In this paper, we establish the boundedness for mth order commutators of n−dimensional fractional Hardy operators and adjoint operators on weighted variable exponent Morrey-Herz space M˙Kα(⋅),λq,p(⋅)(ω).
Citation: Ming Liu, Bin Zhang, Xiaobin Yao. Weighted variable Morrey-Herz space estimates for mth order commutators of n−dimensional fractional Hardy operators[J]. AIMS Mathematics, 2023, 8(9): 20063-20079. doi: 10.3934/math.20231022
[1] | Kieu Huu Dung, Do Lu Cong Minh, Pham Thi Kim Thuy . Commutators of Hardy-Cesàro operators on Morrey-Herz spaces with variable exponents. AIMS Mathematics, 2022, 7(10): 19147-19166. doi: 10.3934/math.20221051 |
[2] | Muhammad Asim, Ghada AlNemer . Boundedness on variable exponent Morrey-Herz space for fractional multilinear Hardy operators. AIMS Mathematics, 2025, 10(1): 117-136. doi: 10.3934/math.2025007 |
[3] | Muhammad Asim, Ghada AlNemer . Analytical findings on bilinear fractional Hardy operators in weighted central Morrey spaces with variable exponents. AIMS Mathematics, 2025, 10(5): 10431-10451. doi: 10.3934/math.2025475 |
[4] | Chenchen Niu, Hongbin Wang . $ N $-dimensional fractional Hardy operators with rough kernels on central Morrey spaces with variable exponents. AIMS Mathematics, 2023, 8(5): 10379-10394. doi: 10.3934/math.2023525 |
[5] | Babar Sultan, Mehvish Sultan, Aziz Khan, Thabet Abdeljawad . Boundedness of an intrinsic square function on grand $ p $-adic Herz-Morrey spaces. AIMS Mathematics, 2023, 8(11): 26484-26497. doi: 10.3934/math.20231352 |
[6] | Yueping Zhu, Yan Tang, Lixin Jiang . Boundedness of multilinear Calderón-Zygmund singular operators on weighted Lebesgue spaces and Morrey-Herz spaces with variable exponents. AIMS Mathematics, 2021, 6(10): 11246-11262. doi: 10.3934/math.2021652 |
[7] | Javeria Younas, Amjad Hussain, Hadil Alhazmi, A. F. Aljohani, Ilyas Khan . BMO estimates for commutators of the rough fractional Hausdorff operator on grand-variable-Herz-Morrey spaces. AIMS Mathematics, 2024, 9(9): 23434-23448. doi: 10.3934/math.20241139 |
[8] | Muhammad Asim, Ghada AlNemer . Results for fractional bilinear Hardy operators in central varying exponent Morrey space. AIMS Mathematics, 2024, 9(11): 29689-29706. doi: 10.3934/math.20241438 |
[9] | Heng Yang, Jiang Zhou . Compactness of commutators of fractional integral operators on ball Banach function spaces. AIMS Mathematics, 2024, 9(2): 3126-3149. doi: 10.3934/math.2024152 |
[10] | Pham Thi Kim Thuy, Kieu Huu Dung . Hardy–Littlewood maximal operators and Hausdorff operators on $ p $-adic block spaces with variable exponents. AIMS Mathematics, 2024, 9(8): 23060-23087. doi: 10.3934/math.20241121 |
In this paper, we establish the boundedness for mth order commutators of n−dimensional fractional Hardy operators and adjoint operators on weighted variable exponent Morrey-Herz space M˙Kα(⋅),λq,p(⋅)(ω).
As we all know, the study of variable exponent function space inspired by nonlinear elasticity theory and nonstandard growth differential equations is one of the key contents of harmonic analysis in the past three decades, attracting extensive attention from many scholars. In [19], the theory of function spaces with variable exponent was progressed since some elementary properties were established by Kováčik and Rákosník, and they studied many basic properties of variable exponent Lebesgue spaces and Sobolev spaces on Rn. Later, the Lebesgue spaces with variable exponent Lp(⋅)(Rn) were extensively investigated; see [7,8,22]. In [14], Izuki first introduced the Herz spaces with variable exponent ˙Kα,qp(⋅)(Rn), which are generalizations of the Herz spaces ˙Kα,qp(Rn), and considered the boundedness of commutators of fractional integrals on Herz spaces with variable exponent. In [13], Izuki introduced the Herz-Morrey spaces with variable exponent M˙Kα,λq,p(⋅)(Rn), which are generalizations of the Herz-Morrey spaces M˙Kα,λq,p(Rn), and studied the boundedness of vector valued sublinear operators on Herz-Morrey spaces with variable exponent M˙Kα,λq,p(⋅)(Rn). On the other hand, in the study of boundary value problems for the Laplace equation on Lipschitz domains, the classical theory of Muckenhoupt weights is a powerful tool in harmonic analysis; see [21]. Generalized Muckenhoupt weights with variable exponent have been intensively studied; see [4,5].
In [11], Hardy defined the classical Hardy operators as:
P(f)(x):=1x∫x0f(t)dt,x>0. | (1.1) |
In [6], Christ and Grafakos defined the n−dimensional Hardy operators as:
H(f)(x):=1|x|n∫|t|<|x|f(t)dt,x∈Rn∖{0}, | (1.2) |
and established the boundedness of P(f)(x) in Lp(Rn), getting the best constants.
In [9], under the condition of 0≤β<n and |x|=√∑ni=1x2i, Fu et al. defined the n−dimensional fractional Hardy operators and its adjoint operators as:
Hβf(x):=1|x|n−β∫|t|<|x|f(t)dt,H∗βf(x):=∫|t|≥|x|f(t)|t|n−βdt,x∈Rn∖{0}, | (1.3) |
and established the boundedness of their commutators in Lebesgue spaces and homogeneous Herz spaces.
Let L1loc(Rn) be the collection of all locally integrable functions on Rn. Given a function b∈L1loc(Rn) and m∈N, Wang et al. [23] defined the mth order commutators of n−dimensional fractional Hardy operators and adjoint operators as:
Hmβ,bf(x):=1|x|n−β∫|t|<|x|(b(x)−b(t))mf(t)dt | (1.4) |
and
H∗mβ,bf(x):=∫|t|≥|x|(b(x)−b(t))mf(t)|t|n−βdt,x∈Rn∖{0}. | (1.5) |
Obviously, when m=0, H0β,b=Hβ, H∗0β,b=H∗β, and when m=1, H1β,b=Hβ,b, H∗1β,b=H∗β,b. More important results with regard to these commutators, see [20,26,27].
Due to the need of future calculation in this paper, let 0<β<n, and the fractional integral operator Iβ is defined as:
Iβ(f)(x):=∫Rnf(y)|x−y|n−βdy,x∈Rn. | (1.6) |
Let 0≤β<n and f∈L1loc(Rn), and the fractional maximal operator Mβ is defined as:
Mβf(x):=supx∈B1|B|1−βn∫B|f(y)|dy,x∈Rn, | (1.7) |
where the supremum is taken over all balls B⊂Rn containing x. When β=0, we simply write M instead of M0, which is exactly the Hardy-Littlewood maximal function.
Let f∈L1loc(Rn) and BMO(Rn) consist of all f∈L1loc(Rn) with BMO(Rn)<∞. b is a bounded mean oscillation function if ‖b‖BMO<∞, and the ‖b‖BMO is defined as follow:
‖b‖BMO:=supB∫B|b(x)−bB|dx, | (1.8) |
where the supremum is taken all over the balls B∈Rn and bB:=|B|−1∫Bb(y)dy. For a comprehensive review of the bounded mean oscillation (BMO) space, please see the book [10].
Recently, Muhammad Asim et al. established the estimates of fractional Hardy operators on weighted variable exponent Morrey-Herz spaces in [1]. Amjad Hussain et al. established the boundedness of the commutators of the Fractional Hardy operators on weighted variable Herz-Morrey spaces in [12]. Motivated by the mentioned work, in this paper, we will give the boundedness of the mth order commutators of n−dimensional fractional Hardy operators Hmβ,b and its adjoint operators H∗mβ,b on weighted variable exponent Morrey-Herz space M˙Kα,λq,p(⋅)(ω).
The paper is organized as follows. In Section 2, we provide some preliminary knowledge. The main results and their proofs are given in Section 3. In Section 4, we provide the conclusion of this paper. Throughout this paper, we use the following symbols and notations:
(1) For a constant R>0 and a point x∈Rn, we write B(x,R):={y∈Rn:|x−y|<R}.
(2) For any measurable set E⊂Rn, |E| denotes the Lebesgue measure, and χE means the characteristic function.
(3) Given k∈Z, we write Bk:=¯B(0,2k)={x∈Rn:|x|≤2k}.
(4) We define a family {Ak}∞k=−∞ by Ak:=Bk∖Bk−1={x∈Rn:2k−1<|x|≤2k}. Moreover χk denotes the characteristic function of Ak, namely, χk:=χAk.
(5) For any index 1<p(x)<∞, p′(x) denotes its conjugate index, namely, 1p(x)+1p′(x)=1.
(6) If there exists a positive constant C independent of the main parameters such that A≤CB, then we write A≲. Additionally, A\approx B means that both A\lesssim B and B\lesssim A hold.
\mathbf{Definition\; 2.1.} ([7]) Let p(\cdot): \mathbb{R}^{n}\rightarrow [1, \infty) be a measurable function.
(ⅰ) The Lebesgue space with variable exponent L^{p(\cdot)}(\mathbb{R}^{n}) is defined by
L^{p(\cdot)}(\mathbb{R}^{n}): = \Big\{f\; \mathrm{is\; measurable\; function}:\int_{\mathbb{R}^{n}}\Big(\frac{|f(x)|}{\lambda}\Big)^{p(x)}\mathrm{d}x < \infty \; \mathrm{for\; some\; constant}\; \lambda > 0\Big\}. |
(ⅱ) The spaces with variable exponent L_{\mathrm{loc}}^{p(\cdot)}(\mathbb{R}^{n}) are defined by
L^{p(\cdot)}_{\mathrm{loc}}(\mathbb{R}^{n}): = \{f\; \mathrm{is\; measurable\; function}:f\in L^{p(\cdot)}(K) \mathrm{\; for\; all\; compact\; subsets\; } K\subset \mathbb{R}^{n}\}. |
The Lebesgue space L^{p(\cdot)}(\mathbb{R}^{n}) is a Banach space with the norm defined by
\|f\|_{L^{p(\cdot)}(\mathbb{R}^{n})}: = \inf\Big\{\lambda > 0:\int_{\mathbb{R}^{n}}\Big(\frac{|f(x)|}{\lambda}\Big)^{p(x)}\mathrm{d}x\leq 1 \Big\}. |
\mathbf{Definition\; 2.2.} ([7]) (ⅰ) The set \mathcal{P}(\mathbb{R}^{n}) consists of all measurable functions p(\cdot): \mathbb{R}^{n}\rightarrow [1, \infty) satisfying
1 < p_{-}\leq p(x)\leq p_{+} < \infty, |
where
p_{-}: = \mathrm{essinf}\{p(x): x\in \mathbb{R}^{n}\} > 1,\; \; \; p_{+}: = \mathrm{esssup}\{p(x): x\in \mathbb{R}^{n}\} < \infty. |
(ⅱ) The set \mathcal{B}(\mathbb{R}^{n}) consists of all measurable function p(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) satisfying that the Hardy-Littlewood maximal operator M is bounded on L^{p(\cdot)}(\mathbb{R}^{n}) .
\mathbf{Definition\; 2.3.} ([7]) Suppose that p(\cdot) is a real-valued function on \mathbb{R}^{n} . We say that
(ⅰ) \mathcal{C}_{\mathrm{loc}}^{\mathrm{log}}(\mathbb{R}^{n}) is the set of all local log-Hölder continuous functions p(\cdot) satisfying
\begin{align} |p(x)-p(y)|\leq -\frac{C}{\mathrm{log}(|x-y|)},\; |x-y|\leq\frac{1}{2}, \; \; x,y\in \mathbb{R}^{n}. \end{align} | (2.1) |
(ⅱ) \mathcal{C}_{0}^{\mathrm{log}}(\mathbb{R}^{n}) is the set of all local log-Hölder continuous functions p(\cdot) satisfying at origin
\begin{align} |p(x)-p_{0}|\leq \frac{C}{\mathrm{log}(e+\frac{1}{|x|})},\; \; x\in \mathbb{R}^{n}. \end{align} | (2.2) |
(ⅲ) \mathcal{C}_{\mathrm{\infty}}^{\mathrm{log}}(\mathbb{R}^{n}) is the set of all local log-Hölder continuous functions satisfying at infinity
\begin{align} |p(x)-p_{\infty}|\leq \frac{C_{\infty}}{\mathrm{log}(e+|x|)},\; \; x\in \mathbb{R}^{n}. \end{align} | (2.3) |
(ⅳ) \mathcal{C}^{\mathrm{log}}(\mathbb{R}^{n}) = \mathcal{C}_{\mathrm{\infty}}^{\mathrm{log}}(\mathbb{R}^{n})\cap \mathcal{C}_{\mathrm{loc}}^{\mathrm{log}}(\mathbb{R}^{n}) denotes the set of all global log-Hölder continuous functions p(\cdot) .
It was proved in [7] that if p(\cdot)\in \mathcal{P}(\mathbb{R}^{n})\cap \mathcal{C}^{\mathrm{log}}(\mathbb{R}^{n}) , then the Hardy-Littlewood maximal operator M is bounded on L^{p(\cdot)}(\mathbb{R}^{n}) .
\mathbf{Definition\; 2.4.} ([21]) Given a non-negative, measure function \omega , for 1 < p < \infty , \omega\in A_{p} if
[\omega]_{A_{p}}: = \sup\limits_{B}\Big(\frac{1}{|B|}\int_{B}\omega(x)\mathrm{d}x\Big)\Big(\frac{1}{|B|}\int_{B}\omega(x)^{1-p^{\prime}}\mathrm{d}x\Big)^{p-1} < \infty, |
where the supremum is taken over all balls B\subset \mathbb{R}^{n} . Especially, we say \omega\in A_{1} if
[\omega]_{A_{1}}: = \sup\limits_{B}\frac{\frac{1}{|B|}\int_{B}\omega(x)\mathrm{d}x}{\mathrm{essinf}\{\omega(x): x\in B\}} < \infty. |
These weights characterize the weighted norm inequalities for the Hardy-Littlewood maximal operator, that is, \omega\in A_{p} , 1 < p < \infty , if and only if M:L^{p}(\omega)\rightarrow L^{p}(\omega) .
\mathbf{Definition\; 2.5.} ([15]) Suppose that p(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) . A weight \omega is in the class A_{p(\cdot)} if
\begin{align} \sup\limits_{B:\mathrm{ball}}|B|^{-1}\|\omega^{\frac{1}{p(\cdot)}}\chi_{B}\|_{L^{p(\cdot)}}\|\omega^{-\frac{1}{p(\cdot)}}\chi_{B}\|_{L^{p^{\prime}(\cdot)}} < \infty. \end{align} | (2.4) |
Obviously, if p(\cdot) = p, 1 < p < \infty , then the above definition reduces to the classical Muckenhoupt A_{p} class.
From [15], if p(\cdot), q(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) , and p(\cdot)\leq q(\cdot) , then A_{1}\subset A_{p(\cdot)}\subset A_{q(\cdot)} .
\mathbf{Definition\; 2.6.} ([15]) Let 0 < \beta < n and p_{1}(\cdot), p_{2}(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) such that \frac{1}{p_{2}(x)} = \frac{1}{p_{1}(x)}-\frac{\beta}{n} . A weight \omega is said to be an A(p_{1}(\cdot), p_{2}(\cdot)) weight if
\begin{align} \|\chi_{B}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\|\chi_{B}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})^{\prime}}\leq C|B|^{1-\frac{\beta}{n}}. \end{align} | (2.5) |
\mathbf{Definition\; 2.7.} ([25]) Let p(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) and \omega\in A_{p(\cdot)} . The weighted variable exponent Lebesgue space L^{p(\cdot)}(\omega) denotes the set of all complex-valued measurable functions f satisfying
L^{p(\cdot)}(\omega): = \{f:f\omega^{\frac{1}{p(\cdot)}}\in L^{p(\cdot)}(\mathbb{R}^{n})\}. |
This is a Banach space equipped with the norm
\|f\|_{L^{p(\cdot)}(\omega)}: = \|f\omega^{\frac{1}{p(\cdot)}}\|_{L^{p(\cdot)}(\mathbb{R}^{n})}. |
\mathbf{Definition\; 2.8.} ([1]) Let \omega be a weight on \mathbb{R}^{n} , 0\leq \lambda < \infty , 0 < q < \infty , p(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) , and \alpha(\cdot): \mathbb{R}^{n}\rightarrow \mathbb{R} with \alpha(\cdot)\in L^{\infty}(\mathbb{R}^{n}) . The weighted variable exponent Morrey-Herz space \mathrm{M\dot{K}}_{q, p(\cdot)}^{\alpha(\cdot), \lambda}(\omega) is the set of all measurable functions f given by
\mathrm{M\dot{K}}_{q, p(\cdot)}^{\alpha(\cdot), \lambda}(\omega): = \{f\in L_{\mathrm{loc}}^{p(\cdot)}(\mathbb{R}^{n}\backslash\{0\}, \omega): \|f\|_{\mathrm{M\dot{K}}_{q, p(\cdot)}^{\alpha(\cdot), \lambda}(\omega)} < \infty \}, |
where
\|f\|_{\mathrm{M\dot{K}}_{q, p(\cdot)}^{\alpha(\cdot), \lambda}(\omega)}: = \sup\limits_{k_{0}\in \mathbb{Z}}2^{-k_{0}\lambda}\Big\{\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(\cdot) q}\|f\chi_{k}\|_{L^{p(\cdot)}(\omega)}^{q} \Big\}^{\frac{1}{q}}. |
It is noted that \mathrm{M\dot{K}}_{q, p(\cdot)}^{\alpha(\cdot), 0}(\omega) = \mathrm{\dot{K}}_{q, p(\cdot)}^{\alpha(\cdot)}(\omega) is the variable exponent weighted Herz space defined in [2].
\mathbf{Definition\; 2.9.} ([15]) Let \mathcal{M} be the set of all complex-valued measurable functions defined on \mathbb{R}^{n} and X be a linear subspace of \mathcal{M} .
(1) The space X is said to be a Banach function space if there exists a function \|\cdot\|_{X}:\mathcal{M}\rightarrow [0, \infty] satisfying the following properties: Let f, g, f_{j}\in\mathcal{M}\; (j = 1, 2, \ldots) . Then
(a) f\in X holds if and only if \|f\|_{X} < \infty .
(b) Norm property:
ⅰ. Positivity: \|f\|_{X}\geq 0 .
ⅱ. Strict positivity: \|f\|_{X} = 0 holds if and only if f(x) = 0 for almost every x\in \mathbb{R}^{n} .
ⅲ. Homogeneity: \|\lambda f\|_{X} = |\lambda|\cdot\|f\|_{X} holds for all \lambda\in\mathbb{C} .
ⅳ. Triangle inequality: \|f+g\|_{X}\leq \|f\|_{X}+\|g\|_{X} .
(c) Symmetry: \|f\|_{X} = \||f|\|_{X} .
(d) Lattice property: If 0\leq g(x)\leq f(x) for almost every x\in \mathbb{R}^{n} , then \|g\|_{X}\leq\|f\|_{X} .
(e) Fatou property: If 0\leq f_{j}(x)\leq f_{j+1}(x) for all j , and f_{j}(x)\rightarrow f(x) as j\rightarrow \infty for almost every x\in \mathbb{R}^{n} , then \lim\limits_{j\rightarrow \infty}\|f_{j}\|_{X} = \|f\|_{X} .
(f) For every measurable set F\subset \mathbb{R}^{n} such that |F| < \infty , \|\chi_{F}\|_{X} is finite. Additionally, there exists a constant C_{F} > 0 depending only on F so that \int_{F}|h(x)|\mathrm{d}x\leq C_{F}\|h\|_{X} holds for all h\in X .
(2) Suppose that X is a Banach function space equipped with a norm \|\cdot\|_{X} . The associated space X^{\prime} is defined by
X^{\prime}: = \{f\in \mathcal{M}:\|f\|_{X^{\prime}} < \infty\}, |
where
\|f\|_{X^{\prime}}: = \sup\limits_{g}\Big\{\Big|\int_{\mathbb{R}^{n}}f(x)g(x)\mathrm{d}x\Big|:\|g\|_{X}\leq 1 \Big\}. |
\mathbf{Lemma\; 2.1.} ([3]) Let X be a Banach function space, and then we have the following:
(ⅰ) The associated space X^{\prime} is also a Banach function space.
(ⅱ) \|\cdot\|_{(X^{\prime})^{\prime}} and \|\cdot\|_{X} are equivalent.
(ⅲ) If g\in X and f\in X^{\prime} , then
\begin{align} \int_{\mathbb{R}^{n}}|f(x)g(x)|\mathrm{d}x\leq \|f\|_{X}\|g\|_{X^{\prime}} \end{align} | (2.6) |
is the generalized Hölder inequality.
\mathbf{Lemma\; 2.2.} ([15]) If X is a Banach function space, then we have, for all balls B ,
\begin{align} 1\leq |B|^{-1}\|\chi_{B}\|_{X}\|\chi_{B}\|_{X^{\prime}}. \end{align} | (2.7) |
\mathbf{Lemma\; 2.3.} ([16]) Let X be a Banach function space. Suppose that the Hardy-Littlewood maximal operator M is weakly bounded on X , that is,
\|\chi_{\{Mf > \lambda\}}\|_{X}\lesssim \lambda^{-1}\|f\|_{X} |
is true for all f\in X and all \lambda > 0 . Then, we have
\begin{align} \sup\limits_{B:\mathrm{ball}}\frac{1}{|B|}\|\chi_{B}\|_{X}\|\chi_{B}\|_{X^{\prime}} < \infty. \end{align} | (2.8) |
\mathbf{Lemma\; 2.4.} ([15]) Given a function W such that 0 < W(x) < \infty for almost every x\in \mathbb{R}^{n} , W\in X_{\mathrm{loc}}(\mathbb{R}^{n}) and W^{-1}\in (X^{\prime})_{\mathrm{loc}}(\mathbb{R}^{n}) ,
(ⅰ) X(\mathbb{R}^{n}, W) is Banach function space equipped with the norm
\begin{align} \|f\|_{X(\mathbb{R}^{n}, W)}: = \|fW\|_{X}, \end{align} | (2.9) |
where
\begin{align} X(\mathbb{R}^{n}, W): = \{f\in\mathcal{M}: fW\in X\}. \end{align} | (2.10) |
(ⅱ) The associated space X^{\prime}(\mathbb{R}^{n}, W^{-1}) of X(\mathbb{R}^{n}, W) is also a Banach function space.
\mathbf{Lemma\; 2.5.} ([15]) Let X be a Banach function space and M be bounded on X^{\prime} . Then, there exists a constant \delta\in(0, 1) for all B\subset \mathbb{R}^{n} and E\subset B ,
\begin{align} \frac{\|\chi_{_{E}}\|_{X}}{\|\chi_{_{B}}\|_{X}}\leq \Big( \frac{|E|}{|B|}\Big)^{^{\delta}}. \end{align} | (2.11) |
The paper [19] shows that L^{p(\cdot)}(\mathbb{R}^{n}) is a Banach function space and the associated space L^{p^{\prime}(\cdot)}(\mathbb{R}^{n}) with equivalent norm.
\mathbf{Remark\; 2.6.} ([1]) Let p(\cdot)\in\mathcal{P}(\mathbb{R}^{n}) , and by comparing the L^{p(\cdot)}(\omega^{p(\cdot)}) and L^{p^{\prime}(\cdot)}(\omega^{-p^{\prime}(\cdot)}) with the definition of X(\mathbb{R}^{n}, W) , we have the following:
(1) If we take W = \omega and X = L^{p(\cdot)}(\mathbb{R}^{n}) , then we get L^{p(\cdot)}(\mathbb{R}^{n}, \omega) = L^{p(\cdot)}(\omega^{p(\cdot)}) .
(2) If we consider W = \omega^{-1} and X = L^{p^{\prime}(\cdot)}(\mathbb{R}^{n}) , then we get L^{p^{\prime}(\cdot)}(\mathbb{R}^{n}, \omega^{-1}) = L^{p^{\prime}(\cdot)}(\omega^{-p^{\prime}(\cdot)}) .
By virtue of Lemma 2.4, we get
(L^{p(\cdot)}(\mathbb{R}^{n}, \omega))^{\prime} = (L^{p(\cdot)}(\omega^{p(\cdot)}))^{\prime} = L^{p^{\prime}(\cdot)}(\omega^{-p^{\prime}(\cdot)}) = L^{p^{\prime}(\cdot)}(\mathbb{R}^{n}, \omega^{-1}). |
\mathbf{Lemma\; 2.7.} ([17]) Let p(\cdot)\in\mathcal{P}(\mathbb{R}^{n})\cap \mathcal{C}^{\mathrm{log}}(\mathbb{R}^{n}) be a log-Hölder continuous function both at infinity and at origin, if \omega^{p_{_{2}}(\cdot)}\in A_{p_{_{2}}(\cdot)} implies \omega^{-p^{\prime}_{_{2}}(\cdot)}\in A_{p^{\prime}_{_{2}}(\cdot)} . Thus, the Hardy-Littlewood operator is bounded on L^{p^{\prime}_{_{2}}(\cdot)}(\omega^{-p^{\prime}_{_{2}}(\cdot)}) , and there exist constants \delta_{1}, \delta_{2}\in (0, 1) such that
\begin{align} \frac{\|\chi_{E}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}}{\|\chi_{B}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}} = \frac{\|\chi_{E}\|_{(L^{p^{\prime}_{2}(\cdot)}(\omega^{-p^{\prime}_{2}(\cdot)}))^{\prime}}}{\|\chi_{B}\|_{(L^{p^{\prime}_{2}(\cdot)}(\omega^{-p^{\prime}_{2}(\cdot)}))^{\prime}}} \leq C\Big(\frac{|E|}{|B|}\Big)^{\delta_{1}}, \end{align} | (2.12) |
and
\begin{align} \frac{\|\chi_{E}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))^{\prime}}}{\|\chi_{B}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))^{\prime}}}\leq C\Big(\frac{|E|}{|B|}\Big)^{\delta_{2}}, \end{align} | (2.13) |
for all balls B\subset \mathbb{R}^{n} and all measurable sets E\subset B .
\mathbf{Lemma\; 2.8.} ([15]) Let p_{1}(\cdot)\in \mathcal{P}(\mathbb{R}^{n})\cap \mathcal{C}^{\mathrm{log}}(\mathbb{R}^{n}) and 0 < \beta < \frac{n}{p_{1}^{+}} . Define p_{2}(\cdot) by \frac{1}{p_{1}(x)}-\frac{1}{p_{2}(\cdot)} = \frac{\beta}{n} . If \omega\in A(p_{1}(\cdot), p_{2}(\cdot)) , then I_{\beta} is bounded from L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}) to L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}) .
\mathbf{Lemma\; 2.9.} ([24, Corollary 3.11]) Let b\in \mathrm{BMO}(\mathbb{R}^{n}), m\in \mathbb{N} , and k, j\in \mathbb{Z} with k > j . Then, we have
\begin{align} C^{-1}\|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{m}\leq \sup\limits_{B}\frac{1}{\|\chi_{B}\|_{L^{p(\cdot)}(\omega)}}\|(b-b_{B})^{m}\chi_{B}\|_{L^{p(\cdot)}(\omega)}\leq C\|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{m}. \end{align} | (2.14) |
\begin{align} \|(b-b_{B_{j}})^{m}\chi_{B_{k}}\|_{L^{p(\cdot)}(\omega)}\leq C(k-j)^{m}\|b\|_{\mathrm{BMO}(\mathbb{R}^{n})}^{m}\|\chi_{B_{k}}\|_{L^{p(\cdot)}(\omega)}. \end{align} | (2.15) |
\mathbf{Proposition\; 3.1.} ([12] Let q(\cdot)\in \mathcal{P}(\mathbb{R}^{n}) , 0 < p < \infty , and 0\leq \lambda < \infty . If \alpha(\cdot)\in L^{\infty}(\mathbb{R}^{n})\cap \mathcal{C}^{\mathrm{log}}(\mathbb{R}^{n}) , then
\begin{align*} \|f\|_{\mathrm{M\dot{K}}_{p, q(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{q(\cdot)})}^{p}& = \sup\limits_{k_{0}\in \mathbb{Z}}2^{-k_{0}\lambda p}\sum\limits_{j = -\infty}\limits^{k_{0}}2^{j\alpha(\cdot)p}\|f\chi_{j}\|^{p}_{L^{q(\cdot)}(\omega^{q(\cdot)})}\\ &\leq \max\Big\{\sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0} < 0}}2^{-k_{0}\lambda p}\Big(\sum\limits_{j = -\infty}\limits^{k_{0}}2^{j\alpha(0)p}\|f\chi_{j}\|^{p}_{L^{q(\cdot)}(\omega^{q(\cdot)})}\Big), \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0}\geq0}}\Big(2^{-k_{0}\lambda p}\Big(\sum\limits_{j = -\infty}\limits^{-1}2^{j\alpha(0)p}\|f\chi_{j}\|^{p}_{L^{q(\cdot)}(\omega^{q(\cdot)})}\Big)\\ &+2^{-k_{0}\lambda p}\Big(\sum\limits_{j = 0}\limits^{k_{0}}2^{j\alpha(\infty)p}\|f\chi_{j}\|^{p}_{L^{q(\cdot)}(\omega^{q(\cdot)})}\Big)\Big)\Big\}. \end{align*} |
\mathbf{Theorem\; 3.1.} Let 0 < q_{1}\leq q_{2} < \infty , p_{2}(\cdot)\in\mathcal{P}(\mathbb{R}^{n})\cap \mathcal{C}^{\mathrm{log}}(\mathbb{R}^{n}) and p_{1}(\cdot) be such that \frac{1}{p_{2}(\cdot)} = \frac{1}{p_{1}(\cdot)}-\frac{\beta}{n} . Also, let \omega^{p_{2}(\cdot)}\in A_{1} , b\in \mathrm{BMO}(\mathbb{R}^{n}) , \lambda > 0 and \alpha(\cdot)\in L^{\infty}(\mathbb{R}^{n})\cap \mathcal{C}^{\mathrm{log}}(\mathbb{R}^{n}) be log-Hölder continuous at the origin, with \alpha(0)\leq \alpha(\infty) < \lambda+n\delta_{2}-\beta , where \delta_{2}\in(0, 1) is the constant appearing in (2.13). Then,
\begin{align} \|\mathcal{H}^{m}_{_{\beta,b}}f\|_{\mathrm{M\dot{K}}_{q_{2}, p_{2}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{2}(\cdot)})}\lesssim \|b\|^{m}_{\mathrm{BMO}}\|f\|_{\mathrm{M\dot{K}}_{q_{1}, p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}. \end{align} | (3.1) |
Proof. For arbitrary f\in \mathrm{M\dot{K}}_{q_{1}, p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)}) , let f_{j} = f\cdot\chi_{j} = f\cdot\chi_{A_{j}} for every j\in \mathbb{Z} , and then
\begin{align} f(x) = \sum\limits_{j = -\infty}^{\infty}f(x)\cdot\chi_{j}(x) = \sum\limits_{j = -\infty}^{\infty}f_{j}(x). \end{align} | (3.2) |
By the inequality of C_{p} , it is not difficult to see that
\begin{align*} |\mathcal{H}^{m}_{_{\beta,b}}f(x)\chi_{k}(x)|&\leq \frac{1}{|x|^{n-\beta}}\int_{|t| < |x|}|b(x)-b(t)|^{m}|f(t)|\mathrm{d}t\cdot\chi_{k}(x)\\ &\leq \frac{1}{|x|^{n-\beta}}\int_{B(0,|x|)}|b(x)-b(t)|^{m}|f(t)|\mathrm{d}t\cdot\chi_{k}(x)\\ &\leq \frac{1}{|x|^{n-\beta}}\int_{B_{k}}|b(x)-b(t)|^{m}|f(t)|\mathrm{d}t\cdot\chi_{k}(x)\\ &\leq 2^{-k(n-\beta)}\sum\limits_{j = -\infty}^{k}\int_{A_{j}}|b(x)-b(t)|^{m}|f(t)|\mathrm{d}t\cdot\chi_{k}(x)\\ &\lesssim 2^{-k(n-\beta)}\sum\limits_{j = -\infty}^{k}\int_{A_{j}}|b(x)-b_{A_{j}}|^{m}|f(t)|\mathrm{d}t\cdot\chi_{k}(x)\\ &\; \; \; +2^{-k(n-\beta)}\sum\limits_{j = -\infty}^{k}\int_{A_{j}}|b(t)-b_{A_{j}}|^{m}|f(t)|\mathrm{d}t\cdot\chi_{k}(x) = E_{1}+E_{2}. \end{align*} | (3.3) |
For E_{1} , by the generalized Hölder inequality, we have
\begin{align*} E_{1}& = 2^{-k(n-\beta)}\sum\limits_{j = -\infty}^{k}\int_{A_{j}}|b(x)-b_{A_{j}}|^{m}|f(t)|\mathrm{d}t\cdot\chi_{k}(x)\\ &\leq 2^{-k(n-\beta)}\sum\limits_{j = -\infty}^{k}|b(x)-b_{A_{j}}|^{m}\cdot\chi_{k}(x)\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}. \end{align*} | (3.4) |
By taking the (L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})) -norm on both sides of (3.4) and using (2.15) of Lemma 2.9, we get
\begin{align*} \|E_{1}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))} &\leq 2^{-k(n-\beta)}\sum\limits_{j = -\infty}^{k}\||b(x)-b_{A_{j}}|^{m}\cdot\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\\ &\lesssim 2^{-k(n-\beta)}\sum\limits_{j = -\infty}^{k}(k-j)^{m}\|b\|_{\mathrm{BMO}}^{m}\|\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}. \end{align*} | (3.5) |
For E_{2} , by the generalized Hölder inequality, we have
\begin{align*} E_{2}& = 2^{-k(n-\beta)}\sum\limits_{j = -\infty}^{k}\int_{A_{j}}|b(t)-b_{A_{j}}|^{m}|f(t)|\mathrm{d}t\cdot\chi_{k}(x)\\ &\leq 2^{-k(n-\beta)}\sum\limits_{j = -\infty}^{k}\||b(t)-b_{A_{j}}|^{m}\cdot\chi_{j}(x)\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\cdot\chi_{k}(x). \end{align*} | (3.6) |
By taking the (L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})) -norm on both sides of (3.6) and using (2.14) of Lemma 2.9, we get
\begin{align*} \|E_{2}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))} &\leq 2^{-k(n-\beta)}\sum\limits_{j = -\infty}^{k}\||b(x)-b_{A_{j}}|^{m}\cdot\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\|\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}\\ &\lesssim 2^{-k(n-\beta)}\sum\limits_{j = -\infty}^{k}\|b\|_{\mathrm{BMO}}^{m}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\|\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}. \end{align*} | (3.7) |
Hence, from inequalities (3.3), (3.5) and (3.7), we get
\begin{align*} &\|\mathcal{H}^{m}_{_{\beta,b}}f(x)\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}\\ &\lesssim 2^{-k(n-\beta)}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\Big\{\sum\limits_{j = -\infty}^{k}(k-j)^{m}\|b\|_{\mathrm{BMO}}^{m}\|\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\\ &+\sum\limits_{j = -\infty}^{k}\|b\|_{\mathrm{BMO}}^{m}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\|\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}\Big\}\\ &\lesssim 2^{-k(n-\beta)}\|b\|_{\mathrm{BMO}}^{m}\sum\limits_{j = -\infty}^{k}(k-j)^{m}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\|\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}. & \end{align*} | (3.8) |
By virtue of Lemma 2.5, we have
\begin{align} \frac{\|\chi_{B_{k}}\|_{X}}{\|\chi_{k}\|_{X}}\leq (\frac{|B_{k}|}{|A_{k}|})^{\delta} = C\; \Longrightarrow\; \|\chi_{B_{k}}\|_{X}\leq C\|\chi_{k}\|_{X}. \end{align} | (3.9) |
Note that \|\chi_{j}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})} \leq\|\chi_{B_{j}}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})} and \chi_{B_{j}}(x)\lesssim 2^{-j\beta}I_{\beta}(\chi_{B_{j}}) (see [18, p. 350]). By applying (2.8), (3.9) and Lemma 2.8, we obtain
\begin{align*} \|\chi_{j}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}&\leq\|\chi_{B_{j}}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\lesssim 2^{-j\beta}\|I_{\beta}(\chi_{B_{j}})\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\\ &\lesssim 2^{-j\beta}\|\chi_{B_{j}}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\lesssim 2^{-j\beta}\|\chi_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})} \lesssim 2^{j(n-\beta)}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}^{-1}. & \end{align*} | (3.10) |
By virtue of (2.7) and (2.8), combining (2.13) and (3.10), we have
\begin{align*} &2^{k(\beta-n)}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\|\chi_{k}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\\ &\; \; \; \; = 2^{k\beta}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}} 2^{-kn}\|\chi_{k}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\\ &\; \; \; \; \lesssim 2^{k\beta}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}} \|\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))^{\prime}}^{-1}\\ &\; \; \; \; = 2^{k\beta} \|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}} \|\chi_{j}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))^{\prime}}^{-1}\frac{ \|\chi_{j}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))^{\prime}}}{ \|\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))^{\prime}}}\\ &\; \; \; \; \lesssim 2^{k\beta}2^{n\delta_{2}(j-k)} \|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}} \|\chi_{j}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))^{\prime}}^{-1}\\ &\; \; \; \; \lesssim 2^{k\beta}2^{n\delta_{2}(j-k)}2^{j(n-\beta)} \|\chi_{j}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}^{-1} \|\chi_{j}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))^{\prime}}^{-1}\\ &\; \; \; \; = 2^{k\beta}2^{n\delta_{2}(j-k)}2^{-j\beta} \Big(2^{-jn}\|\chi_{j}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\|\chi_{j}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))^{\prime}}\Big)^{-1}\\ &\; \; \; \; \lesssim 2^{(\beta-n\delta_{2})(k-j)}. & \end{align*} | (3.11) |
Hence by virtue of (3.8) and (3.11), we have
\begin{align*} \|\mathcal{H}^{m}_{_{\beta,b}}f(x)\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}\lesssim \|b\|_{\mathrm{BMO}}^{m}\sum\limits_{j = -\infty}^{k}(k-j)^{m}2^{(\beta-n\delta_{2})(k-j)}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}. & \end{align*} | (3.12) |
In order to estimate \|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})} , we consider two cases as below.
Case 1: For j < 0 , we get
\begin{align*} \|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}& = 2^{-j\alpha(0)}\Big(2^{j\alpha(0) q_{1}}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}^{q_{1}}\Big)^{\frac{1}{q_{1}}}\\ &\leq 2^{-j\alpha(0)}\Big(\sum\limits_{i = -\infty}^{j}2^{i\alpha(0) q_{1}}\|f_{i}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}^{q_{1}}\Big)^{\frac{1}{q_{1}}}\\ & = 2^{j(\lambda-\alpha(0))}\Big\{2^{-j\lambda}\Big(\sum\limits_{i = -\infty}^{j}2^{i\alpha(\cdot) q_{1}}\|f_{i}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}^{q_{1}}\Big)^{\frac{1}{q_{1}}}\Big\}\\ &\lesssim 2^{j(\lambda-\alpha(0))}\|f\|_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}. & \end{align*} | (3.13) |
Case 2: For j\geq0 , we get
\begin{align*} \|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}& = 2^{-j\alpha(\infty)}\Big(2^{j\alpha(\infty) q_{1}}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}^{q_{1}}\Big)^{\frac{1}{q_{1}}}\\ &\leq 2^{-j\alpha(\infty)}\Big(\sum\limits_{i = -\infty}^{j}2^{i\alpha(\infty) q_{1}}\|f_{i}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}^{q_{1}}\Big)^{\frac{1}{q_{1}}}\\ & = 2^{j(\lambda-\alpha(\infty))}\Big\{2^{-j\lambda}\Big(\sum\limits_{i = -\infty}^{j}2^{i\alpha(\cdot) q_{1}}\|f_{i}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}^{q_{1}}\Big)^{\frac{1}{q_{1}}}\Big\}\\ &\lesssim 2^{j(\lambda-\alpha(\infty))}\|f\|_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}. & \end{align*} | (3.14) |
Now, by virtue of the condition q_{1}\leq q_{2} and the definition of weighted variable exponent Morrey-Herz space along with the use of Proposition 3.1, we get
\begin{align*} \|\mathcal{H}^{m}_{_{\beta,b}}f\|^{q_{1}}_{\mathrm{M\dot{K}}_{q_{2},p_{2}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{2}(\cdot)})}& = \sup\limits_{k_{0}\in \mathbb{Z}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(\cdot) q_{1}}\|\mathcal{H}^{m}_{_{\beta,b}}f\chi_{k}\|^{q_{1}}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\\ &\leq \max\Big\{\sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0} < 0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(0) q_{1}}\|\mathcal{H}^{m}_{_{\beta,b}}f\chi_{k}\|^{q_{1}}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})},\\ &\; \; \; \; \; \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0}\geq0}}2^{-k_{0}\lambda q_{1}}\Big(\sum\limits_{k = -\infty}^{-1}2^{k\alpha(0) q_{1}}\|\mathcal{H}^{m}_{_{\beta,b}}f\chi_{k}\|^{q_{1}}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\\ &\; \; \; \; \; \; \; \; \; +\sum\limits_{k = 0}^{k_{0}}2^{k\alpha(\infty) q_{1}}\|\mathcal{H}^{m}_{\beta,b}f\chi_{k}\|^{q_{1}}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\Big)\Big\}\\ & = \max\{J_{1}, J_{2}+J_{3}\}, & \end{align*} | (3.15) |
where
\begin{align*} &J_{1} = \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0} < 0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(0) q_{1}}\|\mathcal{H}^{m}_{_{\beta,b}}f\chi_{k}\|^{q_{1}}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})},\\ &J_{2} = \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0}\geq0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = -\infty}^{-1}2^{k\alpha(0) q_{1}}\|\mathcal{H}^{m}_{_{\beta,b}}f\chi_{k}\|^{q_{1}}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})},\\ &J_{3} = \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0}\geq0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = 0}^{k_{0}}2^{k\alpha(\infty) q_{1}}\|\mathcal{H}^{m}_{_{\beta,b}}f\chi_{k}\|^{q_{1}}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}. \end{align*} |
First, we estimate J_{1} . Since \alpha(0)\leq \alpha(\infty) < n\delta_{2}+\lambda-\beta , combining (3.12) and (3.13), we get
\begin{align*} J_{1}&\lesssim \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0} < 0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(0) q_{1}}\Big(\sum\limits_{j = -\infty}^{k}(k-j)^{m}\|b\|_{\mathrm{BMO}}^{m}2^{(\beta-n\delta_{2})(k-j)}\|f\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\Big)^{q_{1}}\\ &\lesssim \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0} < 0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(0) q_{1}}\Big(\sum\limits_{j = -\infty}^{k}(k-j)^{m}\|b\|_{\mathrm{BMO}}^{m}2^{(\beta-n\delta_{2})(k-j)}2^{j(\lambda-\alpha(0))}\|f\|_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}\Big)^{q_{1}}\\ &\lesssim \|b\|_{\mathrm{BMO}}^{mq_{1}}\|f\|^{q_{1}}_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}\sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0} < 0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(0) q_{1}}\Big(\sum\limits_{j = -\infty}^{k}(k-j)^{m}2^{(\beta-n\delta_{2})(k-j)}2^{j(\lambda-\alpha(0))}\Big)^{q_{1}}\\ &\lesssim \|b\|_{\mathrm{BMO}}^{mq_{1}}\|f\|^{q_{1}}_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}\sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0} < 0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = -\infty}^{k_{0}}2^{k\lambda q_{1}}\Big(\sum\limits_{j = -\infty}^{k}(k-j)^{m}2^{(j-k)(n\delta_{2}+\lambda-\beta-\alpha(0))}\Big)^{q_{1}}\\ &\lesssim \|b\|_{\mathrm{BMO}}^{mq_{1}}\|f\|^{q_{1}}_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}. \end{align*} |
The estimate of J_{2} is similar to that of J_{1} .
Lastly, we estimate J_{3} . Since \alpha(0)\leq \alpha(\infty) < n\delta_{2}+\lambda-\beta , combining (3.12) and (3.14), we get
\begin{align*} J_{3}&\lesssim \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0}\geq0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = 0}^{k_{0}}2^{k\alpha(\infty) q_{1}}\Big(\sum\limits_{j = -\infty}^{k}(k-j)^{m}\|b\|_{\mathrm{BMO}}^{m}2^{(\beta-n\delta_{2})(k-j)}\|f\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\Big)^{q_{1}}\\ &\lesssim \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0}\geq0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = 0}^{k_{0}}2^{k\alpha(\infty) q_{1}}\Big(\sum\limits_{j = -\infty}^{k}(k-j)^{m}\|b\|_{\mathrm{BMO}}^{m}2^{(\beta-n\delta_{2})(k-j)}2^{j(\lambda-\alpha(\infty))}\|f\|_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}\Big)^{q_{1}}\\ &\lesssim \|b\|_{\mathrm{BMO}}^{mq_{1}}\|f\|^{q_{1}}_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}\sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0}\geq0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = 0}^{k_{0}}2^{k\alpha(\infty) q_{1}}\Big(\sum\limits_{j = -\infty}^{k}(k-j)^{m}2^{(\beta-n\delta_{2})(k-j)}2^{j(\lambda-\alpha(\infty))}\Big)^{q_{1}}\\ &\lesssim \|b\|_{\mathrm{BMO}}^{mq_{1}}\|f\|^{q_{1}}_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}\sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0}\geq0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = 0}^{k_{0}}2^{k\lambda q_{1}}\Big(\sum\limits_{j = -\infty}^{k}(k-j)^{m}2^{(j-k)(n\delta_{2}+\lambda-\beta-\alpha(\infty))}\Big)^{q_{1}}\\ &\lesssim \|b\|_{\mathrm{BMO}}^{mq_{1}}\|f\|^{q_{1}}_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}. \end{align*} |
The desired result is obtained by combining the estimates of J_{1} , J_{2} and J_{3} .
\mathbf{Theorem\; 3.2.} Let 0 < q_{1}\leq q_{2} < \infty , p_{2}(\cdot)\in\mathcal{P}(\mathbb{R}^{n})\cap \mathcal{C}^{\mathrm{log}}(\mathbb{R}^{n}) and p_{1}(\cdot) be such that \frac{1}{p_{2}(\cdot)} = \frac{1}{p_{1}(\cdot)}-\frac{\beta}{n} . Also, let \omega^{p_{2}(\cdot)}\in A_{1} , b\in \mathrm{BMO}(\mathbb{R}^{n}) , \lambda > 0 and \alpha(\cdot)\in L^{\infty}(\mathbb{R}^{n})\cap \mathcal{C}^{\mathrm{log}}(\mathbb{R}^{n}) be log-Hölder continuous at the origin, with \lambda-n\delta_{1} < \alpha(0)\leq\alpha(\infty) , where \delta_{1}\in(0, 1) is the constant appearing in (2.12). Then,
\begin{align} \|\mathcal{H}^{\ast m}_{_{\beta,b}}f\|_{\mathrm{M\dot{K}}_{q_{2}, p_{2}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{2}(\cdot)})}\lesssim \|b\|^{m}_{\mathrm{BMO}}\|f\|_{\mathrm{M\dot{K}}_{q_{1}, p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}. \end{align} | (3.16) |
Proof. From an application of the inequality of C_{p} , it is not difficult to see that
\begin{align*} |\mathcal{H}^{\ast m}_{_{\beta,b}}f(x)\chi_{k}(x)|&\leq \int_{\mathbb{R}^{n}\setminus B_{k}}|t|^{\beta-n}|b(x)-b(t)|^{m}|f(t)|\mathrm{d}t\cdot\chi_{k}(x)\\ &\leq \sum\limits_{j = k+1}^{\infty}\int_{A_{j}}|t|^{\beta-n}|b(x)-b(t)|^{m}|f(t)|\mathrm{d}t\cdot\chi_{k}(x)\\ &\lesssim \sum\limits_{j = k+1}^{\infty}\int_{A_{j}}|t|^{\beta-n}|b(x)-b_{A_{j}}|^{m}|f(t)|\mathrm{d}t\cdot\chi_{k}(x)\\ &\; \; \; +\sum\limits_{j = k+1}^{\infty}\int_{A_{j}}|t|^{\beta-n}|b(t)-b_{A_{j}}|^{m}|f(t)|\mathrm{d}t\cdot\chi_{k}(x)\\ & = F_{1}+F_{2}. \end{align*} | (3.17) |
For F_{1} , by the generalized Hölder inequality, we have
\begin{align*} F_{1}&\leq\sum\limits_{j = k+1}^{\infty}2^{-j(n-\beta)}\int_{A_{j}}|b(x)-b_{A_{j}}|^{m}|f(t)|\mathrm{d}t\cdot\chi_{k}(x)\\ &\leq \sum\limits_{j = k+1}^{\infty}2^{-j(n-\beta)}|b(x)-b_{A_{j}}|^{m}\cdot\chi_{k}(x)\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}. \end{align*} | (3.18) |
By taking the (L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})) -norm on both sides of (3.18) and using (2.15) of Lemma 2.9, we get
\begin{align*} \|F_{1}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))} &\leq \sum\limits_{j = k+1}^{\infty}2^{-j(n-\beta)}\||b(x)-b_{A_{j}}|^{m}\cdot\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\\ &\lesssim \sum\limits_{j = k+1}^{\infty}2^{-j(n-\beta)}(j-k)^{m}\|b\|_{\mathrm{BMO}}^{m}\|\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}. \end{align*} | (3.19) |
For F_{2} , by the generalized Hölder inequality, we have
\begin{align*} F_{2}&\leq\sum\limits_{j = k+1}^{\infty}2^{-j(n-\beta)}\int_{A_{j}}|b(t)-b_{A_{j}}|^{m}|f(t)|\mathrm{d}t\cdot\chi_{k}(x)\\ &\leq \sum\limits_{j = k+1}^{\infty}2^{-j(n-\beta)}\||b(t)-b_{A_{j}}|^{m}\cdot\chi_{j}(x)\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\cdot\chi_{k}(x). \end{align*} | (3.20) |
By taking the (L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})) -norm on both sides of (3.20) and using (2.15) of Lemma 2.9, we get
\begin{align*} \|F_{2}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))} &\leq \sum\limits_{j = k+1}^{\infty}2^{-j(n-\beta)}\||b(t)-b_{A_{j}}|^{m}\cdot\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\|\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}\\ &\lesssim \sum\limits_{j = k+1}^{\infty}2^{-j(n-\beta)}\|b\|_{\mathrm{BMO}}^{m}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\|\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}. \end{align*} | (3.21) |
Hence, from inequalities (3.17), (3.19) and (3.21), we get
\begin{align*} &\|\mathcal{H}^{\ast m}_{_{\beta,b}}f(x)\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}\\ &\; \; \; \lesssim \|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\Big\{\sum\limits_{j = k+1}^{\infty}2^{-j(n-\beta)}(j-k)^{m}\|b\|_{\mathrm{BMO}}^{m}\|\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\\ &\; \; \; \; \; \; +\sum\limits_{j = k+1}^{\infty}2^{-j(n-\beta)}\|b\|_{\mathrm{BMO}}^{m}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\|\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}\Big\}\\ &\lesssim \|b\|_{\mathrm{BMO}}^{m}\sum\limits_{j = k+1}^{\infty}2^{-j(n-\beta)}(j-k)^{m}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\|\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}. & \end{align*} | (3.22) |
On the other hand, by (2.7) and (2.8), combining (2.12) and (3.10), we have
\begin{align*} & 2^{-j(n-\beta)}\|\chi_{k}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})} \|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\\ &\; \; \; \; = 2^{j\beta}\|\chi_{k}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})} 2^{-jn}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\\ &\; \; \; \; \lesssim 2^{j\beta}\|\chi_{k}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})} \|\chi_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}^{-1}\\ &\; \; \; \; = 2^{j\beta} \|\chi_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}^{-1} \|\chi_{j}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})} \frac{ \|\chi_{k}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}}{\|\chi_{j}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}}\\ &\; \; \; \; \lesssim 2^{j\beta}2^{n\delta_{1}(k-j)} \|\chi_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}^{-1} \|\chi_{j}\|_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\\ &\; \; \; \; \lesssim 2^{j\beta}2^{n\delta_{1}(k-j)}2^{j(n-\beta)} \|\chi_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}^{-1} \|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}^{-1}\\ &\; \; \; \; = 2^{j\beta}2^{n\delta_{1}(k-j)}2^{-j\beta}\Big(2^{-jn}\|\chi_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\|\chi_{j}\|_{(L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)}))^{\prime}}\Big)^{-1} \lesssim 2^{n\delta_{1}(k-j)}. & \end{align*} | (3.23) |
Hence combining (3.22) and (3.23), we obtain
\begin{align*} \|\mathcal{H}^{\ast m}_{_{\beta,b}}f(x)\chi_{k}\|_{(L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)}))}\lesssim \|b\|_{\mathrm{BMO}}^{m}\sum\limits_{j = k+1}^{\infty}(j-k)^{m}2^{n\delta_{1}(k-j)}\|f_{j}\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}. & \end{align*} | (3.24) |
Next, by virtue of the condition q_{1}\leq q_{2} and the definition of weighted variable exponent Morrey-Herz space along with the use of Proposition 3.1, we get
\begin{align*} \|\mathcal{H}^{\ast m}_{_{\beta,b}}f\|^{q_{1}}_{\mathrm{M\dot{K}}_{q_{2},p_{2}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{2}(\cdot)})}& = \sup\limits_{k_{0}\in \mathbb{Z}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(\cdot) q_{1}}\|\mathcal{H}^{\ast m}_{_{\beta,b}}f\chi_{k}\|^{q_{1}}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\\ &\leq \max\Big\{\sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0} < 0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(0) q_{1}}\|\mathcal{H}^{\ast m}_{_{\beta,b}}f\chi_{k}\|^{q_{1}}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})},\\ &\; \; \; \; \; \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0}\geq0}}2^{-k_{0}\lambda q_{1}}\Big(\sum\limits_{k = -\infty}^{-1}2^{k\alpha(0) q_{1}}\|\mathcal{H}^{\ast m}_{_{\beta,b}}f\chi_{k}\|^{q_{1}}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\\ &\; \; \; \; \; \; \; \; \; +\sum\limits_{k = 0}^{k_{0}}2^{k\alpha(\infty) q_{1}}\|\mathcal{H}^{\ast m}_{\beta,b}f\chi_{k}\|^{q_{1}}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}\Big)\Big\}\\ & = \max\{Y_{1}, Y_{2}+Y_{3}\}, & \end{align*} | (3.25) |
where
\begin{align*} &Y_{1} = \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0} < 0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(0) q_{1}}\|\mathcal{H}^{\ast m}_{_{\beta,b}}f\chi_{k}\|^{q_{1}}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})},\\ &Y_{2} = \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0}\geq0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = -\infty}^{-1}2^{k\alpha(0) q_{1}}\|\mathcal{H}^{\ast m}_{_{\beta,b}}f\chi_{k}\|^{q_{1}}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})},\\ &Y_{3} = \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0}\geq0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = 0}^{k_{0}}2^{k\alpha(\infty) q_{1}}\|\mathcal{H}^{\ast m}_{_{\beta,b}}f\chi_{k}\|^{q_{1}}_{L^{p_{2}(\cdot)}(\omega^{p_{2}(\cdot)})}. \end{align*} |
First, we estimate Y_{1} . Since \lambda-n\delta_{1} < \alpha(0)\leq \alpha(\infty) , combining (3.24) and (3.13), we get
\begin{align*} Y_{1}&\lesssim \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0} < 0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(0) q_{1}}\Big(\sum\limits_{j = k+1}^{\infty}(j-k)^{m}\|b\|_{\mathrm{BMO}}^{m}2^{n\delta_{1}(k-j)}\|f\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\Big)^{q_{1}}\\ &\lesssim \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0} < 0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(0) q_{1}}\Big(\sum\limits_{j = k+1}^{\infty}(j-k)^{m}\|b\|_{\mathrm{BMO}}^{m}2^{n\delta_{1}(k-j)}2^{j(\lambda-\alpha(0))}\|f\|_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}\Big)^{q_{1}}\\ &\lesssim \|b\|_{\mathrm{BMO}}^{mq_{1}}\|f\|^{q_{1}}_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}\sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0} < 0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = -\infty}^{k_{0}}2^{k\alpha(0) q_{1}}\Big(\sum\limits_{j = k+1}^{\infty}(j-k)^{m}2^{n\delta_{1}(k-j)}2^{j(\lambda-\alpha(0))}\Big)^{q_{1}}\\ &\lesssim \|b\|_{\mathrm{BMO}}^{mq_{1}}\|f\|^{q_{1}}_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}\sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0} < 0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = -\infty}^{k_{0}}2^{k\lambda q_{1}}\Big(\sum\limits_{j = k+1}^{\infty}(j-k)^{m}2^{(j-k)(\lambda-n\delta_{1}-\alpha(0))}\Big)^{q_{1}}\\ &\lesssim \|b\|_{\mathrm{BMO}}^{mq_{1}}\|f\|^{q_{1}}_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}. \end{align*} |
The estimate of Y_{2} is similar to that of Y_{1} .
Lastly, we estimate Y_{3} . Since \lambda-n\delta_{1} < \alpha(0)\leq \alpha(\infty) , combining (3.24) and (3.14), we get
\begin{align*} Y_{3}&\lesssim \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0}\geq0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = 0}^{k_{0}}2^{k\alpha(\infty) q_{1}}\Big(\sum\limits_{j = k+1}^{\infty}(j-k)^{m}\|b\|_{\mathrm{BMO}}^{m}2^{n\delta_{1}(k-j)}\|f\|_{L^{p_{1}(\cdot)}(\omega^{p_{1}(\cdot)})}\Big)^{q_{1}}\\ &\lesssim \sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0}\geq0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = 0}^{k_{0}}2^{k\alpha(\infty) q_{1}}\Big(\sum\limits_{j = k+1}^{\infty}(j-k)^{m}\|b\|_{\mathrm{BMO}}^{m}2^{n\delta_{1}(k-j)}2^{j(\lambda-\alpha(\infty))}\|f\|_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}\Big)^{q_{1}}\\ &\lesssim \|b\|_{\mathrm{BMO}}^{mq_{1}}\|f\|^{q_{1}}_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}\sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0}\geq0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = 0}^{k_{0}}2^{k\alpha(\infty) q_{1}}\Big(\sum\limits_{j = k+1}^{\infty}(j-k)^{m}2^{n\delta_{1}(k-j)}2^{j(\lambda-\alpha(\infty))}\Big)^{q_{1}}\\ &\lesssim \|b\|_{\mathrm{BMO}}^{mq_{1}}\|f\|^{q_{1}}_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}\sup\limits_{\substack{k_{0}\in\mathbb{Z}\\k_{0}\geq0}}2^{-k_{0}\lambda q_{1}}\sum\limits_{k = 0}^{k_{0}}2^{k\lambda q_{1}}\Big(\sum\limits_{j = k+1}^{\infty}(j-k)^{m}2^{(j-k)(\lambda-n\delta_{1}-\alpha(\infty))}\Big)^{q_{1}}\\ &\lesssim \|b\|_{\mathrm{BMO}}^{mq_{1}}\|f\|^{q_{1}}_{\mathrm{M\dot{K}}_{q_{1},p_{1}(\cdot)}^{\alpha(\cdot), \lambda}(\omega^{p_{1}(\cdot)})}. \end{align*} |
The desired result is obtained by combining the estimates of Y_{1} , Y_{2} and Y_{3} .
This paper considers the boundedness for m th order commutators of n- dimensional fractional Hardy operators \mathcal{H}^{m}_{_{\beta, b}} and adjoint operators \mathcal{H}_{\beta, b}^{\ast m} on weighted variable exponent Morrey-Herz spaces \mathrm{M\dot{K}}_{q, p(\cdot)}^{\alpha(\cdot), \lambda}(\omega) . When m = 0 , our main result holds on weighted variable exponent Morrey-Herz space for fractional Hardy operators and generalizes the result of Asim et al. in [1, Theorems 4.2 and 4.3]. When m = 1 , our main result holds on weighted variable exponent Morrey-Herz space for commutators of the fractional Hardy operators and generalizes the result of Hussain et al. in [12, Theorems 18 and 19].
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This paper is supported by the National Natural Science Foundation of China (Grant No. 12161071), Qinghai Minzu University campus level project (Nos. 23GH29, 23GCC10).
All authors declare that they have no conflicts of interest.
[1] |
M. Asim, A. Hussain, N. Sarfraz, Weighted variable Morrey-Herz estimates for fractional Hardy operators, J. Inequal. Appl., 2022 (2022), 2. http://doi.org/10.1186/s13660-021-02739-z doi: 10.1186/s13660-021-02739-z
![]() |
[2] |
A. Almeida, D. Drihem, Maximal, potential and singular type operators on Herz spaces with variable exponent, J. Math. Anal. Appl., 394 (2012), 781–795. http://doi.org/10.1016/j.jmaa.2012.04.043 doi: 10.1016/j.jmaa.2012.04.043
![]() |
[3] | C. Bennett, R. Sharpley, Interpolation of operators, New York: Academic Press, 1988. |
[4] |
D. Cruz-Uribe, A. Fiorenza, C. J. Neugebauer, Weighted norm inequalities for the maximal operator on variable Lebesgue spaces, J. Math. Anal. Appl., 394 (2012), 744–760. http://doi.org/10.1016/j.jmaa.2012.04.044 doi: 10.1016/j.jmaa.2012.04.044
![]() |
[5] |
D. Cruz-Uribe, L. A. Wang, Extrapolation and weighted norm inequalities in the variable Lebesgue spaces, Trans. Amer. Math. Soc., 369 (2017), 1205–1235. http://doi.org/10.1090/tran/6730 doi: 10.1090/tran/6730
![]() |
[6] |
M. Chirst, L. Grafakos, Best constants for two nonconvolution inequalities, Trans. Amer. Math. Soc., 123 (1995), 1687–1693. http://doi.org/10.2307/2160978 doi: 10.2307/2160978
![]() |
[7] | D. Cruz-Uribe, A. Fiorenza, C. J. Neugebauer, The maximal function on variable L^{p} spaces, Ann. Acad. Sci. Fenn. Math., 28 (2003), 223–238. |
[8] |
L. Diening, Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces L^{p(\cdot)} and W^{k, p(\cdot)}, Math. Nachr., 268 (2004), 31–43. http://doi.org/10.1002/mana.200310157 doi: 10.1002/mana.200310157
![]() |
[9] |
Z. W. Fu, Z. G. Liu, S. Z. Lu, H. B. Wong, Characterization for commutators of n-dimensional fractional Hardy operators, Sci. China Ser. A: Math., 50 (2007), 1418–1426. http://doi.org/10.1007/s11425-007-0094-4 doi: 10.1007/s11425-007-0094-4
![]() |
[10] | L. Grafakos, Modern Fourier analysis, New York: Springer, 2009. https://doi.org/10.1007/978-0-387-09434-2 |
[11] |
G. H. Hardy, Note on a theorem of Hilbert, Math. Z., 6 (1920), 314–317. https://doi.org/10.1007/BF01199965 doi: 10.1007/BF01199965
![]() |
[12] |
A. Hussain, M. Asim, M. Aslam, F. Jarad, Commutators of the fractional Hardy operator on weighted variable Herz-Morrey spaces, J. Funct. spaces, 2021 (2021), 9705250. http://doi.org/10.1155/2021/9705250 doi: 10.1155/2021/9705250
![]() |
[13] | M. Izuki, Boundedness of vector-valued sublinear operators on Herz-Morrey spaces with variable exponent, Math. Sci. Res. J., 13 (2009), 243–253. |
[14] |
M. Izuki, Commutators of fractional integrals on Lebesgue and Herz spaces with variable exponent, Rend. Circ. Mat. Palermo, 59 (2010), 461–472. http://doi.org/10.1007/s12215-010-0034-y doi: 10.1007/s12215-010-0034-y
![]() |
[15] |
M. Izuki, T. Noi, Boundedness of fractional integrals on weighted Herz spaces with variable exponent, J. Inequal. Appl., 2016 (2016), 199. http://doi.org/10.1186/s13660-016-1142-9 doi: 10.1186/s13660-016-1142-9
![]() |
[16] | M. Izuki, Remarks on Muckebhoupt weights with variable exponent, J. Anal. Appl., 11 (2013), 27–41. |
[17] |
M. Izuki, T. Noi, Two weighted Herz space variable exponent, Bull. Malays. Math. Sci. Soc., 43 (2020), 169–200. https://doi.org/10.1007/s40840-018-0671-4 doi: 10.1007/s40840-018-0671-4
![]() |
[18] |
M. Izuki, Fractional integrals on Herz-Morrey spaces with variable exponent, Hiroshima Math. J., 40 (2010), 343–355. http://doi.org/10.32917/hmj/1291818849 doi: 10.32917/hmj/1291818849
![]() |
[19] | O. Kováčik, J. Rákosník, On spaces L^{p(x)} and W^{k, p(x)}, Czech. Math. J., 41 (1991), 592–618. |
[20] |
S. Long, J. wang, Commutators of Hardy operators, J. Math. Anal. Appl., 274 (2002), 626–644. http://doi.org/10.1016/S0022-247X(02)00321-9 doi: 10.1016/S0022-247X(02)00321-9
![]() |
[21] |
B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207–226. http://doi.org/10.1090/S0002-9947-1972-0293384-6 doi: 10.1090/S0002-9947-1972-0293384-6
![]() |
[22] | A. Nekvinda, Hardy-Littlewood maximal operator on L^{p(x)}(\mathbb{R}^{n}), Math. Inequal. Appl., 7 (2004), 255–265. |
[23] |
Q. W. Tao, On n-dimensional fractional Hardy operators and commutators in variable Herz-type spaces, Kyoto J. Math., 59 (2019), 419–439. http://doi.org/10.1215/21562261-2019-0011 doi: 10.1215/21562261-2019-0011
![]() |
[24] |
S. R. Wang, J. S. Xu, Commutators of bilinear Hardy operators on weighted Herz-Morrey spaces with variable exponent, Anal. Theory Appl., 37 (2021), 387–403. http://doi.org/10.4208/ata.2021.lu80.07 doi: 10.4208/ata.2021.lu80.07
![]() |
[25] |
D. Xiao, L. S. Shu, Boundedness of Marcinkiewicz integrals in weighted variable exponent Herz-Morrey spaces, Commun. Math. Res., 34 (2018), 371–382. http://doi.org/10.13447/j.1674-5647.2018.04.10 doi: 10.13447/j.1674-5647.2018.04.10
![]() |
[26] |
F. Y. Zhao, Z. W. Fu, S. Z. Lu, Endpoint estimates for n-dimensional Hardy operators and their commutators, Sci. China Math., 55 (2012), 1997–1990. http://doi.org/10.1007/s11425-012-4465-0 doi: 10.1007/s11425-012-4465-0
![]() |
[27] |
J. Zhou, D. H. Wang, Endpoint estimates for fractional Hardy operators and their commutators on Hardy spaces, J. Funct. Spaces, 2014 (2014), 272864. http://doi.org/10.1155/2014/272864 doi: 10.1155/2014/272864
![]() |
1. | Mingquan Wei, Yihao Hou, Dunyan Yan, Sharp Bounds for the m-linear Hardy Operator on Central Total Morrey Spaces, 2025, 22, 1660-5446, 10.1007/s00009-025-02814-5 |