In networks, the Markov clustering (MCL) algorithm is one of the most efficient approaches in detecting clustered structures. The MCL algorithm takes as input a stochastic matrix, which depends on the adjacency matrix of the graph network under consideration. Quantum clustering algorithms are proven to be superefficient over the classical ones. Motivated by the idea of a potential clustering algorithm based on quantum Markov chains, we prove a clustering property for quantum Markov chains (QMCs) on Cayley trees associated with open quantum random walks (OQRW).
Citation: Luigi Accardi, Amenallah Andolsi, Farrukh Mukhamedov, Mohamed Rhaima, Abdessatar Souissi. Clustering quantum Markov chains on trees associated with open quantum random walks[J]. AIMS Mathematics, 2023, 8(10): 23003-23015. doi: 10.3934/math.20231170
[1] | M. Ali Akbar, Norhashidah Hj. Mohd. Ali, M. Tarikul Islam . Multiple closed form solutions to some fractional order nonlinear evolution equations in physics and plasma physics. AIMS Mathematics, 2019, 4(3): 397-411. doi: 10.3934/math.2019.3.397 |
[2] | Saima Noor, Azzh Saad Alshehry, Asfandyar Khan, Imran Khan . Innovative approach for developing solitary wave solutions for the fractional modified partial differential equations. AIMS Mathematics, 2023, 8(11): 27775-27819. doi: 10.3934/math.20231422 |
[3] | Khalid Khan, Amir Ali, Muhammad Irfan, Zareen A. Khan . Solitary wave solutions in time-fractional Korteweg-de Vries equations with power law kernel. AIMS Mathematics, 2023, 8(1): 792-814. doi: 10.3934/math.2023039 |
[4] | Khalid K. Ali, Mohamed S. Mohamed, M. Maneea . Optimal homotopy analysis method for (2+1) time-fractional nonlinear biological population model using J-transform. AIMS Mathematics, 2024, 9(11): 32757-32781. doi: 10.3934/math.20241567 |
[5] | Baojian Hong, Jinghan Wang, Chen Li . Analytical solutions to a class of fractional coupled nonlinear Schrödinger equations via Laplace-HPM technique. AIMS Mathematics, 2023, 8(7): 15670-15688. doi: 10.3934/math.2023800 |
[6] | Zhao Li, Shan Zhao . Bifurcation, chaotic behavior and solitary wave solutions for the Akbota equation. AIMS Mathematics, 2024, 9(8): 22590-22601. doi: 10.3934/math.20241100 |
[7] | Obaid Algahtani, Sayed Saifullah, Amir Ali . Semi-analytical and numerical study of fractal fractional nonlinear system under Caputo fractional derivative. AIMS Mathematics, 2022, 7(9): 16760-16774. doi: 10.3934/math.2022920 |
[8] | Ikram Ullah, Muhammad Bilal, Javed Iqbal, Hasan Bulut, Funda Turk . Single wave solutions of the fractional Landau-Ginzburg-Higgs equation in space-time with accuracy via the beta derivative and mEDAM approach. AIMS Mathematics, 2025, 10(1): 672-693. doi: 10.3934/math.2025030 |
[9] | Mustafa Inc, Hadi Rezazadeh, Javad Vahidi, Mostafa Eslami, Mehmet Ali Akinlar, Muhammad Nasir Ali, Yu-Ming Chu . New solitary wave solutions for the conformable Klein-Gordon equation with quantic nonlinearity. AIMS Mathematics, 2020, 5(6): 6972-6984. doi: 10.3934/math.2020447 |
[10] | Faeza Lafta Hasan, Mohamed A. Abdoon, Rania Saadeh, Ahmad Qazza, Dalal Khalid Almutairi . Exploring analytical results for (2+1) dimensional breaking soliton equation and stochastic fractional Broer-Kaup system. AIMS Mathematics, 2024, 9(5): 11622-11643. doi: 10.3934/math.2024570 |
In networks, the Markov clustering (MCL) algorithm is one of the most efficient approaches in detecting clustered structures. The MCL algorithm takes as input a stochastic matrix, which depends on the adjacency matrix of the graph network under consideration. Quantum clustering algorithms are proven to be superefficient over the classical ones. Motivated by the idea of a potential clustering algorithm based on quantum Markov chains, we prove a clustering property for quantum Markov chains (QMCs) on Cayley trees associated with open quantum random walks (OQRW).
In this paper, we consider the following Cauchy problem of Navier-Stokes equations with the damping term:
ut+(u⋅∇)u+∇π+Λ2αu+|u|β−1u=0, (t,x)∈R+×R3, | (1.1) |
divu=0, (t,x)∈R+×R3, | (1.2) |
u(x,0)=u0, x∈R3, | (1.3) |
where u=u(x,t)∈R3, π=π(x,t)∈R represent the unknown velocity field and the pressure respectively. α≥0, β≥1 are real parameters. Λ:=(−Δ)12 is defined in terms of Fourier transform by
^Λf(ξ)=|ξ|ˆf(ξ). |
Damping originates from the dissipation of energy by resistance, which describes many physical phenomena such as porous media flow, resistance or frictional effects, and some dissipation mechanisms (see [1] and references cited therein). When α=1, Cai and Jiu first proved that there exists a weak solution of (1.1)–(1.3) if β>1. Furthermore, if β≥72, the global existence of the strong solution was established. Later, this result was improved by Zhang, Wu and Lu in [2], where the lower bound of β decreased to 3. Zhou[3] proved the lower bound 3 is critical in some sense. For the general case, it is proved that when 34≤α<1, β≥2α+54α−2 or 1≤α<54, β≥1+104α+1, the global existence of the solution was established in [4]. For the asymptotic behavior, one can refer to [5,6,7] for details.
For the generalized Navier-Stokes equations (our system without damping term) when α=1, there are many regularity criteria to the system (1.1)–(1.3). The classical Prodi-Serrin's-type criteria was given in [8,9,10], where it was proved that if a weak solution u∈Lp(0,T;Lq(R3)) with 2p+3q=1, q≥3, then the solution is regular and unique. Beirão da Veiga [11] established the analogous result: ∇u∈Lp(0,T;Lq(R3)) with 2p+3q=2, q≥32. For the general case, in [12], Jiang and Zhu proved that if Λθu∈Lp(0,T;Lq(R3)) with 2αp+3q≤2α−1+θ, θ∈[1−α,1], q>32α−1+θ, then the solution remains smooth on [0, T]. One can refer to [11,13,14] for more classical regularity criteria. For the large time behavior, Jiu and Yu proved the algebraic decay of the solution under specific conditions (see [15]).
Our paper devotes to considering the role of damping terms in regularity criteria for the system (1.1)–(1.3). We will explain the role of damping term in the following two questions:
(1) When does the dissipative term work better than the damping term?
(2) How does the damping term work?
For the first question, if α≥54, the generalized Navier-Stokes equations (our system without damping term) exists a global strong solution u∈L∞(0,T;H1(R3))∩L2(0,T;H1+α(R3)). Consequently, we only consider the case when 12<α<54.
For the second question, we utilize two structures brought by the damping term: ‖|u|β−12∇u‖2L2 (Theorems 1.1 and 1.2, when 1<α<54) and 1β+1ddt‖u‖β+1Lβ+1 (Theorems 1.3 and 1.4, when 12<α<1). Actually, ‖|u|β−12∇u‖2L2 works better than 1β+1ddt‖u‖β+1Lβ+1, because ‖|u|β−12∇u‖2L2 is a first-order estimate resulting from the damping term while 1β+1ddt‖u‖β+1Lβ+1 is a zero-order estimate resulting from the damping term. However, because of the technical limitation, we still use 1β+1ddt‖u‖β+1Lβ+1 when 12<α<1. Consequently, when 12<α<1, how to utilize ‖|u|β−12∇u‖2L2 may be an insteresting question.
We give our main theorems as follows.
Theorem 1.1. When 1<α<54, β<1+104α+1, assume that the initial data u0(x)∈H1(R3) with divu0=0, and u(x,t) is a local strong solution of the system (1.1)–(1.3). If u(x,t)∈Lp(0,T;Lq(R3)) with
2αp+3q≤max{2(α−1)3−β,2α−1},min{9−3β2(α−1),32α−1}<q≤∞, | (1.4) |
then, for any T>0, the system (1.1)–(1.3) has a global strong solution satisfying
u∈L∞(0,T;H1(R3))∩L2(0,T;H1+α(R3))∩Lβ+1(0,T;Lβ+1(R3)). |
Remark 1.1. In Theorem 1.1, we roughly combine the regularity criteria brought by the dissipative term and the damping term. In fact, we can verify that if 1<α<54, 2+12α−1<β<1+104α+1, then 2(α−1)3−β>2α−1. Consequently, (1.4) becomes
2αp+3q≤2(α−1)3−β,9−3β2(α−1)<q≤∞, | (1.5) |
which means that damping the term works better than the dissipative term.
Theorem 1.2. When 1<α<54, 5−2α<β<1+104α+1, assume that the initial data u0(x)∈H1(R3) with divu0=0, and u(x,t) is a local strong solution of the system (1.1)–(1.3). If Λαu(x,t)∈Lp(0,T;Lq(R3)) with
(3−β)αp(2α−5+β)+3q≤α+32,31+α≤q<∞, |
then, for any T>0, the system (1.1)–(1.3) has a global strong solution satisfying
u∈L∞(0,T;H1(R3))∩L2(0,T;H1+α(R3))∩Lβ+1(0,T;Lβ+1(R3)). |
Remark 1.2. In Theorems 1.1 and 1.2, we consider the regularity criteria when β<1+104α+1, because the global existence was established in [4] when β≥1+104α+1. If β≥1+104α+1, the regularity criteria in Theorem 1.1 is satisfied naturally, so we recover the result in [4] when 1<α<54.
Theorem 1.3. When 12<α<1, β<min{2α+54α−2,3α+2α}, assume that the initial data u0(x)∈H1(R3)∩Lβ+1(R3) with divu0=0, and u(x,t) is a local strong solution of the system (1.1)–(1.3). If u(x,t)∈Lp(0,T;Lq(R3)) with
6α−(2α−1)(β+1)p+3q≤2α−1,32α−1<q≤6α2α−1, | (1.6) |
then, for any T>0, the system (1.1)–(1.3) has a global strong solution satisfying
u∈L∞(0,T;H1(R3))∩L2(0,T;Hα+1(R3))∩L∞(0,T;Lβ+1(R3)),ut∈L2(0,T;L2(R3)). |
Remark 1.3. If β≥2α+54α−2, the regularity criteria in Theorem 1.3 is satisfied naturally, so we recover the result in [4] when 34≤α<1.
Theorem 1.4. When 12<α<1, β<min{2α+54α−2,3α+2α}, assume that the initial data u0(x)∈H1(R3)∩Lβ+1(R3) with divu0=0, and u(x,t) is a local strong solution of the system (1.1)–(1.3). If Λαu(x,t)∈Lp(0,T;Lq(R3)) with
6α−(2α−1)(β+1)p+3q≤3α−1,33α−1<q≤6α3α−1, |
then, for any T>0, the system (1.1) has a global strong solution satisfying
u∈L∞(0,T;H1(R3))∩L2(0,T;Hα+1(R3))∩L∞(0,T;Lβ+1(R3)),ut∈L2(0,T;L2(R3)). |
Proof of the Theorem 1.1. Multiplying (1.1) by −△u, after integration by parts and taking the divergence-free property into account, we have
12ddt‖∇u‖2L2+‖Λ1+αu‖2L2+‖|u|β−12∇u‖2L2+4(β−1)(β+1)2‖∇|u|β+12‖2L2=∫R3(u⋅∇)u⋅Δudx. |
For ∫R3(u⋅∇)u⋅Δudx, we have
∫R3(u⋅∇)u⋅Δudx≤C‖|u|β−12∇u‖L2‖|u|3−β2Δu‖L2≤12‖|u|β−12∇u‖2L2+C‖u‖3−βLq‖Δu‖2L2qq−3+β≤12‖|u|β−12∇u‖2L2+‖u‖3−βLq‖∇u‖2(1−θ1)L2‖Λ1+αu‖2θ1L2≤12‖|u|β−12∇u‖2L2+12‖Λ1+αu‖2L2+C‖u‖3−β1−θ1Lq‖∇u‖2L2≤12‖|u|β−12∇u‖2L2+12‖Λ1+αu‖2L2+C‖u‖2qα(3−β)2(α−1)−9+3βLq‖∇u‖2L2, |
where
12−3−β2q=13+(12−α3)θ1+1−θ12, |
with θ1=2q+9−3β2αq. The conditions in Theorem 1.1 imply θ1∈[1α,1). By direct calculation, we have
3−β1−θ1=2qα(3−β)2(α−1)q−9+3β. |
Combining the above estimates, we obtain
12ddt‖∇u‖2L2+‖Λ1+αu‖2L2+‖|u|β−12∇u‖2L2+4(β−1)(β+1)2‖∇|u|β+12‖2L2≤12‖|u|β−12∇u‖2L2+12‖Λ1+αu‖2L2+C‖u‖3−β1−θ1Lq‖∇u‖2L2. |
A standard Gronwall's inequality shows that
‖∇u‖2L2+∫t0(‖Λα+1u‖2L2+‖|u|β−12∇u‖2L2+‖∇|u|β+12‖2L2)(s)ds≤C( t,‖u0‖H1). |
This completes the proof of the Theorem 1.1.
Proof of the Theorem 1.2. Multiplying (1.1) by −△u, after integration by parts and taking the divergence-free property into account, we have
12ddt‖∇u‖2L2+‖Λ1+αu‖2L2+‖|u|β−12∇u‖2L2+4(β−1)(β+1)2‖∇|u|β+12‖2L2=∫R3(u⋅∇)u⋅Δudx. |
For ∫R3(u⋅∇)u⋅Δudx, we have
∫R3(u⋅∇)u⋅Δu≤C‖|u|β−12∇u‖L2‖|u|3−β2Δu‖L2≤12‖|u|β−12∇u‖2L2+C‖u‖3−βL3‖Δu‖2L6β≤12‖|u|β−12∇u‖2L2+C‖u‖(3−β)(1−θ2)L2‖Λαu‖(3−β)θ2Lq‖∇u‖2(1−θ3)L2‖Λ1+αu‖2θ3L2≤12‖|u|β−12∇u‖2L2+12‖Λ1+αu‖2L2+C‖Λαu‖(3−β)θ21−θ3Lq‖∇u‖2L2≤12‖|u|β−12∇u‖2L2+12‖Λ1+αu‖2L2+C‖Λαu‖2(3−β)αq[(2α+3)q−6][2α−5+β]Lq‖∇u‖2L2, |
where
{13=θ2(1q−α3)+1−θ22,β6=13+θ3(12−α3)+1−θ32, |
with θ2=q(2α+3)q−6, θ3=5−β2α. The conditions in Theorem 1.2 imply θ2∈(0,1], θ3∈(1α,1). By direct calculation, we have
(3−β)θ21−θ3=2(3−β)αq[(2α+3)q−6][2α−5+β]. |
Combining the above estimates, we obtain
12ddt‖∇u‖2L2+‖Λ1+αu‖2L2+‖|u|β−12∇u‖2L2+4(β−1)(β+1)2‖∇|u|β+12‖2L2≤12‖|u|β−12∇u‖2L2+12‖Λ1+αu‖2L2+C‖Λαu‖2(3−β)αq[(2α+3)q−6][2α−5+β]Lq‖∇u‖2L2. |
A standard Gronwall's inequality shows that
‖∇u‖2L2+∫t0(‖Λα+1u‖2L2+‖|u|β−12∇u‖2L2+‖∇|u|β+12‖2L2)(s)ds≤C( t,‖u0‖H1). |
This completes the proof of the Theorem 1.2.
Proof of the Theorem 1.3. Multiplying (1.1) by −△u, ut and adding the two equations, after integration by parts and taking the divergence-free property into account, we have
12ddt‖∇u‖2L2+12ddt‖Λαu‖2L2+1β+1ddt‖u‖β+1Lβ+1+‖Λ1+αu‖2L2+‖ut‖2L2+‖|u|β−12∇u‖2L2+4(β−1)(β+1)2‖∇|u|β+12‖2L2=∫R3(u⋅∇)u⋅Δudx−∫R3(u⋅∇)u⋅utdx≤C‖∇u‖3L3+C‖u⋅∇u‖2L2+12‖ut‖2L2. |
For ‖∇u‖3L3, we have
C‖∇u‖3L3≤C‖u‖δ1(1−θ4)Lq‖Λ1+αu‖δ1θ4L2‖u‖(3−δ1)(1−θ5)Lβ+1‖Λ1+αu‖(3−δ1)θ5L2≤14‖Λ1+αu‖2L2+C‖u‖2δ1(1−θ4)2−δ1θ4−(3−δ1)θ5Lq‖u‖2(3−δ1)(1−θ5)2−δ1θ4−(3−δ1)θ5Lβ+1≤14‖Λ1+αu‖2L2+C‖u‖2δ1(1−θ4)2−δ1θ4−(3−δ1)θ5Lq‖u‖β+1Lβ+1≤14‖Λ1+αu‖2L2+C‖u‖[6α−(2α−1)(β+1)]q(2α−1)q−3Lq‖u‖β+1Lβ+1, |
where
{13=13+θ4(12−1+α3)+1−θ4q,13=13+θ5(12−1+α3)+1−θ5β+1,2(3−δ1)(1−θ5)2−δ1θ4−(3−δ1)θ5=β+1. |
By directly calculating, we have
{θ4=6(2α−1)q+6,θ5=6(2α−1)(β+1)+6,δ1=[(2α−1)q+6][6α−(2α−1)(β+1)]2(α+1)[(2α−1)q+6]−3[(2α−1)(β+1)+6],2δ1(1−θ4)2−δ1θ4−(3−δ1)θ5=[6α−(2α−1)(β+1)]q(2α−1)q−3. |
The conditions in Theorem 1.3 imply θ4∈[11+α,1), θ5∈[11+α,1), δ1∈(0,3).
For ‖u⋅∇u‖2L2, we have
C‖u⋅∇u‖2L2≤C‖u‖δ2Lq‖u‖2−δ2Lβ+1‖∇u‖L21−δ2q−2−δ2β+1≤C‖u‖δ2Lq‖u‖2−δ2Lβ+1‖u‖2(1−θ6)Lβ+1‖Λ1+αu‖2θ6L2≤14‖Λ1+αu‖2L2+C‖u‖δ21−θ6Lq‖u‖2−δ21−θ6Lβ+1‖u‖2Lβ+1≤14‖Λ1+αu‖2L2+C‖u‖δ21−θ6Lq‖u‖β+1Lβ+1=14‖Λ1+αu‖2L2+C‖u‖(3α+2−αβ)qαq−3Lq‖u‖β+1Lβ+1≤14‖Λ1+αu‖2L2+C(‖u‖[6α−(2α−1)(β+1)]q(2α−1)q−3Lq+1)‖u‖β+1Lβ+1, |
where
{12−δ22q−2−δ22(β+1)=13+θ6(12−1+α3)+1−θ6β+1,2−δ21−θ6=β−1. |
By direct calculation, we have
{θ6=2q+9−3β2(α+1)q+3−3β,δ21−θ6=21−θ6+1−β=(3α+2−αβ)qαq−3. |
The conditions in Theorem 1.3 imply θ6∈[11+α,1).
Combining the above estimates, we obtain
12ddt‖∇u‖2L2+12ddt‖Λαu‖2L2+1β+1ddt‖u‖β+1Lβ+1+‖Λ1+αu‖2L2+‖ut‖2L2+‖|u|β−12∇u‖2L2+4(β−1)(β+1)2‖∇|u|β+12‖2L2≤12‖Λ1+αu‖2L2+C(‖u‖[6α−(2α−1)(β+1)]q(2α−1)q−3Lq+1)‖u‖β+1Lβ+1. |
A standard Gronwall's inequality shows that
‖∇u‖2L2+‖u‖β+1Lβ+1+‖Λαu‖2L2+∫t0(‖∇|u|β+12‖2L2+‖|u|β−12∇u‖2L2+‖Λ1+αu‖2L2+‖ut‖2L2)(τ)dτ≤C( t,‖u0‖H1,‖u0‖Lβ+1). |
This completes the proof of the Theorem 1.3.
Proof of the Theorem 1.4. Multiplying (1.1) by −△u, ut and adding the two equations, after integration by parts and taking the divergence-free property into account, we have
12ddt‖∇u‖2L2+12ddt‖Λαu‖2L2+1β+1ddt‖u‖β+1Lβ+1+‖Λ1+αu‖2L2+‖ut‖2L2+‖|u|β−12∇u‖2L2+4(β−1)(β+1)2‖∇|u|β+12‖2L2=∫R3(u⋅∇)u⋅Δudx−∫R3(u⋅∇)u⋅utdx≤C‖∇u‖3L3+C‖u⋅∇u‖2L2+12‖ut‖2L2. |
For ‖∇u‖3L3, we have
C‖∇u‖3L3≤C‖Λαu‖δ3(1−θ7)Lq‖Λ1+αu‖δ3θ7L2‖u‖(3−δ3)(1−θ5)Lβ+1‖Λ1+αu‖(3−δ3)θ5L2≤12‖Λ1+αu‖2L2+C‖Λαu‖2δ3(1−θ7)2−δ3θ7−(3−δ3)θ5Lq‖u‖2(3−δ3)(1−θ5)2−δ3θ7−(3−δ3)θ5Lβ+1≤12‖Λ1+αu‖2L2+C‖Λαu‖2δ3(1−θ7)2−δ3θ7−(3−δ3)θ5Lq‖u‖β+1Lβ+1≤12‖Λ1+αu‖2L2+C‖Λαu‖[6α−(2α−1)(β+1)]q(3α−1)q−3Lq‖u‖β+1Lβ+1, |
where
{13=1−α3+θ7(12−13)+1−θ7q,13=13+θ5(12−1+α3)+1−θ5β+1,2(3−δ3)(1−θ5)2−δ3θ7−(3−δ3)θ5=β+1. |
By direct calculation, we have
{θ7=6−2αq6−q,θ5=6(2α−1)(β+1)+6,δ3=(6−q)[6α−(2α−1)(β+1)]2(α+1)(6−q)−(3−αq)[(2α−1)(β+1)+6]. |
The conditions in Theorem 1.3 imply θ7∈[1−α,1), θ5∈[11+α,1), δ3∈(0,3).
We can estimate ‖u⋅∇u‖2L2 similarily.
Combining the above estimates, we obtain
12ddt‖∇u‖2L2+12ddt‖Λαu‖2L2+1β+1ddt‖u‖β+1Lβ+1+‖Λ1+αu‖2L2+‖ut‖2L2+‖|u|β−12∇u‖2L2+4(β−1)(β+1)2‖∇|u|β+12‖2L2≤12‖Λ1+αu‖2L2+C‖Λαu‖[6α−(2α−1)(β+1)]q(3α−1)q−3Lq‖u‖β+1Lβ+1. |
A standard Gronwall's inequality shows that
‖∇u‖2L2+‖u‖β+1Lβ+1+‖Λαu‖2L2+∫t0(‖∇|u|β+12‖2L2+‖|u|β−12∇u‖2L2+‖Λ1+αu‖2L2+‖ut‖2L2)(τ)dτ≤C( t,‖u0‖H1,‖u0‖Lβ+1). |
This completes the proof of the Theorem 1.4.
In this paper, we have established some regularity criteria for the 3D generalized Navier-Stokes equations with nonlinear damping term. First, we consider the case where the dissipative term is superior to the damping term, which corresponds to when the damping term works. Second, in Remark 1.1, we show that the damping term works better than the dissipative term. Furthermore, we have presented that the damping term has different effects in different cases, which shows the balance and the interaction between the dissipative term and the damping term as well as the role of the damping term in regularity criteria. In fact, considering how the damping term works and the interaction between the dissipative term and the damping term is the main idea of this paper.
The author declares he has not used Artificial Intelligence (AI) tools in the creation of this article.
This work was partially supported by the National Natural Science Foundation of China (Grant No.12071439) and Zhejiang Provincial Natural Science Foundation of China (Grant No. LY19A010016).
The author declares no conflict of interest.
[1] | L. Accardi, Non-commutative Markov chains, Proc. Int. Sch. Math. Phys., 1974,268–295. |
[2] | L. Accardi, A. Frigerio, Markovian cocycles, Math. Proc. R. Ir. Acad., 83 (1983), 251–263. |
[3] |
L. Accardi, F. Mukhamedov, A. Souissi, Construction of a new class of quantum Markov fields, Adv. Oper. Theory, 1 (2016), 206–218. https://doi.org/10.22034/aot.1610.1031 doi: 10.22034/aot.1610.1031
![]() |
[4] |
L. Accardi, F. Mukhamedov, M. Saburov, On quantum Markov chains on Cayley tree I: Uniqueness of the associated chain with XY-model on the Cayley tree of order two, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 14 (2011), 443–463. https://doi.org/10.1142/S021902571100447X doi: 10.1142/S021902571100447X
![]() |
[5] |
L. Accardi, F. Mukhamedov, M. Saburov, On quantum Markov chains on Cayley tree II: phase transitions for the associated chain with XY-model on the Cayley tree of order three, Ann. Henri Poincaré, 12 (2011), 1109–1144. https://doi.org/10.1007/s00023-011-0107-2 doi: 10.1007/s00023-011-0107-2
![]() |
[6] |
L. Accardi, A. Souissi, E. G. Soueidy, Quantum Markov chains: A unification approach, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 23 (2020), 2050016. https://doi.org/10.1142/S0219025720500162 doi: 10.1142/S0219025720500162
![]() |
[7] |
L. Accardi, Y. G. Lu, A. Souissi, A Markov-Dobrushin inequality for quantum channels, Open Syst. Inf. Dyn., 28 (2021), 2150018. https://doi.org/10.1142/S1230161221500189 doi: 10.1142/S1230161221500189
![]() |
[8] | L. Accardi, G. S. Watson, Quantum random walks, In: Lecture notes in mathematics, Heidelberg: Springer, 1989. https://doi.org/10.1007/BFb0083545 |
[9] | S. Attal, F. Petruccione, C. Sabot, I. Sinayskiy, Open quantum random walks, J. Stat. Phys., 147 (2012), 832–852. https://doi.org/10.1007/s10955-012-0491-0 |
[10] | O. Bratteli, D. W. Robinson, Operator algebras and quantum statistical mechanics, Bull. Amer. Math. Soc., 7 (1982), 425. |
[11] |
A. Barhoumi, A. Souissi, Recurrence of a class of quantum Markov chains on trees, Chaos Solitons Fract., 164 (2022), 112644. https://doi.org/10.1016/j.chaos.2022.112644 doi: 10.1016/j.chaos.2022.112644
![]() |
[12] |
A. Dhahri, F. Mukhamedov, Open quantum random walks, quantum Markov chains and recurrence, Rev. Math. Phys., 31 (2019), 1950020. https://doi.org/10.1142/S0129055X1950020X doi: 10.1142/S0129055X1950020X
![]() |
[13] | B. D. McKay, A. Piperno, Practical graph isomorphism, II, J. Symb. Comput., 60 (2014), 94–112. https://doi.org/10.1016/j.jsc.2013.09.003 |
[14] |
M. Fannes, B. Nachtergaele, R. F. Werner, Finitely correlated states on quantum spin chains, Commun. Math. Phys., 144 (1992), 443–490. https://doi.org/10.1007/BF02099178 doi: 10.1007/BF02099178
![]() |
[15] |
M. Fannes, B. Nachtergaele, R. F. Werner, Ground states of VBS models on Cayley trees, J. Stat. Phys., 66 (1992), 939–973. https://doi.org/10.1007/BF01055710 doi: 10.1007/BF01055710
![]() |
[16] |
Y. Feng, N. K. Yu, M. S. Ying, Model checking quantum Markov chains, J. Comput. Sys. Sci., 79 (2013), 1181–1198. https://doi.org/10.1016/j.jcss.2013.04.002 doi: 10.1016/j.jcss.2013.04.002
![]() |
[17] |
D. Kastler, D. W. Robinson, Invariant states in statistical mechanics, Commun. Math. Phys., 3 (1966), 151–180. https://doi.org/10.1007/BF01645409 doi: 10.1007/BF01645409
![]() |
[18] |
C. K. Ko, H. J. Yoo, Quantum Markov chains associated with unitary quantum walks, J. Stoch. Anal., 1 (2020), 4. https://doi.org/10.31390/josa.1.4.04 doi: 10.31390/josa.1.4.04
![]() |
[19] |
F. Mukhamedov, S. El Gheteb, Uniqueness of quantum Markov chain associated with XY -Ising model on the Cayley tree of order two, Open Syst. Inf. Dyn., 24 (2017), 175010. https://doi.org/10.1142/S123016121750010X doi: 10.1142/S123016121750010X
![]() |
[20] |
F. Mukhamedov, S. El Gheteb, Clustering property of quantum Markov chain associated to XY-model with competing Ising interactions on the Cayley tree of order two, Math. Phys. Anal. Geom., 22 (2019), 10. https://doi.org/10.1007/s11040-019-9308-6 doi: 10.1007/s11040-019-9308-6
![]() |
[21] |
F. Mukhamedov, S. El Gheteb, Factors generated by XY-model with competing Ising interactions on the Cayley tree, Ann. Henri Poincaré, 21 (2020), 241–253. https://doi.org/10.1007/s00023-019-00853-9 doi: 10.1007/s00023-019-00853-9
![]() |
[22] |
F. Mukhamedov, A. Barhoumi, A. Souissi, Phase transitions for quantum Markov chains associated with Ising type models on a Cayley tree, J. Stat. Phys., 163 (2016), 544–567. https://doi.org/10.1007/s10955-016-1495-y doi: 10.1007/s10955-016-1495-y
![]() |
[23] |
F. Mukhamedov, A. Barhoumi, A. Souissi, On an algebraic property of the disordered phase of the Ising model with competing interactions on a Cayley tree, Math. Phys. Anal. Geom., 19 (2016), 21. https://doi.org/10.1007/s11040-016-9225-x doi: 10.1007/s11040-016-9225-x
![]() |
[24] |
F. Mukhamedov, A. Barhoumi, A. Souissi, S. El Gheteb, A quantum Markov chain approach to phase transitions for quantum Ising model with competing XY-interactions on a Cayley tree, J. Math. Phys., 61 (2020), 093505. https://doi.org/10.1063/5.0004889 doi: 10.1063/5.0004889
![]() |
[25] |
F. Mukhamedov, A. Souissi, Types of factors generated by quantum Markov states of Ising model with competing interactions on the Cayley tree, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 23 (2020), 2050019. https://doi.org/10.1142/S0219025720500198 doi: 10.1142/S0219025720500198
![]() |
[26] |
F. Mukhamedov, A. Souissi, Quantum Markov states on Cayley trees, J. Math. Anal. Appl., 473 (2019), 313–333. https://doi.org/10.1016/j.jmaa.2018.12.050 doi: 10.1016/j.jmaa.2018.12.050
![]() |
[27] |
F. Mukhamedov, A. Souissi, Diagonalizability of quantum Markov states on trees, J. Stat. Phys., 182 (2021), 9. https://doi.org/10.1007/s10955-020-02674-1 doi: 10.1007/s10955-020-02674-1
![]() |
[28] |
F. Mukhamedov, A. Souissi, Refinement of quantum Markov states on trees, J. Stat. Mech. Theory Exp., 2021 (2021), 083103. https://doi.org/10.1088/1742-5468/ac150b doi: 10.1088/1742-5468/ac150b
![]() |
[29] |
F. Mukhamedov, A. Souissi, Entropy for quantum Markov states on Cayley trees, J. Stat. Mech. Theory Exp., 2022 (2022), 093101. https://doi.org/10.1088/1742-5468/ac8740 doi: 10.1088/1742-5468/ac8740
![]() |
[30] |
F. Mukhamedov, A. Souissi, T. Hamdi, Quantum Markov chains on comb graphs: Ising model, Proc. Steklov Inst. Math., 313 (2021), 178–192. https://doi.org/10.1134/S0081543821020176 doi: 10.1134/S0081543821020176
![]() |
[31] |
F. Mukhamedov, A. Souissi, T. Hamdi, Open quantum random walks and quantum Markov chains on trees I: Phase transitions, Open Syst. Inf. Dyn., 29 (2022), 2250003. https://doi.org/10.1142/S1230161222500032 doi: 10.1142/S1230161222500032
![]() |
[32] |
F. Mukhamedov, A. Souissi, T. Hamdi, A. Andolsi, Open quantum random walks and quantum Markov Chains on trees II: The recurrence, Quantum Inf. Process., 22 (2023), 232. https://doi.org/10.1007/s11128-023-03980-9 doi: 10.1007/s11128-023-03980-9
![]() |
[33] |
N. Masuda, M. A. Porter, R. Lambiotte, Random walks and diffusion on networks, Phys. Rep., 716 (2017), 1–58. https://doi.org/10.1016/j.physrep.2017.07.007 doi: 10.1016/j.physrep.2017.07.007
![]() |
[34] |
R. Orus, A practical introduction of tensor networks: Matrix product states and projected entangled pair states, Ann Phys., 349 (2014), 117–158. https://doi.org/10.1016/j.aop.2014.06.013 doi: 10.1016/j.aop.2014.06.013
![]() |
[35] | D. Ruelle, Statistical mechanics: Rigorous results, 1969. |
[36] |
A. Souissi, A class of quantum Markov fields on tree-like graphs: Ising-type model on a Husimi tree, Open Syst. Inf. Dyn., 28 (2021), 2150004. https://doi.org/10.1142/S1230161221500049 doi: 10.1142/S1230161221500049
![]() |
[37] | A. Souissi, On stopping rules for tree-indexed quantum Markov chains, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 2023. https://doi.org/10.1142/S0219025722500308 |
[38] |
A. Souissi, F. Mukhamedov, A. Barhoumi, Tree-homogeneous quantum Markov chains, Int. J. Theor. Phys., 62 (2023), 19. https://doi.org/10.1007/s10773-023-05276-1 doi: 10.1007/s10773-023-05276-1
![]() |
[39] |
A. Souissi, E. G. Soueidy, M. Rhaima, Clustering property for quantum Markov chains on the comb graph, AIMS Mathematics, 8 (2023), 7865–7880. https://doi.org/10.3934/math.2023396 doi: 10.3934/math.2023396
![]() |
[40] |
A. Souissi, El G. Soueidy, A. Barhoumi, On a ψ-mixing property for entangled Markov chains, Phys. A, 613 (2023), 128533, https://doi.org/10.1016/j.physa.2023.128533 doi: 10.1016/j.physa.2023.128533
![]() |
[41] | S. M. Van Dongen, Graph clustering by flow simulation, 2000. |
[42] |
S. Van Dongen, Graph clustering via a discrete uncoupling process, SIAM J. Matrix Anal. Appl., 30 (2008), 121–141. https://doi.org/10.1137/040608635 doi: 10.1137/040608635
![]() |