understanding of the issue and validation of the results, we presented numerical algorithms, tables and some figures in our examples that are presented at the end of the work.



    The generalization and fulfillment of fractional operators and their use in differential equations and Boundary Value Problem(BVP) have led to the development of advanced fractional modeling. The non-locality of fractional operators has caused them to be used by researchers in different fields of science to model natural and physical phenomena. For example, we can mention the significant presence of fractional calculus in engineering [1,2,3,4], thermodynamics [5,6,7,8], physics [9,10,11,12], and bio-mathematics [13,14,15]. In 2002, Hilfer showed in an important research report that based on laboratory evidence, ordinary calculus is associated with errors in modeling and describing phenomena [16]. Of course, it is worth mentioning that the approach of researchers of different sciences to this property of non-locality has not been the same. For example, physicists used it to model viscosity and heat flow, etc., while mathematicians tried to generalize and present new fractional operators [17]. Today, researchers commonly use famous fractional operators such as Caputo and ψ-Caputo [18,19,20,21,22], Caputo-Fabrizio [23], Hadamard [24], Hilfer [25,26,27], ψHilfer [28,29], Riemann-Liouville [30], and Atangana-Baleanu [31,32,33,34] in their studies. Recently, George et al. showed in new research that one should be careful in using the ψ-Caputo operator to solve the pantograph equation because there is a possibility that there is no solution when using this operator [35]. On the other hand, the prominent role of computer and software packages in the numerical methods of investigating complex equations and modeling cannot be ignored, which requires a discrete space. In this work, we also provide this space with the help of quantum calculus and time scale.

    The history of quantum calculus dates back to the works of the British mathematician Frank Hilton Jackson. In 1910, he gave a new definition of the derivative, by which the basic principles of quantum calculus were founded [36,37]. Jackson introduced two types of operators: q-derivative and h-derivative. Fractional q-derivative has both the advantages of fractional calculus and due to the discreteness of the space, it provides the possibility of using the computer in solving and simulating complex equations. For the same reason, in the last decade, q-derivative has received a lot of attention from researchers and many articles have been published in this field. For example: q-serirs studied in [38], q-Starlike function reviewed in [39], application of q-derivative in differential equations presented in [40], and the existense of positive solutions for boundary value problem by fractional q-derivative investigated in [41,42,43,44]. Set-valued mappings, known as multifunctions, have unique features that make them useful in modeling physical phenomena. In 2007, Wlodarczyk et al. studied existence and uniqueness of endpoint of closed set-valued contractions in metric spaces [45]. Wardowski in 2009, investigated the existence of fixed point and endpoint of multifunction in cone metric space [46]. A year later, Amini-Harandi presented an interesting property for multifunction, which plays the main role in this article [47]. Here, we will explore the existence of a solution for a fractional q-integrodifferential inclusion using fractional and quantum calculus and multifunctions.

    In 2012, Ahmed and his colleagues investigated the existence and uniqueness of a solution for the following q-difference equations

    {D2qw(κ)=g(κ,w(κ)),κK,w(0)=w(K),Dqw(0)=Dqw(K),

    where qN:={qn:nN}{0}, K=[0,K]qN such that KqN is a fixed constant, and gC(K×R,R) [48]. In 2012, Agarwal et al. investigated the existence and dimension of the set of mild solutions to following inclusion problem

    {CDηw(κ)Aw(κ)+B(κ,w(κ)),κ[0,K],η(0,1]w(0)+f(0)=w0,

    where A is a sectorial operator (SO), CDη is Caputo derivative of fraction order η, and B:[0,K]×RnP(Rn), f:C([0,K],Rn)Rn [49]. In 2013, Zhao et al. studied BVP of fractional q-derivative equation as follows

    {Dηqw(κ)+B(κ,w(κ))=0,κ(0,1),η(0,1],w(0)=0,w(1)=α0(αqp)ν1Γq(ν)w(p)dqp,

    such that η(1,2], ν(0,2], α(0,1), B:[0,1]×R+R+, and Dηq is the q-derivative of Riemann-Liouville type of order η [50].

    Based on previous research, we want here to examine the existence of a solution for the following fractional quantum integrodifferential inclusion problem

    CDηqw(κ)T(κ,w(κ),w(κ),CDσqw(κ),κ0w(v)dqv),κK=[0.1] (1.1)

    under new sum and product boundary conditions

    {w(0)+Sw(0)=θ0w(p)dp,w(1)+PCDσqw(1)=λ0w(p)dp, (1.2)

    where S=j=mj=1νj, P=j=mj=1uj, νj,ujR, and α(0,1). In our problem CDηq is Caputo quantum operator of fractional order 1η<2, and σ,θ,λ(0,1), such that T:K×R4P(R), is multifunction where P(R) set of all subsets of real numbers. Note that we will continue to do all our calculations on the time scale, namely TSκ0={κ0,κ0q,κ0q2,...}{0}, where κ0R, and q(0,1).

    Definition 2.1. [36] Assume that v,pR, nN0=N{0}, then the q-analogue of v and power function (vp)(n) defined as follows, respectively

    [v]q=1qs1q=1+q++qv1,

    and

    {(vp)(n)q=n1j=0(vpqi)forn1.(vp)(0)q=1.

    Definition 2.2. [37] Let vR{0,1,2,}, then the quantum gamma function formulated as follows

    Γq(v)=(1q)(v1)(1q)v1,

    also, it is worth mentioning that Γq(v+1)=[v]qΓq(v) holds true.

    In the following, we present an algorithm for calculating the quantum gamma function. Moreover, we computed for some values of q in Tables 1 and 2. Also, the heatmaps of data in Tables 1 and 2 are presented in Figures 1 and 2.

    Algorithm 1 The proposed procedure to calculate Γq(v)
    function quantum gamma = qG(q, v, r)
    t=1;
    for j=0:r
    t=t(1q(j+1))/(1q(v+j));
    end
    qG=t/(1q)(v1);
    end

    Table 1.  Numerical results for Γq(1.25) for different value of q.
    r q=0.2 q=0.31 q=0.49 q=0.69 q=0.83 q=0.98
    v=1.25
    1 0.9632 0.9590 0.9726 1.0360 1.1575 1.9005
    2 0.9606 0.9516 0.9519 0.9930 1.0912 1.7587
    3 0.9601 0.9493 0.9425 0.9678 1.0481 1.6593
    4 0.9600_ 0.9487 0.9380 0.9522 1.0180 1.5843
    5 0.9600 0.9484 0.9359 0.9421 0.9960 1.5247
    6 0.9600 0.9484 0.9348 0.9354 0.9794 1.4757
    7 0.9600 0.9484 0.9343 0.9310 0.9666 1.4345
    8 0.9600 0.9483_ 0.9341 0.9280 0.9566 1.3992
    9 0.9600 0.9483 0.9340 0.9259 0.9487 1.3684
    ... ... ... ... ... ... ...
    11 0.9600 0.9483 0.9339 0.9235 0.9297 1.2756
    12 0.9600 0.9483 0.9338_ 0.9229 0.9270 1.2577
    ... ... ... ... ... ... ...
    21 0.9600 0.9483 0.9338 0.9215 0.9149 1.1008
    22 0.9600 0.9483 0.9338 0.9214_ 0.9148 1.0945
    .. ... ... ... ... ... ...
    47 0.9600 0.9483 0.9338 0.9214 0.9142 1.0201
    48 0.9600 0.9483 0.9338 0.9208 0.9141_ 1.0171
    ... ... ... ... ... ... ...
    385 0.9600 0.9483 0.9338 0.9214 0.9141 0.9074
    386 0.9600 0.9483 0.9338 0.9214 0.9141 0.9073_

     | Show Table
    DownLoad: CSV
    Table 2.  Numerical results for Γq(2.25) for different value of q.
    r q=0.2 q=0.45 q=0.69 q=0.77 q=0.89 q=0.95
    v=2.25
    1 1.0486 1.1997 1.7704 2.3102 4.9645 12.3195
    2 1.0413 1.1283 1.4983 1.8719 3.7499 8.9705
    3 1.0399 1.0986 1.3513 1.6262 3.0530 7.0484
    4 1.0396 1.0858 1.2643 1.4738 2.6063 5.8134
    5 1.0395_ 1.0800 1.2100 1.3730 2.2984 4.9589
    6 1.0395 1.0775 1.1749 1.3036 2.0753 4.3355
    .. ... ... ... ... ... ...
    11 1.0395 1.0754_ 1.1138 1.1581 1.5240 2.7536
    12 1.0395 1.0754 1.1105 1.1470 1.4679 2.5843
    ... ... ... ... ... ... ...
    25 1.0395 1.0754 1.1031_ 1.1125 1.1855 1.6136
    26 1.0395 1.0754 1.1031 1.1122 1.1783 1.5808
    ... ... ... ... ... ... ...
    42 1.0395 1.0754 1.1031 1.1113_ 1.1312 1.2946
    43 1.0395 1.0754 1.1031 1.1113 1.1303 1.2853
    .. ... ... ... ... ... ...
    83 1.0395 1.0754 1.1031 1.1113 1.1231 1.1467
    84 1.0395 1.0754 1.1031 1.1113 1.1230_ 1.1458
    ... ... ... ... ... ... ...
    207 1.0395 1.0754 1.1031 1.1113 1.1230 1.1286
    208 1.0395 1.0754 1.1031 1.1113 1.1230 1.1285_

     | Show Table
    DownLoad: CSV
    Figure 1.  The heatmap of Table 1.
    Figure 2.  The heatmap of Table 2.

    Definition 2.3. [51] The quantum derivative of a continuous function as w(κ) is as follows

    (Dqw)(κ)=w(κ)w(qκ)(1q)κ,

    in addition, (Dqw)(0)=limκ0(Dqw)(κ). Furthermore, for all nN, the relation (Dnqw)(κ)=Dq(Dn1qw)(κ) holds true.

    Definition 2.4. [52] Suppose that w(κ):[0,]R, be a continuous function, then its fractional Riemann-Liouville quantum integral and its fractional Caputo quantum derivative are expressed respectively by

    Iηqw(κ)=1Γq(η)κ0(κqp)η1w(p)dqp,

    and

    cDηw(κ)=1Γq(nη)κ0(κqp)nη1Dnqw(p)dqp,n=[η]+1.

    Lemma 2.5. [53] Assume that n=[η]+1, then the following relation holds true

    (CIηqCDηqw)(κ)=w(κ)n1j=0wjΓq(j+1)(Djqw)(0),

    which is deduced from it, the general solution for CDηqw(κ)=0, expressed by

    w(κ)=0+1κ+2κ2++n1κn1,

    where 0,,n1R.

    Notation 2.6. Here, we introduce symbols used in the topology of the space. Consider (G,dG) be a metric space, also suppose that P(G) and 2G represent the set of all subsets of G and the set of all non-empty subsets of G, respectively. In the sequel, we mean the symbols Pcl(G), Pbd(G), Pcx(G) and Pct(G) respectively as the class of all closed, bounded, convex and compact subsets of G, respectively.

    Definition 2.7. [47] A fixed point of a multifunction E:G2G is an element κK, such that κE(κ). As well as, if we have E(κ)={κ}, then this element, namely κ, is called an end point of E.

    Definition 2.8. [47] Let (G,dG) be a metric space and E:G2G is a multifunction, then E, has an approximate property if infκGsuprE(κ)dG(κ,r)=0.

    Definition 2.9. [54] If (G,dG) is a metric space, then the Pompeiu-Hausdorff meter, namely HM:2G×2G[0.], is defined as follows

    HM(W,Z)={supwWdG(w,Z),supzZdG(W,z)},

    where HM(W,z)=infwWdG(w.z). Then (Pbd,cl(G),HM), and (Pcl(G),HM) represent a metric space and a generalized metric space, respectively.

    Definition 2.10. [54] Assume that V=C(K,R), then define the space

    G={w(κ):w(κ),w(κ),CDσqw(κ),κ0w(v)dvV}

    equipped with the norm

    w=supκK|w(κ)|+supκK|w(κ)|+supκK|CDσqw(κ)|+supκK|κ0w(v)dv|.

    Now (G,.) is a Banach space.

    Definition 2.11. Let wG, then for all κK, define the set of selection of S as follows

    ST,w={gL1(K):w(κ)T(κ,w(κ),w(κ),CDσqw(κ),κ0w(v)dv)},

    If dim(G)<, then the above selection is nonempty which is proved in [54].

    In 2010, Amini-Harandi introduced the end-point technique, which is crucial in proving Theorem 3.2. Now we will express it here.

    Lemma 2.12. [47] Suppose that (G,dG) is a complete metric space, also consider two map Ψ and E with the following properties

    Ψ:[0,)[0,) is upper semi continuous (USC), which κ>0 we have Ψ(κ)<κ, and lim infκ(κΨ(κ))>0.

    w,zG, for the set-valued map E:GPcl,bd(G), the inequality HM(E(w),E(z))Ψ(dG(w,z)) holds true.

    Then the set-valued map E, has a unique endpoint iff E has an approximate end-point property.

    Now we have provided the prerequisites necessary to express our main results, and only one lemma remains, which we prove here.

    Lemma 3.1. The unique solution for the fractional q-differential problem cDηqw(κ)=g(κ) under boundary condition (1.2) expressed by

    w(κ)=1Γq(η)κ0(κqp)η1g(p)dqp+2N+(θ22S)(λ1)2N(1θ)Γq(η)θ0p0(pqm)η1g(m)dqmdp+(θ22S)2NΓq(η)λ0p0(pqm)η1g(m)dqmdp+(2Sθ2)2NΓq(η)10(1qp)η1g(p)dqp+P(2Sθ2)2NΓq(ησ)10(1qp)ησ1g(p)dqp+(1θ)κNΓq(η)λ0p0(pqm)η1g(m)dqmdp+(θ1)κNΓq(η)10(1qp)η1g(p)dqp+P(θ1)κNΓq(ησ)10(1qp)ησ1g(p)dqp+(λ1)κNΓq(η)θ0p0(pqm)η1g(m)dqmdp.

    Such that η[1,2), g(κ)V, and M=(1+PΓq(2σ)λ22), N=(1θ)M+(λ1)(Sθ22).

    Proof. In view of Lemma 2.5, the problem CDηqw(κ)=g(κ), has a unique solution which acquired by

    w(κ)=Iηqg(κ)+0+1κ=1Γq(η)κ0(κqp)η1g(p)dqp+0+1κ, (3.1)

    which 0,1R. To apply the boundary conditions, it is necessary to calculate the first order derivative, namely w(κ)=1+Iη1qg(κ). Now with regard to boundary condition (1.2), we get

    0(1θ)+1(Sθ22)=1Γq(η)θ0p0(pqm)η1g(m)dqmdp,

    and

    0(1λ)+1(1+PΓq(2σ)λ22)=λ0p0(pqm)η1g(m)dqmdp1Γq(η)10(1qp)η1g(p)dqpPΓq(ησ)10(1qp)ησ1g(p)dqp.

    If for simplicity in computation we set

    M=(1+PΓq(2σ)λ22)andN=(1θ)M+(λ1)(Sθ22).

    Then, the values of 0 and 1 will be as follows:

    0=2N+(θ22S)(λ1)2N(1θ)Γq(η)θ0p0(pqm)η1g(m)dqmdp+(θ22S)2NΓq(η)λ0p0(pqm)η1g(m)dqmdp+(2Sθ2)2NΓq(η)10(1qp)η1g(p)dqp+P(2Sθ2)2NΓq(ησ)10(1qp)ησ1g(p)dqp,

    and

    1=(1θ)NΓq(η)λ0p0(pqm)η1g(m)dqmdp+θ1NΓq(η)10(1qp)η1g(p)dqp+P(θ1)NΓq(ησ)10(1qp)ησ1g(p)dqp+λ1NΓq(η)θ0p0(pqm)η1g(m)dqmdp.

    Placing coefficients 0 and 1 in Eq (3.1) provides the desired result.

    In order to obtain the result in our inclusion problem, it is necessary to apply the following hypotheses.

    A1) Since T:K×R4Pct(R) is integrable and bounded, therefore T(.,a,b,c,d):[0,1]Pct(R) is measurable.

    A2) For Ψ:[0,)[0,), which is nondecreasing and (USC), p>0 we have lim infp(pΨ(p))>0 and Ψ(p)<p.

    A3) For all κK, and wj,zjR, j=1,2,3,4, there exist ΩC(K,[0,)), where

    HM(T(κ,w1,w2,w3,w4),T(κ,z1,z2,z3,z4)1X1+X2+X3+X4Ω(κ)Ψ(4j=1|wjzj|),

    such that

    X1=Ω[1Γq(η+1)+|(2N+(θ22S)(λ1))θη+12N(1θ)Γq(η+2)|+|(θ22S)λη+12NΓq(η+2)|+|2Sθ22NΓq(η+1)|+|P(2Sθ2)2NΓq(ησ+1)|+|(1θ)λη+1NΓq(η+2)|+|θ1NΓq(η+1)|+|P(θ1)NΓq(ησ+1)|+|(λ1)θη+1NΓq(η+2)|],
    X2=Ω[1Γq(η)+|(1θ)λη+1NΓq(η+2)|+|θ1NΓq(η+1)|+|P(θ1)NΓq(ησ+1)|+|(λ1)θη+1NΓq(η+2)],
    X3=Ω[1Γq(ησ+1)+|(1θ)λη+1NΓq(η+2)Γq(2σ)|+|θ1NΓq(η+1)Γq(2σ)|+|(λ1)θη+1NΓq(η+2)Γq(2σ)|+|P(θ1)NΓq(ησ+1)Γq(2σ)|]
    X4=Ω[1Γq(η+2)+|(2N+(θ22S)(λ1))θη+12N(1θ)Γq(η+2)|+|(θ22S)λη+12NΓq(η+2)|+|2Sθ22NΓq(η+1)|+|P(2Sθ2)2NΓq(ησ+1)|+|(1θ)λη+12NΓq(η+2)|+|θ12NΓq(η+1)|+|P(θ1)2NΓq(ησ+1)|+|(λ1)θη+12NΓq(η+2)|].

    Theorem 3.2. Let hypotheses A1A4 are holds true. If the set-valued map E:G2G, has the approximate endpoint property, then the inclusion q-integro-differential problem mentioned in (1.1) and (1.2) has a solution.

    Proof. To show that our problems (1.1) and (1.2) has a solution, we go to find the end point of the operator E:G2G which for gST,w read as follows:

    E()={G:(κ)=1Γq(η)κ0(κqp)η1g(p)dqp+2N+(θ22S)(λ1)2N(1θ)Γq(η)θ0p0(pqm)η1g(m)dqmdp+(θ22S)2NΓq(η)λ0p0(pqm)η1g(m)dqmdp+(2Sθ2)2NΓq(η)10(1qp)η1g(p)dqp+P(2Sθ2)2NΓq(ησ)10(1qp)ησ1g(p)dqp+(1θ)κNΓq(η)λ0p0(pqm)η1g(m)dqmdp+(θ1)κNΓq(η)10(1qp)η1g(p)dqp+P(θ1)κNΓq(ησ)10(1qp)ησ1g(p)dqp+(λ1)κNΓq(η)θ0p0(pqm)η1g(m)dqmdp}.

    This end point is the solution of our inclusion. We do this in two steps.

    Step I. we shall show for all G, E()G which E() is closed. According to, for all G the map κT(κ,w(κ),w(κ),CDσqw(κ),κ0w(p)dp), is measurable and closed value map. Therefore, such a map has a non-empty measurable selection, namely ST,wϕ. Now assume that {tn}n1 be a sequence in E(), which tnt. Choose gnST,w, which for all κK and n1

    tn=1Γq(η)κ0(κqp)η1gn(p)dqp+2N+(θ22S)(λ1)2N(1θ)Γq(η)θ0p0(pqm)η1gn(m)dqmdp+(θ22S)2NΓq(η)λ0p0(pqm)η1gn(m)dqmdp+(2Sθ2)2NΓq(η)10(1qp)η1gn(p)dqp+P(2Sθ2)2NΓq(ησ)10(1qp)ησ1gn(p)dqp+(1θ)κNΓq(η)λ0p0(pqm)η1gn(m)dqmdp+(θ1)κNΓq(η)10(1qp)η1gn(p)dqp+P(θ1)κNΓq(ησ)10(1qp)ησ1gn(p)dqp+(λ1)κNΓq(η)θ0p0(pqm)η1gn(m)dqmdp.

    Compactness of T, implies that gn has a subsequence(show this again with gn), which converges to some gL1[0,1]. It is easy to check that gST,w, and for all κK

    tn(κ)t(κ)=1Γq(η)κ0(κqp)η1g(p)dqp+2N+(θ22S)(λ1)2N(1θ)Γq(η)θ0p0(pqm)η1g(m)dqmdp+(θ22S)2NΓq(η)λ0p0(pqm)η1g(m)dqmdp+(2Sθ2)2NΓq(η)10(1qp)η1g(p)dqp+P(2Sθ2)2NΓq(ησ)10(1qp)ησ1g(p)dqp+(1θ)κNΓq(η)λ0p0(pqm)η1g(m)dqmdp+(θ1)κNΓq(η)10(1qp)η1g(p)dqp+P(θ1)κNΓq(ησ)10(1qp)ησ1g(p)dqp+(λ1)κNΓq(η)θ0p0(pqm)η1g(m)dqmdp.

    It can be concluded from this tE(), thus G is closed values. In addition, from the compactness of the value of T, it follows that E() is bounded.

    Step II. Our goal at this step is to establish the inequality HM(E(w),E(z))Ψ(wz) holds true. To do this, let w,zG, 1E(z), and choose g1ST,w such that for almost κK, we can write

    tn(κ)t(κ)=1Γq(η)κ0(κqp)η1g(p)dqp+2N+(θ22S)(λ1)2N(1θ)Γq(η)θ0p0(pqm)η1g(m)dqmdp+(θ22S)2NΓq(η)λ0p0(pqm)η1g(m)dqmdp+(2Sθ2)2NΓq(η)10(1qp)η1g(p)dqp+P(2Sθ2)2NΓq(ησ)10(1qp)ησ1g(p)dqp+(1θ)κNΓq(η)λ0p0(pqm)η1g(m)dqmdp+(θ1)κNΓq(η)10(1qp)η1g(p)dqp+P(θ1)κNΓq(ησ)10(1qp)ησ1g(p)dqp+(λ1)κNΓq(η)θ0p0(pqm)η1g(m)dqmdp.

    But, in view of hypothesis A3

    Hd(T(κ,w1,w2,w3,w4),T(κ,z1,z2,z3,z4))1X1+X2+X3+X4Ω(κ)Ψ(|w1(κ)z1(κ)|+|w2(κ)z2(κ)|+|CDηqw3(κ)CDηqz3(κ)|+|κ0w4(v)dvκ0z4(v)dv|),

    hence, sT(κ,w(κ),w(κ),CDσqw(κ),κ0w(v)dv), where κK:

    |g1s|1X1+X2+X3+X4Ω(κ)Ψ(4j=1|wjzj|).

    Now consider the map F:KP(R), such that

    F(κ)={sR:|g1s|1X1+X2+X3+X4Ω(κ)Ψ(4j=1|wjzj|)}.

    Forasmuch as 1X1+X2+X3+X4Ω(κ)Ψ(4j=1|wjzj|), and g1 are measurable, so the set-valued map F(.)T(.,w(.),w(.),CDσqw(.),.0w(v)dv) is measurable.

    Take g2(κ)T(κ,w(κ),w(κ),CDσqw(κ),κ0w(v)dv), which for all κK, we have

    |g1(κ)g2(κ)|1X1+X2+X3+X4Ω(κ)Ψ(4j=1|wjzj|).

    Now, κK, assume that g2E(), with

    2=1Γq(η)κ0(κqp)η1g2(p)dqp+2N+(θ22S)(λ1)2N(1θ)Γq(η)θ0p0(pqm)η1g2(m)dqmdp+(θ22S)2NΓq(η)λ0p0(pqm)η1g2(m)dqmdp+(2Sθ2)2NΓq(η)10(1qp)η1g2(p)dqp+P(2Sθ2)2NΓq(ησ)10(1qp)ησ1g2(p)dqp+(1θ)κNΓq(η)λ0p0(pqm)η1g2(m)dqmdp+(θ1)κNΓq(η)10(1qp)η1g2(p)dqp+P(θ1)κNΓq(ησ)10(1qp)ησ1g2(p)dqp+(λ1)κNΓq(η)θ0p0(pqm)η1g2(m)dqmdp.

    Subsequently, let supκK|Ω(κ)|=Ω, therefore

    |12|1Γq(η)κ0(κqp)η1|g1g2|(p)dqp+|2N+(θ22S)(λ1)2N(1θ)Γq(η)|θ0p0(pqm)η1|g1(m)g2(m)|dqmdp+|(θ22S)2NΓq(η)|λ0p0(pqm)η1|g1(m)g2(m)|dqmdp+|(2Sθ2)2NΓq(η)|10(1qp)η1|g1g2|(p)dqp+|P(2Sθ2)2NΓq(ησ)|10(1qp)ησ1|g1g2|(p)dqp+|(1θ)κNΓq(η)|λ0p0(pqm)η1|g1(m)g2(m)|dqmdp+|(θ1)κNΓq(η)|10(1qp)η1|g1g2|(p)dqp+|P(θ1)κNΓq(ησ)|10(1qp)ησ1|g1g2|(p)dqp+|(λ1)κNΓq(η)|θ0p0(pqm)η1|g1(m)g2(m)|dqmdpX1X1+X2+X3+X4Ψ(wz),

    and

    |12|1Γq(η1)κ0(κqp)η2|g1g2|(p)dqp+|(1θ)NΓq(η)|λ0p0(pqm)η1|g1(m)g2(m)|dqmdp+|(θ1)NΓq(η)|10(1qp)η1|g1g2|(p)dqp+|P(θ1)NΓq(ησ)|10(1qp)ησ1|g1g2|(p)dqp+|(λ1)NΓq(η)|θ0p0(pqm)η1|g1(m)g2(m)|dqmdpX1X1+X2+X3+X4Ψ(wz).

    Also, one can write

    |CDσq1CDσq2|1Γq(ησ)κ0(κqp)ησ1|g1g2|(p)dqp+|(1θ)κ1σNΓq(η)Γq(2σ)|λ0p0(pqm)η1|g1(m)g2(m)|dqmdp+|(θ1)κ1σNΓq(η)Γq(2σ)|10(1qp)η1|g1g2|(p)dqp+|P(θ1)κ1σNΓq(ησ)Γq(2σ)|10(1qp)ησ1|g1g2|(p)dqp+|(λ1)κ1σNΓq(η)Γq(2σ)|θ0p0(pqm)η1|g1(m)g2(m)|dqmdpX3X1+X2+X3+X4Ψ(wz),

    and

    |κ01(v)dvκ02(v)dv|1Γq(η+1)κ0(κqp)η|g1g2|(p)dqp+|2N+(θ22S)(λ1)κ2N(1θ)Γq(η)|θ0p0(pqm)η1|g1(m)g2(m)|dqmdp+|(θ22S)κ2NΓq(η)|λ0p0(pqm)η1|g1(m)g2(m)|dqmdp+|(2Sθ2)κ2NΓq(η)|10(1qp)η1|g1g2|(p)dqp+|P(2Sθ2)κ2NΓq(ησ)|10(1qp)ησ1|g1g2|(p)dqp+|(1θ)κ22NΓq(η)|λ0p0(pqm)η1|g1(m)g2(m)|dqmdp+|(θ1)κ22NΓq(η)|10(1qp)η1|g1g2|(p)dqp+|P(θ1)κ22NΓq(ησ)|10(1qp)ησ1|g1g2|(p)dqp+|(λ1)κ22NΓq(η)|θ0p0(pqm)η1|g1(m)g2(m)|dqmdpX4X1+X2+X3+X4Ψ(wz).

    It can be inferred from the above relationships that

    \begin{align*} \Vert\hbar_{1}-\hbar_{2}\Vert & = \sup\limits_{\kappa \in \mathcal{K}}\vert\hbar_{1}(\kappa)-\hbar_{2}(\kappa)\vert+\sup\limits_{\kappa \in \mathcal{K}}\vert\hbar'_{1}(\kappa)-\hbar'_{2}(\kappa)\vert+\sup\limits_{\kappa \in \mathcal{K}}\vert^C\mathcal{D}_{q}^{\sigma}\hbar_{1}(\kappa)- ^C\mathcal{D}_{q}^{\sigma}\hbar_{2}(\kappa)\vert\\[0.3cm] &+\sup\limits_{\kappa \in \mathcal{K}}\bigg\vert\int_{0}^{\kappa}\hbar_{1}(s)ds-\int_{0}^{\kappa}\hbar_{2}(v)dv\bigg\vert\\[0.3cm] &\leq\dfrac{1}{\mathfrak{X}_{1}+\mathfrak{X}_{2}+\mathfrak{X}_{3}+\mathfrak{X}_{4}}\Psi\big(\Vert w-z\Vert\big)(\mathfrak{X}_{1}+\mathfrak{X}_{2}+\mathfrak{X}_{3}+\mathfrak{X}_{4})\\[0.3cm] & = \Psi\big(\Vert w-z\Vert\big). \end{align*}

    Thus, for all w, z\in \mathcal{G} , we have

    \begin{equation*} \mathcal{HM}\big(\mathcal{E}(w), \mathcal{E}(z)\big)\leq\Psi\big(\Vert w-z\Vert\big). \end{equation*}

    Now, according to Lemma 2.12, and the endpoint property of \mathcal{E} , \exists w^{*}\in \mathcal{G} , where \mathcal{E}(w^{*}) = \{w^{*}\} . Hence, w^{*} is a solution for the fractional q-inclusion problem mentioned in (1.1) and (1.2).

    Example 4.1. Consider the following fractional quantum integro-differential inclusion problem

    \begin{align} ^{c}\mathcal{D}_{q}^{\frac{8}{5}}\boldsymbol{w}(\kappa) \in \mathcal{T} &\bigg[0, \dfrac{11(2+\sin(\boldsymbol{w}(\kappa)))}{49(33\kappa+\kappa^{2})}+\dfrac{11e^{\boldsymbol{w}'(\kappa)}}{49(7+e^{\boldsymbol{w}'(\kappa)})}+\frac{11\kappa}{49} \int_{0}^{\kappa}(1+v){\boldsymbol{w}(v) \, \mathrm{d} v}\\[0.3cm] &+\frac{11}{49}e^{\vert^{c}\mathcal{D}_{q}^{\frac{7}{20}}\boldsymbol{w}(\kappa)\vert}\bigg], \end{align} (4.1)

    with the following boundary conditions:

    \begin{equation} \begin{cases} \boldsymbol{w}(0)+\mathcal{S}\boldsymbol{w'}(0) = \int_{0}^{\frac{4}{9}}\boldsymbol{w}(p) \, \mathrm{d} p, \\[0.3cm] \boldsymbol{w}(1)+\mathcal{P}\; ^C\mathcal{D}_{q}^{\frac{7}{20}}\boldsymbol{w}(1) = \int_{0}^{\frac{5}{12}}\boldsymbol{w}(p) \, \mathrm{d} p, \end{cases} \end{equation} (4.2)

    where \kappa \in \mathcal{K} = [0, 1] . Here, we put: \eta = {\frac{8}{5}} , \sigma = \frac{7}{20} , \theta = \frac{4}{9} , \lambda = \frac{5}{12} , \mathcal{S} = \sum\limits_{j = 1}^{4}\nu_{j} = 1.7 with \nu_{1} = \frac{3}{10} , \nu_{2} = \frac{1}{4} , \nu_{3} = \frac{2}{5} , \nu_{4} = \frac{3}{4} , and \mathcal{P} = \prod\limits_{j = 1}^{j = 4}u_{j} = \frac{16}{625} with u_{j} = \frac{2}{5} . We choose \boldsymbol{\Omega}:[0, 1]\to[0, \infty) by \boldsymbol{\Omega}(\kappa) = \frac{11}{49}\kappa , \Vert\boldsymbol{\Omega}\Vert = \frac{11}{49} , and \Psi(\kappa) = \frac{\kappa}{19} . Obviously \Psi is non-decreasing and (USC) on \mathcal{K} .

    Consider the set-valued map \mathcal{T}:\mathcal{K}\times\mathbb{R}^{4}\to\mathcal{P}_{ct}(\mathbb{R}) as follows:

    \begin{align*} \mathcal{T}(t, w_{1}, w_{2}, w_{3}, w_{4}) = &\bigg[0, \dfrac{11\big(2+\sin(\boldsymbol{w}(\kappa))\big)}{49(33\kappa+\kappa^{2})}+\dfrac{11e^{\boldsymbol{w}'(\kappa)}}{49(7+e^{\boldsymbol{w}'(\kappa)})}+\frac{11\kappa}{49} \int_{0}^{\kappa}(1+v){\boldsymbol{w}(v) \, \mathrm{d} v}\\[0.3cm] &+\frac{11}{49}e^{\vert^{c}\mathcal{D}_{q}^{\frac{3}{5}}\boldsymbol{w}(\kappa)\vert}\bigg]. \end{align*}

    Nevertheless, the values of \mathfrak{X}_{1}, \mathfrak{X}_{2}, \mathfrak{X}_{3}, \mathfrak{X}_{4} are calculated for q = 0.2 , 0.35 , 0.45 , 0.69 , 0.83 and 0.98 in Table 3. Also, the heatmap of the data in Table 3 is presented in Figure 3. Noticte that for convenience, we set the value of \Theta coefficient equal to (\mathfrak{X}_{1}+\mathfrak{X}_{2}+\mathfrak{X}_{3}+\mathfrak{X}_{4})^{-1}\Vert\boldsymbol{\Omega}\Vert .

    Table 3.  Numerical result of \mathfrak{X}_{1}, \mathfrak{X}_{2}, \mathfrak{X}_{3}, \mathfrak{X}_{4}, for different values of q.
    q_{1}=0.2 q_{2}=0.45 q_{3}=0.52 q_{4}=0.69 q_{5}=0.89 q_{6}=0.98
    \mathfrak{X}_{1} 1.8422 1.9364 1.9641 2.0339 2.1211 2.1935
    \mathfrak{X}_{2} 1.0622 1.1667 1.1953 1.2646 1.3466 1.4125
    \mathfrak{X}_{3} 1.0166 1.0816 1.1003 1.1467 1.2032 1.2639
    \mathfrak{X}_{4} 1.8041 1.8682 1.8900 1.9489 2.0276 2.0990
    \Theta 0.0392 0.0371 0.0365 0.0351 0.0335 0.0322

     | Show Table
    DownLoad: CSV
    Figure 3.  The heatmap of Table 3.

    Now, it is easy to examine that

    \begin{equation*} \mathcal{HM}\Big(\mathcal{T}(\kappa, w_{1}, w_{2}, w_{3}, w_{4}), \mathcal{T}(\kappa, z_{1}, z_{2}, z_{3}, z_{4})\Big)\le\dfrac{1}{\mathfrak{X}_{1}+\mathfrak{X}_{2}+\mathfrak{X}_{3}+\mathfrak{X}_{4}}\boldsymbol{\Omega}(\kappa)\Psi\Big(\sum\limits_{j = 1}^{4}\vert w_{j}-z_{j}\vert\Big), \end{equation*}

    and \inf\limits_{w\in \mathcal{G}}\big(\sup\limits_{z \in\mathcal{E}(z)}\Vert w-z\Vert\big) = 0 . Now all the conditions of Theorem 3.2 are satisfied. Thanks to endpoint property and Theorem 3.2, our problem which formulated in (4.1) and (4.2) has a solution. Also the graphs of some functions presented in Figures 4 and 5.

    Figure 4.  The graph of \mathcal{T}(\kappa, \boldsymbol{w}(\kappa)) .
    Figure 5.  The graph of \mathcal{T}(\kappa, \boldsymbol{w}(\kappa), \boldsymbol{w}'(\kappa)) .

    Example 4.2. Consider the following fractional quantum integro-differential inclusion problem

    \begin{align} ^{c}\mathcal{D}_{q}^{\frac{5}{4}}\boldsymbol{w}(\kappa) \in \mathcal{T} &\bigg[0, \dfrac{8(2+\cos(\kappa))}{67(23\kappa^{2}+\kappa^{3})}+\dfrac{8}{67(2+\sqrt{\kappa})}\vert\boldsymbol{w}(\kappa)\vert+\frac{8}{67}\sin(\boldsymbol{w}'(\kappa))\\[0.3cm] &+\frac{8\kappa}{67} \int_{0}^{\kappa}\dfrac{\boldsymbol{w}(v) \, \mathrm{d} vs}{1+v} +\frac{8}{67}e^{\vert^{c}\mathcal{D}_{q}^{\frac{3}{5}}\boldsymbol{w}(\kappa)\vert}\bigg], \end{align} (4.3)

    with the following boundary conditions:

    \begin{equation} \begin{cases} \boldsymbol{w}(0)+\mathcal{S}\boldsymbol{w'}(0) = \int_{0}^{\frac{2}{5}}\boldsymbol{w}(p) \, \mathrm{d} p, \\[0.3cm] \boldsymbol{w}(1)+\mathcal{P}\; ^C\mathcal{D}_{q}^{\frac{3}{5}}\boldsymbol{w}(1) = \int_{0}^{\frac{3}{8}}\boldsymbol{w}(p) \, \mathrm{d} p, \end{cases} \end{equation} (4.4)

    where \kappa \in \mathcal{K} = [0, 1] . Here, we put: \eta = {\frac{5}{4}} , \sigma = \frac{3}{5} , \theta = \frac{2}{5} , \lambda = \frac{3}{8} , \mathcal{S} = \sum\limits_{j = 1}^{4}\nu_{j} = 2.4125 with \nu_{1} = \frac{7}{10} , \nu_{2} = \frac{9}{8} , \nu_{3} = \frac{2}{5} , \nu_{4} = \frac{3}{16} , and \mathcal{P} = \prod\limits_{j = 1}^{j = 4}u_{j} = \frac{1}{81} with u_{j} = \frac{1}{3} . We choose \boldsymbol{\Omega}:[0, 1]\to[0, \infty) by \boldsymbol{\Omega}(\kappa) = \frac{8}{67}\kappa , \Vert\boldsymbol{\Omega}\Vert = \frac{8}{67} , and \Psi(\kappa) = \frac{\kappa}{23} . Obviously \Psi is non-decreasing and (USC) on \mathcal{K} .

    Consider the set-valued map \mathcal{T}:\mathcal{K}\times\mathbb{R}^{4}\to\mathcal{P}_{ct}(\mathbb{R}) as follows:

    \begin{align*} \mathcal{T}(t, w_{1}, w_{2}, w_{3}, w_{4}) = &\bigg[0, \dfrac{8(2+\cos(\kappa))}{67(23\kappa^{2}+\kappa^{3})}+\dfrac{8}{67(2+\sqrt{\kappa})}\vert\boldsymbol{w}(\kappa)\vert+\frac{8}{67}\sin(\boldsymbol{w}'(\kappa))\\[0.3cm] &+\frac{8\kappa}{67} \int_{0}^{\kappa}\dfrac{\boldsymbol{w}(v) \, \mathrm{d} v}{1+v} +\frac{8}{67}e^{\vert^{c}\mathcal{D}_{q}^{\frac{3}{5}}\boldsymbol{w}(\kappa)\vert}\bigg]. \end{align*}

    Nevertheless, the values of \mathfrak{X}_{1}, \mathfrak{X}_{2}, \mathfrak{X}_{3}, \mathfrak{X}_{4} are calculated for q = 0.2 , 0.35 , 0.59 , 0.77 , 0.89 and 0.95 in Table 4. Also, the heatmap of the data in Table 4 is presented in Figure 6. Noticte that for convenience, we set the value of \Theta coefficient equal to (\mathfrak{X}_{1}+\mathfrak{X}_{2}+\mathfrak{X}_{3}+\mathfrak{X}_{4})^{-1}\Vert\boldsymbol{\Omega}\Vert .

    Table 4.  Numerical result of \mathfrak{X}_{1}, \mathfrak{X}_{2}, \mathfrak{X}_{3}, \mathfrak{X}_{4}, for different values of q.
    q_{1}=0.2 q_{2}=0.31 q_{3}=0.49 q_{4}=0.77 q_{5}=0.83 q_{6}=0.95
    \mathfrak{X}_{1} 0.9536 0.9610 0.9736 0.9946 0.9993 1.0088
    \mathfrak{X}_{2} 0.3348 0.3405 0.3487 0.3604 0.3627 0.3674
    \mathfrak{X}_{3} 0.3270 0.3303 0.3353 0.3428 0.3444 0.3475
    \mathfrak{X}_{4} 0.9332 0.9320 0.9337 0.9427 0.9454 0.9515
    \Theta 0.0469 0.0466 0.0461 0.0452 0.0450 0.0446

     | Show Table
    DownLoad: CSV
    Figure 6.  The heatmap of Table 4.

    Now, it is easy to examine that

    \begin{equation*} \mathcal{HM}\Big(\mathcal{T}(\kappa, w_{1}, w_{2}, w_{3}, w_{4}), \mathcal{T}(\kappa, z_{1}, z_{2}, z_{3}, z_{4})\Big)\le\dfrac{1}{\mathfrak{X}_{1}+\mathfrak{X}_{2}+\mathfrak{X}_{3}+\mathfrak{X}_{4}}\boldsymbol{\Omega}(\kappa)\Psi\Big(\sum\limits_{j = 1}^{4}\vert w_{j}-z_{j}\vert\Big), \end{equation*}

    and \inf\limits_{w\in \mathcal{G}}\big(\sup\limits_{z \in\mathcal{E}(z)}\Vert w-z\Vert\big) = 0 . Now all the conditions of Theorem 3.2 are satisfied. Thanks to endpoint property and Theorem 3.2, our problem which formulated in (4.3) and (4.4) has a solution. Also the graphs of some functions presented in Figures 79.

    Figure 7.  The graph of \mathcal{T}(\kappa, \boldsymbol{w}(\kappa)) .
    Figure 8.  The graph of \mathcal{T}(\kappa, \boldsymbol{w}(\kappa), \int_{0}^{\kappa}\boldsymbol{w}(p)dp) .
    Figure 9.  The graph of \mathcal{T}(\kappa, \boldsymbol{w}(\kappa), \boldsymbol{w}'(\kappa)) .

    In this paper, we study the numerical and analytical solutions for an integrodifferential inclusion problem by fractional Caputo q -derivative. We proposed an algorithm for computing the gamma function of quantum numbers. This enabled us to solve numerical problems using computers. The problem addressed and the numerical techniques used are more general than previous research. For the first time, we utilized heatmaps to simplify the interpretation of quantum values. Researchers can use our method to investigate other inclusions.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This study is supported via funding from Prince Sattam bin Abdulaziz University project number (PSAU/2023/R/1445).

    Pontificia Universidad Católica del Ecuador, Proyecto Título: "Algunos resultados Cualitativos sobre Ecuaciones diferenciales fraccionales y desigualdades integrales" Cod UIO2022.

    The authors express their gratitude dear unknown referees for their helpful suggestions which improved final version of this paper.

    The authors declare that they have no competing interest.



    [1] Y. A. Rossikhin, M. V. Shitikova, Application of fractional calculus for dynamic problems of solid mechanics: Novel trends and recent results, Appl. Mech. Rev., 63 (2010), 010801. http://doi.org/10.1115/1.4000563 doi: 10.1115/1.4000563
    [2] H. G. Sun, Y. Zhang, D. Baleanu, W. Chen, Y. Q. Chen, A new collection of real world applications of fractional calculus in science and engineering, Commun. Nonlinear Sci., 64 (2018), 213–231. https://doi.org/10.1016/j.cnsns.2018.04.019 doi: 10.1016/j.cnsns.2018.04.019
    [3] J. A. T. Machado, M. F. Silva, R. Barbosa, I. S. Jesus, C. M. Reis, M. G. Marcos, et al., Some applications of fractional calculus in engineering, Math. Probl. Eng., 2010 (2009), 639801. https://doi.org/10.1155/2010/639801 doi: 10.1155/2010/639801
    [4] M. Nadeem, S. W. Yao, Solving the fractional heat-like and wave-like equations with variable coefficients utilizing the Laplace homotopy method, Int. J. Numer. Method. H., 31 (2021), 273–292. https://doi.org/10.1108/HFF-02-2020-0111 doi: 10.1108/HFF-02-2020-0111
    [5] S. Kumar, S. Ghosh, B. Samet, E. F. D. Goufo, An analysis for heat equations arises in diffusion process using new Yang-Abdel-Aty-Cattani fractional operator, Math. Meth. Appl. Sci., 43 (2020), 6062–6080. https://doi.org/10.1002/mma.6347 doi: 10.1002/mma.6347
    [6] L. Vazquez, J. J. Trujillo, M. P. Velasco, Fractional heat equation and the second law of thermodynamics, Fract. Calc. Appl. Anal., 14 (2011), 334–342. https://doi.org/10.2478/s13540-011-0021-9 doi: 10.2478/s13540-011-0021-9
    [7] R. P. Meilanov, R. A. Magomedov, Thermodynamics in fractional calculus, J. Eng. Phys. Thermophy., 87 (2014), 1521–1531. https://doi.org/10.1007/s10891-014-1158-2 doi: 10.1007/s10891-014-1158-2
    [8] M. I. Ayari, S. T. M. Thabet, Qualitative properties and approximate solutions of thermostat fractional dynamics system via a nonsingular kernel operator, Arab J. Math. Sci., 2023. https://doi.org/10.1108/AJMS-06-2022-0147
    [9] A. Carpinteri, F. Mainardi, Fractals and fractional calculus in continuum mechanics, Springer-Verlag, 1997.
    [10] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 204 (2006).
    [11] A. Boutiara, S. Etemad, S. T. M. Thabet, S. K. Ntouyas, S. Rezapour, J. Tariboon, A mathematical theoretical study of a coupled fully hybrid (\kappa, \phi)-fractional order system of BVPs in generalized Banach spaces, Symmetry, 15 (2023), 1041. https://doi.org/10.3390/sym15051041 doi: 10.3390/sym15051041
    [12] R. George, M. Houas, M. Ghaderi, S. Rezapour, S. K. Elagan, On a coupled system of pantograph problem with three sequential fractional derivatives by using positive contraction-type inequalities, Results Phys., 39 (2022), 105687. https://doi.org/10.1016/j.rinp.2022.105687 doi: 10.1016/j.rinp.2022.105687
    [13] C. Ionescu, A. Lopes, D. Copot, J. A. T. Machado, J. H. T. Bates, The role of fractional calculus in modeling biological phenomena: A review, Commun. Nonlinear Sci., 51 (2017), 141–159. https://doi.org/10.1016/j.cnsns.2017.04.001 doi: 10.1016/j.cnsns.2017.04.001
    [14] A. Alalyani, S. Saber, Stability analysis and numerical simulations of the fractional COVID-19 pandemic model, Int. J. Nonlinear Sci. Numer. Simul., 24 (2022), 989–1002. https://doi.org/10.1515/ijnsns-2021-0042 doi: 10.1515/ijnsns-2021-0042
    [15] A. Din, Y. Li, M. A. Shah, The complex dynamics of hepatitis B infected individuals with optimal control, J. Syst. Sci. Complex., 34 (2021), 1301–1323. https://doi.org/10.1007/s11424-021-0053-0 doi: 10.1007/s11424-021-0053-0
    [16] R. Hilfer, Experimental evidence for fractional time evolution in glass forming materials, Chem. Phys., 284 (2002), 399–408. https://doi.org/10.1016/S0301-0104(02)00670-5 doi: 10.1016/S0301-0104(02)00670-5
    [17] M. Fabrizio, C. Giorgi, V. Pata, A new approach to equations with memory, Arch. Rational Mech. Anal., 198 (2010), 189–232. https://doi.org/10.1007/s00205-010-0300-3
    [18] Z. Heydarpour, M. N. Parizi, R. Ghorbanian, M. Ghaderi, S. Rezapour, A. mosavi, A study on a special case of the Sturm-Liouville equation using the Mittag-Leffler function and a new type of contraction, AIMS Mathematics, 7 (2022), 18253–18279. https://doi.org/10.3934/math.20221004 doi: 10.3934/math.20221004
    [19] S. T. M. Thabet, M. B. Dhakne, On positive solutions of higher order nonlinear fractional integro-differential equations with boundary conditions, Malaya J. Mat., 7 (2019), 20–26. https://doi.org/10.26637/MJM0701/0005 doi: 10.26637/MJM0701/0005
    [20] M. Laoubi, Z. Odibat, B. Maayah, A Legendre-based approach of the optimized decomposition method for solving nonlinear Caputo-type fractional differential equations, Math. Meth. Appl. Sci., 45 (2022), 7307–7321. https://doi.org/10.1002/mma.8237 doi: 10.1002/mma.8237
    [21] A. Das, M. Paunović, V. Parvaneh, M. Mursaleen, Z. Bagheri, Existence of a solution to an infinite system of weighted fractional integral equations of a function with respect to another function via a measure of noncompactness, Demonstr. Math., 56 (2023), 20220192. https://doi.org/10.1515/dema-2022-0192 doi: 10.1515/dema-2022-0192
    [22] S. T. M. Thabet, M. M. Matar, M. A. Salman, M. E. Samei, M. Vivas-Cortez, I. Kedim, On coupled snap system with integral boundary conditions in the G-Caputo sense, AIMS Mathematics, 8 (2023), 12576–12605. https://doi.org/10.3934/math.2023632 doi: 10.3934/math.2023632
    [23] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73–85.
    [24] J. Hadamard, Essai sur l'étude des fonctions, données par leur développement de Taylor, J. Math. Pure. Appl., 8 (1892), 101–186.
    [25] A. Alsaedi, M. Alghanmi, B. Ahmad, B. Alharbi, Uniqueness of solutions for a \psi-Hilfer fractional integral boundary value problem with the p-Laplacian operator, Demonstr. Math., 56 (2023), 20220195. https://doi.org/10.1515/dema-2022-0195 doi: 10.1515/dema-2022-0195
    [26] R. George, S. M. Aydogan, F. M. Sakar, M. Ghaderi, S. Rezapour, A study on the existence of numerical and analytical solutions for fractional integrodifferential equations in Hilfer type with simulation, AIMS Mathematics, 8 (2023), 10665–10684. https://doi.org/10.3934/math.2023541 doi: 10.3934/math.2023541
    [27] R. Hilfer, Applications of fractional calculus in physics, World Scientific, 2000. https://doi.org/10.1142/3779
    [28] S. T. M. Thabet, S. Al-Sadi, I. Kedim, A. S. Rafeeq, S. Rezapour, Analysis study on multi-order \varrho-Hilfer fractional pantograph implicit differential equation on unbounded domains, AIMS Mathematics, 8 (2023), 18455–18473. https://doi.org/10.3934/math.2023938 doi: 10.3934/math.2023938
    [29] S. T. M. Thabet, I. Kedim, J. Gao, Study of nonlocal multiorder implicit differential equation involving Hilfer fractional derivative on unbounded domains, J. Math., 2023 (2023), 866832. https://doi.org/10.1155/2023/8668325 doi: 10.1155/2023/8668325
    [30] I. Podlubny, Fractional differential equations, Elsevier, 198 (1999), 1–340.
    [31] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [32] M. Nadeem, J. H. He, H. M. Sedighi, Numerical analysis of multi-dimensional time-fractional diffusion problems under the Atangana-Baleanu caputo derivative, Math. Biosci. Eng., 20 (2023), 8190–8207. https://doi.org/10.3934/mbe.2023356 doi: 10.3934/mbe.2023356
    [33] K. M. Owolabi, Modelling and simulation of a dynamical system with the Atangana-Baleanu fractional derivative, Eur. Phys. J. Plus, 133 (2018). https://doi.org/10.1140/epjp/i2018-11863-9
    [34] T. Abdeljawad, S. T. M. Thabet, I. Kedim, M. I. Ayari, A. Khan, A higher-order extension of Atangana-Baleanu fractional operators with respect to another function and a Gronwall-type inequality, Bound. Value Probl., 2023 (2023), 49. https://doi.org/10.1186/s13661-023-01736-z doi: 10.1186/s13661-023-01736-z
    [35] R. George, F. Al-shammari, M. Ghaderi, S. Rezapour, On the boundedness of the solution set for the \psi-Caputo fractional pantograph equation with a measure of non-compactness via simulation analysis, AIMS Mathematics, 8 (2023), 20125–20142. https://doi.org/10.3934/math.20231025 doi: 10.3934/math.20231025
    [36] F. H. Jackson, q-difference equation, Amer. J. Math., 32 (1910), 305–314. https://doi.org/10.2307/2370183
    [37] F. H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193–203.
    [38] Z. G. Liu, On the q-derivative and q-series expansions, Int. J. Number Theory, 9 (2013), 2069–2089. https://doi.org/10.1142/S1793042113500759 doi: 10.1142/S1793042113500759
    [39] S. Mahmood, M. Jabeen, S. N. Malik, H. M. Srivastava, R. Manzoor, S. M. J. Riaz, Some coefficient inequalities of q-starlike functions associated with conic domain defined by q-derivative, J. Funct. Space., 2018 (2018), 8492072. https://doi.org/10.1155/2018/8492072 doi: 10.1155/2018/8492072
    [40] H. Akca, J. Benbourenane, H. Eleuch, The q-derivative and differential equation, J. Phys.: Conf. Ser., 1411 (2019), 012002. https://doi.org/10.1088/1742-6596/1411/1/012002 doi: 10.1088/1742-6596/1411/1/012002
    [41] F. Guo, S. Kang, F. Chen, Existence and uniqueness results to positive solutions of integral boundary value problem for fractional q-derivatives, Adv. Differ. Equ., 2018 (2018), 379. https://doi.org/10.1186/s13662-018-1796-3 doi: 10.1186/s13662-018-1796-3
    [42] C. Yu, J. Wang, Existence of solutions for nonlinear second-order q-difference equations with first-order q-derivatives, Adv. Diff. Equ., 2013 (2013), 124. https://doi.org/10.1186/1687-1847-2013-124 doi: 10.1186/1687-1847-2013-124
    [43] Y. Zhao, H. Chen, Q. Zhang, Existence and multiplicity of positive solutions for nonhomogeneous boundary value problems with fractional q-derivatives, Bound. Value Probl., 2013 (2013), 103. https://doi.org/10.1186/1687-2770-2013-103 doi: 10.1186/1687-2770-2013-103
    [44] A. Boutiara, J. Alzabut, M. Ghaderi, S. Rezapour, On a coupled system of fractional (p, q)-differential equation with Lipschitzian matrix in generalized metric space, AIMS Mathematics, 8 (2023), 1566–1591. https://doi.org/10.3934/math.2023079 doi: 10.3934/math.2023079
    [45] K. Wlodarczyk, D. Klim, R. Plebaniak, Existence and uniqueness of endpoints of closed set-valued asymptotic contractions in metric spaces, J. Math. Anal. Appl., 328 (2007), 46–57. https://doi.org/10.1016/j.jmaa.2006.05.029 doi: 10.1016/j.jmaa.2006.05.029
    [46] D. Wardowski, Endpoints and fixed points of set-valued contractions in cone metric spaces, Nonlinear Anal-Theor., 71 (2009), 512–516. https://doi.org/10.1016/j.na.2008.10.089 doi: 10.1016/j.na.2008.10.089
    [47] A. Amini-Harandi, Endpoints of set-valued contractions in metric spaces, Nonlinear Anal-Theor., 72 (2010), 132–134. https://doi.org/10.1016/j.na.2009.06.074 doi: 10.1016/j.na.2009.06.074
    [48] B. Ahmad, A. Alsaedi, S. K. Ntouyas, A study of second-order q-difference equations with boundary conditions, Adv. Differ. Equ., 2012 (2012), 35. https://doi.org/10.1186/1687-1847-2012-35 doi: 10.1186/1687-1847-2012-35
    [49] R. P. Agarwal, B. Ahmad, A. Alsaedi, N. Shahzad, Existence and dimension of the set of mild solutions to semilinear fractional differential inclusions, Adv. Differ. Equ., 2012 (2012), 74. https://doi.org/10.1186/1687-1847-2012-74 doi: 10.1186/1687-1847-2012-74
    [50] Y. Zhao, H. Chen, Q. Zhang, Existence results for fractional q-difference equations with nonlocal q-integral boundary conditions, Adv. Differ. Equ., 2013 (2013), 48. https://doi.org/10.1186/1687-1847-2013-48 doi: 10.1186/1687-1847-2013-48
    [51] C. R. Adams, The general theory of a class of linear partial q-difference equations, T. Am. Math. Soc., 26 (1924), 283–312. https://doi.org/10.2307/1989141 doi: 10.2307/1989141
    [52] J. R. Graef, L. Kong, Positive solutions for a class of higher order boundary value problems with fractional q-derivatives, Appl. Math. Comput., 218 (2012), 9682–9689. https://doi.org/10.1016/j.amc.2012.03.006 doi: 10.1016/j.amc.2012.03.006
    [53] Z. Bai, H. Lü, Positive solutions for boundary value problem of nonlinear fractional q-difference quation, J. Math. Anal. Appl., 311 (2005), 495–505. https://doi.org/10.1016/j.jmaa.2005.02.052 doi: 10.1016/j.jmaa.2005.02.052
    [54] H. Covitz, S. B. Nadler, Multivalued contraction mappings in generalized metric spaces, Israel J. Math., 8 (1970), 5–11. https://doi.org/10.1007/BF02771543 doi: 10.1007/BF02771543
  • This article has been cited by:

    1. Samane Ijadi, S. Mansour Vaezpour, Mehdi Shabibi, Shahram Rezapour, On the singular-hybrid type of the Langevin fractional differential equation with a numerical approach, 2024, 2024, 1687-2770, 10.1186/s13661-024-01922-7
    2. Mehran Ghaderi, Shahram Rezapour, On an m-dimensional system of quantum inclusions by a new computational approach and heatmap, 2024, 2024, 1029-242X, 10.1186/s13660-024-03125-1
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1510) PDF downloads(59) Cited by(2)

Figures and Tables

Figures(9)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog