Research article Special Issues

Existence criteria for fractional differential equations using the topological degree method

  • In this work, we analyze the fractional order by using the Caputo-Hadamard fractional derivative under the Robin boundary condition. The topological degree method combined with the fixed point methodology produces the desired results. Finally to show how the key findings may be utilized, applications are presented.

    Citation: Kottakkaran Sooppy Nisar, Suliman Alsaeed, Kalimuthu Kaliraj, Chokkalingam Ravichandran, Wedad Albalawi, Abdel-Haleem Abdel-Aty. Existence criteria for fractional differential equations using the topological degree method[J]. AIMS Mathematics, 2023, 8(9): 21914-21928. doi: 10.3934/math.20231117

    Related Papers:

    [1] Choukri Derbazi, Hadda Hammouche . Caputo-Hadamard fractional differential equations with nonlocal fractional integro-differential boundary conditions via topological degree theory. AIMS Mathematics, 2020, 5(3): 2694-2709. doi: 10.3934/math.2020174
    [2] Samy A. Harisa, Chokkalingam Ravichandran, Kottakkaran Sooppy Nisar, Nashat Faried, Ahmed Morsy . New exploration of operators of fractional neutral integro-differential equations in Banach spaces through the application of the topological degree concept. AIMS Mathematics, 2022, 7(9): 15741-15758. doi: 10.3934/math.2022862
    [3] Mengyu Wang, Xinmin Qu, Huiqin Lu . Ground state sign-changing solutions for fractional Laplacian equations with critical nonlinearity. AIMS Mathematics, 2021, 6(5): 5028-5039. doi: 10.3934/math.2021297
    [4] Kanagaraj Muthuselvan, Baskar Sundaravadivoo, Suliman Alsaeed, Kottakkaran Sooppy Nisar . New interpretation of topological degree method of Hilfer fractional neutral functional integro-differential equation with nonlocal condition. AIMS Mathematics, 2023, 8(7): 17154-17170. doi: 10.3934/math.2023876
    [5] Hasanen A. Hammad, Hassen Aydi, Mohra Zayed . Involvement of the topological degree theory for solving a tripled system of multi-point boundary value problems. AIMS Mathematics, 2023, 8(1): 2257-2271. doi: 10.3934/math.2023117
    [6] Murugesan Manigandan, R. Meganathan, R. Sathiya Shanthi, Mohamed Rhaima . Existence and analysis of Hilfer-Hadamard fractional differential equations in RLC circuit models. AIMS Mathematics, 2024, 9(10): 28741-28764. doi: 10.3934/math.20241394
    [7] Kanagaraj Muthuselvan, Baskar Sundaravadivoo, Kottakkaran Sooppy Nisar, Suliman Alsaeed . Discussion on iterative process of nonlocal controllability exploration for Hilfer neutral impulsive fractional integro-differential equation. AIMS Mathematics, 2023, 8(7): 16846-16863. doi: 10.3934/math.2023861
    [8] Mohammed A. Almalahi, Satish K. Panchal, Fahd Jarad, Mohammed S. Abdo, Kamal Shah, Thabet Abdeljawad . Qualitative analysis of a fuzzy Volterra-Fredholm integrodifferential equation with an Atangana-Baleanu fractional derivative. AIMS Mathematics, 2022, 7(9): 15994-16016. doi: 10.3934/math.2022876
    [9] Muhammed Jamil, Rahmat Ali Khan, Kamal Shah, Bahaaeldin Abdalla, Thabet Abdeljawad . Application of a tripled fixed point theorem to investigate a nonlinear system of fractional order hybrid sequential integro-differential equations. AIMS Mathematics, 2022, 7(10): 18708-18728. doi: 10.3934/math.20221029
    [10] Qun Dai, Shidong Liu . Stability of the mixed Caputo fractional integro-differential equation by means of weighted space method. AIMS Mathematics, 2022, 7(2): 2498-2511. doi: 10.3934/math.2022140
  • In this work, we analyze the fractional order by using the Caputo-Hadamard fractional derivative under the Robin boundary condition. The topological degree method combined with the fixed point methodology produces the desired results. Finally to show how the key findings may be utilized, applications are presented.



    Fractional calculus is a field of mathematics that expands the notion of differentiation and integration beyond integer orders. These operations are applicable to all real numbers, including non-integer values. Fractional calculus has found practical applications in a variety of physical systems, as can be seen in [2,16,17,20,30,40,41] and some classic books [22,27,29,39].

    Based on the literature, fixed point theory has been applied for many years to establish that differential equations have a solution [26,31,35,46,48,49]. Mahwin [32] in their paper made use of the topological degree theory (TDT) to solve integral equations for the first time. Isaia [24] theoretically applied TDT to analyze some integral equations. Use of TDT can also be observed in [14,42,43,47].

    To date, a lot of good work with integro-differential equations has been conducted, including the studies described in [7,34]. Zuo et al. [33] derived the following fractional integro-differential equations with impulsive and antiperiodic boundary conditions:

    {Dγζ(q)+λζ(q)=f(q,ζ(q),Pζ(q),Sζ(q)),qJδζ(qi)=Ii(ζi),i=1,2,,mζ(0)=ζ(1)

    where J=J{q1,q2,,qm},0<γ1,λ>0 and Dγ is denoted as CFD, 1<γ2. Here fC(J×R×R×R,R),J=[0,1] is the integro-differential function and P and S are linear operators:

    (Pζ)(q)=q0k(q,s)ζ(s)ds(Sζ)(q)=10h(q,s)ζ(s)ds

    where qJ,kC(D,R),D={(q,s)J×J:qs}, hC(J×J,R).

    It is observed from the literature that for last many years, fixed point theory has been used to prove the existence of a solution to the differential equations. However, the use of fixed point theory requires strong conditions, which severely limits its applicability. Also the uniqueness is proved via the Banach contraction principle, which is applied to find a unique solution for the defined problem. It is noticed that most of the work on the topic of fractional differential equations (FDEs) involves either the RL or CFD. While these derivatives are common place in the study of FDEs, the Hadamard fractional derivative (HFD) is another kind of fractional derivatives. This kind of derivative was introduced by Hadamard [21]. This fractional derivative differs from the other ones in the sense that the kernel of the integral (in the definition of Hadamard derivative) contains the logarithmic function of an arbitrary exponent. In [25], we see the modification of the HFD into a more suitable one called the Caputo-Hadamard fractional derivative (CHFD). Applications of where Hadamard derivative and the Hadamard derivative integral can be found in papers by Butzer et al. [11,12,13]. Other important results dealing with studies on fractional calculus using Hadamard derivatives can be seen in [4,6,8,9,18,19,23,36,37,38,45].

    A paper by Jarad et al. [25], deals with the CHFD by modifying the to be of caputo type. This is familiar with different kinds of boundary conditions like the Neumann boundary condition and the Dirichlet boundary condition. A weighed combination of these boundary conditions is called the Robin boundary condition. It finds its applications in fields such as physics. The Caputo-Hadamard (CH) derivative type of FDEs with boundary value problems are described in [1,3,5,10].

    TDT-based existence results for FIDEs with CH-derivatives have the following form:

    {CHDνζ(q)=g(q,ζ(q),Pζ(q),Sζ(q)),qJ:=[0,L]aζ(1)+bCHDγζ(1)=cH1Iν1ζ(ζ1),1<ζ1<L,ν1>0 cζ(L)+dCHDγζ(L)=cH2Iν2ζ(ζ2),1<ζ2<L,ν2>0 (1.1)

    where CHDν, CHDγ are CH-derivatives of order ν,γ, respectively with 1<ν2,0<γ1, HD integral of order HIνi, νi,i[1,2] and fC(J×R×R×R,R) is the continuous function; P and S are linear operators;

    (Pζ)(q)=q0k(q,s)ζ(s)ds
    (Sζ)(q)=10h(q,s)ζ(s)ds.

    Let a,b,c,dR such that

    χ=(ac1(logζ1)ν1Γ(ν1+1))(clogL+d(logL)1γΓ(2γ)c2(logζ2)ν2+1Γ(ν2+2))+c1(logζ1)ν1+1Γ(ν1+2)(clogLc2(logζ2)ν2Γ(ν2+1))0. (1.2)

    In this paper, we determine the existence results via TDT in Section 2. Additionally, we discuss the FIDEs existence results under boundary conditions. An appropriate illustration and conclusion are provided in Sections 4 and 5.

    Here, we shall establish basic results and definitions for our analysis. We shall refer to the notations and results from [15]. Let the Banach space (BS) be X and BP(X) be bounded subsets.

    Definition 2.1. [14] Let ϵ:BR+,

    ζ(B):=inf{d>0:Bpermitsfinitecoverbysetsofdiameterd}

    where, Kuratowski- measure of non compactness is BB.

    Let B be a compact set and set B of a space X is compact if and only if it is complete and totally bounded. The value of ϵ is the measured value, and the value of ϵ(B) is 0. The set is compact, when the value is 0. The larger the value of ϵ, the less it is like a compact set.

    Proposition 2.2. [14] For bounded subsets D, D1, D2 on a BS,

    (1) ϵ(D)=0¯D is compact,

    (2) ϵ(λD)=|λ|ϵ(D),λR,

    (3) ζ(D1+D2)ϵ(D1)+ϵ(D2),D1,D2B,

    (4) D1D2ϵ(D1)ϵ(D2),

    (5) ϵ(D1D2)=max{ϵ(D1),ϵ(D2)},

    (6) ϵ(convD)=ϵ(D),

    (7) ϵ(¯D)=ϵ(D).

    Let Ψ:={ζ:[0,T]R:ζC(I)} and (Ψ,||||) be a BS under ||ζ||:=sup{|ζ(q)|:q[0,T]}.

    Definition 2.3. [14] Suppose a continuous bounded map is F:ϖY and ϖY and k0 such that ϵ(F(H))kϵ(H)Hϖ. If F is an ϵ-contraction that implies k<1.

    Definition 2.4. [14,15,24] Let a Cϵ(ϖ) be a class of all ϵ-condensing maps F:ϖX. An ϵ-condensing map F:YF if AB, ϵ(F(A))ϵ(A).

    Theorem 2.5. [14] Let map F:YY be ϵ-condensing; then,

    H={ζY: 1λLζ=λTζ},

    such that HBr(0), also H is a bounded set in Ψ, so r>0

    D(IλT,Br(0),0)=1,λ[1,L].

    Therefore, T has a fixed point.

    Definition 2.6. [29] Let ν>0 be an Hadamard derivative integral of order ζL1(J) is;

    HIνζ(q)=1Γ(ν)q1log(q/s)ν1ζ(s)dss

    where

    Γ(ν)=0eqqν1dt,ν>0.

    Let δ=qddt,ν>0,n=[ν]+1.

    Definition 2.7. [29] Let ν>0 be the Hadamard derivative and ζΨ is;

    HDνζ(q)=δn(HInνζ(q)).

    Definition 2.8. [25,29] Let ν>0 be the CH-derivative and ζΨ is;

    HCDνζ(q)=HInνδnζ(q).

    Lemma 2.9. [25,29] Let ν>0,r>0 and n=[ν]+1.

    (1) HIν(logqa)r1=Γ(r)Γ(ν+r)(logqa)ν+r+1.

    Let a=1 and r=1; we get that HIν(1)(ν)=1Γ(ν+1)(log(q))ν+1.

    (2) HCDν(logqa)r1={Γ(r)Γ(rν)(logqa)rν1,r>n0,r{0,1,,n1}.

    Lemma 2.10. [25,29] Let nu1,ν2>0 and ζΨ; then

    (1) HIν1(HIν2ζ(q))=(HIν1+ν2ζ(q));

    (2) HCDν1(HIν2ζ(q))=(HIν2ν1ζ(q));

    (3) HCDν1(HIν1ζ(q))=ζ(q).

    Lemma 2.11. [25,29] Let ν>0 and n=[ν]+1. Let ζΨ be the CH derivative of the FDEs

    HCDνζ(q)=0

    has a solution as

    ζ(q)=ni=0ci(logq)i
    HIν(HCDνζ(q))=ζ(q)+n1i=0ci(logq)i,ciR,i=0,1.,n1.

    We shall define some hypotheses:

    (A1) constants A1,A2>0 and p[0,1) such that

    |g(q,ζ(q),Pζ(q),Sζ(q))|(W1+W2ζp+W3ζp+W4ζp),ζΨ.

    (A2) constants α,β,χ such that

    |g(q,ζ1(q),Pζ1(q),Sζ1(q))g(q,ζ2(q),Pζ2(q),Sζ2(q))|α||ζ1ζ2||+β||Pζ1Pζ2||+χ||Sζ1Sζ2||.

    We define kmax=supqJq0|k(q,s)|ds and hmax=supqJ10|h(q,s)|ds.

    Thus using (A2),

    |g(q,ζ1(q),Pζ1(q),Sζ1(q))g(q,ζ2(q),Pζ2(q),Sζ2(q))|α||ζ1ζ2||+β||Pζ1Pζ2||+χ||Sζ1Sζ2||α||ζ1ζ2||+βq0|k(q,s)||ζ1(q)ζ2(q)|ds+χ10|h(q,s)||ζ1(q)ζ2(q)|ds(α+βkmax+χhmax)||ζ1ζ2||.

    Now we prove the existence result:

    Lemma 3.1. [14] Let h be a continuous function on J; then, we have the following FIDE:

    {CHDνζ(q)=h(q),qJ:=[0,L]aζ(1)+bCHDγζ(1)=cH1Iν1ζ(ζ1),1<ζ1<L,ν1>0 cζ(L)+dCHDγζ(L)=cH2Iν2ζ(ζ2),1<ζ2<L,ν2>0 (3.1)

    have a unique solution given by

    ζ(q)=HIνh(q)+K1(q)HIν1+νh(ζ1)+K2(q)(cH2Iν2+νh(ζ2)(cHIνh(L)+dHIνγh(L)))  (3.2)

    where,

    K1(q)=c1(χ1χ2q),K2(q)=c1χ3+χ4q

    χ1=1χ(clogL+d(logL)1γΓ(2γ)c2(logζ2)ν2+1Γ(ν2+2))

    χ2=1χ(clogLc2(logζ2)ν2Γ(ν2+1))

    χ3=1χ(c1(logζ1)ν1+1Γ(ν1+2))

    χ4=1χ(ac1(logζ1)ν1Γ(ν1+1))

    and χ is given by (1.2).

    Proof. By Lemma 2.11, Eq (3.1) becomes,

    ζ(q)=HIνh(q)+k0+k1log(q),k0,k1R.

    By using boundary conditions, we have

    HIνiζ(ζi)=HIν1+νh(ζi)+k0(logζi)νiΓ(νi+1)+k1(logζi)νi+1Γ(νi+2),i=1,2CHDγζ(L)=HIνγh(q)+k1Γ(2)(logL)1γΓ(2γ).

    Solving for k0,k1 we get the following solutions:

    k0=c1χH1Iν+ν1ζ(ζ1)+χ3(cH2Iν+ν2ζ(ζ2)(cHIνh(L)+dHIνγh(L)))

    and,

    k1=c1χ4(HIν+ν2h(ζ2)(cHIνh(L)+dHIνγh(L)))c1χH2Iνh(ζ1).

    Substituting for k0 and k1 we get (3.2).

    In view of the problem (1.1), by Lemma 3.1, we get,

    ζ(q)=HIνgζ(q)+K1(q)HIν1+νgζ(ζ1)+K2(q)(cH2Iν2+νgζ(ζ2)(cHIνgζ(L)+dHIνγgζ(L))) (3.3)

    we denote g(qζ(q),Pζ(q),Sζ(q)) by gζ; then, we have

    K1(q)=c1(χ1χ2q),K2(q)=c1χ3+χ4qχ1=1χ(clogL+d(logL)1γΓ(2γ)c2(logζ2)ν2+1Γ(ν2+2)),  χ2=1χ(clogLc2(logζ2)ν2Γ(ν2+1)),χ3=1χ(c1(logζ1)ν1+1Γ(ν1+2)),χ4=1χ(ac1(logζ1)ν1Γ(ν1+1))

    and χ is given by (1.2). The next steps are as follows:

    (1) Define T1:ΨΨ as T1ζ(q)=HIνgζ(q).

    (2) Define T2:ΨΨ as T2ζ(q)=K1(q)HIν1+νgζ(ζ1)+K2(q)cH2Iν2+νgζ(ζ2).

    (3) Define T3:ΨΨ as T3ζ(q)=K2(q)(cHIνgζ(L)+dHIνγgζ(L))).

    Let T:ΨΨ given that T=T1+T2+T3. Thus the problem is reduced to finding the fixed points of the operator T.

    Theorem 3.2. T1:ΨΨ is Lipschitz-continuous with the Lipschitz constant (logL)νΓ(ν+1)(α+βkmax+χhmax). It also satisfies the following growth relation:

    ||T1ζ(q)||(logL)νΓ(ν+1)(W1+W2ζp+W3ζp+W4ζp).

    Proof. Let ζ1,ζ2Ψ; then

    |T1ζ1(q)T1ζ2(q)||HIνgζ1(q)HIνgζ2(q)|HIν|gζ1gζ2|(q)HIν(1)(T)(α+βkmax+χhmax)||ζ1ζ2||=(logL)νΓ(ν+1)(α+βkmax+χhmax)||ζ1ζ2||.

    This is true for all qJ. Thus when we take the supremum over qJ,

    ||T1ζ1(q)T1ζ2(q)||(logL)νΓ(ν+1)(α+βkmax+χhmax)||ζ1ζ2||.

    Hence, T1 is a Lipschitz constant provided that

    (logL)νΓ(ν+1)(α+βkmax+χhmax).

    For the growth relation, we have,

    |T1ζ(q)||HIνgζ(q)|=(logL)νΓ(ν+1)(W1+W2ζp+W3ζp+W4ζp).

    Since this is true qJ, taking the supremum over all q, we have

    ||T1ζ(q)||(logL)νΓ(ν+1)(W1+W2ζp+W3ζp+W4ζp).

    Theorem 3.3. Assume that the operator T2 is continuous and fulfills the following growth relation:

    ||T2ζ(q)||CT2(W1+W2ζp+W3ζp+W4ζp)

    where,

    CT2=|c1||χ1|+|c2||χ2|L(logζ1)ν+ν1Γ(ν1+ν+1)+(|c1||c2||χ3|+|χ4|L)(logζ2)ν+ν2Γ(ν2+ν+1).

    Proof. Let ζn be a sequence in Ψ that converges to ζΨ. Let gζ by continuous; it follows that gζngζ. So, T2 is continuous according to the Lebesgue dominated convergence theorem (LDCT).

    |T2ζ(q)|=|K1(q)HIν1+νgζ(ζ1)+K2(q)(cH2Iν2+νgζ(ζ2))|CT2(W1+W2ζp+W3ζp+W4ζp).

    Hence,

    ||T2ζ(q)||CT2(W1+W2ζp+W3ζp+W4ζp).

    Theorem 3.4. Assume that the operator T3 is continuous and the following growth relation is satisfied:

    ||T2ζ(q)||CT3(W1+W2ζp+W3ζp+W4ζp),

    where

    CT3=(|c1||χ3|+|χ4|)[|c|(logL)νΓ(ν+1)+|d|(logL)νγΓ(νγ+1)].

    Proof. Let ζn be a sequence in Ψ that converges to ζΨ. Since gζ is continuous, it follows that gζngζ. Thus by the LDCT, it follows that T3 is continuous.

    |T2ζ(q)|=|K2(q)(cHIνgζ(L)+dHIνγgζ(L))|CT1(W1+W2ζp+W3ζp+W4ζp).

    Hence,

    ||T3ζ(q)||CT3(W1+W2ζp+W3ζp+W4ζp).

    Theorem 3.5. Suppose that T2 is a compact map implying that T2 is Lipschitz constant zero.

    Proof. Let ζB(r) be a bounded set. In order to prove that T2 is a compact map. By Theorem 3.3, for ζζ,

    ||T2ζ(q)||CT2(W1+W2rp+W3rp+W4rp).

    Hence T2(ζ) is uniformly bounded.

    Now, for any ζΨ,

    |T2ζ(q)|=|K1(q)HIν1+νgζ(ζ1)+K2(q)(cH2Iν2+νgζ(ζ2))||K1(q)|HIν1+ν|gζ(ζ1)|+|K2(q)c2|HIν2+ν|gζ(ζ2)|(|c1||χ2|(logζ1)ν+ν1Γ(ν1+ν+1)+|χ4||c2|(logζ2)ν+ν2Γ(ν2+ν+1))(W1+W2ζp+W3ζp+W4ζp)¯ϖ1(W1+W2ζp+W3ζp+W4ζp).

    Now, for q1,q2J,

    |T2ζ(q2)T2ζ(q1)|q2q1|T2ζ(q)|dt¯ϖ1(W1+W2ζp+W3ζp+W4ζp)(q2q1).

    Thus, because q2q1, |T2ζ(q2)T2ζ(q1)|0 which implies that T2 is equicontinuous. T2 is compact according to the Arzela-Ascoli theorem. Hence T2 is LC zero.

    Theorem 3.6. If T3 is a compact then T3 is Lipschitz constant zero.

    Proof. Assume that ζB(r) is a bounded set. In order to prove that T3 is a compact map. From Theorem 3.4, for ζζ,

    ||T3ζ(q)||CT3(W1+W2rp+W3rp+W4rp).

    Hence T3(ζ) is uniformly bounded.

    Now, for any ζΨ,

    |T2ζ(q)||K2(q)|(|c|HIν|gζ(L)|+|d|HIν|gζ(L)|)¯ϖ2(W1+W2ζp+W3ζp+W4ζp).

    Now, for q1,q2J, we have,

    |T3ζ(q2)T3ζ(q1)|q2q1|T2ζ(q)|dt¯ϖ1(W1+W2ζp+W3ζp+W4ζp)(q2q1).

    Thus, because q2q1, |T3ζ(q2)T3ζ(q1)|0T3 is equicontinuous. T3 is compact according to the Arzelà-Ascoli theorem. Hence T3 is LC zero.

    Since T=T1+T2+T3 and T1 is LC (logL)νΓ(ν+1)(α+βkmax+χhmax) and T2,T3 are LC 0, it follows that T is LC (logL)νΓ(ν+1)(α+βkmax+χhmax).

    If we assume that (logL)νΓ(ν+1)(α+βkmax+χhmax)<1, then by Definition 2.4, T is ϵ-condensing.

    Theorem 3.7 (Existence). Let FODE (1.1) have at least one solution if

    ((logL)νΓ(ν+1)+CT2+CT3)<1.

    Proof. Consider the set

    H={ζΨ: λ[0,1]λTζ=ζ}.

    Let ζH such that λTζ=ζ; then,

    ζ=λ(T1(ζ)+T2(ζ)+T3(ζ)).

    Taking |||| on both sides,

    ||ζ||=≤λ||T1(ζ)||+||T2(ζ)||+||T3(ζ)||((logL)νΓ(ν+1)+CT2+CT3)(W1+W2ζp+W3ζp+W4ζp)1((logL)νΓ(ν+1)+CT2+CT3)(W1+W2ζp+W3ζp+W4ζp)||ζ||.

    Letting ||ζ||, and by using p[0,1) by Theorem 2.5, (1.1) has a solution.

    Theorem 3.8 (Uniqueness). The FODE has a unique solution if

    ((logL)νΓ(ν+1)+CT2+CT3)(α+βkmax+χhmax)<1.

    Proof. Let ζ1,ζ2Ψ be arbitrary and qJ; then

    |Tζ1(q)Tζ2(q)|=|(T1ζ1(q)T1ζ2(q))+(T2ζ1(q)T2ζ2(q))+(T3ζ1(q)T3ζ2(q))||(T1ζ1(q)T1ζ2(q))|+|(T2ζ1(q)T2ζ2(q))|+|(T3ζ1(q)T3ζ2(q))||(T1ζ1T1ζ2)|+|(T2ζ1T2ζ2)|+|(T3ζ1T3ζ2)|.

    Taking the supremum over all qJ, we have

    ||Tζ1Tζ2|||(T1ζ1T1ζ2)|+|(T2ζ1T2ζ2)|+|(T3ζ1T3ζ2)|.

    From Theorems 3.1–3.3,

    ||T1ζ1(q)T1ζ2(q)||(logL)νΓ(ν+1)(α+βkmax+χhmax)||ζ1ζ2||.

    We have the following from the definition of T2:

    |T2ζ1(q)T2ζ2(q)||K1(q)|HIν1+ν|gζ1(ζ1)gζ2(ζ1)|+|K2(q)||c2|HIν2+ν|gζ1(ζ2)gζ2(ζ2)|(|K1(q)|HIν1+ν(1)(ν1+ν)+|K2(q)||c2|HIν2+ν(1)(ν2+ν))×(α+βkmax+χhmax)||ζ1ζ2||=CT2(α+βkmax+χhmax)||ζ1ζ2||.

    Thus,

    ||T2ζ1T2ζ2||CT2(α+βkmax+χhmax)||ζ1ζ2||.

    We have the following from the definition of T3:

    |T3ζ1(q)T3ζ2(q)||K2(q)|(|c|HIν|gζ1(L)gζ2(L)|+|d|HIνγ|gζ1(L)gζ2(L)|)|K2(q)|(|c|HIν(1)(ν)+|d||c2|HIνγ(1)(νγ))×(α+βkmax+χhmax)||ζ1ζ2||=CT3(α+βkmax+χhmax)||ζ1ζ2||.

    Thus,

    ||T3ζ1T3ζ2||CT3(α+βkmax+χhmax)||ζ1ζ2||.

    Hence, we have,

    ||Tζ1Tζ2|||(T1ζ1T1ζ2)|+|(T2ζ1T2ζ2)|+|(T3ζ1T3ζ2)|((logL)νΓ(ν+1)+CT2+CT3)(α+βkmax+χhmax)||ζ1ζ2||.

    Since ((logL)νΓ(ν+1)+CT2+CT3)(α+βkmax+χhmax)<1, the FODE (1.1), has a unique solution.

    The FIDEs with boundary value conditions are as follows:

    {CHD32ζ(q)=112πsin(2πζ)+130ζ+q2+2+1810e2s2ζ(s)ds,q[0,1]ζ(0)+3(CHD13ζ(0))=140(14s)12Γ(12)ζ(s)ds, ζ(1)+2(CHD13ζ(1))=3340(34s)12Γ(12)ζ(s)ds, (4.1)

    where g(ζ)=1810e2s2ζ(s)ds. Here ν=32,γ=13,a,c=1,b=3,d=2,c1=3,ν1=14, ν2=34,ζ1=14,ζ2=34,L=e and

    CT2=|c1||χ1|+|c2||χ2|L(logζ1)ν+ν1Γ(ν1+ν+1)+(|c1||c2||χ3|+|χ4|L)(logζ2)ν+ν2Γ(ν2+ν+1),CT3=(|c1||χ3|+|χ4|)[|c|(logL)νΓ(ν+1)+|d|(logL)νγΓ(νγ+1)].

    By the above parameters in CT2 and CT3, we get

    ((logL)νΓ(ν+1)+CT2+CT3)=3.2498.

    To prove Theorem 3.6, we take

    f(q,ζ,g(ζ))=112πsin(2πζ)+130ζ+q2+21810e2s2ζ(s)ds

    in (1.1) and then

    |f(q,ζ1,g(ζ1))f(q,ζ2,g(ζ2))|=112π|sin(2πζ1)sin(2πζ2)|+130|ζ1ζ|+0.054|ζ1ζ2|=0.087|ζ1ζ2|.

    Hence the condition (A1) holds with P=0.087, where P=α+βkmax+χhmax. We use the following equation to calculate qf from the given data is;

    qf=P(logL)νΓ(ν+1)=0.0655.

    Let qJ,ζR and

    |f(q,ζ,g(ζ))|=|112πsin(2πζ)+130ζ+q2+21810e2s2ζ(s)ds|=130|ζ|+3+0.054|ζ|.

    Hence the condition (A2) holds with W1=3,W2=130,W3=0.054 and W4=0.

    By Theorem 3.6,

    H={ζΨ: 0λ1λTζ=ζ}

    has the following solution set;

    ||ζ||=||λ(T1(ζ)+T2(ζ)+T3(ζ))||((logL)νΓ(ν+1)+CT2+CT3)(W1+W2ζp+W3ζp+W4ζp).

    Thus,

    ||ζ||((logL)νΓ(ν+1)+CT2+CT3)A11((logL)νΓ(ν+1)+CT2+CT3)(A2+A3+A4)=13.6109.

    Hence, [(logL)νΓ(ν+1)+CT2+CT3]P=0.2827<1.

    This work was performed to investigate the existence and uniqueness of FIDEs with CH derivatives of fractional order by using the Robin boundary condition, TDT and fixed point theorem have been used to accomplish the analysis. The fundamental idea is shown with an efficient example.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R157), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. This study was also supported by funding from Prince Sattam bin Abdulaziz University project number (PSAU/2023/R/1444).

    The authors declare no conflict of interest.



    [1] S. Abbas, M. Benchohra, N. Hamidi, J. Henderson, Caputo-Hadamard fractional differential equations in Banach spaces, Fract. Calc. Appl. Anal., 21 (2018), 1027–1045. https://doi.org/10.1515/fca-2018-0056 doi: 10.1515/fca-2018-0056
    [2] T. Abdeljawad, F. Jarad, D. Baleanu, On the existence and the uniqueness theorem for fractional differential equations with bounded delay within Caputo derivatives, Sci. China Ser. A, 51 (2008), 1775–1786.
    [3] A. Ardjouni, A. Djoudi, Positive solutions for nonlinear Caputo-Hadamard fractional differential equations with integral boundary conditions, Open J. Math. Anal., 3 (2019), 62–69. https://doi.org/10.30538/psrp-oma2019.0033 doi: 10.30538/psrp-oma2019.0033
    [4] A. Ardjouni, Positive solutions for nonlinear Hadamard fractional differential equations with integral boundary conditions, AIMS Math., 4 (2019), 1101–1113. https://doi.org/10.3934/math.2019.4.1101 doi: 10.3934/math.2019.4.1101
    [5] Y. Arioua, N. Benhamidouche, Boundary value problem for Caputo-Hadamard fractional diffential equations, Surv. Math. Appl., 12 (2017), 103–115.
    [6] O. A. Arqub, Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm, Int. J. Numer. Method. H., 28 (2018), 828–856. https://doi.org/10.1108/HFF-07-2016-0278 doi: 10.1108/HFF-07-2016-0278
    [7] B. Ahmad, S. Sivasundaram, On four-point nonlocal boundary value problems of nonlinear integro-differential equations of fractional order, Appl. Math. Comput., 217 (2010), 480–487. https://doi.org/10.1016/j.amc.2010.05.080 doi: 10.1016/j.amc.2010.05.080
    [8] M. Benchohra, S. Bouriah, J. J. Nieto, Existence of periodic solutions for nonlinear implicit Hadamard's fractional differential equations, RACSAM Rev. R. Acad. A, 112 (2018), 25–35. https://doi.org/10.1007/s13398-016-0359-2 doi: 10.1007/s13398-016-0359-2
    [9] W. Benhamida, J. R. Graef, S. Hamani, Boundary value problems for Hadamard fractional differential equations with nonlocal multi-point boundary conditions, Fract. Differ. Calc., 8 (2018), 165–176. https://doi.org/10.7153/fdc-2018-08-10 doi: 10.7153/fdc-2018-08-10
    [10] W. Benhamida, S. Hamani, J. Henderson, Boundary value problems for Caputo-Hadamard fractional differential equations, Adv. Theory Nonlinear Anal. Appl., 2 (2018), 138–145.
    [11] P. L. Butzer, A. A. Kilbas, J. J. Trujillo, Composition of Hadamard-type fractional integration operators and the semigroup property, J. Math. Anal. Appl., 269 (2002), 387–400. https://doi.org/10.1016/S0022-247X(02)00049-5 doi: 10.1016/S0022-247X(02)00049-5
    [12] P. L. Butzer, A. A. Kilbas, J. J. Trujillo, Fractional calculus in the Mellin setting and Hadamardtype fractional integrals, J. Math. Anal. Appl., 269 (2002), 1–27.
    [13] P. L. Butzer, A. A. Kilbas, J. J. Trujillo, Mellin transform analysis and integration by parts for Hadamard-type fractional integrals, J. Math. Anal. Appl., 270 (2002), 1–15. https://doi.org/10.1016/S0022-247X(02)00066-5 doi: 10.1016/S0022-247X(02)00066-5
    [14] C. Derbazi, H. Hammouche, Caputo-Hadamard fractional differential equations with nonlocal fractional integro-differential boundary conditions via topological degree theory, AIMS Math., 5 (2020), 2694–2709. https://doi.org/10.3934/math.2020174 doi: 10.3934/math.2020174
    [15] K. Deimling, Nonlinear functional analysis, Springer, Berlin, Heidelberg, 1985.
    [16] K. Diethelm, N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl., 265 (2002), 229–248. https://doi.org/10.1006/jmaa.2000.7194 doi: 10.1006/jmaa.2000.7194
    [17] M. Feng, X. Zhang, W. Ge, New existence results for higher-order nonlinear fractional differential equation with integral boundary conditions, Bound. Value Probl., 2011 (2011), 1–20. https://doi.org/10.1155/2011/720702 doi: 10.1155/2011/720702
    [18] J. R. Graef, N. Guerraiche, S. Hamani, Boundary value problems for fractional differential inclusions with Hadamard type derivatives in Banach spaces, Stud. U. Babes-Bol. Mat., 62 (2017), 427–438. https://doi.org/10.24193/subbmath.2017.4.02 doi: 10.24193/subbmath.2017.4.02
    [19] G. Rahman, S. Ahmad, F. Haq, Application of topological degree method in quantitative behavior of fractional differential equations, Filomat, 34 (2020), 421–432.
    [20] E. F. D. Goufo, C. Ravichandran, G. A. Birajdar, Self-similarity techniques for chaotic attractors with many scrolls using step series switching, Math. Model. Anal., 26 (2021), 591–611.
    [21] J. Hadamard, Essai sur l'etude des fonctions donnees par leur developpment de Taylor, J. Mat. Pure Appl. Ser., 8 (1892), 101–186.
    [22] R. Hilfer, Applications of fractional calculus in physics, World Scientific, Singapore, 2000.
    [23] H. Sweis, N. Shawagfeh, O. A. Arqub, Fractional crossover delay differential equations of Mittag-Leffler kernel: Existence, uniqueness, and numerical solutions using the Galerkin algorithm based on shifted Legendre polynomials, Results Phys., 41 (2022), 105891.
    [24] F. Isaia, On a nonlinear integral equation without compactness, Acta Math. Univ. Comen., 75 (2006), 233–240.
    [25] F. Jarad, T. Abdeljawad, D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Adv. Differ. Equ., 2012 (2012), 1–8. https://doi.org/10.1186/1687-1847-2012-142 doi: 10.1186/1687-1847-2012-142
    [26] K. Jothimani, K. Kaliraj, S. K. Panda, K. S. Nisar, C. Ravichandran, Results on controllability of non-densely characterized neutral fractional delay differential system, Evol. Equ. Control Th., 10 (2021), 619–631. https://doi.org/10.3934/eect.2020083 doi: 10.3934/eect.2020083
    [27] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, John Wiley & Sons, 1993.
    [28] A. A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc., 38 (2001), 1191–1204.
    [29] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Elsevier, Amsterdam, 2006.
    [30] L. Lv, J. Wang, W. Wei, Existence and uniqueness results for fractional differential equations with boundary value conditions, Opusc. Math., 31 (2011), 629–643. https://doi.org/10.7494/OpMath.2011.31.4.629 doi: 10.7494/OpMath.2011.31.4.629
    [31] M. Manjula, K. Kaliraj, T. Botmart, K. S. Nisar, C. Ravichandran, Existence, uniqueness and approximation of nonlocal fractional differential equation of sobolev type with impulses, AIMS Math., 8 (2023), 4645–4665. https://doi.org/10.3934/math.2023229 doi: 10.3934/math.2023229
    [32] J. Mawhin, Topological degree methods in nonlinear boundary value problems, American Mathematical Society, 1979.
    [33] M. Zuo, X. Hao, L. Liu, Y. Cui, Existence results for impulsive fractional integro-differential equation of mixed type with constant coefficient and antiperiodic boundary conditions, Bound. Value Probl., 2017 (2017), 1–15. https://doi.org/10.1186/s13661-017-0892-8 doi: 10.1186/s13661-017-0892-8
    [34] S. M. Momani, A. Qaralleh, An efficient method for solving systems of fractional integro-differential equations, Comput. Math. Appl., 52 (2006), 459–470. https://doi.org/10.1016/j.camwa.2006.02.011 doi: 10.1016/j.camwa.2006.02.011
    [35] A. Morsy, K. S. Nisar, C. Ravichandran, C. Anusha, Sequential fractional order neutral functional integro differential equations on time scales with Caputo fractional operator over Banach spaces, AIMS Math., 8 (2023), 5934–5949. https://doi.org/10.3934/math.2023299 doi: 10.3934/math.2023299
    [36] Q. Ma, R. Wang, J. Wang, Y. Ma, Qualitative analysis for solutions of a certain more generalized two-dimensional fractional differential system with Hadamard derivative, Appl. Math. Comput., 257 (2015), 436–445. https://doi.org/10.1016/j.amc.2014.10.084 doi: 10.1016/j.amc.2014.10.084
    [37] O. A. Arqub, M. Al-Smadi, Numerical solutions of Riesz fractional diffusion and advection-dispersion equations in porous media using iterative reproducing kernel algorithm, J. Porous Media, 23 (2020), 783–804. https://doi.org/10.1615/JPorMedia.2020025011 doi: 10.1615/JPorMedia.2020025011
    [38] O. A. Arqub, Numerical simulation of time-fractional partial differential equations arising in fluid flows via reproducing Kernel method, Int. J. Numer. Method. H., 30 (2020), 4711–4733. https://doi.org/10.1108/HFF-10-2017-0394 doi: 10.1108/HFF-10-2017-0394
    [39] I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Academic Press, San Diego, 1999.
    [40] C. Promsakon, E. Suntonsinsoungvon, S. K. Ntouyas, J. Tariboon, Impulsive boundary value problems containing Caputo fractional derivative of a function with respect to another function, Adv. Differ. Equ., 2019 (2019), 1–17. https://doi.org/10.1186/s13662-019-2416-6 doi: 10.1186/s13662-019-2416-6
    [41] K. Shah, H. Khalil, R. A. Khan, Investigation of positive solution to a coupled system of impulsive boundary value problems for nonlinear fractional order differential equations, Chaos Soliton. Fractal., 77 (2015), 240–246. https://doi.org/10.1016/j.chaos.2015.06.008 doi: 10.1016/j.chaos.2015.06.008
    [42] K. Shah, R. A. Khan, Existence and uniqueness results to a coupled system of fractional order boundary value problems by topological degree theory, Numer. Funct. Anal. Optim., 37 (2016), 887–899. https://doi.org/10.1080/01630563.2016.1177547 doi: 10.1080/01630563.2016.1177547
    [43] K. Shah, W. Hussain, Investigating a class of nonlinear fractional differential equations and its Hyers-Ulam stability by means of topological degree theory, Numer. Funct. Anal. Optim., 40 (2019), 1355–1372. https://doi.org/10.1080/01630563.2019.1604545 doi: 10.1080/01630563.2019.1604545
    [44] D. Bainov, P. Simeonov, Impulsive differential equations: Periodic solutions and applications, Routledge, London, 1993.
    [45] J. Tariboon, A. Cuntavepanit, S. K. Ntouyas, W. Nithiarayaphaks, Separated boundary value problems of sequential Caputo and Hadamard fractional differential equations, J. Funct. Space. Appl., 2018 (2018), 1–8. https://doi.org/10.1155/2018/6974046 doi: 10.1155/2018/6974046
    [46] Y. Tian, W. Ge, Applications of variational methods to boundary-value problem for impulsive differential equations, P. Edinburgh. Math. Soc., 51 (2008), 509–527. https://doi.org/10.1017/S0013091506001532 doi: 10.1017/S0013091506001532
    [47] J. R. Wang, Y. Zhou, W. Wei, Study in fractional differential equations by means of topological degree methods, Numer. Funct. Anal. Optim., 33 (2012), 216–238. https://doi.org/10.1080/01630563.2011.631069 doi: 10.1080/01630563.2011.631069
    [48] J. R. Wang, M. Feckan, Y. Zhou, A survey on impulsive fractional differential equations, Fract. Calc. Appl. Anal., 19 (2016), 806–831. https://doi.org/10.1515/fca-2016-0044 doi: 10.1515/fca-2016-0044
    [49] W. X. Zhou, X. Liu, J. G. Zhang, Some new existence and uniqueness results of solutions to semilinear impulsive fractional integro-differential equations, Adv. Differ. Equ., 2015 (2015), 1–16. https://doi.org/10.1186/s13662-015-0372-3 doi: 10.1186/s13662-015-0372-3
  • This article has been cited by:

    1. Abdul Hamid Ganie, Saima Noor, Maryam Al Huwayz, Ahmad Shafee, Samir A. El-Tantawy, Numerical simulations for fractional Hirota–Satsuma coupled Korteweg–de Vries systems, 2024, 22, 2391-5471, 10.1515/phys-2024-0008
    2. Jehad Alzabut, Mahammad Khuddush, Abdelkrim Salim, Sina Etemad, Shahram Rezapour, Fractional Order Nonlocal Thermistor Boundary Value Problem on Time Scales, 2024, 23, 1575-5460, 10.1007/s12346-024-01024-w
    3. Yuanheng Wang, Barrira Jurrat, Muddasir Ejaz, Muhammad Azeem, M. I. Elashiry, Rehana Naz, Existence and uniqueness of well-posed fractional boundary value problem, 2024, 19, 1932-6203, e0303848, 10.1371/journal.pone.0303848
    4. Asifa Tassaddiq, Muhammad Tanveer, Muhammad Azhar, Farha Lakhani, Waqas Nazeer, Zeeshan Afzal, Escape criterion for generating fractals using Picard–Thakur hybrid iteration, 2024, 100, 11100168, 331, 10.1016/j.aej.2024.03.074
    5. Shuya Guo, Defeng Kong, Jalil Manafian, Khaled H. Mahmoud, A.S.A. Alsubaie, Neha Kumari, Rohit Sharma, Nafis Ahmad, Modulational stability and multiple rogue wave solutions for a generalized (3+1)-D nonlinear wave equation in fluid with gas bubbles, 2024, 106, 11100168, 1, 10.1016/j.aej.2024.06.053
    6. Thabet Abdeljawad, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez, On a new structure of multi-term Hilfer fractional impulsive neutral Levin-Nohel integrodifferential system with variable time delay, 2024, 9, 2473-6988, 7372, 10.3934/math.2024357
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1687) PDF downloads(87) Cited by(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog