Loading [MathJax]/extensions/TeX/mathchoice.js
Research article Special Issues

On a coupled system of fractional (p,q)-differential equation with Lipschitzian matrix in generalized metric space

  • This work is concerned with the study of the existing solution for the fractional (p,q)-difference equation under first order (p,q)-difference boundary conditions in generalized metric space. To achieve the solution, we combine some contraction techniques in fixed point theory with the numerical techniques of the Lipschitz matrix and vector norms. To do this, we first associate a matrix to a desired boundary value problem. Then we present sufficient conditions for the convergence of this matrix to zero. Also, we design some algorithms to use the computer for calculate the eigenvalues of such matrices and different values of (p,q)-Gamma function. Finally, by presenting two numerical examples, we examine the performance and correctness of the proposed method. Some tables and figures are provided to better understand the issues.

    Citation: Abdellatif Boutiara, Jehad Alzabut, Mehran Ghaderi, Shahram Rezapour. On a coupled system of fractional (p,q)-differential equation with Lipschitzian matrix in generalized metric space[J]. AIMS Mathematics, 2023, 8(1): 1566-1591. doi: 10.3934/math.2023079

    Related Papers:

    [1] Asghar Ahmadkhanlu, Hojjat Afshari, Jehad Alzabut . A new fixed point approach for solutions of a p-Laplacian fractional q-difference boundary value problem with an integral boundary condition. AIMS Mathematics, 2024, 9(9): 23770-23785. doi: 10.3934/math.20241155
    [2] Changlong Yu, Jing Li, Jufang Wang . Existence and uniqueness criteria for nonlinear quantum difference equations with p-Laplacian. AIMS Mathematics, 2022, 7(6): 10439-10453. doi: 10.3934/math.2022582
    [3] Reny George, Sina Etemad, Fahad Sameer Alshammari . Stability analysis on the post-quantum structure of a boundary value problem: application on the new fractional (p,q)-thermostat system. AIMS Mathematics, 2024, 9(1): 818-846. doi: 10.3934/math.2024042
    [4] Mouataz Billah Mesmouli, Nahed Mustafa Dahshan, Wael W. Mohammed . Existence results for IBVP of (p,q)-fractional difference equations in Banach space. AIMS Mathematics, 2024, 9(6): 15748-15760. doi: 10.3934/math.2024760
    [5] Donny Passary, Sotiris K. Ntouyas, Jessada Tariboon . Hilfer fractional quantum system with Riemann-Liouville fractional derivatives and integrals in boundary conditions. AIMS Mathematics, 2024, 9(1): 218-239. doi: 10.3934/math.2024013
    [6] Jarunee Soontharanon, Thanin Sitthiwirattham . On sequential fractional Caputo (p,q)-integrodifference equations via three-point fractional Riemann-Liouville (p,q)-difference boundary condition. AIMS Mathematics, 2022, 7(1): 704-722. doi: 10.3934/math.2022044
    [7] Changlong Yu, Jufang Wang, Huode Han, Jing Li . Positive solutions of IBVPs for q-difference equations with p-Laplacian on infinite interval. AIMS Mathematics, 2021, 6(8): 8404-8414. doi: 10.3934/math.2021487
    [8] Ahmed Alamer, Faizan Ahmad Khan . Boyd-Wong type functional contractions under locally transitive binary relation with applications to boundary value problems. AIMS Mathematics, 2024, 9(3): 6266-6280. doi: 10.3934/math.2024305
    [9] Hasanen A. Hammad, Watcharaporn Chaolamjiak . Solving singular coupled fractional differential equations with integral boundary constraints by coupled fixed point methodology. AIMS Mathematics, 2021, 6(12): 13370-13391. doi: 10.3934/math.2021774
    [10] Idris Ahmed, Sotiris K. Ntouyas, Jessada Tariboon . Separated boundary value problems via quantum Hilfer and Caputo operators. AIMS Mathematics, 2024, 9(7): 19473-19494. doi: 10.3934/math.2024949
  • This work is concerned with the study of the existing solution for the fractional (p,q)-difference equation under first order (p,q)-difference boundary conditions in generalized metric space. To achieve the solution, we combine some contraction techniques in fixed point theory with the numerical techniques of the Lipschitz matrix and vector norms. To do this, we first associate a matrix to a desired boundary value problem. Then we present sufficient conditions for the convergence of this matrix to zero. Also, we design some algorithms to use the computer for calculate the eigenvalues of such matrices and different values of (p,q)-Gamma function. Finally, by presenting two numerical examples, we examine the performance and correctness of the proposed method. Some tables and figures are provided to better understand the issues.



    As we know, to solve an array of problems in STEM fields such as mathematics, physics and engineering, we have to model the phenomena by differential systems. It is clear that, the accuracy and efficiency of the proposed model depends on several factors. For this reason, researchers have always tried to optimize their methods. One of the new methods that have recently seen dramatic growth in the study of BVPs is the use of non-integer derivatives. Perhaps the reason for this increase is the efficiency of fractional derivatives in maintaining system memory and its non-localization [1]. This high potential of fractional derivatives has led to the study of the theory of fractional operators from different perspectives and various generalizations, the most famous of which are the fractional derivatives of Riemann-Liouville and Caputo [2], and Hadamard and Caputo Fabrizio [3,4]. In bio-mathematics, for example, some researchers have developed models for the mumps virus [5], hepatitis B [6,7,8], human liver [9], and COVID-19 [10,11] using fractional calculus. In thermodynamics, models for thermostats using red the Caputo fraction derivatives, and Riemann Liouville were presented under different conditions and the stability of these models were investigated [12,13,14]. Some important equations in physics such as Schrödinger [15,16], Sturm-Liouville [17,18,19], Pantograph [20,21,22], Langevin [23,24,25,26], etc. were also studied from different aspects in this field. See [27,28,29,30,31,32,33,34,35,36,37,38,39], for more contributions on fractional calculus.

    On other hand, the history of mathematics and physics is somehow intertwined with generalization. One of these common generalizations relates to the work of the English mathematician Frank Hilton Jackson in removing the concept of limit from derivative. In 1910, he laid the foundations for the exciting world of quantum calculus with the introduction of the q-derivative [40,41]. The concept of h-derivative was later introduced, but its growth and application were not as great as q-derivative. The basic topics related to these two types of derivatives are discussed in detail in the book "Quantum Calculus" [42]. The concepts of q-derivative, and q-integral were later developed by other researchers [43,44]. This led to the development of quantum fractional calculus. Also, due to the possibility of using computers in discrete spaces, the fractional q-differential equations have been given special attention by researchers in the last decade. For example, in 2011, the existence of positive solutions for BVPs with fractional q-difference equation was investigated by El-Shaed, Ferreira, and Ma et al. [45,46,47]. Shabibi et al. studied analytical and numerical solutions for q-differential inclusion via new integral boundary conditions [48]. See [49,50,51,52,53], for more information.

    The generalization of the derivative operator did not end with the q-derivative only, and long after the q-derivative itself was generalized. In 2004 [54], Remmel and Wachs presented (p,q)-analogues for Stirling numbers inspired by q-analogs from quantum calculus. Later in 2015 [55], Mursaleen et al. investigated (p,q)-analogs of Bernstein operators. In 2018 [56], Sadjang presented fundamental theorem of (p,q)-calculus and some (p,q)-Taylor formulas. Soontharanon and Sitthiwirattham, in 2020, reviewed some properties of fractional (p,q)-calculus [57]. After their work, some researchers investigated the boundary value problems using (p,q)-calculus. One can find more contributions about this topic in [58,59,60,61,62,63]. Promsakon et al. studied the following (p,q)-difference BVP of second order:

    {D2p,qu(t)=m(t,u(p2t)),t[0,T/p2],μ1u(0)+μ2Dp,qu(0)=μ3,κ1u(T)+κ2Dp,qu(T/p)=κ3,

    whit constants μj,κj,j=1,2,3, and Dp,q denote the (p,q)-difference operator, mC([0,T/p2]×R,R) [59]. As mentioned at the beginning, fractional calculus is preferable to ordinary calculus due to its lower error rates in studying and modeling natural phenomena, especially in computer calculations and simulations. For this reason, we do not want to be deprived of this advantage in this research.

    To the best of our knowledge, the fractional coupled system of (p,q)-difference equations in generalized metric space using the Lipschitzian matrix has not been investigated properly. Therefore, taking the idea from the above topics in the present work, we want to examine the following BVP involving the Caputo fractional (p,q)-difference operator:

    {cDζ1p,qu(t)=m(t,u(pζt),v(pζt)),t[0,T/pζ],1<ζ12,cDζ2p,qv(t)=n(t,u(pζt),v(pζt)),t[0,T/pζ],1<ζ22,u(0)=u(0)=0,v(0)=v(0)=0,Dp,qu(T/p)=μ1Dp,qu(η1),Dp,qv(T/p)=μ2Dp,qv(η2), (1.1)

    where ζ=max{ζ1,ζ2}, J=[0,T/pζ], with constants μj,ηj (j=1,2), and m,nC(J×R2,R), cDζp,q and Dp,q denote Caputo fractional (p,q)-derivative and first-order (p,q)-difference operator, respectively. The novelty of our method is that, at first, we associate a square matrix to the desired BVP such that its element depended on fraction order and quantum parameters (p,q). Then we will prove the existence of the solution using the fixed point theory.

    This section covers the basic concepts of quantum calculus and (p,q)-calculus that we will need to present our main results. There are also some important theorems of fixed point theory that are necessary to discuss the existence and uniqueness of the solution.

    Assume that J=[a,b]R and p,q(0,1]. Also let C(J,R)2:=C(J,R)×C(J,R) equipped with the vector norm defined by z=(u,v) or norm X defined by zX=(u2+v2)12 for x=(u,v), where w=maxtJ|w(t)| for wC(J,R). It is obvious that (C(J,R)2,) or (C(J,R)2,X) is a Banach space.

    Definition 2.1. [57] Let z be a real number and 0<p,q<1, then the p,q-analogue of z is defined in the following manner

    [z]p,q=pzqzpq,zN. (2.1)

    Also, for the power function (cd)(n)p,q, it's p,q-analogue with nN0:={0,1,2,} reads as follow:

    {(cd)(0)p,q=1,(cd)(n)p,q:=n1j=0(cpjdqj),c,dR.

    Definition 2.2. [57] Let zR, the p,q-Gamma fuction for z is defined in the following manner

    Γp,q(z)=(pq)(z1)p,q(pq)z1,

    Note that, Γp,q(z+1)=[z]p,qΓp,q(z), is valid. We presented the following Algorithm to compute the Γp,q(z) function. Some numerical result for this function presented in Tables 1 and 2.

    Table 1.  Some numerical results for Γp,q function values, with p=0.95 and z=2.5.
    r q=0.2 q=0.5 q=0.6 q=0.7 q=0.8 q=0.9
    p=0.95,z=2.5
    1 1.4766 2.6273 3.4863 5.1282 9.2364 29.7243
    2 1.5263 2.9606 4.0159 6.0060 10.9431 35.4698
    3 1.5368 3.1276 4.3213 6.5649 12.1048 39.5508
    4 1.5390 3.2144 4.5070 6.9461 12.9633 42.7302
    5 1.5395 3.2603 4.6232 7.2169 13.6317 45.3628
    6 1.5396_ 3.2847 4.6970 7.4142 14.1704 47.6362
    ... ... ... ... ... ... ...
    15 1.5396 3.3126 4.8270 7.9551 16.4436 61.5187
    16 1.5396 3.3127_ 4.8279 7.9663 16.5529 62.6948
    ... ... ... ... ... ... ...
    21 1.5396 3.3127 4.8293 7.9922 16.9100 67.9298
    22 1.5396 3.3127 4.8295_ 7.9942 16.9543 68.8620
    ... ... ... ... ... ... ...
    36 1.5396 3.3127 4.8295 7.9999 17.1866 78.7064
    37 1.5396 3.3127 4.8295 8.0000_ 17.1907 79.2148
    .. ... ... ... ... ... ...
    73 1.5396 3.3127 4.8295 8.0000 17.2131 80.1671
    74 1.5396 3.3127 4.8295 8.0000 17.2132_ 80.6125
    ... ... ... ... ... ... ...
    249 1.5396 3.3127 4.8295 8.0000 17.2132 89.4425
    250 1.5396 3.3127 4.8295 8.0000 17.2132 89.4426_

     | Show Table
    DownLoad: CSV
    Table 2.  Some numerical results for Γp,q function values, with p=1 and z=2.5.
    r q=0.2 q=0.5 q=0.6 q=0.7 q=0.8 q=0.9
    p=1,z=2.5
    1 1.3465 2.3270 3.0381 4.3529 7.4253 19.4816
    2 1.3874 2.5893 3.4449 5.0035 8.6105 22.6972
    3 1.3955 2.7116 3.6611 5.3813 9.3376 24.7266
    4 1.3971 2.7707 3.7822 5.6157 9.8190 26.1175
    5 1.3975_ 2.7997 3.8519 5.7672 10.1541 27.1253
    ... ... ... ... ... ... ...
    12 1.3975 2.8282 3.9501 6.0612 10.9983 30.1220
    13 1.3975 2.8284_ 3.9512 6.0686 11.0359 30.3085
    ... ... ... ... ... ... ...
    18 1.3975 2.8284 3.9527 6.0829 11.1340 30.9169
    19 1.3975 2.8284 3.9528_ 6.0838 11.1434 30.9957
    ... ... ... ... ... ... ...
    28 1.3975 2.8284 3.9528 6.0857 11.1754 31.3959
    29 1.3975 2.8284 3.9528 6.0858_ 11.1764 31.4195
    ... ... ... ... ... ... ...
    44 1.3975 2.8284 3.9528 6.0858 11.1802 31.5821
    45 1.3975 2.8284 3.9528 6.0858 11.1803_ 31.5862
    ... ... ... ... ... ... ...
    91 1.3975 2.8284 3.9528 6.0858 11.1803 31.6224
    92 1.3975 2.8284 3.9528 6.0858 11.1803 31.6225_

     | Show Table
    DownLoad: CSV

    The proposed procedure To calculate Γp,q(x)

    1 function G = gammapq(p, q, z, r)
    2 %pq-Gamma Function
    3 d=1;
    4 for k=k=1:r
    5 g=(d.*(1-(q./p).^(k+1))./(1-(q).^(z+k)))./(p-q).^(z-1);
    6 end
    7 end

    Definition 2.3. [57] Suppose that f:[0,T]R, then the (p,q)-derivative of f is defined by

    Dp,qf(z)=f(pz)f(qz)(pq)z, forz0,

    which Dp,qf(0)=f(0).

    Definition 2.4. [57] Consider f:[0,T]R, then the generalized quantum integral with p,q parameters is defined as following formula

    x0f(z)dp,qz=(pq)xn=0qnpn+1f(qnpn+1x), (2.2)

    which the right-hand side converges. Furthermore, in Riemann-Liouville type, we have

    \begin{equation*} \begin{aligned} \left(I_{p, q}^{\zeta} f\right)(z) & = \frac{1}{p^{\binom{\zeta}{2}} \Gamma_{p, q}(\zeta)} \int_{0}^{z}(z-q s)_{p, q}^{(\zeta-1)} f\left(\frac{s}{p^{\zeta-1}}\right) d_{p, q} s \\ & = \frac{(p-q) z}{p^{\binom{\zeta}{2}} \Gamma_{p, q}(\zeta)} \sum\limits_{n = 0}^{\infty} \frac{q^{n}}{p^{n+1}}\left(z-\frac{q^{n+1}}{p^{n+1}} z\right)_{p, q}^{(\zeta-1)} f\left(\frac{q^{n}}{p^{\zeta+n}} z\right), \end{aligned} \end{equation*}

    where z \in\left[0, p^{\alpha} \mathcal{T}\right] .

    Remark 2.5. [57] For a continuous function f , we have:

    \begin{equation*} \begin{cases} \left(D_{p, q}^{\zeta} f\right)(z) = \left(D_{p, q}^{[\zeta]} I_{p, q}^{[\zeta]-\zeta} f\right)(z), \\[0.3cm] \left({ }^{c} D_{p, q}^{\zeta} f\right)(z) = \left(I_{p, q}^{[\zeta]-\zeta} D_{p, q}^{[\zeta]} f\right)(z), \end{cases} \end{equation*}

    where [\zeta] is the smallest integer greater than or equal to \zeta . Notice that, (D_{p, q}^{0} f)(z) = f(z) and { }^{c} D_{p, q}^{0}f(z) = f(z) .

    Lemma 2.6. [57] The following relation is established:

    \begin{equation*} \left(I_{p, q}^{\zeta}{ }^{c} D_{p, q}^{\zeta} f\right)(z) = f(z)-\sum\limits_{k = 0}^{[\zeta]-1} \frac{z^{k}}{p^{\binom{\zeta}{2}} \Gamma_{p, q}(k+1)}\left(D_{p, q}^{k} f\right)(0), \end{equation*}

    where \zeta\in (n-1, n) . Indeed, for equation ({ }^{c} D_{p, q}^{\alpha} f)(z) = 0 , it's general solution expressed by f(z) = c_{0}+c_{1}z+c_{2}z^{2}+ \dots +c_{n-1}z^{n-1} , where c_{0}, \dots, c_{n-1} \in \mathbb{R} .

    Definition 2.7. [64] Assume that \mathcal{X}\neq\emptyset , then the map d: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R} , is called a vector-valued metric on \mathcal{X} if the following properties met

    \left(i\right) \forall z, w \in X , d(z, w) \geq 0 , and d(z, w) = 0 if and only if z = w .

    \left(ii\right) \forall z, w \in X , d(z, w) = d(w, z) .

    \left(iii\right) \forall z, w, y \in X , d(z, w) \leq d(z, y)+d(y, w) .

    For such a space, namely (\mathcal{X}, d) , which is called generalized metric space, convergence and completeness are similar to those in usual metric space.

    Definition 2.8. [64] Suppose (\mathcal{X}, d) be the same space defined in the above, then an operator \mathcal{T}: \mathcal{X} \rightarrow \mathcal{X} is called a contraction if there exists a matrix \mathcal{M} which converges to zero such that \forall z, w \in \mathcal{X} , we have d(\mathcal{T}(z), \mathcal{T}(w)) \leq \mathcal{M} d(z, w) .

    Definition 2.9. [65] A matrix \mathcal{M}_{n\times n} is called convergent to zero if \mathcal{M}^{s} \rightarrow 0 , as s \rightarrow \infty .

    Theorem 2.10. [65] The following proposition are equivalent:

    \left(i\right) \mathcal{M}_{n\times n} convergent to zero.

    \left(ii\right) \mathcal{I}-\mathcal{M} is nonsingular and (\mathcal{I}-\mathcal{M})^{-1} = \sum_{s = 0}^{\infty} \mathcal{M}^{s} such that \mathcal{I} denotes unit matrix of the same order as \mathcal{M} .

    \left(iii\right) \forall\lambda \in \mathbb{C} , we have |\lambda| < 1 , such that |\mathcal{M}-\lambda \mathcal{I}| = 0 .

    \left(iv\right) \mathcal{I}-\mathcal{M} is nonsingular and (\mathcal{I}-\mathcal{M})^{-1} has nonnegative elements.

    Lemma 2.11. [64] Let \mathcal{C}_{n\times n} , \mathcal{D}_{n\times n} are two matrices. If \mathcal{C}_{n\times n} converges to zero and the elements of \mathcal{D}_{n\times n} are small enough, then \mathcal{C}_{n\times n}+\mathcal{D}_{n\times n} also converges to zero.

    Theorem 2.12. [66] Let \mathcal{T}: \mathcal{X} \rightarrow \mathcal{X} be a contractive operator with a Lipschitz matrix \mathcal{M} , and (\mathcal{X}, d) be a complete generalized metric space. Then, T has a unique fixed point w^{*} and each w_{0} \in X

    \begin{equation*} d\left(\mathcal{T}^{k}\left(w_{0}\right), w^{*}\right) \leq \mathcal{M}^{k}(\mathcal{I}-\mathcal{M})^{-1} d\left(w_{0}, T\left(w_{0}\right)\right), \quad \forall k \in \mathbb{N}. \end{equation*}

    Theorem 2.13. [66] Let D be a nonempty closed bounded convex subset of Banach space \mathcal{Z} , and \mathcal{F}: D \rightarrow D is a completely continuous operator. Then, \mathcal{F} has at least one fixed point.

    Theorem 2.14. [66] Let \varepsilon > 0 , also, the following two conditions must be met at the same time:

    \left(i\right) The operator \mathcal{F}: \bar{\mathcal{Z}}_{\varepsilon}(0, \mathcal{Z}) \rightarrow \mathcal{Z} is a completely continuous.

    \left(ii\right) For every solution \boldsymbol{w} , of \boldsymbol{w} = \delta \mathcal{F}(\boldsymbol{w}) , such that \delta \in(0, 1) , we have \Vert \boldsymbol{w} \Vert < \varepsilon .

    Then, the aforesaid operator has at least one fixed point.

    Notation 2.15. In the continuation of this section, we will introduce an important matrix.

    \begin{equation} \mathcal{M}_{2\times2} = \left[\begin{array}{ll} a_{1} \Lambda_{1} & b_{1} \Lambda_{1} \\ a_{2} \Lambda_{2} & b_{2} \Lambda_{2} \end{array}\right], \end{equation} (2.3)

    such that a_{i}, b_{i} > 0 , i = 1, 2 and

    \begin{equation} \begin{aligned} \Lambda_{1}& = \left\vert\frac{T}{\Delta_{1}}\Bigg(\frac{\lambda_{1}\eta_{1}^{\zeta_{1}-1}-T^{\zeta_{1}-1}}{\Gamma_{p, q}(\zeta_{1})} \Bigg)\right\vert-\frac{T^{\zeta_{1}}}{\Gamma_{p, q}(\zeta_{1}+1)} , \\ \Lambda_{2}& = \left\vert\frac{T}{\Delta_{2}}\Bigg(\frac{\lambda_{2}\eta_{2}^{\zeta_{2}-1}-T^{\zeta_{2}-1}}{\Gamma_{p, q}(\zeta_{2})} \Bigg)\right\vert-\frac{T^{\zeta_{2}}}{\Gamma_{p, q}(\zeta_{2}+1)}, \end{aligned} \end{equation} (2.4)

    where \Delta_{i} = 1-\mu_{i}\neq 0 , i = 1, 2 .

    In view of Theorem 2.10, we present some sufficient conditions for the convergence of \mathcal{M} .

    Theorem 2.16. Assume that one of the following three conditions hold true, then the matrix \mathcal{M} which defined in (2.3) converges to zero

    (\mathcal{H}_{1}) 4 \Lambda_{1} \Lambda_{2} a_{2} b_{1}+\left(\Lambda_{2} b_{2}-\Lambda_{1} a_{1}\right)^{2} > 0 and \left|\frac{\Lambda_{2} b_{2}+\Lambda_{1} a_{1} \pm \sqrt{4 \Lambda_{1} \Lambda_{2} a_{2} b_{1}+\left(\Lambda_{2} b_{2}-\Lambda_{1} a_{1}\right)^{2}}}{2}\right| < 1 ;

    (\mathcal{H}_{2}) 4 \Lambda_{1} \Lambda_{2} a_{2} b_{1}+\left(\Lambda_{2} b_{2}-\Lambda_{1} a_{1}\right)^{2} = 0 and \left|\Lambda_{2} b_{2}+\Lambda_{1} a_{1}\right| < 2 ;

    (\mathcal{H}_{3}) 4 \Lambda_{1} \Lambda_{2} a_{2} b_{1}+\left(\Lambda_{2} b_{2}-\Lambda_{1} a_{1}\right)^{2} < 0 and \Lambda_{1} \Lambda_{2}\left(a_{1} b_{2}-a_{2} b_{1}\right) < 1 .

    Proof. By doing a simple calculation, we get

    \left|\lambda I-M_{2\times2}\right| = \left|\begin{array}{cc} \lambda-a_{1} \Lambda_{1} & -b_{1} \Lambda_{1} \\ -a_{2} \Lambda_{2} & \lambda-b_{2} \Lambda_{2} \end{array}\right| = \lambda^{2}-\left(a_{1} \Lambda_{1}+b_{2} \Lambda_{2}\right) \lambda+\Lambda_{1} \Lambda_{2}\left(a_{1} b_{2}-a_{2} b_{1}\right) = 0,

    that will lead to:

    \left(i\right) \lambda_{1, 2} = \frac{a_{1} \Lambda_{1}+b_{2} \Lambda_{2} \pm \sqrt{\Delta}}{2} when \Delta > 0 ;

    \left(ii\right) \lambda_{1, 2} = \frac{a_{1} \Lambda_{1}+b_{2} \Lambda_{2}}{2} when \Delta = 0 ;

    \left(iii\right) \lambda_{1, 2} = \frac{a_{1} \Lambda_{1}+b_{2} \Lambda_{2} \pm \sqrt{-\Delta i}}{2} when \Delta < 0 ;

    which

    \Delta = \left(a_{1} \Lambda_{1}+b_{2} \Lambda_{2}\right)^{2}-4 \Lambda_{1} \Lambda_{2}\left(a_{1} b_{2}-a_{2} b_{1}\right) = \left(a_{1} \Lambda_{1}-b_{2} \Lambda_{2}\right)^{2}+4 \Lambda_{1} \Lambda_{2} a_{2} b_{1} .

    According to Theorem 2.10 (3), and some calculations, we get the desired result.

    We end this section with the following lemma.

    Lemma 2.17. Suppose that \mathfrak{m, n} \in \mathcal{C}([0, \mathcal{T} / p^{\alpha_{i}}], \mathbb{R}) are given functions and \mu_{1}, \mu_{2} are constants. Then a unique solution of the following BVP:

    \begin{align} \begin{cases} { }^{c} D_{p, q}^{\zeta_{1}} u(t) = \mathfrak{m}\left(t\right), \; t\in\left[0, \mathcal{T} / p^{\zeta_{1}}\right], \; 1 < \zeta_{1}\leq 2, \\ { }^{c} D_{p, q}^{\zeta_{2}} v(t) = \mathfrak{n}\left(t\right), \; t\in\left[0, \mathcal{T} / p^{\zeta_{2}}\right], \; 1 < \zeta_{2}\leq 2, \\ u(0) = \; v(0) = \; u^{(i)}(0) = \; v^{(i)}(0) = \; 0, \; \; i = \; 2, ... , n-2, \\ D_{p, q} u(T/p) = \; \mu_{1}D_{p, q}u(\eta_{1}), \; \; D_{p, q} v(T/p) = \; \mu_{2}D_{p, q}v(\eta_{2}), \end{cases} \end{align} (2.5)

    is given by

    \begin{equation} \begin{aligned} u(t)& = \int_{0}^{t} \frac{(t-q s)_{p, q}^{(\zeta_{1}-1)}}{p^{\binom{\zeta_{1}}{2}} \Gamma_{p, q}(\zeta_{1})} \mathfrak{m}\left(\frac{s}{p^{\zeta_{1}-1}}\right) d_{p, q} s \\ &+\frac{t}{\Delta_{1}}\Bigg\{\mu_{1} \int_{0}^{\eta_{1}} \frac{\left(\eta_{1}-q s\right)_{p, q}^{(\zeta_{1}-2)}}{p^{\binom{\zeta_{1}-1}{2}} \Gamma_{p, q}(\zeta_{1}-1)} \mathfrak{m}\left(\frac{s}{p^{\zeta_{1}-2}}\right) d_{p, q} s \\ &-\int_{0}^{\mathcal{T}/p} \frac{\left(\mathcal{T}/p-q s\right)_{p, q}^{(\zeta_{1}-2)}}{p^{\binom{\zeta_{1}-1}{2}} \Gamma_{p, q}(\zeta_{1}-1)} \mathfrak{m}\left(\frac{s}{p^{\zeta_{1}-2}}\right) d_{p, q} s\Bigg\}, \\ v(t)& = \int_{0}^{t} \frac{(t-q s)_{p, q}^{(\zeta_{2}-1)}}{p^{\binom{\zeta_{2}}{2}} \Gamma_{p, q}(\zeta_{2})} \mathfrak{n}\left(\frac{s}{p^{\zeta_{2}-1}}\right) d_{p, q} s \\ &+\frac{t}{\Delta_{2}}\Bigg\{\mu_{2} \int_{0}^{\eta_{1}} \frac{\left(\eta_{1}-q s\right)_{p, q}^{(\zeta_{2}-2)}}{p^{\binom{\zeta_{2}-1}{2}} \Gamma_{p, q}(\alpha-1)} \mathfrak{n}\left(\frac{s}{p^{\zeta_{2}-2}}\right) d_{p, q} s \\ &-\int_{0}^{\mathcal{T}/p} \frac{\left(\mathcal{T}/p-q s\right)_{p, q}^{(\zeta_{2}-2)}}{p^{\binom{\zeta_{2}-1}{2}} \Gamma_{p, q}(\zeta_{2}-1)} \mathfrak{n}\left(\frac{s}{p^{\zeta_{2}-2}}\right) d_{p, q} s\Bigg\}. \end{aligned} \end{equation} (2.6)

    where

    \begin{equation*} \Delta_{i} = 1-\lambda_{i}\neq0, \; \; i = 1, 2. \end{equation*}

    Proof. By applying the (p, q) -integral on both sides (2.5) and using Lemma 2.6, we get

    \begin{equation} u(t) = \int_{0}^{t} \frac{(t-q s)^{(\zeta_{1}-1)}}{p^{\binom{\zeta_{1}}{2}} \Gamma_{p, q}(\zeta_{1})} \mathfrak{m}\left(\frac{s}{p^{\zeta_{1}-1}}\right) d_{p, q} s+c_{0}+c_{1}t, \quad t \in[0, \mathcal{T}] \end{equation} (2.7)

    where c_{0}, c_{1} are constants. Now by using condition in (2.5), we find c_{0} = 0 , and

    \begin{equation*} c_{1} = \frac{1}{\Delta_{1}}\left[\mu_{1}\int_{0}^{\eta} \frac{(\eta-q s)^{(\zeta_{1}-2)}}{p^{\binom{\zeta_{1}-1}{2}} \Gamma_{p, q}(\zeta_{1})} \mathfrak{m}\left(\frac{s}{p^{\zeta_{1}-2}}\right) d_{p, q}- \int_{0}^{T / p} \frac{(\mathcal{T} / p-q s)^{(\zeta_{1}-2)}}{p^{\binom{\zeta_{1}-1}{2}} \Gamma_{p, q}(\zeta_{1})} \mathfrak{m}\left(\frac{s}{p^{\zeta_{1}-2}}\right) d_{p, q}\right]. \end{equation*}

    Substituting the values of c_{1} in (2.7), we obtain (2.6). Proof for v(t) is similar to the above.

    We need the following assumptions to prove our main results.

    (\mathcal{L}_{1.1}) \mathfrak{m}, \mathfrak{n}: J \times \mathbb{R}^{2} \rightarrow \mathbb{R} are jointly continuous functions such that satisfy Lipschitz condition \forall u, v, \bar{u}, \bar{v} \in \mathbb{R} , and some a_{1}, a_{2}, b_{1}, b_{2} , where

    \left\{\begin{array}{l} |\mathfrak{m}(t, u, v)-\mathfrak{m}(t, \bar{u}, \bar{v})| \leq a_{1}|u-\bar{u}|+b_{1}|v-\bar{v}|, \\ |\mathfrak{n}(t, u, v)-\mathfrak{n}(t, \bar{u}, \bar{v})| \leq a_{2}|u-\bar{u}|+b_{2}|v-\bar{v}|. \end{array}\right.

    (\mathcal{L}_{1.2}) The Caratheodory functions \mathfrak{m}, \mathfrak{n}: J \times \mathbb{R}^{2} \rightarrow \mathbb{R} satisfy Lipschitz condition as following form:

    \left\{\begin{array}{l} |\mathfrak{m}(t, u, v)| \leq a_{1}|u|+b_{1}|v|+c_{1}, \\ |\mathfrak{n}(t, u, v)| \leq a_{2}|u|+b_{2}|v|+c_{2}, \end{array}\right.

    for all u, v \in \mathbb{R} , and some a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2} > 0 .

    (\mathcal{L}_{1.3}) The jointly continuous functions \mathfrak{m}, \mathfrak{n}: J \times \mathbb{R}^{2} \rightarrow \mathbb{R} satisfy following inequalities:

    \left\{\begin{array}{l} |\mathfrak{m}(t, u)| \leq w_{1}\left(t, |u|_{E}\right), \\ |\mathfrak{n}(t, u)| \leq w_{2}\left(t, |u|_{E}\right), \end{array}\right.

    for all u, v \in \mathbb{R} and t\in J , which |\cdot|_{E} represent the Euclidean norm in \mathbb{R}^{2} , and w_{1}, w_{2} are jointly continuous functions on J \times \mathbb{R}_{+} such that nondecreasing in their second variables.

    (\mathcal{L}_{2}) The matrix \mathcal{M}_{2\times2} defined in (2.3) converges to zero.

    (\mathcal{L}_{3}) \exists K_{1} > 0 which for \sigma = \left(\sigma_{1}, \sigma_{2}\right) \in(0, +\infty)^{2} , \forall t \in J the following inequalities:

    \left\{\begin{array}{l} \sup\limits_{t\in J}\frac{1}{\rho_{1}}\Bigg[\int_{0}^{t} \frac{(t-q s)_{p, q}^{(\zeta_{1}-1)}}{p^{\binom{\zeta_{1}}{2}} \Gamma_{p, q}(\zeta_{1})}w_{1}\left(s, |\rho|_{E}\right) d_{p, q} s, \\ +\frac{t}{\Delta_{1}}\Bigg\{\mu_{1} \int_{0}^{\eta_{1}} \frac{\left(\eta_{1}-q s\right)_{p, q}^{(\zeta_{1}-2)}}{p^{\binom{\zeta_{1}-1}{2}} \Gamma_{p, q}(\zeta_{1}-1)}w_{1}\left(s, |\rho|_{E}\right) d_{p, q} s -\int_{0}^{\mathcal{T}/p} \frac{\left(\mathcal{T}/p-q s\right)_{p, q}^{(\zeta_{1}-2)}}{p^{\binom{\zeta_{1}-1}{2}} \Gamma_{p, q}(\zeta_{1}-1)}w_{1}\left(s, |\rho|_{E}\right) d_{p, q} s\Bigg\}\Bigg]\geq 1 , \\ \sup\limits_{t\in J}\frac{1}{\rho_{2}}\Bigg[\int_{0}^{t} \frac{(t-q s)_{p, q}^{(\zeta_{2}-1)}}{p^{\binom{\zeta_{2}}{2}} \Gamma_{p, q}(\zeta_{2})}w_{2}\left(s, |\rho|_{E}\right) d_{p, q} s \\ +\frac{t}{\Delta_{2}}\Bigg\{\mu_{2} \int_{0}^{\eta_{2}} \frac{\left(\eta_{2}-q s\right)_{p, q}^{(\zeta_{2}-2)}}{p^{\binom{\zeta_{2}-1}{2}} \Gamma_{p, q}(\zeta_{2}-1)}w_{2}\left(s, |\rho|_{E}\right) d_{p, q} s -\int_{0}^{\mathcal{T}/p} \frac{\left(\mathcal{T}/p-q s\right)_{p, q}^{(\zeta_{2}-2)}}{p^{\binom{\zeta_{1}-1}{2}} \Gamma_{p, q}(\zeta_{2}-1)}w_{2}\left(s, |\rho|_{E}\right) d_{p, q} s\Bigg\}\Bigg]\geq 1, \end{array}\right.

    implies |\sigma|_{E} \leq K_{1} .

    Now, to find the solution to our boundary value problem (1.1), we will convert it to finding a unique fixed point for an operator. We will use Lemma 2.17 to define this operator. Thus, we define \mathcal{F}: \mathcal{C}\left(J, \mathbb{R}\right)^{2} \rightarrow \mathcal{C}\left(J, \mathbb{R}\right)^{2} , such that \mathcal{F}: = \left(\mathcal{F}_{1}, \mathcal{F}_{2}\right) which \mathcal{F}_{1}, \mathcal{F}_{2} are given by

    \begin{equation} \begin{aligned} \mathcal{F}_{1}(u, v)(t) & = \int_{0}^{t} \frac{(t-q s)_{p, q}^{(\zeta_{1}-1)}}{p^{\binom{\zeta_{1}}{2}} \Gamma_{p, q}(\zeta_{1})} \mathfrak{m}\left(s, u\left(p^{\zeta_{1}-1} s\right), v\left(p^{\zeta_{2}-1} s\right)\right) d_{p, q} s \\ &+\frac{t}{\Delta_{1}}\Bigg\{\mu_{1} \int_{0}^{\eta_{1}} \frac{\left(\eta_{1}-q s\right)_{p, q}^{(\zeta_{1}-2)}}{p^{\binom{\zeta_{1}-1}{2}} \Gamma_{p, q}(\zeta_{1}-1)} \mathfrak{m}\left(s, u\left(p^{\zeta_{1}-1} s\right), v\left(p^{\zeta_{2}-1} s\right)\right) d_{p, q} s \\ &-\int_{0}^{\mathcal{T}/p} \frac{\left(\mathcal{T}/p-q s\right)_{p, q}^{(\zeta_{1}-2)}}{p^{\binom{\zeta_{1}-1}{2}} \Gamma_{p, q}(\zeta_{1}-1)} \mathfrak{m}\left(s, u\left(p^{\zeta_{1}-1} s\right), v\left(p^{\zeta_{2}-1} s\right)\right) d_{p, q} s\Bigg\}, \\ \mathcal{F}_{2}(u, v)(t) & = \int_{0}^{t} \frac{(t-q s)_{p, q}^{(\zeta_{2}-1)}}{p^{\binom{\zeta_{2}}{2}} \Gamma_{p, q}(\zeta_{2})}\mathfrak{n}\left(s, u\left(p^{\zeta_{1}-1} s\right), v\left(p^{\zeta_{2}-1} s\right)\right) d_{p, q} s \\ &+\frac{t}{\Delta_{2}}\Bigg\{\mu_{2} \int_{0}^{\eta_{2}} \frac{\left(\eta_{2}-q s\right)_{p, q}^{(\zeta_{2}-2)}}{p^{\binom{\zeta_{2}-1}{2}} \Gamma_{p, q}(\zeta_{2}-1)} \mathfrak{n}\left(s, u\left(p^{\zeta_{1}-1} s\right), v\left(p^{\zeta_{2}-1} s\right)\right) d_{p, q} s \\ &-\int_{0}^{\mathcal{T}/p} \frac{\left(\mathcal{T}/p-q s\right)_{p, q}^{(\zeta_{2}-2)}}{p^{\binom{\zeta_{2}-1}{2}} \Gamma_{p, q}(\zeta_{2}-1)} \mathfrak{n}\left(s, u\left(p^{\zeta_{1}-1} s\right), v\left(p^{\zeta_{2}-1} s\right)\right) d_{p, q} s\Bigg\}. \end{aligned} \end{equation} (3.1)

    Theorem 3.1. Let \mathcal{L}_{1.1}, \mathcal{L}_{1.2}, \mathcal{L}_{1.3} , and \mathcal{L}_{2} are hold true. Then the problem mentioned in (1.1) has a unique solution.

    Proof. As for assumption \mathcal{L}_{2} and Theorem 2.10 (4), it simply follows that I-\mathcal{M}_{2\times2} is invertible and its inverse \left(I-\mathcal{M}_{2\times2}\right)^{-1} has nonnegative elements. Now, we define

    \begin{equation*} \widetilde{U} = \left\{(u, v) \in \mathcal{C}\left(J, \mathbb{R}\right)^{2}:\|u\|_{\infty} \leq \widetilde{K}_{1}, \|v\|_{\infty} \leq \widetilde{K}_{2}\right\}, \end{equation*}

    such that

    \left[\begin{array}{c} \widetilde{K}_{1} \\ \widetilde{K}_{2} \end{array}\right] \geq\left(I-\mathcal{M}_{2\times2}\right)^{-1}\left[\begin{array}{c} \tilde{\mathcal{M}}_{1} \\ \tilde{\mathcal{M}}_{2} \end{array}\right].

    Here \tilde{\mathcal{M}}_{1} = \Lambda_{1} \mathfrak{m}_{\max} , \tilde{\mathcal{M}}_{2} = \Lambda_{2} \mathfrak{n}_{\max} with \mathfrak{m}_{\max } = \max _{t \in J}|\mathfrak{m}(t, 0, 0)| , and \mathfrak{n}_{\max } = \max _{t \in J}|\mathfrak{n}(t, 0, 0)| . We follow the proof in two steps.

    At first: we show that the operator \mathcal{F} mentioned in (3.1) maps \widetilde{U} into \widetilde{U} . For this purpose, \forall (u, v) \in \widetilde{U} and 0 < t_{1} < t_{2} < 1 , by employing \mathcal{L}_{1.1} , we can write

    \begin{equation} \begin{aligned} &\vert\mathcal{F}_{1}(u, v)\left(t_{2}\right)-\mathcal{F}_{1}(u, v)\left(t_{1}\right)\vert\\ & = \Bigg|\int_{0}^{t_{2}} \frac{(t_{2}-q s)^{(\zeta_{1}-1)}}{p^{\binom{\zeta_{1}}{2}} \Gamma_{p, q}(\alpha)} \mathfrak{m}\left(s, u\left(p^{\zeta_{1}-1} s\right), v\left(p^{\zeta_{2}-1} s\right)\right) d_{p, q} s\\ &-\int_{0}^{t_{1}} \frac{(t_{1}-q s)^{(\zeta_{1}-1)}}{p^{\binom{\alpha}{2}} \Gamma_{p, q}(\alpha)} \mathfrak{m}\left(s, u\left(p^{\zeta_{1}-1} s\right), v\left(p^{\zeta_{2}-1} s\right)\right) d_{p, q} s\Bigg|\\ &+\frac{|t_{2}-t_{1}|}{\Delta_{1}}\Bigg\{\mu_{1} \int_{0}^{\eta} \frac{\left(\eta-q s\right)_{p, q}^{(\zeta_{1}-2)}}{p^{\binom{\zeta_{1}-1}{2}} \Gamma_{p, q}(\zeta_{1}-1)} \mathfrak{m}\left(s, u\left(p^{\zeta_{1}-1} s\right), v\left(p^{\zeta_{2}-1} s\right)\right) d_{p, q} s\\ &-\int_{0}^{T/p} \frac{\left(T/p-q s\right)_{p, q}^{(\zeta_{1}-2)}}{p^{\binom{\zeta_{1}-1}{2}} \Gamma_{p, q}(\zeta_{1}-1)} \mathfrak{m}\left(s, u\left(p^{\zeta_{1}-1} s\right), v\left(p^{\zeta_{2}-1} s\right)\right) d_{p, q} s\Bigg\}\\ &\leq\left|\int_{0}^{t_{1}} \frac{\left(t_{2}-q s\right)^{(\zeta_{1}-1)}-\left(t_{1}-q s\right)^{(\zeta_{1}-1)}}{p^{(\zeta_{1})}{2}^{(\alpha)} \Gamma_{p, q}(\alpha)} \mathfrak{m}\left(s, u\left(p^{\zeta_{1}-1} s\right), v\left(p^{\zeta_{2}-1} s\right)\right) d_{p, q} s\right|\\ &+\left|\int_{t_{1}}^{t_{2}} \frac{\left(t_{2}-q s\right)^{(a-1)}}{p^{\left(\frac{a}{2}\right)} \Gamma_{p, q}(\alpha)} \mathfrak{m}\left(s, u\left(p^{\zeta_{1}-1} s\right), v\left(p^{\zeta_{2}-1} s\right)\right) d_{p, q} s\right|\\ &+\frac{|t_{2}-t_{1}|}{\Delta_{1}}\Bigg\{\mu_{1} \int_{0}^{\eta_{1}} \frac{\left(\eta_{1}-q s\right)_{p, q}^{(\zeta_{1}-2)}}{p^{\binom{\zeta_{1}-1}{2}} \Gamma_{p, q}(\zeta_{1}-1)} \mathfrak{m}\left(s, u\left(p^{\zeta_{1}-1} s\right), v\left(p^{\zeta_{2}-1} s\right)\right) d_{p, q} s\\ &-\int_{0}^{T/p} \frac{\left(T/p-q s\right)_{p, q}^{(\zeta_{1}-2)}}{p^{\binom{\zeta_{1}-1}{2}} \Gamma_{p, q}(\zeta_{1}-1)} \mathfrak{m}\left(s, u\left(p^{\zeta_{1}-1} s\right), v\left(p^{\zeta_{2}-1} s\right)\right) d_{p, q} s\Bigg\}\\ &\leq \left[\int_{0}^{t_{1}} \frac{\left(t_{2}-q s\right)^{(\zeta_{1}-1)}-\left(t_{1}-q s\right)^{(\zeta_{1}-1)}}{p^{\binom{\zeta_{1}}{2}} \Gamma_{p, q}(\zeta_{1})} \Bigg|\mathfrak{m}\left(s, u\left(p^{\zeta_{1}-1} s\right), v\left(p^{\zeta_{2}-1} s\right)\right)\Bigg| d_{p, q} s\right.\\ &\left.+\int_{t_{1}}^{t_{2}} \frac{\left(t_{2}-q s\right)^{(\zeta_{1}-1)}}{p^{\left(\frac{\pi}{2}\right)} \Gamma_{p, q}(\zeta_{1})} \Bigg|\mathfrak{m}\left(s, u\left(p^{\zeta_{1}-1} s\right), v\left(p^{\zeta_{2}-1} s\right)\right)\Bigg| d_{p, q} s \right]\\ &+\frac{|t_{2}-t_{1}|}{\Delta_{1}}\Bigg\{\mu_{1} \int_{0}^{\eta_{1}} \frac{\left(\eta_{1}-q s\right)_{p, q}^{(\zeta_{1}-2)}}{p^{\binom{\zeta_{1}-1}{2}} \Gamma_{p, q}(\zeta_{1}-1)} \Bigg|\mathfrak{m}\left(s, u\left(p^{\zeta_{1}-1} s\right), v\left(p^{\zeta_{2}-1} s\right)\right)\Bigg| d_{p, q} s\\ &-\int_{0}^{T/p} \frac{\left(T/p-q s\right)_{p, q}^{(\zeta_{1}-2)}}{p^{\binom{\zeta_{1}-1}{2}} \Gamma_{p, q}(\zeta_{1}-1)} \Bigg|\mathfrak{m}\left(s, u\left(p^{\zeta_{1}-1} s\right), v\left(p^{\zeta_{2}-1} s\right)\right)\Bigg| d_{p, q} s\Bigg\}, \\ \end{aligned} \end{equation} (3.2)

    which yields that

    \begin{equation*} \vert\mathcal{F}_{1}(u, v)\left(t_{2}\right)-\mathcal{F}_{1}(u, v)\left(t_{1}\right)\vert \rightarrow 0 \quad \text{as} \quad t_{1}\rightarrow t_{2}. \end{equation*}

    Therefore, \mathcal{F}_{1} maps \widetilde{U} into \mathcal{C}\left(J, \mathbb{R}\right)^{2} . Moreover, we find that

    \begin{equation} \begin{aligned} |\mathfrak{m}\left(s, u\left(p^{\zeta_{1}-1} s\right), v\left(p^{\zeta_{2}-1} s\right)\right)| &\leq|\mathfrak{m}\left(s, u\left(p^{\zeta_{1}-1} s\right), v\left(p^{\zeta_{2}-1} s\right)\right)-\mathfrak{m}(t, 0, 0)|+|\mathfrak{m}(t, 0, 0)| \\ &\leq a_{1}\tilde{K}_{1}+b_{1}\tilde{K}_{1}+\mathfrak{m}_{max}, \end{aligned} \end{equation} (3.3)

    and

    \begin{equation} \begin{aligned} |\mathcal{F}_{1}(u, v)(t)|&\leq \int_{0}^{t} \frac{(t-q s)_{p, q}^{(\zeta_{1}-1)}}{p^{\binom{\zeta_{1}}{2}} \Gamma_{p, q}(\zeta_{1})} \Big|\mathfrak{m}\left(s, u\left(p^{\zeta_{1}-1} s\right), v\left(p^{\zeta_{2}-1} s\right)\right)\Big| d_{p, q} s \\ &+\frac{t}{\Delta}\Bigg\{\mu_{1} \int_{0}^{\eta_{1}} \frac{\left(\eta_{1}-q s\right)_{p, q}^{(\zeta_{1}-2)}}{p^{\binom{\zeta_{1}-1}{2}} \Gamma_{p, q}(\zeta_{1}-1)} \Big|\mathfrak{m}\left(s, u\left(p^{\zeta_{1}-1} s\right), v\left(p^{\zeta_{2}-1} s\right)\right)\Big| d_{p, q} s \\ &-\int_{0}^{\mathcal{T}/p} \frac{\left(\mathcal{T}/p-q s\right)_{p, q}^{(\zeta_{1}-2)}}{p^{\binom{\zeta_{1}-1}{2}} \Gamma_{p, q}(\zeta_{1}-1)} \Big|\mathfrak{m}\left(s, u\left(p^{\zeta_{1}-1} s\right), v\left(p^{\zeta_{2}-1} s\right)\right)\Big| d_{p, q} s\Bigg\}\\ &\leq\Big(a_{1}\tilde{R}_{1}+b_{1}\tilde{R}_{1}+\mathfrak{m}_{max}\Big)\Bigg[\int_{0}^{t} \frac{(t-q s)_{p, q}^{(\zeta_{1}-1)}}{p^{\binom{\zeta_{1}}{2}} \Gamma_{p, q}(\zeta_{1})} d_{p, q} s \\ &+\frac{t}{\Delta}\Bigg\{\mu_{1} \int_{0}^{\eta_{1}} \frac{\left(\eta_{1}-q s\right)_{p, q}^{(\zeta_{1}-2)}}{p^{\binom{\zeta_{1}-1}{2}} \Gamma_{p, q}(\zeta_{1}-1)} d_{p, q} s-\int_{0}^{\mathcal{T}/p} \frac{\left(\mathcal{T}/p-q s\right)_{p, q}^{(\zeta_{1}-2)}}{p^{\binom{\zeta_{1}-1}{2}} \Gamma_{p, q}(\zeta_{1}-1)} d_{p, q} s\Bigg\}\Bigg]. \end{aligned} \end{equation} (3.4)

    Thus,

    \begin{equation} \begin{aligned} |\mathcal{F}_{1}(u, v)(t)|&\leq\Delta_{1}\Big(a_{1}\tilde{K}_{1}+b_{1}\tilde{K}_{1}+\mathfrak{m}_{max}\Big)\\ &\leq\tilde{K}_{1}. \end{aligned} \end{equation} (3.5)

    It can also be proved in a similar way that \mathcal{F}_{2} maps \widetilde{U} into \mathcal{C}\left(J, \mathbb{R}\right)^{2} , and

    \begin{equation} \begin{aligned} |\mathcal{F}_{2}(u, v)(t)|&\leq\Delta_{2}\Big(a_{2}\tilde{K}_{2}+b_{2}\tilde{K}_{2}+\mathfrak{n}_{max}\Big)\\ &\leq\tilde{K}_{2}. \end{aligned} \end{equation} (3.6)

    Combining (3.5) and (3.6), we get

    \left[\begin{array}{l} \left\|\mathcal{F}_{1}(u, v)\right\|_{\infty} \\ \left\|\mathcal{F}_{2}(u, v)\right\|_{\infty} \end{array}\right] \leq\left[\begin{array}{l} \widetilde{K}_{1} \\ \widetilde{K}_{2} \end{array}\right],

    that is, we proved that \mathcal{F}(\widetilde{U}) \subset \widetilde{U} . Hence, \mathcal{F} maps \widetilde{U} into \widetilde{U} .

    Secondly: We shall show that the operator \mathcal{F} mentioned in (3.1) is a generalized contraction. For achieve it, \forall (u, v), (\bar{u}, \bar{v}) \in \widetilde{U} , let \bar{\mathfrak{m}} = \mathfrak{m}(\cdot, \bar{u}, \bar{v}) , using \mathcal{L}_{1.1} , we have

    \Big|\mathcal{F}_{1}(u, v)(t)-\mathcal{F}_{1}(\bar{u}, \bar{v})(t)\Big|\\ \leq \int_{0}^{t} \frac{(t-q s)_{p, q}^{(\zeta_{1}-1)}}{p^{\binom{\zeta_{1}}{2}} \Gamma_{p, q}(\zeta_{1})} \\ \Big|\mathfrak{m}\left(s, u\left(p^{\zeta_{1}-1} s\right), v\left(p^{\zeta_{2}-1} s\right)\right)-\bar{\mathfrak{m}}\left(s, \bar{u}\left(p^{\zeta_{1}-1} s\right), \bar{v}\left(p^{\zeta_{2}-1} s\right)\right)\Big| d_{p, q} s \\ +\frac{t}{\Delta_{1}} \Bigg\{\mu_{1} \int_{0}^{\eta_{1}} \frac{\left(\eta_{1}-q s\right)_{p, q}^{(\zeta_{1}-2)}}{p^{\binom{\zeta_{1}-1}{2}} \Gamma_{p, q}(\zeta_{1}-1)} \\ \Big|\mathfrak{m}\left(s, u\left(p^{\zeta_{1}-1} s\right), v\left(p^{\zeta_{2}-1} s\right)\right)-\bar{\mathfrak{m}}\left(s, \bar{u}\left(p^{\zeta_{1}-1} s\right), \bar{v}\left(p^{\zeta_{2}-1} s\right)\right)\Big| d_{p, q} s \\ -\int_{0}^{T/p} \frac{\left(T/p-q s\right)_{p, q}^{(\zeta_{1}-2)}}{p^{\binom{\zeta_{1}-1}{2}} \Gamma_{p, q}(\zeta_{1}-1)} \\ \Big|\mathfrak{m}\left(s, u\left(p^{\zeta_{1}-1} s\right), v\left(p^{\zeta_{2}-1} s\right)\right)-\bar{\mathfrak{m}}\left(s, \bar{u}\left(p^{\zeta_{1}-1} s\right), \bar{v}\left(p^{\zeta_{2}-1} s\right)\right)\Big| d_{p, q} s\Bigg\}\\ \leq \int_{0}^{t} \frac{(t-q s)_{p, q}^{(\zeta_{1}-1)}}{p^{\binom{\zeta_{1}}{2}} \Gamma_{p, q}(\zeta_{1})} \Big(a_{1}|u-\bar{u}|+b_{1}|v-\bar{v}| \Big) d_{p, q} s \\ +\frac{t}{\Delta_{1}}\Bigg\{\mu_{1} \int_{0}^{\eta_{1}} \frac{\left(\eta_{1}-q s\right)_{p, q}^{(\zeta_{1}-2)}}{p^{\binom{\zeta_{1}-1}{2}} \Gamma_{p, q}(\zeta_{1}-1)} \Big(a_{1}|u-\bar{u}|+b_{1}|v-\bar{v}| \Big) d_{p, q} s \\ -\int_{0}^{\mathcal{T}/p} \frac{\left(\mathcal{T}/p-q s\right)_{p, q}^{(\zeta_{1}-2)}}{p^{\binom{\zeta_{1}-1}{2}} \Gamma_{p, q}(\zeta_{1}-1)} \Big(a_{1}|u-\bar{u}|+b_{1}|v-\bar{v}| \Big) d_{p, q} s\Bigg\}\\ \leq \Big(a_{1}|u-\bar{u}|+b_{1}|v-\bar{v}| \Big)\Bigg[\int_{0}^{t} \frac{(t-q s)_{p, q}^{(\zeta_{1}-1)}}{p^{\binom{\zeta_{1}}{2}} \Gamma_{p, q}(\zeta_{1})} d_{p, q} s \\ +\frac{t}{\Delta_{1}}\Bigg\{\mu_{1} \int_{0}^{\eta_{1}} \frac{\left(\eta_{1}-q s\right)_{p, q}^{(\zeta_{1}-2)}}{p^{\binom{\zeta_{1}-1}{2}} \Gamma_{p, q}(\zeta_{1}-1)} d_{p, q} s -\int_{0}^{\mathcal{T}/p} \frac{\left(\mathcal{T}/p-q s\right)_{p, q}^{(\zeta_{1}-2)}}{p^{\binom{\zeta_{1}-1}{2}} \Gamma_{p, q}(\zeta_{1}-1)} d_{p, q} s\Bigg\}\Bigg], (3.7)

    which yields that

    \begin{equation} \begin{aligned} &\Big\|\mathcal{F}_{1}(u, v)(t)-\mathcal{F}_{1}(\bar{u}, \bar{v})(t)\Big\|&\leq \Delta_{1}\Big(a_{1}\|u-\bar{u}\|+b_{1}\|v-\bar{v}\| \Big). \end{aligned} \end{equation} (3.8)

    Similarly, we can obtain

    \begin{equation} \begin{aligned} &\Big\|\mathcal{F}_{2}(u, v)(t)-\mathcal{F}_{2}(\bar{u}, \bar{v})(t)\Big\|&\leq \Delta_{2}\Big(a_{2}\|u-\bar{u}\|+b_{2}\|v-\bar{v}\| \Big). \end{aligned} \end{equation} (3.9)

    We can then put (3.8) and (3.9) together and rewrite as

    \left[\begin{array}{c} \left\|\mathcal{F}_{1}(u, v)-\mathcal{F}_{1}(\bar{u}, \bar{v})\right\|_{\infty} \\ \left\|\mathcal{F}_{2}(u, v)-\mathcal{F}_{2}(\bar{u}, \bar{v})\right\|_{\infty} \end{array}\right] \leq \mathcal{M}_{2\times2}\left[ \begin{array}{l} \|u-\bar{u}\|_{\infty} \\ \|v-\bar{v}\|_{\infty} \end{array}\right] .

    Now, according to \mathcal{L}_{2} , one can apply Theorem 2.12 (Perov's fixed point theorem) to achieve what is intended.

    Theorem 3.2. Let \mathcal{L}_{1.2} and \mathcal{L}_{2} are satisfied. Then the problem (1.1) has at least one solution.

    Proof. Let

    \left[\begin{array}{l} K_{1} \\ K_{2} \end{array}\right] \geq\left(I-\mathcal{M}_{2\times2}\right)^{-1}\left[\begin{array}{c} \tilde{c}_{1} \\ \tilde{c}_{2} \end{array}\right],

    where \tilde{c}_{1} = c_{1} \Delta_{1} , and \tilde{c}_{2} = c_{2} \Delta_{2} . Define

    U = \left\{(u, v) \in \mathcal{C}\left(J, \mathbb{R}\right)^{2}:\|u\|_{\infty} \leq K_{1}, \|v\|_{\infty} \leq K_{2}\right\}.

    Obviously, U\neq\emptyset is a closed, bounded and convex subset of \mathcal{C}\left(J, \mathbb{R}\right)^{2} . We follow the proof in three steps.

    Step 1: At first, we prove that \mathcal{F}(U) \subset U . For this purpose, \forall u, v \in \mathcal{C}\left(J, \mathbb{R}\right) and \|u\|_{\infty} \leq R_{1}, \|v\|_{\infty} \leq R_{2} , by employing \mathcal{L}_{1.2} , we can write

    \begin{equation} \begin{aligned} \Big\|\mathcal{F}_{1}(u, v)(t)\Big\|&\leq \Delta_{1}\Big(a_{1}\|u\|+b_{1}\|v\|+c_{1} \Big)\\ &\leq \Delta_{1}a_{1}K_{1}+\Delta_{1}b_{1}K_{2}+\tilde{c}_{1}\\ &\leq R. \end{aligned} \end{equation} (3.10)

    Similarly, we can obtain

    \begin{equation} \begin{aligned} \Big\|\mathcal{F}_{2}(u, v)(t)\Big\|&\leq \Delta_{2}\Big(a_{2}\|u\|+b_{2}\|v\|+c_{2} \Big)\\ &\leq \Delta_{2}a_{2}R_{1}+\Delta_{2}b_{2}R_{2}+\tilde{c}_{2}\\ &\leq R. \end{aligned} \end{equation} (3.11)

    We can then put (3.10) and (3.11) together and rewrite as

    \left[\begin{array}{c} \left\|\mathcal{F}_{1}(u, v)\right\|_{\infty} \\ \left\|\mathcal{F}_{2}(u, v)\right\|_{\infty} \end{array}\right] \leq \left[ \begin{array}{l} R_{1} \\ R_{2} \end{array}\right] .

    Thus, we conclude that \mathcal{F}(U) \subset U .

    Step 2: In this step we will show the operator \mathcal{F} is continuous. Suppose that \left(u_{n}, v_{n}\right) be a sequence which \left(u_{n}, v_{n}\right) \rightarrow (u, v) in U . For convenience put \mathfrak{m}_{n}(\cdot) = \mathfrak{m}\left(\cdot, u_{n}(\cdot), v_{n}(\cdot)\right) and \mathfrak{m}(\cdot) = \mathfrak{m}(\cdot, u(\cdot), v(\cdot)) . Then \forall t \in J , we find

    \Big|\mathcal{F}_{1}(u_{n}, v_{n})(t)-\mathcal{F}_{1}(u, v)(t)\Big|\\ \leq \int_{0}^{t} \frac{(t-q s)_{p, q}^{(\zeta_{1}-1)}}{p^{\binom{\zeta_{1}}{2}} \Gamma_{p, q}(\zeta_{1})} \Big|\mathfrak{m}\left(s, u_{n}\left(p^{\zeta_{1}-1} s\right), v_{n}\left(p^{\zeta_{2}-1} s\right)\right)-\mathfrak{m}\left(s, u\left(p^{\zeta_{1}-1} s\right), v\left(p^{\zeta_{2}-1} s\right)\right)\Big| d_{p, q} s \\ +\frac{t}{\Delta_{1}} \\ \Bigg\{\mu_{1} \int_{0}^{\eta_{1}} \frac{\left(\eta_{1}-q s\right)_{p, q}^{(\zeta_{1}-2)}}{p^{\binom{\zeta_{1}-1}{2}} \Gamma_{p, q}(\zeta_{1}-1)} \Big|\mathfrak{m}\left(s, u_{n}\left(p^{\zeta_{1}-1} s\right), v_{n}\left(p^{\zeta_{2}-1} s\right)\right)-\mathfrak{m}\left(s, u\left(p^{\zeta_{1}-1} s\right), v\left(p^{\zeta_{2}-1} s\right)\right)\Big| d_{p, q} s \\ -\int_{0}^{T/p} \frac{\left(T/p-q s\right)_{p, q}^{(\zeta_{1}-2)}}{p^{\binom{\zeta_{1}-1}{2}} \Gamma_{p, q}(\zeta_{1}-1)} \Big|\mathfrak{m}\left(s, u_{n}\left(p^{\zeta_{1}-1} s\right), v_{n}\left(p^{\zeta_{2}-1} s\right)\right)-\mathfrak{m}\left(s, u\left(p^{\zeta_{1}-1} s\right), v\left(p^{\zeta_{2}-1} s\right)\right)\Big| d_{p, q} s\Bigg\}\\ \leq \Delta_{1} \Big\|\mathfrak{m}\left(\cdot, u_{n}\left(\cdot\right), v_{n}\left(\cdot\right)\right)-\mathfrak{m}\left(s, u\left(\cdot\right), v\left(\cdot\right)\right)\Big\|.

    Thus, \mathcal{F}_{1} is continuous. As same way we arrive that \mathcal{F}_{2} is continuous. Hence, \mathcal{F} is continuous.

    Step 3: Finally in this step, we prove that \mathcal{F}(U) is relatively compact. In view of \mathcal{F}(U)\subset U , we find \mathcal{F}(U) is uniformly bounded. So the only thing left is to show \mathcal{F} is an equi-continuous operator. For achieve this, \forall (u, v) \in U and t_{1}, t_{2} \in J such that t_{1} < t_{2} , we have

    \begin{equation*} \begin{aligned} &\left|\mathcal{F}_{1}(u, v)\left(t_{2}\right)-\mathcal{F}_{1}(u, v)\left(t_{1}\right)\right|\\ &\leq \Big(a_{1}K_{1}+b_{1}K_{2}+c_{1} \Big)\left[\int_{0}^{t_{1}} \frac{\left(t_{2}-q s\right)^{(\zeta_{1}-1)}-\left(t_{1}-q s\right)^{(\zeta_{1}-1)}}{p^{\left(\frac{\zeta_{1}}{2}\right)} \Gamma_{p, q}(\zeta_{1})} d_{p, q} s +\int_{t_{1}}^{t_{2}} \frac{\left(t_{2}-q s\right)^{(\zeta_{1}-1)}}{p^{\left(\frac{\pi}{2}\right)} \Gamma_{p, q}(\zeta_{1})} d_{p, q} s \right]\\ &+\frac{|t_{2}-t_{1}|}{\Delta}\Bigg\{\mu_{1} \int_{0}^{\eta_{1}} \frac{\left(\eta_{1}-q s\right)_{p, q}^{(\zeta_{1}-2)}}{p^{\binom{\zeta_{1}-1}{2}} \Gamma_{p, q}(\zeta_{1}-1)} d_{p, q} s -\int_{0}^{\mathcal{T}/p} \frac{\left(\mathcal{T}/p-q s\right)_{p, q}^{(\zeta_{1}-2)}}{p^{\binom{\zeta_{1}-1}{2}} \Gamma_{p, q}(\zeta_{1}-1)} d_{p, q} s\Bigg\}\\ &\rightarrow 0 \text { as } t_{2} \rightarrow t_{1}. \end{aligned} \end{equation*}

    Similarly, we get

    \begin{equation*} \begin{aligned} &\left|\mathcal{F}_{2}(u, v)\left(t_{2}\right)-\mathcal{F}_{2}(u, v)\left(t_{1}\right)\right|\\ &\leq \Big(a_{2}K_{1}+b_{2}K_{2}+c_{2} \Big)\left[\int_{0}^{t_{1}} \frac{\left(t_{2}-q s\right)^{(\zeta_{2}-1)}-\left(t_{1}-q s\right)^{(\zeta_{2}-1)}}{p^{\left(\frac{\zeta_{2}}{2}\right)} \Gamma_{p, q}(\zeta_{2})} d_{p, q} s +\int_{t_{1}}^{t_{2}} \frac{\left(t_{2}-q s\right)^{(\zeta_{2}-1)}}{p^{\left(\frac{\pi}{2}\right)} \Gamma_{p, q}(\zeta_{2})} d_{p, q} s \right]\\ &+\frac{|t_{2}-t_{1}|}{\Delta}\Bigg\{\mu_{1} \int_{0}^{\eta_{1}} \frac{\left(\eta_{2}-q s\right)_{p, q}^{(\zeta_{2}-2)}}{p^{\binom{\zeta_{2}-1}{2}} \Gamma_{p, q}(\zeta_{2}-1)} d_{p, q} s -\int_{0}^{\mathcal{T}/p} \frac{\left(\mathcal{T}/p-q s\right)_{p, q}^{(\zeta_{1}-2)}}{p^{\binom{\zeta_{2}-1}{2}} \Gamma_{p, q}(\zeta_{2}-1)} d_{p, q} s\Bigg\}\\ &\rightarrow 0 \text { as } t_{2} \rightarrow t_{1}. \end{aligned} \end{equation*}

    Thus, we conclude that \mathcal{F}(U) is an equi-continuous and this yields \mathcal{F}(U) is relatively compact.

    Hence, by utilize Theorem 2.13, we conclude that the problem mentioned in (1.1) has a solution in U .

    Theorem 3.3. Let assumptions \mathcal{L}_{1.3} and \mathcal{L}_{3} are satisfied. Then the problem formulated in (1.1) has at least one solution.

    Proof. As mentioned in aforesaid our Banach space is X = \mathcal{C}\left(J, \mathbb{R}\right)^{2} equipped with the norm \|u\|_{X} .

    Suppose that K > K_{1} and define the map \mathcal{F}: \bar{B}_{K} \rightarrow \mathcal{C}\left(J, \mathbb{R}\right)^{2} which \mathcal{F} is formulated in (3.1), and \bar{B}_{K}: = \bar{B}_{K}\left(0, \mathcal{C}\left(J, \mathbb{R}\right)^{2}\right) = \left\{u \in \mathcal{C}\left(J, \mathbb{R}\right)^{2}:\|u\| \leq K\right\} . We follow the proof in two steps.

    Step 1: In this step, we shall prove that \mathcal{F} is a completely continuous operator. According to Theorem 3.2, we have \mathcal{F} is continuous. Therefore, we shall prove that \mathcal{F}\left(\bar{B}_{R}\right) is relatively compact set. For achieve this, at first, we prove that \mathcal{F}\left(\bar{B}_{R}\right) is uniformly bounded.

    Thus, \forall(u, v) \in \bar{B}_{K}, t \in J , we find

    \begin{align*} |\mathcal{F}_{1}(u, v)(t)|&\leq \int_{0}^{t} \frac{(t-q s)_{p, q}^{(\zeta_{1}-1)}}{p^{\binom{\zeta_{1}}{2}} \Gamma_{p, q}(\zeta_{1})} w_{1}\left(s, |u|_{E}\right) d_{p, q} s \\ &+\frac{t}{\Delta}\Bigg\{\mu_{1} \int_{0}^{\eta_{1}} \frac{\left(\eta_{1}-q s\right)_{p, q}^{(\zeta_{1}-2)}}{p^{\binom{\zeta_{1}-1}{2}} \Gamma_{p, q}(\zeta_{1}-1)} w_{1}\left(s, |u|_{E}\right) d_{p, q} s \\ &-\int_{0}^{\mathcal{T}/p} \frac{\left(\mathcal{T}/p-q s\right)_{p, q}^{(\zeta_{1}-2)}}{p^{\binom{\zeta_{1}-1}{2}} \Gamma_{p, q}(\zeta_{1}-1)} w_{1}\left(s, |u|_{E}\right) d_{p, q} s\Bigg\}\\ &\leq \int_{0}^{t} \frac{(t-q s)_{p, q}^{(\zeta_{1}-1)}}{p^{\binom{\zeta_{1}}{2}} \Gamma_{p, q}(\zeta_{1})} w_{1}\left(s, \sqrt{2}K\right) d_{p, q} s \\ &+\frac{t}{\Delta}\Bigg\{\mu_{1} \int_{0}^{\eta_{1}} \frac{\left(\eta_{1}-q s\right)_{p, q}^{(\zeta_{1}-2)}}{p^{\binom{\zeta_{1}-1}{2}} \Gamma_{p, q}(\zeta_{1}-1)} w_{1}\left(s, \sqrt{2}K\right) d_{p, q} s \\ &-\int_{0}^{\mathcal{T}/p} \frac{\left(\mathcal{T}/p-q s\right)_{p, q}^{(\zeta_{1}-2)}}{p^{\binom{\zeta_{1}-1}{2}} \Gamma_{p, q}(\zeta_{1}-1)} w_{1}\left(s, \sqrt{2}K\right) d_{p, q} s\Bigg\}\\ &\leq \max _{t \in J}\Big\{w_{1}(t, \sqrt{2} K)\Big\}\Bigg[\int_{0}^{t} \frac{(t-q s)_{p, q}^{(\zeta_{1}-1)}}{p^{\binom{\zeta_{1}}{2}} \Gamma_{p, q}(\zeta_{1})} d_{p, q} s \\ &+\frac{t}{\Delta}\Bigg\{\mu_{1} \int_{0}^{\eta_{1}} \frac{\left(\eta_{1}-q s\right)_{p, q}^{(\zeta_{1}-2)}}{p^{\binom{\zeta_{1}-1}{2}} \Gamma_{p, q}(\zeta_{1}-1)} d_{p, q} s-\int_{0}^{\mathcal{T}/p} \frac{\left(\mathcal{T}/p-q s\right)_{p, q}^{(\zeta_{1}-2)}}{p^{\binom{\zeta_{1}-1}{2}} \Gamma_{p, q}(\zeta_{1}-1)} d_{p, q} s\Bigg\}\Bigg], \end{align*}

    which yields \mathcal{F}_{1}\left(B_{R}\right) is uniformly bounded. As same way, it is easy to check that \mathcal{F}_{2}\left(B_{R}\right) is also uniformly bounded. Hence, we conclude that \mathcal{F}\left(\bar{B}_{R}\right) is uniformly bounded. Now, we prove that \mathcal{F}\left(\bar{B}_{R}\right) is an equi-continuous set. For do this, \forall(u, v) \in \bar{B}_{R} and t_{1}, t_{2} \in J such that t_{1} < t_{2} , we can write

    \begin{equation*} \begin{aligned} &\left|\mathcal{F}_{1}(u, v)\left(t_{2}\right)-\mathcal{F}_{1}(u, v)\left(t_{1}\right)\right|\\ &\leq \max _{t \in J}\Big\{w_{1}(t, \sqrt{2} K)\Big\}\left[\int_{0}^{t_{1}} \frac{\left(t_{2}-q s\right)^{(\zeta_{1}-1)}-\left(t_{1}-q s\right)^{(\zeta_{1}-1)}}{p^{\left(\frac{\zeta_{1}}{2}\right)} \Gamma_{p, q}(\zeta_{1})} d_{p, q} s +\int_{t_{1}}^{t_{2}} \frac{\left(t_{2}-q s\right)^{(\zeta_{1}-1)}}{p^{\left(\frac{\pi}{2}\right)} \Gamma_{p, q}(\zeta_{1})} d_{p, q} s \right]\\ &+\frac{|t_{2}-t_{1}|}{\Delta}\Bigg\{\mu_{1} \int_{0}^{\eta_{1}} \frac{\left(\eta_{1}-q s\right)_{p, q}^{(\zeta_{1}-2)}}{p^{\binom{\zeta_{1}-1}{2}} \Gamma_{p, q}(\zeta_{1}-1)} d_{p, q} s -\int_{0}^{\mathcal{T}/p} \frac{\left(\mathcal{T}/p-q s\right)_{p, q}^{(\zeta_{1}-2)}}{p^{\binom{\zeta_{1}-1}{2}} \Gamma_{p, q}(\zeta_{1}-1)} d_{p, q} s\Bigg\}\\ &\rightarrow 0 \text { as } t_{2} \rightarrow t_{1}. \end{aligned} \end{equation*}

    Similarly, note that

    \begin{equation*} \begin{aligned} &\left|\mathcal{F}_{2}(u, v)\left(t_{2}\right)-\mathcal{F}_{2}(u, v)\left(t_{1}\right)\right|\\ &\leq \max _{t \in J}\Big\{w_{2}(t, \sqrt{2} K)\Big\}\left[\int_{0}^{t_{1}} \frac{\left(t_{2}-q s\right)^{(\zeta_{2}-1)}-\left(t_{1}-q s\right)^{(\zeta_{2}-1)}}{p^{\left(\frac{\zeta_{2}}{2}\right)} \Gamma_{p, q}(\zeta_{2})} d_{p, q} s +\int_{t_{1}}^{t_{2}} \frac{\left(t_{2}-q s\right)^{(\zeta_{2}-1)}}{p^{\left(\frac{\pi}{2}\right)} \Gamma_{p, q}(\zeta_{2})} d_{p, q} s \right]\\ &+\frac{|t_{2}-t_{1}|}{\Delta}\Bigg\{\mu_{1} \int_{0}^{\eta_{1}} \frac{\left(\eta_{2}-q s\right)_{p, q}^{(\zeta_{2}-2)}}{p^{\binom{\zeta_{2}-1}{2}} \Gamma_{p, q}(\zeta_{2}-1)} d_{p, q} s -\int_{0}^{\mathcal{T}/p} \frac{\left(\mathcal{T}/p-q s\right)_{p, q}^{(\zeta_{2}-2)}}{p^{\binom{\zeta_{2}-1}{2}} \Gamma_{p, q}(\zeta_{2}-1)} d_{p, q} s\Bigg\}\\ &\rightarrow 0 \text { as } t_{2} \rightarrow t_{1}. \end{aligned} \end{equation*}

    Thus, we arrive at \mathcal{F}\left(\bar{B}_{R}\right) is an equi-continuous set. Hence, \mathcal{F}\left(\bar{B}_{R}\right) is relatively compact set.

    Step 2: In this step, we show that the set \mathcal{Z} = \{z: z = \mu \mathcal{F}(z) , for \mu \in\; J\} is bounded, such that z = (u, v) . Note that, for t \in\; J , we have

    \begin{align} |u(t)|& = |\mu\mathcal{F}_{1}(u, v)(t)| \\ & = \mu\Bigg|\int_{0}^{t} \frac{(t-q s)_{p, q}^{(\zeta_{1}-1)}}{p^{\binom{\zeta_{1}}{2}} \Gamma_{p, q}(\zeta_{1})} \mathfrak{m}\left(s, u\left(p^{\zeta_{1}-1} s\right), v\left(p^{\zeta_{2}-1} s\right)\right) d_{p, q} s \\ &+\frac{t}{\Delta}\Bigg\{\mu_{1} \int_{0}^{\eta_{1}} \frac{\left(\eta_{1}-q s\right)_{p, q}^{(\zeta_{1}-2)}}{p^{\binom{\zeta_{1}-1}{2}} \Gamma_{p, q}(\zeta_{1}-1)} \mathfrak{m}\left(s, u\left(p^{\zeta_{1}-1} s\right), v\left(p^{\zeta_{2}-1} s\right)\right) d_{p, q} s \\ &-\int_{0}^{T/p} \frac{\left(T/p-q s\right)_{p, q}^{(\zeta_{1}-2)}}{p^{\binom{\zeta_{1}-1}{2}} \Gamma_{p, q}(\zeta_{1}-1)} \mathfrak{m}\left(s, u\left(p^{\zeta_{1}-1} s\right), v\left(p^{\zeta_{2}-1} s\right)\right) d_{p, q} s\Bigg\}\Bigg|\\ &\leq \int_{0}^{t} \frac{(t-q s)_{p, q}^{(\zeta_{1}-1)}}{p^{\binom{\zeta_{1}}{2}} \Gamma_{p, q}(\zeta_{1})} \Big|\mathfrak{m}\left(s, u\left(p^{\zeta_{1}-1} s\right), v\left(p^{\zeta_{2}-1} s\right)\right)\Big| d_{p, q} s \\ &+\frac{t}{\Delta}\Bigg\{\mu_{1} \int_{0}^{\eta_{1}} \frac{\left(\eta_{1}-q s\right)_{p, q}^{(\zeta_{1}-2)}}{p^{\binom{\zeta_{1}-1}{2}} \Gamma_{p, q}(\zeta_{1}-1)} \Big|\mathfrak{m}\left(s, u\left(p^{\zeta_{1}-1} s\right), v\left(p^{\zeta_{2}-1} s\right)\right)\Big| d_{p, q} s \\ &-\int_{0}^{T/p} \frac{\left(T/p-q s\right)_{p, q}^{(\zeta_{1}-2)}}{p^{\binom{\zeta_{1}-1}{2}} \Gamma_{p, q}(\zeta_{1}-1)} \Big|\mathfrak{m}\left(s, u\left(p^{\zeta_{1}-1} s\right), v\left(p^{\zeta_{2}-1} s\right)\right)\Big| d_{p, q} s\Bigg\}\\ & \leq\sup\limits_{t\in J}\Bigg[\int_{0}^{t} \frac{(t-q s)_{p, q}^{(\zeta_{1}-1)}}{p^{\binom{\zeta_{1}}{2}} \Gamma_{p, q}(\zeta_{1})}w_{1}\left(s, |x\left(p^{\alpha-1} s\right)|_{E}\right) d_{p, q} s \\ &+\frac{t}{\Delta}\Bigg\{\mu_{1} \int_{0}^{\eta_{1}} \frac{\left(\eta_{1}-q s\right)_{p, q}^{(\zeta_{1}-2)}}{p^{\binom{\zeta_{1}-1}{2}} \Gamma_{p, q}(\zeta_{1}-1)}w_{1}\left(s, |x\left(p^{\alpha-1} s\right)|_{E}\right) d_{p, q} s \end{align} (3.12)
    \begin{align} &-\int_{0}^{T/p} \frac{\left(T/p-q s\right)_{p, q}^{(\zeta_{1}-2)}}{p^{\binom{\zeta_{1}-1}{2}} \Gamma_{p, q}(\zeta_{1}-1)}w_{1}\left(s, |x\left(p^{\alpha-1} s\right)|_{E}\right) d_{p, q} s\Bigg\}\Bigg]. \end{align} (3.13)

    Similarly, one can obtain

    \begin{equation} \begin{aligned} |v(t)|&\leq\sup\limits_{t\in J}\Bigg[\int_{0}^{t} \frac{(t-q s)_{p, q}^{(\zeta_{2}-1)}}{p^{\binom{\zeta_{2}}{2}} \Gamma_{p, q}(\zeta_{2})}w_{2}\left(s, |x\left(p^{\alpha-1} s\right)|_{E}\right) d_{p, q} s \\ &+\frac{t}{\Delta_{2}}\Bigg\{\mu_{2} \int_{0}^{\eta_{2}} \frac{\left(\eta_{2}-q s\right)_{p, q}^{(\zeta_{2}-2)}}{p^{\binom{\zeta_{2}-1}{2}} \Gamma_{p, q}(\zeta_{2}-1)}w_{2}\left(s, |x\left(p^{\alpha-1} s\right)|_{E}\right) d_{p, q} s\\ &-\int_{0}^{T/p} \frac{\left(T/p-q s\right)_{p, q}^{(\zeta_{2}-2)}}{p^{\binom{\zeta_{1}-1}{2}} \Gamma_{p, q}(\zeta_{2}-1)}w_{2}\left(s, |x\left(p^{\alpha-1} s\right)|_{E}\right) d_{p, q} s\Bigg\}\Bigg]. \end{aligned} \end{equation} (3.14)

    Assume that \sigma_{1} = \|u\|_{\infty}, \sigma_{2} = \|v\|_{\infty} . It follows from (3.12) and (3.14), we have

    \left\{\begin{array}{l} \rho_{1} \leq\sup\nolimits_{t\in J}\Bigg[\int_{0}^{t} \frac{ \ \ \ (t-q s)_{p, q}^{ \ \ \ (\zeta_{1}-1)}}{p^{\binom{\zeta_{1}}{2}} \Gamma_{p, q} \ \ \ (\zeta_{1})}w_{1} \ \ \ \left(s, |\rho|_{E}\right) d_{p, q} s \\ +\frac{t}{\Delta_{1}}\Bigg\{\mu_{1} \int_{0}^{\eta_{1}} \frac{ \ \ \ \left(\eta_{1}-q s\right)_{p, q}^{ \ \ \ (\zeta_{1}-2)}}{p^{\binom{\zeta_{1}-1}{2}} \Gamma_{p, q} \ \ \ (\zeta_{1}-1)}w_{1} \ \ \ \left(s, |\rho|_{E}\right) d_{p, q} s -\int_{0}^{T/p} \frac{ \ \ \ \left(T/p-q s\right)_{p, q}^{ \ \ \ (\zeta_{1}-2)}}{p^{\binom{\zeta_{1}-1}{2}} \Gamma_{p, q} \ \ \ (\zeta_{1}-1)}w_{1} \ \ \ \left(s, |\rho|_{E}\right) d_{p, q} s\Bigg\}\Bigg], \\ \rho_{2}\leq\sup\nolimits_{t\in J}\Bigg[\int_{0}^{t} \frac{ \ \ \ (t-q s)_{p, q}^{ \ \ \ (\zeta_{2}-1)}}{p^{\binom{\zeta_{2}}{2}} \Gamma_{p, q} \ \ \ (\zeta_{2})}w_{2} \ \ \ \left(s, |\rho|_{E}\right) d_{p, q} s \\ +\frac{t}{\Delta_{2}}\Bigg\{\mu_{2} \int_{0}^{\eta_{2}} \frac{ \ \ \ \left(\eta_{2}-q s\right)_{p, q}^{ \ \ \ (\zeta_{2}-2)}}{p^{\binom{\zeta_{2}-1}{2}} \Gamma_{p, q} \ \ \ (\zeta_{2}-1)}w_{2} \ \ \ \left(s, |\rho|_{E}\right) d_{p, q} s -\int_{0}^{T/p} \frac{ \ \ \ \left(T/p-q s\right)_{p, q}^{ \ \ \ (\zeta_{2}-2)}}{p^{\binom{\zeta_{1}-1}{2}} \Gamma_{p, q} \ \ \ (\zeta_{2}-1)}w_{2} \ \ \ \left(s, |\rho|_{E}\right) d_{p, q} s\Bigg\}\Bigg]. \end{array}\right.

    In view of \mathcal{L}_{3} we deduce that |\sigma|_{E} \leq K_{1} . Since |\sigma|_{E} = \|z\|_{x} and K_{1} < K , one has \|z\|_{x} < K .

    Thanks to Theorem 2.14 to obtain the existence result.

    Example 4.1. Consider the following fractional (p, q) -boundary value problem

    \begin{equation} \begin{cases} { }^{c} D_{\frac{1}{4}, \frac{1}{5}}^{\frac{3}{2}} u(t) = 0.5+\dfrac{1}{8}\times\dfrac{u^{2}(\frac{t}{8})}{1+u^{2}(t)}cos(4v(\frac{t}{4\sqrt{2}})), \quad t \in\left[0, 8\right], \\ { }^{c} D_{\frac{1}{4}, \frac{1}{5}}^{\frac{5}{4}} v(t) = 0.5+\dfrac{1}{10}\times\dfrac{u^{2}(\frac{t}{8})}{1+u^{2}(t)}sin(8v(\frac{t}{4\sqrt{2}})), \quad t \in\left[0, 8\right], \\ u(0) = u'(0) = 0, \quad v(0) = v'(0) = 0, \\ D_{p, q} u(4) = 2D_{p, q}u(1), \; \; D_{p, q} v(4) = 3D_{p, q}v(1). \end{cases} \end{equation} (4.1)

    In this case we take \zeta_{1} = \frac{3}{2} , \zeta_{2} = \frac{5}{4} , T = 1 , p = \frac{1}{4} , q = \frac{1}{5} , \eta_{1} = \eta_{2} = 1 , and \mu_{1} = 2 , \mu_{2} = 3 . It is easy to check that:

    \begin{equation*} \Lambda_{1} = \dfrac{1}{3\Gamma_{\frac{1}{4}, \frac{1}{5}}(\frac{3}{2})} = 0.7454, \quad {and} \quad \Lambda_{2} = \dfrac{1}{5\Gamma_{\frac{1}{4}, \frac{1}{5}}(\frac{5}{4})} = 0.2991. \end{equation*}

    Further, note that

    \begin{equation*} \sup\limits_{u.v\in \mathbb{R}}\left\vert\dfrac{\partial\mathfrak{m}(u, v)}{\partial v}\right\vert\leq\dfrac{1}{2}: = a_{1}, \quad \sup\limits_{u.v\in \mathbb{R}}\left\vert\dfrac{\partial\mathfrak{m}(u, v)}{\partial u}\right\vert\leq\dfrac{3\sqrt{3}}{64}: = b_{1}, \end{equation*}
    \begin{equation*} \sup\limits_{u.v\in \mathbb{R}}\left\vert\dfrac{\partial\mathfrak{n}(u, v)}{\partial v}\right\vert\leq\dfrac{4}{5}: = a_{2}, \quad \sup\limits_{u.v\in \mathbb{R}}\left\vert\dfrac{\partial\mathfrak{n}(u, v)}{\partial u}\right\vert\leq\dfrac{3\sqrt{3}}{80}: = b_{2}. \end{equation*}

    So, we arrive at

    \begin{equation*} \mathcal{M}_{2\times2} = \left[\begin{array}{ll} 0.3727 & 0.0605 \\ 0.2393 & 0.0194 \end{array}\right], \end{equation*}

    and

    \begin{equation*} (\mathcal{I}-\mathcal{M}_{2\times2})^{-1} = \left[\begin{array}{ll} 1.6326 & 0.1008 \\ 0.3984 & 1.0444 \end{array}\right]. \end{equation*}

    This matrix has two eigenvalues \lambda_{1} = 0.4098 , and \lambda_{2} = -0.0177 , which in both case, we have \vert\lambda_{1}\vert < 1 and \vert\lambda_{2}\vert < 1 . Also rank (\mathcal{I}-\mathcal{M}_{2\times2}) = 2 , and all member of (\mathcal{I}-\mathcal{M}_{2\times2})^{-1} , are nonnegative. Thus, \mathcal{M}_{2\times2} \to 0 . Hence all conditions of Theorem 2.12 are valid and the problem (4.1) has a unique solution. Moreover, the data in Table 3, show that convergence of \mathcal{M}_{2\times2} is independent of quantum parameters (p, q) . Also, to better understand this example, the graphs of functions \mathfrak{m}, \mathfrak{n} , and heatmap of Table 3 are presented in Figures 13.

    Table 3.  Eignvalues of \mathcal{M}_{2\times2} with different value of p, q.
    p q \Gamma_{p, q}(1.5) \Gamma_{p, q}(1.25) \Lambda_{1} \Lambda_{2} \vert\lambda_{1}\vert \vert\lambda_{2}\vert
    0.25 0.2 2.2361 1.4953 0.7454 0.2991 0.4098 0.0177
    0.3 0.1 1.2247 1.1067 0.4082 0.2213 0.2314 0.0128
    0.47 0.18 1.2731 1.1283 0.4103 0.2257 0.2327 0.0129
    0.7 0.59 2.5226 1.5883 0.8409 0.3177 0.4599 0.0189
    0.91 0.81 3.0166 1.7368 1.0055 0.3474 0.5461 0.0208

     | Show Table
    DownLoad: CSV
    Figure 1.  The graph of \mathfrak{m}(t, u(p^{\zeta_{1}} t), v(p^{\zeta_{2}} t)) in Example 4.1.
    Figure 2.  The graph of \mathfrak{n}(t, u(p^{\zeta_{1}} t), v(p^{\zeta_{2}} t)) in Example 4.1.
    Figure 3.  The heatmap of Table 3.

    Example 4.2. Consider the following fractional (p, q) -boundary value problem

    \begin{equation} \begin{cases} { }^{c} D_{\frac{1}{4}, \frac{1}{5}}^{\frac{3}{2}} u(t) = -\dfrac{3}{10}u(\frac{t}{8})-\dfrac{2u(\frac{t}{8})v(\frac{t}{4\sqrt{2}})}{3+u^{2}(\frac{t}{8})}+11, \quad t \in\left[0, 8\right], \\[0.4cm] { }^{c} D_{\frac{1}{4}, \frac{1}{5}}^{\frac{5}{4}} v(t) = -\dfrac{7}{13}v(\frac{t}{4\sqrt{2}})-\dfrac{2u(\frac{t}{8})v(\frac{t}{4\sqrt{2}})}{3+u^{2}(\frac{t}{8})}+13, \quad t \in\left[0, 8\right], \\[0.4cm] u(0) = u'(0) = 0, \quad v(0) = v'(0) = 0, \\[0.3cm] D_{p, q} u(4) = 2D_{p, q}u(1), \; \; D_{p, q} v(4) = 3D_{p, q}v(1). \end{cases} \end{equation} (4.2)

    In this case we take \zeta_{1} = \frac{3}{2} , \zeta_{2} = \frac{5}{4} , T = 1 , p = \frac{1}{4} , q = \frac{1}{5} , \eta_{1} = \eta_{2} = 1 , and \mu_{1} = 2 , \mu_{2} = 3 . With a simple computation, we obtain

    \begin{equation*} a_{1} = 0.3, \quad a_{2} = 0, \quad b_{1} = \frac{\sqrt3}{3}, \quad b_{2} = \frac{7}{13}+\frac{\sqrt3}{6}. \end{equation*}

    Then, we define

    \begin{equation*} \mathcal{M}_{2\times2} = \left[\begin{array}{ll} 0.2236 & 0.4304 \\ 0 & 0.2474 \end{array}\right], \end{equation*}

    which this yields

    \begin{equation*} \lambda_{1} = 0.2236, \quad \lambda_{2} = 0.2474, \end{equation*}

    and

    \begin{equation*} (\mathcal{I}-\mathcal{M}_{2\times2})^{-1} = \left[\begin{array}{ll} 1.2880 & 0.7365 \\ 0 & 1.3287 \end{array}\right], \end{equation*}

    also

    \begin{equation*} {rank}(\mathcal{I}-\mathcal{M}_{2\times2}) = 2. \end{equation*}

    From the above facts it can be concluded that, \mathcal{M}_{2\times2} convergence to zero. Thus, all assumption of Theorem 3.2 are hold and so the problem (4.2) has at least one solution. Moreover, the data in Table 4, show that convergence of \mathcal{M}_{2\times2} is independent of quantum parameters (p, q) . Also, to better understand this example, the graph of the function \mathfrak{m} and heatmap of Table 4 are presented in Figures 4 and 5.

    Table 4.  Eignvalues of \mathcal{M}_{2\times2} with different value of p, q .
    p q \Gamma_{p, q}(1.5) \Gamma_{p, q}(1.25) \Lambda_{1} \Lambda_{2} \vert\lambda_{1}\vert \vert\lambda_{2}\vert
    0.25 0.2 2.2361 1.4953 0.7454 0.2991 0.2236 0.2474
    0.3 0.1 1.2247 1.1067 0.4082 0.2213 0.1225 0.1830
    0.47 0.18 1.2731 1.1283 0.4103 0.2257 0.1231 0.1867
    0.7 0.59 2.5226 1.5883 0.8409 0.3177 0.2523 0.2628
    0.91 0.81 3.0166 1.7368 1.0055 0.3474 0.3017 0.2873

     | Show Table
    DownLoad: CSV
    Figure 4.  The graph of \mathfrak{m}(t, u(p^{\zeta_{1}} t), v(p^{\zeta_{2}} t)) in Example 4.2.
    Figure 5.  The heatmap of Table 4.

    In this work, we investigate the fractional (p, q) -difference equation under non-local boundary conditions with a new method. We introduce the Lipchitzian matrix for our problem such that elements of this matrix depend on the fractional order \zeta and the quantum Gamma function \Gamma_{p, q}(\zeta) . Then, using the fixed point theory and providing sufficient conditions for convergence to the zero of the mentioned matrix, we will follow the theory of existence. Finally, we go to the numerical analysis of our introduced technique to confirm its accuracy and validity. The data from the presented examples indicate the independence of our method from the p and q quantum parameters. This paper, and the methods presented in it, can provide the basis for further study of generalized quantum differential equations and the use of numerical techniques in providing sufficient conditions for the existence of the solution.

    The authors would like to thank dear reviewers for their constructive and useful comments. Also, J. Alzabut is thankful to Prince Sultan University and OSTİM Technical University for their endless support.

    The authors declare no conflicts of interest.



    [1] S. Bhalekar, J. Patade, Series solution of the pantograph equation and its properties, Fractal Fract., 1 (2017), 16. https://doi.org/10.3390/fractalfract1010016 doi: 10.3390/fractalfract1010016
    [2] L. Podlubny, Fractional differential equations, Academic Press, 1999.
    [3] A. A. Kilbas, Hadamard-type fractional calculus, J. Korean Math. Soc., 38 (2001), 1191–1204.
    [4] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73–85. https://doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
    [5] H. Mohammadi, S. Kumar, S. Rezapour, S. Etemad, A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to mumps virus with optimal control, Chaos Solitons Fract., 144 (2021), 110668. https://doi.org/10.1016/j.chaos.2021.110668 doi: 10.1016/j.chaos.2021.110668
    [6] A. Din, Y. Li, A. Yusuf, Delayed hepatitis B epidemic model with stochastic analysis, Chaos Solitons Fract., 146 (2021), 110839. https://doi.org/10.1016/j.chaos.2021.110839 doi: 10.1016/j.chaos.2021.110839
    [7] A. Din, Y. Li, Stationary distribution extinction and optimal control for the stochastic hepatitis B epidemic model with partial immunity, Phys. Scr., 96 (2021), 074005. https://doi.org/10.1088/1402-4896/abfacc doi: 10.1088/1402-4896/abfacc
    [8] A. Din, Y. Li, M. A. Shah, The complex dynamics of hepatitis B infected individuals with optimal control, J. Syst. Sci. Complex., 34 (2021), 1301–1323. https://doi.org/10.1007/s11424-021-0053-0 doi: 10.1007/s11424-021-0053-0
    [9] D. Baleanu, A. Jajarmi, H. Mohammadi, S. Rezapour, A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative, Chaos Solitons Fract., 134 (2020), 109705. https://doi.org/10.1016/j.chaos.2020.109705 doi: 10.1016/j.chaos.2020.109705
    [10] A. Din, Y. Li, T. Khan, G. Zaman, Mathematical analysis of spread and control of the novel corona virus (COVID-19) in China, Chaos Solitons Fract., 141 (2020), 110286. https://doi.org/10.1016/j.chaos.2020.110286 doi: 10.1016/j.chaos.2020.110286
    [11] M. Arfan, M. M. A. Lashin, P. Sunthrayuth, K. Shah, A. Ullah, K. Iskakova, et al., On nonlinear dynamics of COVID-19 disease model corresponding to nonsingular fractional order derivative, Med. Biol. Eng. Comput., 60 (2022), 3169–3185. https://doi.org/10.1007/s11517-022-02661-6 doi: 10.1007/s11517-022-02661-6
    [12] D. Baleanu, S. Etemad, S. Rezapour, A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions, Bound. Value Probl., 2020 (2020), 64. https://doi.org/10.1186/s13661-020-01361-0 doi: 10.1186/s13661-020-01361-0
    [13] J. J. Nieto, J. Pimentel, Positive solutions of a fractional thermostat model, Bound. Value Probl., 2013 (2013), 5. https://doi.org/10.1186/1687-2770-2013-5 doi: 10.1186/1687-2770-2013-5
    [14] H. Aydi, M. Jleli, B. Samet, On positive solutions for a fractional thermostat model with a convex–concave source term via \psi-Caputo fractional derivative, Mediterr. J. Math., 17 (2020), 1–15. https://doi.org/10.1007/s00009-019-1450-7 doi: 10.1007/s00009-019-1450-7
    [15] M. Fei, G. Zhang, N. Wang, C. Huang, A linearized conservative Galerkin–Legendre spectral method for the strongly coupled nonlinear fractional Schrödinger equations, Adv. Differ. Equ., 2020 (2020), 1–23. https://doi.org/10.1186/s13662-020-03017-w doi: 10.1186/s13662-020-03017-w
    [16] J. Lee, K. Jae-Myoung, K. Yun-Ho, A. Scapellato, On multiple solutions to a nonlocal fractional p-Laplacian problem with concave–convex nonlinearities, Adv. Contin. Discrete Models, 2022 (2022), 14. https://doi.org/10.1186/s13662-022-03689-6 doi: 10.1186/s13662-022-03689-6
    [17] Z. Heydarpour, J. Izadi, R. George, M. Ghaderi, S. Rezapour, On a partial fractional hybrid version of generalized Sturm–Liouville–Langevin equation, Fractal Frac., 2022 (2022), 269. https://doi.org/10.3390/fractalfract6050269 doi: 10.3390/fractalfract6050269
    [18] M. Rivero, J. Trujillo, M. Velasco, A fractional approach to the Sturm-Liouville problem, Cent. Eur. J. Phys., 11 (2013), 1246–1254. https://doi.org/10.2478/s11534-013-0216-2 doi: 10.2478/s11534-013-0216-2
    [19] M. Klimek, O. P. Agrawal, Fractional Sturm–Liouville problem, Comput. Math. Appl., 66 (2013), 795–812. https://doi.org/10.1016/j.camwa.2012.12.011 doi: 10.1016/j.camwa.2012.12.011
    [20] S. T. M. Thabet, S. Etemad, S. Rezapour, On a coupled Caputo conformable system of pantograph problems, Turk. J. Math., 45 (2021), 496–519. https://doi.org/10.3906/mat-2010-70 doi: 10.3906/mat-2010-70
    [21] K. Balachandran, S. Kiruthika, J. J. Trujillo, Existence of solutions of nonlinear fractional pantograph equations, Acta Math. Sci., 33 (2013), 712–720. https://doi.org/10.1016/S0252-9602(13)60032-6 doi: 10.1016/S0252-9602(13)60032-6
    [22] H. Alrabaiah, G. Ali, A. Ali, K. Shah, T. Abdeljawad, On existence and stability results for pantograph fractional boundary value problems, Fractals, 30 (2022), 2240231. https://doi.org/10.1142/S0218348X22402319 doi: 10.1142/S0218348X22402319
    [23] S. C. Lim, M. Li, L. P. Teo, Langevin equation with two fractional orders, Phys. Lett. A, 372 (2008), 6309–6320. https://doi.org/10.1016/j.physleta.2008.08.045 doi: 10.1016/j.physleta.2008.08.045
    [24] B. Ahmad, J. J. Nieto, A. Alsaedi, M. El-Shahed, A study of nonlinear Langevin equation involving two fractional orders in different intervals, Nonlinear Anal. R. World Appl., 13 (2012), 599–606. https://doi.org/10.1016/j.nonrwa.2011.07.052 doi: 10.1016/j.nonrwa.2011.07.052
    [25] A. H. Bhrawy, M. A. Alghamdi, A shifted Jacobi-Gauss-Lobatto collocation method for solving nonlinear fractional Langevin equation involving two fractional orders in different intervals, Bound. Value Probl., 2012 (2012), 62. https://doi.org/10.1186/1687-2770-2012-62 doi: 10.1186/1687-2770-2012-62
    [26] C. Zhai, P. Li, H. Li, Single upper-solution or lower-solution method for Langevin equations with two fractional orders, Adv. Differ. Equ., 2018 (2018), 360. https://doi.org/10.1186/s13662-018-1837-y doi: 10.1186/s13662-018-1837-y
    [27] M. I. Abbas, M. Ghaderi, S. Rezapour, S. T. M. Thabet, On a coupled system of fractional differential equations via the generalized proportional fractional derivatives, Adv. Frac. Funct. Anal., 2022 (2022), 4779213. https://doi.org/10.1155/2022/4779213 doi: 10.1155/2022/4779213
    [28] A. Benkerrouche, M. S. Souid, E. Karapınar, A. Hakem, On the boundary value problems of Hadamard fractional differential equations of variable order, Math. Methods Appl. Sci., 2022 (2022), 8306. https://doi.org/10.1002/mma.8306 doi: 10.1002/mma.8306
    [29] M. Benchohra, F. Bouazzaoui, E. Karapinar, A. Salim, Controllability of second order functional random differential equations with delay, Mathematics, 10 (2022), 1120. https://doi.org/10.3390/math10071120 doi: 10.3390/math10071120
    [30] F. Mainardi, Fractional calculus and waves in linear viscoelasticity: An introduction to mathematical model, World Scientific Publishing Company, 2010.
    [31] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
    [32] V. E. Tarasov, Fractional dynamics: Application of fractional calculus to dynamics of particles, fields and media, Springer, 2011.
    [33] M. Ahmad, A. Zada, M. Ghaderi, R. George, S. Rezapour, On the existence and stability of a neutral stochastic fractional differential system, Fractal Fract., 2022 (2022), 203. https://doi.org/10.3390/fractalfract6040203 doi: 10.3390/fractalfract6040203
    [34] S. Abbas, D. Baleanu, M. Benchohra, Global attractivity for fractional order delay partial integro-differential equations, Adv. Differ. Equ., 2012 (2012), 62. https://doi.org/10.1186/1687-1847-2012-62 doi: 10.1186/1687-1847-2012-62
    [35] S. Abbas, M. Benchohra, Fractional order partial hyperbolic differential equations involving Caputo's derivative, Stud. Univ. Babes-Bolyai Math., 57 (2012), 469–479.
    [36] M. M. Matar, M. I. Abbas, J. Alzabut, M. K. A. Kaabar, S. Etemad, S. Rezapour, Investigation of the p-Laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives, Adv. Differ. Equ., 2021 (2021), 1–18. https://doi.org/10.1186/s13662-021-03228-9 doi: 10.1186/s13662-021-03228-9
    [37] M. Benchohra, M. Hellal, Perturbed partial functional fractional order differential equations with infnite delay, J. Adv. Res. Dyn. Control Syst, 5 (2013), 1–15.
    [38] D. Baleanu, H. Mohammadi, S. Rezapour, Analysis of the model of HIV-1 infection of CD4+ T-cell with a new approach of fractional derivative, Adv. Differ. Equ., 2020 (2020), 71. https://doi.org/10.1186/s13662-020-02544-w doi: 10.1186/s13662-020-02544-w
    [39] S. Etemad, I. Avci, P. Kumar, D. Baleanu, S. Rezapour, Some novel mathematical analysis on the fractal–fractional model of the AH1N1/09 virus and its generalized Caputo-type version, Chaos Solitons Fract., 162 (2022), 112511. https://doi.org/10.1016/j.chaos.2022.112511 doi: 10.1016/j.chaos.2022.112511
    [40] F. H. Jackson, q-difference equation, Am. J. Mathe., 32 (1910), 305–314. https://doi.org/10.2307/2370183
    [41] F. H. Jackson, On q-definite integrals, Q. J. Pure Appl. Math., 41 (1910), 193–203.
    [42] V. Kac, P. Cheung, Quantum calculus, Springer, 2002.
    [43] W. A. Al-Salam, Some fractional q-integrals and q-derivatives, Proc. Edinburgh Math. Soc., 15 (1966), 135–140. https://doi.org/10.1017/S0013091500011469 doi: 10.1017/S0013091500011469
    [44] R. P. Agarwal, Certain fractional q-integrals and q-derivatives, Math. Proc. Cambridge Philos. Soc., 66 (1969), 365–370. https://doi.org/10.1017/S0305004100045060 doi: 10.1017/S0305004100045060
    [45] M. El-Shahed, F. M. Al-Askar, Positive solutions for boundary value problem of nonlinear fractional q-difference equation, Int. Scholarly Res. Not., 2011 (2011), 385459. https://doi.org/10.5402/2011/385459 doi: 10.5402/2011/385459
    [46] R. A. C. Ferreira, Positive solutions for a class of boundary value problems with fractional q-differences, Comput. Math. Appl., 61 (2011), 367–373. https://doi.org/10.1016/j.camwa.2010.11.012 doi: 10.1016/j.camwa.2010.11.012
    [47] J. Ma, J. Yang, Existence of solutions for multi-point boundary value problem of fractional q-difference equation, Electro. J. Qual. Theory Differ. Equ., 2011 (2011), 1–10. https://doi.org/10.14232/ejqtde.2011.1.92 doi: 10.14232/ejqtde.2011.1.92
    [48] M. Shabibi, M. E. Samei, M. Ghaderi, S. Rezapour, Some analytical and numerical results for a fractional q-differential inclusion problem with double integral boundary conditions, Adv. Differ. Equ., 2021 (2021), 1–17. https://doi.org/10.1186/s13662-021-03623-2 doi: 10.1186/s13662-021-03623-2
    [49] A. Salim, S. Abbas, M. Benchohra, E. Karapinar, A Filippov's theorem and topological structure of solution sets for fractional q-difference inclusions, Dynam. Syst. Appl., 31 (2022), 17–34. https://doi.org/10.46719/dsa202231.01.02 doi: 10.46719/dsa202231.01.02
    [50] A. Dobrogowska, A. Odzijewicz, Second order q-difference equations solvable by factorization method, J. Comput. Appl. Math., 193 (2006), 319–346. https://doi.org/10.1016/j.cam.2005.06.009 doi: 10.1016/j.cam.2005.06.009
    [51] B. Ahmad, S. K. Ntouyas, Boundary value problems for q-difference inclusions, Abstr. Appl. Anal., 2011 (2011), 292860. https://doi.org/10.1155/2011/292860 doi: 10.1155/2011/292860
    [52] T. Ernst, The history of q-calculus and a new method, Citeseer, 2000.
    [53] C. R. Adams, On the linear ordinary q-difference equation, Ann. Math., 30 (1928), 195–205. https://doi.org/10.2307/1968274 doi: 10.2307/1968274
    [54] J. B. Remmel, M. L. Wachs, Rook theory, generalized stirling numbers and (p, q)-analogues, Electron. J. Comb., 11 (2004), 48.
    [55] M. Mursaleen, K. J. Ansari, A. Khan, On (p, q)-analogue of Bernstein operators, Appl. Math. Comput., 266 (2015), 874–882. https://doi.org/10.1016/j.amc.2015.04.090 doi: 10.1016/j.amc.2015.04.090
    [56] P. N. Sadjang, On the fundamental theorem of (p, q)-calculus and some (p, q)-taylor formulas, Rsults Math., 73 (2018), 39. https://doi.org/10.1007/s00025-018-0783-z doi: 10.1007/s00025-018-0783-z
    [57] J. Soontharanon, T. Sitthiwirattham, On fractional (p, q)-calculus, Adv. Differ. Equ., 2020 (2020), 35. https://doi.org/10.1186/s13662-020-2512-7
    [58] Z. Qin, S. Sun, Positive solutions for fractional (p, q)-difference boundary value problems, J. Appl. Math. Comput., 68 (2022), 2571–2588. https://doi.org/10.1007/s12190-021-01630-w doi: 10.1007/s12190-021-01630-w
    [59] C. Promsakon, N. Kamsrisuk, S. K. Ntouyas, J. Tariboon, On the second-order quantum-difference equations with separated boundary conditions, Adv. Math. Phys., 2018 (2018), 9089865. https://doi.org/10.1155/2018/9089865 doi: 10.1155/2018/9089865
    [60] P. N. Sadjang, On two (p, q)-analogues of the laplace transform. J. Differ. Equ. Appl., 23 (2017), 1562–1583. https://doi.org/10.1080/10236198.2017.1340469
    [61] G. V. Milovanović, V. Gupta, N. Malik, (p, q)-beta functions and applications in approximation, Bol. Soc. Mat. Mex., 24 (2018), 219–237. https://doi.org/10.1007/s40590-016-0139-1 doi: 10.1007/s40590-016-0139-1
    [62] M. Tunç, E. Göv, Some integral inequalities via (p, q)-calculus on finite intervals, Filomat, 35 (2021), 1421–1430. https://doi.org/10.2298/FIL2105421T doi: 10.2298/FIL2105421T
    [63] M. N. Hounkonnou, J. Désiré, B. Kyemba, R(p, q)-calculus: Differentiation and integration, Sut. J. Math, 49 (2013), 145–167. https://doi.org/10.55937/sut/1394548362 doi: 10.55937/sut/1394548362
    [64] O. Nica, Nonlocal initial value problems for first order differential systems, Fixed Point Theory, 13 (2012), 603–612.
    [65] R. Precup, The role of matrices that are convergent to zero in the study of semilinear operator systems, Math. Comput. Model., 49 (2009), 703–708.
    [66] R. P. Agarwal, M. Meehan, D. O'Regan, Fixed point theory and applications, Cambridge University Press, 2001. https://doi.org/10.1017/CBO9780511543005
  • This article has been cited by:

    1. Reny George, Seher Melike Aydogan, Fethiye Muge Sakar, Mehran Ghaderi, Shahram Rezapour, A study on the existence of numerical and analytical solutions for fractional integrodifferential equations in Hilfer type with simulation, 2023, 8, 2473-6988, 10665, 10.3934/math.2023541
    2. Sina Etemad, Sotiris K. Ntouyas, Ivanka Stamova, Jessada Tariboon, On Solutions of Two Post-Quantum Fractional Generalized Sequential Navier Problems: An Application on the Elastic Beam, 2024, 8, 2504-3110, 236, 10.3390/fractalfract8040236
    3. Fatima Zahra Arioui, Existence results for a coupled system of fractional stochastic differential equations involving Hilfer derivative, 2024, 0926-6364, 10.1515/rose-2024-2015
    4. Sina Etemad, Ivanka Stamova, Sotiris K. Ntouyas, Jessada Tariboon, On the Generalized (p,q)-ϕ-Calculus with Respect to Another Function, 2024, 12, 2227-7390, 3290, 10.3390/math12203290
    5. Shahram Rezapour, Sabri T. M. Thabet, Imed Kedim, Miguel Vivas-Cortez, Mehran Ghaderi, A computational method for investigating a quantum integrodifferential inclusion with simulations and heatmaps, 2023, 8, 2473-6988, 27241, 10.3934/math.20231394
    6. Abdelatif Boutiara, Mohamed Rhaima, Lassaad Mchiri, Abdellatif Ben Makhlouf, Cauchy problem for fractional {(p, q)} -difference equations, 2023, 8, 2473-6988, 15773, 10.3934/math.2023805
    7. Reny George, Fahad Al-shammari, Mehran Ghaderi, Shahram Rezapour, On the boundedness of the solution set for the \psi -Caputo fractional pantograph equation with a measure of non-compactness via simulation analysis, 2023, 8, 2473-6988, 20125, 10.3934/math.20231025
    8. Samane Ijadi, S. Mansour Vaezpour, Mehdi Shabibi, Shahram Rezapour, On the singular-hybrid type of the Langevin fractional differential equation with a numerical approach, 2024, 2024, 1687-2770, 10.1186/s13661-024-01922-7
    9. Abdelatif Boutiara, Sotiris K. Ntouyas, Taghreed A. Assiri, Jessada Tariboon, Emad E. Mahmoud, On the Cauchy Problem for Nonlinear Fractional Systems with Lipschitzian Matrices Under the Generalized Metric Spaces, 2024, 23, 1575-5460, 10.1007/s12346-024-01127-4
    10. Mouataz Billah Mesmouli, Loredana Florentina Iambor, Amir Abdel Menaem, Taher S. Hassan, Existence Results and Finite-Time Stability of a Fractional (p,q)-Integro-Difference System, 2024, 12, 2227-7390, 1399, 10.3390/math12091399
    11. Reny George, Sina Etemad, Fahad Sameer Alshammari, Stability analysis on the post-quantum structure of a boundary value problem: application on the new fractional (p, q) -thermostat system, 2024, 9, 2473-6988, 818, 10.3934/math.2024042
    12. Mehran Ghaderi, Shahram Rezapour, On an m-dimensional system of quantum inclusions by a new computational approach and heatmap, 2024, 2024, 1029-242X, 10.1186/s13660-024-03125-1
    13. Fatima Zahra Arioui, Existence results for coupled systems of fractional stochastic differential equations involving Hilfer derivatives, 2024, 0926-6364, 10.1515/rose-2024-2022
    14. Reny George, Sina Etemad, Ivanka Stamova, Raaid Alubady, Existence of solutions for [\mathtt{p},\mathtt{q}] -difference initial value problems: application to the [\mathtt{p},\mathtt{q}] -based model of vibrating eardrums, 2025, 10, 2473-6988, 2321, 10.3934/math.2025108
    15. Sabri T. M. Thabet, Imed Kedim, Mohammad Esmael Samei, Thabet Abdeljawad, Analysis study of hybrid Caputo-Atangana-Baleanu fractional pantograph system under integral boundary conditions, 2025, 30, 1648-3510, 386, 10.3846/mma.2025.22328
    16. Hailong Ma, Hongyu Li, Existence of Solutions for Caputo-Type Fractional (p,q)-Difference Equations Under Robin Boundary Conditions, 2025, 14, 2075-1680, 318, 10.3390/axioms14040318
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2305) PDF downloads(137) Cited by(16)

Figures and Tables

Figures(5)  /  Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog