This study presents a new and attractive analytical approach to treat systems with fractional multi-pantograph equations. We introduce the solution as a rapidly-converging series using the Laplace residual power series technique. This method controls the range of convergence and can be easily programmed to find many terms of the series coefficients by computer software. To show the efficiency and strength of the proposed method, we compare the results obtained in this study with those of the Homotopy analysis method and the residual power series technique. Furthermore, two exciting applications of fractional non-homogeneous pantograph systems are discussed in detail and solved numerically. We also present graphical simulations and analyses of the obtained results. Finally, we conclude that the obtained approximate solutions are very close to the exact solutions with a slight difference.
Citation: Ahmad Qazza, Rania Saadeh, Osama Ala'yed, Ahmad El-Ajou. Effective transform-expansions algorithm for solving non-linear fractional multi-pantograph system[J]. AIMS Mathematics, 2023, 8(9): 19950-19970. doi: 10.3934/math.20231017
[1] | Ahmad Mohammed Alghamdi, Sadek Gala, Maria Alessandra Ragusa . A regularity criterion of weak solutions to the 3D Boussinesq equations. AIMS Mathematics, 2017, 2(3): 451-457. doi: 10.3934/Math.2017.2.451 |
[2] | Wei Zhang . A priori estimates for the free boundary problem of incompressible inviscid Boussinesq and MHD-Boussinesq equations without heat diffusion. AIMS Mathematics, 2023, 8(3): 6074-6094. doi: 10.3934/math.2023307 |
[3] | Zhaoyang Shang . Osgood type blow-up criterion for the 3D Boussinesq equations with partial viscosity. AIMS Mathematics, 2018, 3(1): 1-11. doi: 10.3934/Math.2018.1.1 |
[4] | Sadek Gala, Maria Alessandra Ragusa . A logarithmically improved regularity criterion for the 3D MHD equations in Morrey-Campanato space. AIMS Mathematics, 2017, 2(1): 16-23. doi: 10.3934/Math.2017.1.16 |
[5] | Xinli Wang, Haiyang Yu, Tianfeng Wu . Global well-posedness and optimal decay rates for the n-D incompressible Boussinesq equations with fractional dissipation and thermal diffusion. AIMS Mathematics, 2024, 9(12): 34863-34885. doi: 10.3934/math.20241660 |
[6] | Feng Cheng . On the dissipative solutions for the inviscid Boussinesq equations. AIMS Mathematics, 2020, 5(4): 2869-2876. doi: 10.3934/math.2020184 |
[7] | Ahmad Mohammad Alghamdi, Sadek Gala, Jae-Myoung Kim, Maria Alessandra Ragusa . The anisotropic integrability logarithmic regularity criterion to the 3D micropolar fluid equations. AIMS Mathematics, 2020, 5(1): 359-375. doi: 10.3934/math.2020024 |
[8] | Xuemin Xue, Xiangtuan Xiong, Yuanxiang Zhang . Two fractional regularization methods for identifying the radiogenic source of the Helium production-diffusion equation. AIMS Mathematics, 2021, 6(10): 11425-11448. doi: 10.3934/math.2021662 |
[9] | Oussama Melkemi, Mohammed S. Abdo, Wafa Shammakh, Hadeel Z. Alzumi . Yudovich type solution for the two dimensional Euler-Boussinesq system with critical dissipation and general source term. AIMS Mathematics, 2023, 8(8): 18566-18580. doi: 10.3934/math.2023944 |
[10] | Ailing Ban . Asymptotic behavior of non-autonomous stochastic Boussinesq lattice system. AIMS Mathematics, 2025, 10(1): 839-857. doi: 10.3934/math.2025040 |
This study presents a new and attractive analytical approach to treat systems with fractional multi-pantograph equations. We introduce the solution as a rapidly-converging series using the Laplace residual power series technique. This method controls the range of convergence and can be easily programmed to find many terms of the series coefficients by computer software. To show the efficiency and strength of the proposed method, we compare the results obtained in this study with those of the Homotopy analysis method and the residual power series technique. Furthermore, two exciting applications of fractional non-homogeneous pantograph systems are discussed in detail and solved numerically. We also present graphical simulations and analyses of the obtained results. Finally, we conclude that the obtained approximate solutions are very close to the exact solutions with a slight difference.
This paper is concerned with the regularity criterion of the 3D Boussinesq equations with the incompressibility condition :
{∂tu+u⋅∇u−Δu+∇π=θe3,∂tθ+u⋅∇θ−Δθ=0,∇⋅u=0,(u,θ)(x,0)=(u0,θ0)(x),x∈R3, | (1.1) |
where u=u(x,t) and θ=θ(x,t) denote the unknown velocity vector field and the scalar function temperature, while u0, θ0 with ∇⋅u0=0 in the sense of distribution are given initial data. e3=(0,0,1)T. π=π(x,t) the pressure of fluid at the point (x,t)∈R3×(0,∞). The Boussinesq equation is one of important subjects for researches in nonlinear sciences [14]. There are a huge literatures on the incompressible Boussinesq equations such as [1,2,3,4,6,8,9,10,17,19,20,21,22] and the references therein.
When θ=0, (1.1) reduces to the well-known incompressible Navier-Stokes equations and many results are available. Besides their physical applications, the Navier-Stokes equations are also mathematically significant. From that time on, much effort has been devoted to establish the global existence and uniqueness of smooth solutions to the Navier-Stokes equations.
However, similar to the classic Navier-Stokes equations, the question of global regularity of the weak solutions of the 3D Boussinesq equations still remains a big open problem and the system (1.1) has received many studies. Based on some analysis technique, some regularity criteria via the velocity of weak solutions in the Lebesgue spaces, multiplier spaces and Besov spaces have been obtained in [5,17,19,20,22,23].
More recently, the authors of the present paper [7] showed that the weak solution becomes regular if
∫T0‖u(⋅,t)‖21−r.B−r∞,∞+‖θ(⋅,t)‖21−r.B−r∞,∞1+log(e+‖u(⋅,t)‖Hs+‖θ(⋅,t)‖Hs)dt<∞ for some 0≤r<1 and s≥12, | (1.2) |
where .B−r∞,∞ denotes the homogeneous Besov space. Definitions and basic properties of the Sobolev spaces and the Besov spaces can be find in [18]. For concision, we omit them here.
The purpose of this paper is to improve the regularity criterion (1.2) in the following form.
Theorem 1.1. Let (u,θ) be a smooth solution to (1.1) in [0,T) with the initial data (u0,θ0)∈H3(R3)×H3(R3) with divu0=0 in R3. Suppose that the solution (u,θ) satisfies
∫T0‖u(⋅,t)‖21−r.B−r∞,∞log(e+‖u(⋅,t)‖.B−r∞,∞)dt<∞ for some r with 0≤r<1. | (1.3) |
Then it holds
sup0≤t≤T(‖u(⋅,t)‖2H3+‖θ(⋅,t)‖2H3)<∞. |
That is, the solution (u,θ) can be smoothly extended after time t=T. In other word, if T∗ is the maximal time existence of the solution, then
∫T∗0‖u(⋅,t)‖21−r.B−r∞,∞log(e+‖u(⋅,t)‖.B−r∞,∞)dt<∞. |
Then the solution can be smoothly extended after t=T.
Remark 1.1. The condition (1.3) can be regarded as a logarithmically improved version of the assumption
∫T0‖u(⋅,t)‖21−r.B−r∞,∞dt<∞ for some r with 0≤r<1. |
For the case r=1, we have the following result.
Theorem 1.2. Let (u,θ) be a smooth solution to (1.1) in [0,T) with the initial data (u0,θ0)∈H3(R3)×H3(R3) with divu0=0 in R3. Suppose that there exists a small positive constant η such that
‖u(⋅,t)‖L∞(0,T;.B−1∞,∞(R3))≤η, | (1.4) |
then solution (u,θ) can be smoothly extended after time t=T.
Remark 1.2. Theorem 1.2 can be regarded as improvements and limiting cases of those in [7]. It is worth to point out all conditions are valid for the usual Navier-Stokes equations. We refer to a recent work [7] and references therein.
Remark 1.3. For the case r=0, see [23].
In this section, we will prove Theorem 1.1 by the standard energy method.
Let T>0 be a given fixed time. The existence and uniqueness of local smooth solutions can be obtained as in the case of the Navier-Stokes equations. Hence, for all T>0 we assume that (u,θ) is a smooth solution to (1.1) on [0,T) and we will establish a priori bounds that will allow us to extend (u,θ) beyond time T under the condition (1.3).
Owing to (1.3) holds, one can deduce that for any small ϵ>0, there exists T0=T0(ϵ)<T such that
∫TT0‖u(⋅,t)‖21−r.B−r∞,∞log(e+‖u(⋅,t)‖.B−r∞,∞) dt≤ϵ<<1. | (2.1) |
Thanks to the divergence-free condition ∇⋅u=0, from (1.1)2, we get immediately the global a priori bound for θ in any Lebesgue space
‖θ(⋅,t)‖Lq≤C‖θ0‖Lq for all q∈[2,∞] and all t∈[0,T]. |
Now, multiplying (1.1)2 by θ and using integration by parts, we get
12ddt‖θ‖2L2+‖∇θ‖2L2=0. |
Hence, we obtain
θ∈L∞(0,T;L2(R3))∩L2(0,T;H1(R3)). | (2.2) |
Next, multiplying (1.1)1 by u, we have after integration by part,
12ddt‖u‖2L2+‖∇u‖2L2=∫R3(θe3)⋅udx≤‖θ‖L2‖u‖L2≤C‖u‖L2, |
which yields
u∈L∞(0,T;L2(R3))∩L2(0,T;H1(R3)), | (2.3) |
where we used (2.2) and
∫R3(u⋅∇u)⋅udx=12∫R3(u⋅∇)u2dx=−12∫R3(∇⋅u)u2dx=0 |
by incompressibility of u, that is, ∇⋅u=0.
Now, apply ∇ operator to the equation of (1.1)1 and (1.1)2, then taking the inner product with ∇u and ∇θ, respectively and using integration by parts, we get
12ddt(‖∇u‖2L2+‖∇θ‖2L2)+‖Δu‖2L2+‖Δθ‖2L2=−∫R3∇(u⋅∇)u⋅∇udx+∫R3∇(θe3)⋅∇udx−∫R3∇(u⋅∇)θ⋅∇θdx=I1+I2+I3. | (2.4) |
Employing the Hölder and Young inequalities, we derive the estimation of the first term I1 as
I1=∫R3(u⋅∇)u⋅Δudx≤‖∇⋅(u⊗u)‖L2‖Δu‖L2≤C‖u‖.B−r∞,∞‖∇u‖⋅Hr‖Δu‖L2≤C‖u‖.B−r∞,∞‖∇u‖1−rL2‖Δu‖1+rL2≤12‖Δu‖2L2+C‖u‖21−r.B−r∞,∞‖∇u‖2L2≤12‖Δu‖2L2+C‖u‖21−r.B−r∞,∞(‖∇u‖2L2+‖∇θ‖2L2), |
where we have used the inequality due to [16] :
‖u⊗u‖⋅H1≤C‖u‖.B−r∞,∞‖∇u‖⋅Hr |
and the interpolation inequality
‖w‖.Hs=‖|ξ|sˆw‖L2≤‖w‖1−sL2‖∇w‖sL2 for all 0≤s≤1. |
The term I3 can be estimated as
I3≤C‖∇u‖L2‖∇θ‖2L4≤C‖∇u‖L2‖∇θ‖.B−1∞,∞‖Δθ‖L2≤C‖∇u‖L2‖θ‖.B0∞,∞‖Δθ‖L2≤12‖Δθ‖2L2+C‖θ‖2L∞‖∇u‖2L2≤12‖Δθ‖2L2+C‖θ‖2L∞(‖∇u‖2L2+‖∇θ‖2L2), |
where we have used
‖∇θ‖.B−1∞,∞≤C‖θ‖.B0∞,∞≤C‖θ‖L∞. |
The term I2 can be estimated as
I2≤‖∇u‖L2‖∇θ‖L2≤12(‖∇u‖2L2+‖∇θ‖2L2). |
Plugging all the estimates into (2.4) yields that
ddt(‖∇u‖2L2+‖∇θ‖2L2)+‖Δu‖2L2+‖Δθ‖2L2≤C(12+‖u‖21−r.B−r∞,∞+‖θ‖2L∞)(‖∇u‖2L2+‖∇θ‖2L2). |
Hence, we obtain
ddt(‖∇u(⋅,t)‖2L2+‖∇θ(⋅,t)‖2L2)+‖Δu‖2L2+‖Δθ‖2L2≤C[12+‖u‖21−r.B−r∞,∞+‖θ‖2L∞log(e+‖u‖.B−r∞,∞)](‖∇u‖2L2+‖∇θ‖2L2)log(e+‖u‖.B−r∞,∞)≤C[12+‖u‖21−r.B−r∞,∞+‖θ‖2L∞log(e+‖u‖.B−r∞,∞)](‖∇u‖2L2+‖∇θ‖2L2)log(e+‖u‖H3+‖θ‖H3)≤C[12+‖u‖21−r.B−r∞,∞+‖θ‖2L∞log(e+‖u‖.B−r∞,∞)](‖∇u‖2L2+‖∇θ‖2L2)log(e+κ(t)) |
where κ(t) is defined by
κ(t)=supT0≤τ≤t(‖u(⋅,τ)‖H3+‖θ(⋅,τ)‖H3)forallT0<t<T. |
It should be noted that the function κ(t) is nondecreasing. Moreover, we have used the following fact :
‖u‖.B−r∞,∞≤C‖u‖H3. |
Integrating the above inequality over [T0,t] and applying Gronwall's inequality, we have
‖∇u(⋅,t)‖2L2+‖∇θ(⋅,t)‖2L2+∫tT∗‖Δu(⋅,τ)‖2L2+‖Δθ(⋅,τ)‖2L2dτ≤(‖∇u(⋅,T0)‖2L2+‖∇θ(⋅,T0)‖2L2)×exp(C∫tT0‖u‖21−r.B−r∞,∞log(e+‖u(⋅,τ)‖.B−r∞,∞)log(e+κ(τ))dτ)≤(‖∇u(⋅,T0)‖2L2+‖∇θ(⋅,T0)‖2L2)×exp(Clog(e+κ(t))∫tT0‖u‖21−r.B−r∞,∞log(e+‖u(⋅,τ)‖.B−r∞,∞)dτ)≤˜Cexp(Cϵlog(e+κ(t)))=˜C(e+κ(t))Cϵ | (2.5) |
where ˜C is a positive constant depending on ‖∇u(⋅,T0)‖2L2, ‖∇θ(⋅,T0)‖2L2, T0, T and θ0.
H3−norm. Next, we start to obtain the H3−estimates under the above estimate (2.5). Applying Λ3=(−Δ)32 to (1.1)1, then taking L2 inner product of the resulting equation with Λ3u, and using integration by parts, we obtain
12ddt‖Λ3u(⋅,t)‖2L2+‖Λ4u(⋅,t)‖2L2=−∫R3Λ3(u⋅∇u)⋅Λ3udx+∫R3Λ3(θe3)⋅Λ3udx | (2.6) |
Similarly, applying Λ3=(−Δ)32 to (1.1)2, then taking L2 inner product of the resulting equation with Λ3θ, and using integration by parts, we obtain
12ddt‖Λ3θ(⋅,t)‖2L2+‖Λ4θ(⋅,t)‖2L2=−∫R3Λ3(u⋅∇θ)⋅Λ3θdx, | (2.7) |
Using ∇⋅u=0, we deduce that
12ddt(‖Λ3u(⋅,t)‖2L2+‖Λ3θ(⋅,t)‖2L2)+‖Λ4u(⋅,t)‖2L2+‖Λ4θ(⋅,t)‖2L2=−∫R3[Λ3(u⋅∇u)−u⋅Λ3∇u]⋅Λ3udx+∫R3Λ3(θe3)⋅Λ3udx−∫3R3[Λ3(u⋅∇θ)−u⋅Λ3∇θ]⋅Λ3θdx=Π1+Π2+Π3. | (2.8) |
To bound Π1, we recall the following commutator estimate due to [12]:
‖Λα(fg)−fΛαg‖Lp≤C(‖Λα−1g‖Lq1‖∇f‖Lp1+‖Λαf‖Lp2‖g‖Lq2), | (2.9) |
for α>1, and 1p=1p1+1q1=1p2+1q2. Hence Π1 can be estimated as
Π1≤C‖∇u‖L3‖Λ3u‖2L3≤C‖∇u‖34L2‖Λ3u‖14L2‖∇u‖13L2‖Λ4u‖53L2≤16‖Λ4u‖2L2+C‖∇u‖132L2‖Λ3u‖32L2, | (2.10) |
where we used (2.9) with α=3,p=32, p1=q1=p2=q2=3, and the following Gagliardo-Nirenberg inequalities
{‖∇u‖L3≤C‖∇u‖34L2‖Λ3u‖14L2,‖Λ3u‖L3≤C‖∇u‖16L2‖Λ4u‖56L2. | (2.11) |
If we use the existing estimate (2.1) for T0≤t<T, (2.10) reduces to
Π1≤12‖Λ4u‖2L2+˜C(e+κ(t))32+132Cϵ. | (2.12) |
Using (2.11) again, we get
Π3≤C(‖∇u‖L3‖Λ3θ‖L3+‖∇θ‖L3‖Λ3u‖L3)‖Λ3θ‖L3≤C(‖∇u‖L3+‖∇θ‖L3)(‖Λ3u‖2L3+‖Λ3θ‖2L3)≤16(‖Λ4u‖2L2+‖Λ4θ‖2L2)+˜C(e+κ(t))32+132Cϵ. |
For Π2, we have
Π2≤12(‖Λ3u‖2L2+‖Λ3θ‖2L2)≤˜C(e+κ(t))2. |
Inserting all the inequalities into (2.8) and absorbing the dissipative terms, one finds
ddt(‖Λ3u(⋅,t)‖2L2+‖Λ3θ(⋅,t)‖2L2)≤˜C(e+κ(t))32+132Cϵ+˜C(e+κ(t))2, | (2.13) |
with together with the basic energy (2.2)-([2.3]) yields
ddt(‖u(⋅,t)‖2H3+‖θ(⋅,t)‖2H3)≤˜C(e+κ(t))32+132Cϵ+˜C(e+κ(t))2, | (2.14) |
Choosing ϵ sufficiently small provided that 132Cϵ<12 and applying the Gronwall inequality to (2.14), we derive that
supT0≤τ≤t(‖u(⋅,τ)‖2H3+‖θ(⋅,τ)‖2H3)≤˜C<∞, | (2.15) |
where ˜C depends on ‖∇u(⋅,T0)‖2L2 and ‖∇θ(⋅,T0)‖2L2.
Noting that the right-hand side of (2.15) is independent of t for , we know that (u(⋅,T),θ(⋅,T))∈H3(R3)×H3(R3). Consequently, (u,θ) can be extended smoothly beyond t=T. This completes the proof of Theorem 1.1.
In order to prove Theorem 1.2, we first recall the following local existence theorem of the three-dimensional Boussinesq equations.
Lemma 3.1. Suppose (u,θ)∈Lα(R3), for some α≥3 and ∇⋅u=0. Then, there exists T0>0 and a unique solution of (1.1) on [0,T0) such that
(u,θ)∈BC([0,T0);Lα(R3))∩Ls([0,T0);Lr(R3)),t1su∈BC([0,T0);Lα(R3)) | (3.1) |
Moreover, let (0,T∗) be the maximal interval such that (u,θ) solves (1.1) in C((0,T∗);Lα(R3)), α>3. Then for any t∈(0,T∗)
‖u(⋅,t)‖Lα≥C(T∗−t)α−32α and ‖θ(⋅,t)‖Lα≥C(T∗−t)α−32α, |
with the constant C independent of T∗ and α.
Let (u,θ) be a strong solution satisfying
(u,θ)∈Lα((0,T);Lβ(R3)) for 2α+3β=1 and β>3. |
Then (u,θ) belongs to C∞(R3×(0,T)).
Proof. For all T>0, we assume that (u,θ) is a smooth solution to (1.1) on [0,T) and we will establish a priori bounds that will allow us to extend (u,θ) beyond time T under the condition (1.4).
Similar to the proof of Theorem 1.1, we can show that
(u,θ)∈L∞(0,T;L2(R3))∩L2(0,T;H1(R3)). | (3.2) |
The proof of Theorem 1.2 is divided into steps.
Step Ⅰ. H1−estimation. In order to get the H1−estimates, we apply ∇ operator to the equation of (1.1)1 and (1.1)2, multiply by ∇u and ∇θ, respectively to obtain
12ddt(‖∇u(⋅,t)‖2L2+‖∇θ(⋅,t)‖2L2)+‖Δu(⋅,t)‖2L2+‖Δθ(⋅,t)‖2L2=−∫R3∇(u⋅∇)u⋅∇udx+∫R3∇(θe3)⋅∇udx−∫R3∇(u⋅∇)θ⋅∇θdx=I1+I2+I3. | (3.3) |
Next we estimate I1,I2 and I3 in another way. Hence,
I1≤‖∇u‖3L3≤C‖∇u‖.B−2∞,∞‖Δu‖2L2≤C‖u‖.B−1∞,∞‖Δu‖2L2, |
where we have used the following interpolation inequality due to [16] :
‖w‖L3≤C‖∇w‖23L2‖w‖13.B−2∞,∞. |
By means of the Hölder and Young inequalities, the term I3 can be estimated as
I3≤C‖∇u‖L2‖∇θ‖2L4≤C‖∇u‖L2‖∇θ‖.B−1∞,∞‖Δθ‖L2≤C‖θ‖2.B0∞,∞‖Δθ‖2L2+C‖∇u‖2L2≤C‖θ‖2L∞‖Δθ‖2L2+C‖∇u‖2L2, |
where we have used the following interpolation inequality due to [16] :
‖∇θ‖2L4≤C‖∇θ‖.B−1∞,∞‖Δθ‖L2. |
The term I2 can be estimated as
I2≤‖∇u‖L2‖∇θ‖L2≤12(‖∇u‖2L2+‖∇θ‖2L2). |
Plugging all the estimates into (3.3) yields that
12ddt(‖∇u(⋅,t)‖2L2+‖∇θ(⋅,t)‖2L2)+‖Δu(⋅,t)‖2L2+‖Δθ(⋅,t)‖2L2≤C‖u‖.B−1∞,∞‖Δu‖2L2+C‖θ‖2L∞‖Δθ‖2L2+C(‖∇u‖2L2+‖∇θ‖2L2). |
Under the assumption (1.4), we choose η small enough so that
C‖u‖.B−1∞,∞≤12 . |
Hence, we find that
ddt(‖∇u‖2L2+‖∇θ‖2L2)+‖Δu‖2L2+‖Δθ‖2L2≤C(‖∇u‖2L2+‖∇θ‖2L2). |
Integrating in time and applying the Gronwall inequality, we infer that
‖∇u(⋅,t)‖2L2+‖∇θ(⋅,t)‖2L2+∫T0(‖Δu(⋅,τ)‖2L2+‖Δθ(⋅,τ)‖2L2)dτ≤C. | (3.4) |
Step Ⅱ. H2−estimation. Next, we start to obtain the H2−estimates under the above estimate (3.4). Applying Δ to (1.1)1, then taking L2 inner product of the resulting equation with Δu, and using integration by parts, we obtain
12ddt‖Δu(⋅,t)‖2L2+‖Λ3u(⋅,t)‖2L2=−∫R3Δ(u⋅∇u)⋅Δudx+∫R3Δ(θe3)⋅Δudx | (3.5) |
Similarly, applying Δ to (1.1)2, then taking L2 inner product of the resulting equation with Δθ, and using integration by parts, we obtain
12ddt‖Δθ(⋅,t)‖2L2+‖Λ3θ(⋅,t)‖2L2=−∫R3Δ(u⋅∇θ)⋅Δθdx. | (3.6) |
Adding (3.5) and (3.6), we deduce that
12ddt(‖Δu(⋅,t)‖2L2+‖Δθ(⋅,t)‖2L2)+‖Λ3u(⋅,t)‖2L2+‖Λ3θ(⋅,t)‖2L2=−∫R3Δ(u⋅∇u)⋅Δudx+∫R3Δ(θe3)⋅Δudx−∫R3Δ(u⋅∇θ)⋅Δθdx=K1+K2+K3. | (3.7) |
Using Hölder's inequality and Young's inequality, K1 can be estimated as
K1=∫R3Δ(u⊗u)⋅Δ∇udx≤‖Δ(u⊗u)‖L2‖Δ∇u‖L2≤C‖u‖L∞‖Δu‖L2‖Λ3u‖L2≤12‖Λ3u‖2L2+C‖u‖2L∞‖Δu‖2L2. |
Here we have used the bilinear estimates due to Kato-Ponce [12] and Kenig-Ponce-Vega [13]:
‖Λα(fg)‖Lp≤C(‖Λαg‖Lq1‖f‖Lp1+‖Λαf‖Lp2‖g‖Lq2), |
for α>0, and 1p=1p1+1q1=1+1q2.
From the incompressibility condition, Hölder's inequality and Young's inequality, one has
K3=∫R3Δ(uθ)⋅Δ∇θdx≤‖Δ(uθ)‖L2‖Δ∇θ‖L2≤C(‖u‖L∞‖Δθ‖L2+‖θ‖L∞‖Δu‖L2)‖Λ3θ‖L2≤12‖Λ3θ‖2L2+C(‖u‖2L∞+‖θ‖2L∞)(‖Δu‖2L2+‖Δθ‖2L2). |
For K2, we have
K2≤12(‖Δu‖2L2+‖Δθ‖2L2) |
Inserting all the inequalities into (3.7) and absorbing the dissipative terms, one finds
ddt(‖Δu(⋅,t)‖2L2+‖Δθ(⋅,t)‖2L2)+‖Λ3u(⋅,t)‖2L2+‖Λ3θ(⋅,t)‖2L2≤C(‖u‖2L∞+‖θ‖2L∞)(‖Δu‖2L2+‖Δθ‖2L2). | (3.8) |
Using the following interpolation inequality
‖f‖L∞≤C‖f‖14L2‖Δf‖34L2, |
together with the key estimate (3.4) yield that
∫T0(‖u(⋅,τ)‖2L∞+‖θ(⋅,τ)‖2L∞)dτ≤C<∞. |
Applying the Gronwall inequality to (3.8), we derive that
‖Δu(⋅,t)‖2L2+‖Δθ(⋅,t)‖2L2+∫T0(‖Λ3u(⋅,t)‖2L2+‖Λ3θ(⋅,t)‖2L2)dt≤C. | (3.9) |
By estimates (3.4) and (3.9) as well as the following Gagliardo-Nirenberg's inequality
‖f‖L6≤C‖f‖12L2‖Δf‖12L2, |
it is easy to see that
(u,θ)∈L4(0,T;L6(R3)), |
from which and Lemma 3.1 the smoothness of (u,θ) follows immediately. This completes the proof of Theorem 1.2.
Part of the work was carried out while the first author was long term visitor at University of Catania. The hospitality and support of Catania University are graciously acknowledged.
All authors would like to thank Professor Bo-Qing Dong for helpful discussion and constant encouragement. They also would like to thank the anonymous reviewers for their valuable comments and suggestions to improve the quality of the paper.
All authors declare no conflicts of interest in this paper.
[1] |
M. A. Matlob, Y. Jamali, The concepts and applications of fractional order differential calculus in modeling of viscoelastic systems: A primer, Crit. Rev. Biomed. Eng., 47 (2019), 249–276. https://doi.org/10.1615/CritRevBiomedEng.2018028368 doi: 10.1615/CritRevBiomedEng.2018028368
![]() |
[2] | Y. Yu, Fluid-structure interaction modeling in 3d cerebral arteries and aneurysms, Biomedical Technology Springer, Cham, 2018,123–146. https://doi.org/10.1007/978-3-319-59548-1_8 |
[3] |
C. S. Drapaca, Poiseuille flow of a non-local non-Newtonian fluid with wall slip: A first step in modeling cerebral microaneurysms, Fractal Frac., 6 (2018), 1–9. https://doi.org/10.3390/fractalfract2010009 doi: 10.3390/fractalfract2010009
![]() |
[4] |
M. A. Yin, A. Yazdani, G. E. Karniadakis, One-dimensional modeling of fractional flow reserve in coronary artery disease: Uncertainty quantification and Bayesian optimization, Comput. Method. Appl. Mech. Eng., 15 (2019), 66–85. https://doi.org/10.1016/j.cma.2019.05.005 doi: 10.1016/j.cma.2019.05.005
![]() |
[5] |
A. Al‐khateeb, H. Zureigat, O. Ala'yed, S. Bawaneh, Ulam-Hyers stability and uniqueness for nonlinear sequential fractional differential equations involving integral boundary conditions, Fractal Fract., 5 (2021), 235. https://doi.org/10.3390/fractalfract5040235 doi: 10.3390/fractalfract5040235
![]() |
[6] |
X. Li, Y. Sun, Application of RBF neural network optimal segmentation algorithm in credit rating, Neural Comput. Appl., 33 (2021), 8227–8235. https://doi.org/10.1007/s00521-020-04958-9 doi: 10.1007/s00521-020-04958-9
![]() |
[7] |
X. Qin, Z. Liu, Y. Liu, S. Liu, B. Yang, L. Yin, et al., User OCEAN personality model construction method using a BP neural network, Electronics, 11 (2022), 3022. https://doi.org/10.3390/electronics11193022 doi: 10.3390/electronics11193022
![]() |
[8] |
H. Y. Jin, Z. A. Wang, L. Wu, Global dynamics of a three-species spatial food chain model, J. Differ. Equ., 333 (2022), 144–183. https://doi.org/10.1016/j.jde.2022.06.007 doi: 10.1016/j.jde.2022.06.007
![]() |
[9] |
H. Y. Jin, Z. A. Wang, L. Wu, Global stabilization of the full attraction-repulsion Keller-Segel system, Discrete Contin. Dyn. Syst., 40 (2020), 3509–3527. https://doi.org/10.3934/dcds.2020027 doi: 10.3934/dcds.2020027
![]() |
[10] |
C. C. Hou, T. E. Simos, I. T. Famelis, Neural network solution of pantograph type differential equations, Math. Method. Appl. Sci., 43 (2020), 3369–3374. https://doi.org/10.1002/mma.6126 doi: 10.1002/mma.6126
![]() |
[11] |
J. Alzabut, A. Selvam, R. A. El-Nabulsi, V. Dhakshinamoorthy, M. E. Samei, Asymptotic stability of nonlinear discrete fractional pantograph equations with non-local initial conditions, Symmetry, 13 (2021), 473. https://doi.org/10.3390/sym13030473 doi: 10.3390/sym13030473
![]() |
[12] |
M. Arnold, B. Simeon, Pantograph and catenary dynamics: A benchmark problem and its numerical solution, Appl. Numer. Math., 34 (2000), 345–362. https://doi.org/10.1016/S0168-9274(99)00038-0 doi: 10.1016/S0168-9274(99)00038-0
![]() |
[13] |
W. G. Ajello, H. I. Freedman, J. Wu, A model of stage structured population growth with density depended time delay, SIAM J. Appl. Math., 52 (1992), 855–869. https://doi.org/10.1137/0152048 doi: 10.1137/0152048
![]() |
[14] |
M. D. Buhmann, A. Iserle, Stability of the discretized pantograph differential equation, J. Math. Comput., 60 (1993), 575–589. https://doi.org/10.1090/S0025-5718-1993-1176707-2 doi: 10.1090/S0025-5718-1993-1176707-2
![]() |
[15] |
J. R. Ockendon, A. B. Tayler, The dynamics of a current collection system for an electric locomotive, Proc. R. Soc. Lond. Ser. A, 322 (1971), 447–468. https://doi.org/10.1098/rspa.1971.0078 doi: 10.1098/rspa.1971.0078
![]() |
[16] |
S. Widatalla, M. A. Koroma, Approximation algorithm for a system of pantograph equations, J. Appl. Math., 2012 (2012), 1–9. https://doi.org/10.1155/2012/714681 doi: 10.1155/2012/714681
![]() |
[17] |
D. Li, M. Z. Liu, Runge-Kutta methods for the multi-pantograph delay equation, Appl. Math. Comput., 163 (2005), 383–395. https://doi.org/10.1016/j.amc.2004.02.013 doi: 10.1016/j.amc.2004.02.013
![]() |
[18] |
M. Sezer, N. Şahin, Approximate solution of multi-pantograph equation with variable coefficients, J. Comput. Appl. Math., 214 (2008), 406–416. https://doi.org/10.1016/j.cam.2007.03.024 doi: 10.1016/j.cam.2007.03.024
![]() |
[19] |
M. Z. Liu, D. Li, Properties of analytic solution and numerical solution of multi-pantograph equation, Appl. Math. Comput., 155 (2004), 853–871. https://doi.org/10.1016/j.amc.2003.07.017 doi: 10.1016/j.amc.2003.07.017
![]() |
[20] |
C. Yang, Modified Chebyshev collocation method for pantograph-type differential equations, Appl. Numer. Math., 134 (2018), 132–144. https://doi.org/10.1016/j.apnum.2018.08.002 doi: 10.1016/j.apnum.2018.08.002
![]() |
[21] |
Z. Avazzadeh, M. H. Heydari, M. R. Mahmoudi, An approximate approach for the generalized variable-order fractional pantograph equation, Alex. Eng. J., 59 (2020), 2347–2354. https://doi.org/10.1016/j.aej.2020.02.028 doi: 10.1016/j.aej.2020.02.028
![]() |
[22] |
M. S. Hashemi, E. Ashpazzadeh, M. Moharrami, M. Lakestani, Fractional order Alpert multiwavelets for discretizing delay fractional differential equation of pantograph type, Appl. Numer. Math., 170 (2021), 1–13. https://doi.org/10.1016/j.apnum.2021.07.015 doi: 10.1016/j.apnum.2021.07.015
![]() |
[23] |
S. S. Ezz-Eldien, On solving systems of multi-pantograph equations via spectral tau method, Appl. Math. Comput., 321 (2018), 63–73. https://doi.org/10.1016/j.amc.2017.10.014 doi: 10.1016/j.amc.2017.10.014
![]() |
[24] |
Ş. Yüzbaşı, An efficient algorithm for solving multi-pantograph equation systems, Appl. Math. Comput., 64 (2012). 589–603. https://doi.org/10.1016/j.camwa.2011.12.062 doi: 10.1016/j.camwa.2011.12.062
![]() |
[25] |
R. Saadeh, A reliable algorithm for solving system of multi-pantograph equations, WSEAS Trans. Math., 21 (2022), 792–800. https://doi.org/10.37394/23206.2022.21.91 doi: 10.37394/23206.2022.21.91
![]() |
[26] |
O. Mohammed, H. Salim, Computational methods based Laplace decomposition for solving nonlinear system of fractional order differential equations, Alex. Eng. J., 57 (2018), 3549–3557. https://doi.org/10.1016/j.aej.2017.11.020 doi: 10.1016/j.aej.2017.11.020
![]() |
[27] | M. Zurigat, Solving Fractional oscillators using Laplace homotopy analysis method, Ann. Univ. Craiova Math. Comput., 38 (2011), 1–11. |
[28] |
J. Prakash, M. Kothandapani, V. Bharathi, Numerical approximations of nonlinear fractional differential difference equations by using modified He-Laplace method, Alex. Eng. J., 55 (2016), 645–651. https://doi.org/10.1016/j.aej.2015.12.006 doi: 10.1016/j.aej.2015.12.006
![]() |
[29] |
A. El-Ajou, Adapting the Laplace transform to create solitary solutions for the nonlinear time-fractional dispersive PDEs via a new approach, Eur. Phys. J. Plus., 136 (2021), 229. https://doi.org/10.1140/epjp/s13360-020-01061-9 doi: 10.1140/epjp/s13360-020-01061-9
![]() |
[30] |
T. Eriqat, A. El-Ajou, M. N. Oqielat, Z. Al-Zhour, S. Momani, A new attractive analytic approach for solutions of linear and nonlinear neutral fractional pantograph equations, Chaos Soliton. Fract., 138 (2020), 109957. https://doi.org/10.1016/j.chaos.2020.109957 doi: 10.1016/j.chaos.2020.109957
![]() |
[31] |
R. Saadeh, A. Burqan, A. El-Ajou, Reliable solutions to fractional Lane-Emden equations via LT and residual error function, Alex. Eng. J., 61 (2022), 10551–10562. https://doi.org/10.1016/j.aej.2022.04.004 doi: 10.1016/j.aej.2022.04.004
![]() |
[32] |
E. Salah, A. Qazza, R. Saadeh, A. El-Ajou, A hybrid analytical technique for solving multi-dimensional time-fractional Navier-Stokes system, AIMS Math., 8 (2023), 1713–1736. https://doi.org/10.3934/math.2023088 doi: 10.3934/math.2023088
![]() |
[33] |
T. Eriqat, M. Oqielat, Z. Al-Zhour, A. El-Ajou, A. Bataineh, Revisited Fisher's equation and logistic system model: A new fractional approach and some modifications, Int. J. Dyn. Control., 2022 (2022). https://doi.org/10.1007/s40435-022-01020-5 doi: 10.1007/s40435-022-01020-5
![]() |
[34] | T. Humphries, Delay differential equations, In: 2016 NZMRI Summer School Continuation Methods in Dynamical Systems Raglan, New Zealand, 2016. |
[35] |
R. Saadeh, A. Qazza, K. Amawi, A new approach using integral transform to solve cancer models, Fractal Fract., 6 (2022), 490. https://doi.org/10.3390/fractalfract6090490 doi: 10.3390/fractalfract6090490
![]() |
[36] |
B. K. Singh, S. Agrawal, Study of time fractional proportional delayed multi‐pantograph system and integro‐differential equations, Math. Method. Appl. Sci., 45 (2022), 8305–8328. https://doi.org/10.1002/mma.8335 doi: 10.1002/mma.8335
![]() |
[37] |
Z. Gong, C. Liu, K. L. Teo, X. Yi, Optimal control of nonlinear fractional systems with multiple pantograph‐delays, Appl. Math. Comput., 425 (2022), 127094. https://doi.org/10.1016/j.amc.2022.127094 doi: 10.1016/j.amc.2022.127094
![]() |
[38] |
M. Inc, The approximate and exact solutions of the space- and time-fractional Burgers equations with initial conditions by variational iteration method, J. Math. Anal. Appl., 345 (2008), 476–484. https://doi.org/10.1016/j.jmaa.2008.04.007 doi: 10.1016/j.jmaa.2008.04.007
![]() |
[39] |
S. Hasan, A. El-Ajou, S. Hadid, M. Al-Smadi, S. Momanid, Atangana-Baleanu fractional framework of reproducing kernel technique in solving fractional population dynamics system, Chaos Soliton. Fract., 133 (2020), 109624. https://doi.org/10.1016/j.chaos.2020.109624 doi: 10.1016/j.chaos.2020.109624
![]() |
[40] |
S. Ray, R. K. Bera, An approximate solution of a nonlinear fractional differential equation by Adomian decomposition method, Appl. Math. Comput., 167 (2005), 561–571. https://doi.org/10.1016/j.amc.2004.07.020 doi: 10.1016/j.amc.2004.07.020
![]() |
[41] |
Y. Zhang, A finite difference method for fractional partial differential equation, Appl. Math. Comput., 215 (2009), 524–529. https://doi.org/10.1016/j.amc.2009.05.018 doi: 10.1016/j.amc.2009.05.018
![]() |
[42] |
Q. Wang, Homotopy perturbation method for fractional KdV-Burgers equation, Chaos Soliton. Fract., 35 (2008), 843–850. https://doi.org/10.1016/j.chaos.2006.05.074 doi: 10.1016/j.chaos.2006.05.074
![]() |
[43] |
I. Hashim, O. Abdulaziz, S. Momani, Homotopy analysis method for fractional IVPs, Commun. Nonlinear Sci., 14 (2009), 674–684. https://doi.org/10.1016/j.cnsns.2007.09.014 doi: 10.1016/j.cnsns.2007.09.014
![]() |
[44] |
H. Rezazadeh, S. M. Mirhosseini-Alizamini, A. Neirameh, A. Souleymanou, A. Korkmaz, A. Bekir, Fractional Sine-Gordon equation approach to the coupled higgs system defined in time-fractional form, Iran. J. Sci. Technol. A, 43 (2019), 2965–2973. https://doi.org/10.1007/s40995-019-00780-8 doi: 10.1007/s40995-019-00780-8
![]() |
[45] |
A. Jafarian, M. Mokhtarpour, D. Baleanu, Artificial neural network approach for a class of fractional ordinary differential equation, Neural. Comput. Appl., 28 (2017), 765–773. https://doi.org/10.1007/s00521-015-2104-8 doi: 10.1007/s00521-015-2104-8
![]() |
[46] |
A. El-Ajou, M. Oqielat, Z. Al-Zhour, S. Momani, A class of linear non-homogenous higher order matrix fractional differential equations: analytical solutions and new technique, Fract. Calc. Appl. Anal., 23 (2020), 356–377. https://doi.org/10.1515/fca-2020-0017 doi: 10.1515/fca-2020-0017
![]() |
[47] |
A. El-Ajou, Taylor's expansion for fractional matrix functions: Theory and applications, J. Math. Comput. Sci., 21 (2020), 1–17. https://doi.org/10.22436/jmcs.021.01.01 doi: 10.22436/jmcs.021.01.01
![]() |
[48] |
A. Burqan, R. Saadeh, A. Qazza, S. Momani, ARA-residual power series method for solving partial fractional differential equations, Alex. Eng. J., 62 (2022), 47–62. https://doi.org/10.1016/j.aej.2022.07.022 doi: 10.1016/j.aej.2022.07.022
![]() |
[49] | D. V. Widder, Laplace transform (PMS-6), Princeton University Press, 64 (2015). |
[50] |
A. Qazza, R. Saadeh, On the analytical solution of fractional SIR epidemic model, Appl. Comput. Intell. Soft Comput., 2023 (2023). https://doi.org/10.1155/2023/6973734 doi: 10.1155/2023/6973734
![]() |
[51] | I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999. |
[52] |
E. Salah, R. Saadeh, A. Qazza, R. Hatamleh, Direct power series approach for solving nonlinear initial value problems, Axioms, 12 (2023), 111. https://doi.org/10.3390/axioms12020111 doi: 10.3390/axioms12020111
![]() |
[53] |
A. Qazza, Solution of integral equations via Laplace ARA transform, Eur. J. Pure Appl. Math., 16 (2023), 919–933. https://doi.org/10.29020/nybg.ejpam.v16i2.4745 doi: 10.29020/nybg.ejpam.v16i2.4745
![]() |
[54] |
R. Saadeh, A generalized approach of triple integral transforms and applications, J. Math., 2023 (2023). https://doi.org/10.1155/2023/4512353 doi: 10.1155/2023/4512353
![]() |
[55] |
R. Luo, Z. Peng, J. Hu, On model identification based optimal control and it's applications to multi-agent learning and control, Mathematics, 11 (2023), 906. https://doi.org/10.3390/math11040906 doi: 10.3390/math11040906
![]() |
1. | Sadek Gala, Maria Alessandra Ragusa, A Regularity Criterion of Weak Solutions to the 3D Boussinesq Equations, 2020, 51, 1678-7544, 513, 10.1007/s00574-019-00162-z | |
2. | Zhouyu Li, Wenjuan Liu, Qi Zhou, Conditional Regularity for the 3D Damped Boussinesq Equations with Zero Thermal Diffusion, 2024, 55, 1678-7544, 10.1007/s00574-024-00411-w |