Loading [MathJax]/jax/element/mml/optable/Latin1Supplement.js
Research article

Positive solutions of IBVPs for q-difference equations with p-Laplacian on infinite interval

  • Received: 16 February 2021 Accepted: 11 May 2021 Published: 31 May 2021
  • MSC : 39A13, 39A27, 34B40

  • Nowadays, many researches have considerable attention to the nonlinear q-difference equations boundary value problems as important and useful tool for modeling of different phenomena in various research fields. In this work, we investigate a class of q-difference equations boundary value problems with integral boundary conditions with p-Laplacian on infinite intervals. By applying the Avery-Peterson fixed point theorem in a cone, we establish the existence of three positive solutions for the above boundary value problem. Finally, the main results is illustrated with the aid of an example.

    Citation: Changlong Yu, Jufang Wang, Huode Han, Jing Li. Positive solutions of IBVPs for q-difference equations with p-Laplacian on infinite interval[J]. AIMS Mathematics, 2021, 6(8): 8404-8414. doi: 10.3934/math.2021487

    Related Papers:

    [1] Asghar Ahmadkhanlu, Hojjat Afshari, Jehad Alzabut . A new fixed point approach for solutions of a p-Laplacian fractional q-difference boundary value problem with an integral boundary condition. AIMS Mathematics, 2024, 9(9): 23770-23785. doi: 10.3934/math.20241155
    [2] Changlong Yu, Jing Li, Jufang Wang . Existence and uniqueness criteria for nonlinear quantum difference equations with p-Laplacian. AIMS Mathematics, 2022, 7(6): 10439-10453. doi: 10.3934/math.2022582
    [3] Dongming Nie, Usman Riaz, Sumbel Begum, Akbar Zada . A coupled system of p-Laplacian implicit fractional differential equations depending on boundary conditions of integral type. AIMS Mathematics, 2023, 8(7): 16417-16445. doi: 10.3934/math.2023839
    [4] Xiao Wang, D. D. Hai . On a class of one-dimensional superlinear semipositone (p,q) -Laplacian problem. AIMS Mathematics, 2023, 8(11): 25740-25753. doi: 10.3934/math.20231313
    [5] Chengbo Zhai, Yuanyuan Ma, Hongyu Li . Unique positive solution for a p-Laplacian fractional differential boundary value problem involving Riemann-Stieltjes integral. AIMS Mathematics, 2020, 5(5): 4754-4769. doi: 10.3934/math.2020304
    [6] Ahmed Hussein Msmali . Positive solutions for a system of Hadamard fractional (ϱ1,ϱ2,ϱ3)-Laplacian operator with a parameter in the boundary. AIMS Mathematics, 2022, 7(6): 10564-10581. doi: 10.3934/math.2022589
    [7] Mouataz Billah Mesmouli, Nahed Mustafa Dahshan, Wael W. Mohammed . Existence results for IBVP of (p,q)-fractional difference equations in Banach space. AIMS Mathematics, 2024, 9(6): 15748-15760. doi: 10.3934/math.2024760
    [8] Mouataz Billah Mesmouli, Taher S. Hassan . On the positive solutions for IBVP of conformable differential equations. AIMS Mathematics, 2023, 8(10): 24740-24750. doi: 10.3934/math.20231261
    [9] Yiyun Li, Jingli Xie, Luping Mao . Existence of solutions for the boundary value problem of non-instantaneous impulsive fractional differential equations with p-Laplacian operator. AIMS Mathematics, 2022, 7(9): 17592-17602. doi: 10.3934/math.2022968
    [10] Kirti Kaushik, Anoop Kumar, Aziz Khan, Thabet Abdeljawad . Existence of solutions by fixed point theorem of general delay fractional differential equation with p-Laplacian operator. AIMS Mathematics, 2023, 8(5): 10160-10176. doi: 10.3934/math.2023514
  • Nowadays, many researches have considerable attention to the nonlinear q-difference equations boundary value problems as important and useful tool for modeling of different phenomena in various research fields. In this work, we investigate a class of q-difference equations boundary value problems with integral boundary conditions with p-Laplacian on infinite intervals. By applying the Avery-Peterson fixed point theorem in a cone, we establish the existence of three positive solutions for the above boundary value problem. Finally, the main results is illustrated with the aid of an example.



    The q-calculus or quantum calculus is an old subject that was initially developed by Jackson [1,2], and has been confirmed to have numerous applications in a variety of subjects such as quantum mechanics, hypergeometric series, particle physics, complex analysis and so on [3,4]. As well as known, the nonlinear difference equation can more accurately describe some phenomena in the natural world. In recent decades, the nonlinear q-difference equations boundary value problems have been widely used in various research fields [5,6]. However, for the existence of positive solutions to boundary value problems of q-difference equation with p-Laplacian operator, few works were done. Especially, there are few works on q-difference equations boundary value problems with p-Laplacian on infinite intervals.

    The existence and multiplicity of positive solutions to differential equations with or without the p-Laplacian operator subject to Dirichlet, Sturm-Liouville or nonlinear boundary value conditions have been investigated extensively, see [7,8,9,10,11,12,13] and the references therein. In [14], Lian et al. investigated the existence of positive solutions for the boundary value problem with p-Laplacian operator

    {(φp(x(t)))+ϕ(t)f(t,x(t),x(t))=0,0<t<+,αx(0)βx(0)=0,x()=0,

    by using the Avery-Peterson fixed point theorem in a cone.

    In [15], Guo et al. established the existence of three positive solutions for m-point BVPs on infinite intervals

    {(φp(x(t)))+ϕ(t)f(t,x(t),x(t))=0,0<t<+,x(0)=m2i=1αix(ηi),limt+x(t)=0,

    by applying the Avery-Peterson fixed point theorem in a cone.

    Motivated by the above works, we study the following nonlinear q-difference equation with the integral boundary value problem (IBVP) on infinite intervals

    {(Dq(φp(Dqx(t)))+ϕ(t)f(t,x(t),Dqx(t))=0,0<t<+,x(0)=+0g(s)Dqx(s)dqs,limt+Dqx(t)=0, (1.1)

    where φp(s)=|s|p2s, p>1, ϕ:R+R+ and f(t,u,v):R3+R+ are continuous functions, R+=[0,+), gL1q[0,+) is nonnegative, L1q[0,+) is the set of functions which are q-integrable.

    In this article, we use the following conditions:

    (H1) ϕC(R+,R+), ϕ0 on any interval of form (t0,+) and 0ϕ(s)dqs<+, 0φ1(τϕ(s)dqs)dqτ<+;

    (H2) f(t,(1+t)u,v)C(R3+,R+), f(t,0,0)0 on any subinterval of (0,+) and when u,v are bounded, f(t,(1+t)u,v) is bounded on [0,+).

    In this section, we present some definitions, theorems and lemmas, which will be needed in the proof of the main results.

    Definition 2.1 [16] The q-derivative of the function f is defined as

    Dqf(x)=f(x)f(qx)(1q)x,x0,

    and

    (Dqf)(0)=limx0(Dqf)(x).

    Note that limq1Dqf(x)=f(x).

    Definition 2.2 [16] Suppose 0<a<b. The q-integral is defined as

    b0f(x)dqx=(1q)bj=0qjf(qjb),

    and

    baf(x)dqx=b0f(x)dqxa0f(x)dqx.

    Definition 2.3 [16] The improper q-integral of f(x) on [0,+) is defined to be

    0f(x)dqx=+j=qjqj+1f(x)dqx,

    if 0<q<1, or

    0f(x)dqx=+j=qj+1qjf(x)dqx,

    if q>1, where qjqj+1f(x)dqx=(1q)qjf(qj).

    Theorem 2.4 [16] (Fundamental theorem of q-calculus) If F(x) is an antiderivative of f(x) and F(x) is continuous at x=0, we have

    baf(x)dqx=F(b)F(a),

    where 0a<b.

    Definition 2.5 [17] Let E be a real Banach space. A nonempty closed convex set PE is called a cone if it satisfies the following two conditions:

    (ⅰ) xP and λ0 imply λxP;

    (ⅱ)xP and xP imply λx=0.

    Definition 2.6 [17] Given a cone P in a real Banach space E. A continuous map ψ is called a concave (resp. convex) functional on P if for all x,yP and 0<λ<1, it holds ψ(λx+(1λ)y)λψ(x)+(1λ)ψ(y), (resp. ψ(λx+(1λ)y)λψ(x)+(1λ)ψ(y)).

    Let α, γ, θ, ψ be nonnegative continuous maps on P with α concave, γ, θ convex. Then for positive numbers a, b, c, d, we define the following subsets of P:

    P(γd)={xP:γ(x)<d};P(αb,γd)={x¯P(γd):bα(x)};P(αb,θc,γd)={x¯P(γd):bα(x),θ(x)c};R(ψa,γd)={x¯P(γd):aψ(x)}.

    It is obvious that P(γd),P(αb,γd),P(αb,θc,γd) are convex and R(ψa,γd) is closed.

    Theorem 2.7 [17] (Avery-Peterson fixed point theorem) Let P be a cone of a real Banach space E. Let γ,θ be non-negative convex functional on P satisfying

    ψ(λx)λψ(x), 0<λ<1, α(x)ψ(x),xMγ(x),x¯P(γd) with M,d some positive numbers. Suppose that T:¯P(γd)¯P(γd) is completely continuous and there exist positive numbers a,b,c with a<b such that

    (1) \{x\in P(\alpha_b, \theta^c, \gamma^d): \alpha(x)\geq b\} \neq {Ø} and \alpha(Tx) > b for x\in P(\alpha_b, \theta^c, \gamma^d) ;

    (2) \alpha(Tx) > b for x\in P(\alpha_b, \gamma^d) with \theta(Tx) > c ;

    (3) 0\neq R(\psi_a, \gamma^d) and \psi(x) < a for x\in R(\psi_a, \gamma^d) with \psi(x) = a .

    Then T has at least three fixed points x_1, x_2, x_3 \in P(\gamma^d) such that

    \gamma(x_i)\leq d , i = 1, 2, 3 ; \psi(x_1) < a ; \psi(x_2) > a with \alpha(x_2) < b ; \alpha(x_3) > b .

    Consider the space

    \begin{eqnarray*} X = \{x\in C_q^1[0,+\infty]: \sup\limits_{0\leq t < +\infty}\frac{|x(t)|}{1+t} < +\infty, \lim\limits_{t\rightarrow +\infty}D_qx(t) = 0 \} \end{eqnarray*}

    with the norm \|x\| = \max\{\|x\|_1, \|D_qx\|_\infty \} , where

    \begin{eqnarray*} \|x\|_1 = \sup\limits_{0\leq t < +\infty}\frac{|x(t)|}{1+t},\; \; \|D_qx\|_\infty = \sup\limits_{0\leq t < +\infty}|D_qx(t)|. \end{eqnarray*}

    Obviously, we can obtain that (X, \|\cdot\|) is a Banach space. Let P \subset X by

    P = \{x\in X: x(t)\geq 0, t\in [0, +\infty), x(0) = \int^{+\infty}_0 g(s)D_qx(s)d_qs , x is concave on [0, +\infty)\} .

    Remark 2.8 If x satisfies (1.1), then (D_{q}(\varphi_p(D_{q}x(t))) = -\phi(t)f(t, x(t), \; D_{q} x(t))\leq0 on [0, +\infty) , which implies that x is concave on [0, +\infty) . Moreover, if \lim\limits_{t\rightarrow +\infty}D_qx(t) = 0 , then D_qx(t)\geq 0, t\in [0, +\infty) and so x is monotone increasing on [0, +\infty) .

    Let k > 1 be a constant. For x\in P , define the nonnegative continuous functionals:

    \begin{eqnarray*} \alpha(x) = \frac{k}{k+1}\min\limits_{\frac{1}{k}\leq t < k}x(t),\; \gamma(x) = \sup\limits_{0\leq t < +\infty}D_qx(t), \end{eqnarray*}
    \begin{eqnarray*} \psi(x) = \theta(x) = \sup\limits_{0\leq t < \infty}\frac{|x(t)|}{1+t},\; A = \int^{+\infty}_0g(s)d_qs, \end{eqnarray*}

    and set

    \begin{eqnarray*} C = \varphi^{-1}_p\bigg(\int^{+\infty}_0\phi(s)d_qs\bigg),\; C_1(t) = \int^t_0\varphi^{-1}_p\bigg(\int^{+\infty}_\tau \phi(s)d_qs\bigg)d_q\tau. \end{eqnarray*}

    Since the Arzela-Ascoli theorem does not apply in the space X , we need a modified compactness criterion to prove T is compact. In the following, we present an explicit one.

    Definition 2.9 For l > 0 , let V = \{x\in X:\|x\| < l\} , and V_1: = \{\frac{x(t)}{1+t}, x\in V\} \bigcup \{D_qx(t), x\in V\} , which is called equiconvergent at infinity if for all \varepsilon > 0 , there exists T = T(\varepsilon) > 0 such that for all x\in V_1 , |\frac{x(t_1)}{1+t_1}-\frac{x(t_2)}{1+t_2}| < \varepsilon , |D_qx(t_1)-D_qx(t_2)| < \varepsilon , \forall t_1 , t_2\geq T .

    Lemma 2.10 If \{\frac{x(t)}{1+t}, x\in V\} and \{D_qx(t), x\in V\} are both equicontinuous on any compact interval of [0, +\infty) and equiconvergent at infinity. Then V is relatively compact on X .

    Proof. Its proof is similar to the proof of Lemma 2.2 in literature [18].

    Lemma 2.11 Let g\in L^1_q[0, +\infty) and g is nonnegative, if v(t) is nonnegative and continuous on [0, +\infty) and \lim\limits_{t\rightarrow +\infty}v(t) exists. Then there exists at least one \eta , 0\leq \eta < +\infty such that

    \begin{eqnarray*} \int^{+\infty}_0g(s)v(s)d_qs = v(\eta)\int^{+\infty}_0g(s)d_qs. \end{eqnarray*}

    Proof. It is obvious that the function v(t) exists and has maxima and minima which are nonnegative and noted by M^*, m^* on [0, +\infty) , then for all t\in [0, +\infty) , we have m^*\leq v(t)\leq M^* , so

    \begin{eqnarray*} m^*\int^{+\infty}_0g(s)d_qs\leq \int^{+\infty}_0g(s)v(s)d_qs\leq M^*\int^{+\infty}_0g(s)v(s)d_qs. \end{eqnarray*}

    If \int^{+\infty}_0g(s)d_qs = 0 , the result is clear; if \int^{+\infty}_0g(s)d_qs > 0 , there is

    \begin{eqnarray*} m^*\leq\frac{\int^{+\infty}_0g(s)v(s)d_qs}{\int^{+\infty}_0g(s)d_qs}\leq M^*. \end{eqnarray*}

    Therefore, there exists at least one \eta , 0\leq \eta < +\infty such that

    \begin{eqnarray*} \int^{+\infty}_0g(s)v(s)d_qs = v(\eta)\int^{+\infty}_0g(s)d_qs. \end{eqnarray*}

    Lemma 2.12 Let y\in C[R_+, R_+] , and \int^{+\infty}_0g(t)d_qt < \infty , then q -difference IBVP

    \begin{eqnarray} \left\{\begin{array}{cc} (D_{q}(\varphi_p(D_{q}x(t)))+y(t) = 0,\; \; \; \; \; 0 < t < +\infty,\; \; \\ x(0) = \int_0^{+\infty} g(s) D_{q}x(s)d_qs, \lim\limits_{t\rightarrow +\infty}D_{q}x(t) = 0, \end{array}\right. \end{eqnarray} (2.1)

    has a unique solution

    \begin{eqnarray*} x(t) = \int^{+\infty}_0g(s)\varphi^{-1}_p\bigg(\int^{+\infty}_sy(\tau)d_q\tau\bigg)d_qs+\int^t_0\varphi^{-1}_p\bigg(\int^{+\infty}_sy(\tau)d_q\tau\bigg)d_qs. \end{eqnarray*}

    Proof. We integrate the equantion from t to +\infty , and get

    \begin{eqnarray} D_qx(t) = \varphi^{-1}_p\bigg(\int^{+\infty}_ty(s)d_qs\bigg). \end{eqnarray} (2.2)

    Integrating (2.2) from 0 to t , and

    \begin{eqnarray*} x(0) = \int_0^{+\infty} g(s) D_{q}x(s)d_qs, \end{eqnarray*}

    we can get

    \begin{eqnarray*} x(t) = \int^{+\infty}_0g(s)\varphi^{-1}_p\bigg(\int^{+\infty}_sy(\tau)d_q\tau\bigg)d_qs+\int^t_0\varphi^{-1}_p\bigg(\int^{+\infty}_sy(\tau)d_q\tau\bigg)d_qs. \end{eqnarray*}

    Define the operator T: P\rightarrow C^1[0, +\infty) by

    \begin{eqnarray*} Tx(t) = \int^{+\infty}_0g(s)\varphi^{-1}_p\bigg(\int^{+\infty}_s\phi(\tau)f(\tau,x(\tau),D_{q} x(\tau))d_q\tau\bigg)d_qs\\ +\int^t_0\varphi^{-1}_p\bigg(\int^{+\infty}_s\phi(\tau)f(\tau,x(\tau),D_{q} x(\tau))d_q\tau\bigg)d_qs.\; \; \; \; \; \end{eqnarray*}

    Lemma 2.13 For x\in P , \|x\|_1\leq M\|x\|_\infty , where M = \max\{ \int^{+\infty}_0g(s)d_qs, 1\} .

    Proof. Since x\in P ,

    \begin{eqnarray*} \frac{x(t)}{1+t} = \frac{ \int_0^tD_{q}x(s)d_qs+\int_0^{+\infty} g(s) D_{q}x(s)d_qs}{1+t}\; \; \\ \leq \frac{t+ \int_0^{+\infty} g(s)d_qs}{1+t}\|D_{q}x\|_\infty\leq M\|D_{q}x\|_\infty. \end{eqnarray*}

    Lemma 2.14 For x\in P , \alpha(x)\geq\frac{\theta(x)}{k+1} .

    Proof. Obviously, x is increasing on [0, +\infty) . Moreover, since D_q x(+\infty) = 0 , the function \frac{x(t)}{1+t} achieves its maximum at \sigma\in [0, +\infty) , then \theta(x) = \frac{x(\sigma)}{1+\sigma} . Furthermore, x is concave, so

    \begin{eqnarray*} \alpha(x) = \frac{k}{k+1}x\bigg(\frac{1}{k}\bigg) = \frac{k}{k+1}x\bigg(\frac{k-1+k\sigma}{k+k\sigma}\cdot\frac{1}{k-1+k\sigma}+\frac{\sigma}{k+k\sigma}\bigg)\\ \geq\frac{1}{k+1}\cdot\frac{x(\sigma)}{1+\sigma} = \frac{1}{k+1}\theta(x).\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \end{eqnarray*}

    Lemma 2.15 Let (H_1)-(H_2) hold. Then, T: P\rightarrow P is completely continuous.

    Proof. It is easy to verify that T: P\rightarrow P is well defined. Now, we prove that T is continuous and compact respectively.

    (ⅰ) T is continuous.

    Let x_n\rightarrow x as n\rightarrow +\infty in P , then there exists r_0 such that \sup_{n\in N\setminus\{0\}}\|x_n\| < r_0 . Set Br_0 = \sup\{f(t, (1+t)u, v), (t, u, v)\in [0, +\infty)\times[0, r_0]^2\} . Then we have

    \begin{eqnarray*} \int^{+\infty}_0\phi(s)|f(s,x_n,D_{q}x_n)-f(s,x,D_{q}x)|d_qs\leq2Br_0\int^{+\infty}_0\phi(s)d_qs. \end{eqnarray*}

    Therefore, by the Lebesgue dominated convergence theorem, we get

    \begin{eqnarray*} \; \; \; \; \; \; \; \; |\varphi_p((D_{q}Tx_n)(t))-\varphi_p((D_{q}Tx)(t))| = \bigg|\int^{+\infty}_t\phi(s)(f(s,x_n,D_{q}x_n)-f(s,x,D_{q}x))d_qs\bigg|\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \\ \leq\bigg|\int^{+\infty}_0\phi(s)(f(s,x_n,D_{q}x_n)-f(s,x,D_{q}x))d_qs\bigg|\rightarrow 0,\; \; \; n\rightarrow +\infty. \end{eqnarray*}

    Furthermore, \|Tx_n-Tx\|\leq M\|D_{q}Tx_n-D_{q}Tx\|_\infty\rightarrow 0 , as n\rightarrow +\infty . Hence, T is continuous.

    (ⅱ) T is compact.

    T is compact provided that it maps bounded sets into relatively compact sets. Let \Omega be any bounded subset of P . Then there exists r > 0 such that \|x\|\leq r for all x\in \Omega . Obviously,

    \begin{eqnarray*} \|D_{q}Tx\|_\infty\leq\varphi^{-1}_p\bigg(\int^{+\infty}_0\phi(s)f(s,x(s),D_{q}x(s))d_qs\bigg)\leq C\varphi^{-1}_p(Br) \end{eqnarray*}

    for all x\in \Omega . Hence, \|T\Omega\|\leq MC\varphi^{-1}_p(Br) . So T\Omega is bounded. Moreover, for any L\in [0, +\infty) , and t_1, t_2\in [0, L] ,

    \begin{eqnarray*} \; \; \; \; \; \; \; \; \bigg|\frac{(Tx)(t_1)}{1+t_1}-\frac{(Tx)(t_2)}{1+t_2}\bigg|\leq\int_0^{+\infty}g(s)\varphi^{-1}_p\bigg(\int^{+\infty}_s\phi(\tau)f(\tau,x(\tau),D_{q}x(\tau))d_q\tau\bigg)d_qs\bigg|\frac{1}{1+t_1}-\frac{1}{1+t_2}\bigg|\; \; \; \; \; \; \; \; \; \; \\ +\int^{t_2}_0\varphi^{-1}_p\bigg(\int^{+\infty}_s\phi(\tau)f(\tau,x(\tau),D_{q}x(\tau))d_q\tau\bigg)d_qs\bigg|\frac{1}{1+t_1}-\frac{1}{1+t_2}\bigg|\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \\ +\frac{1}{1+t_1}\bigg|\int^{t_2}_{t_1}\varphi^{-1}_p\bigg(\int^{+\infty}_s\phi(\tau)f(\tau,x(\tau),D_{q}x(\tau))d_q\tau\bigg)d_qs\bigg|\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \\ \leq\varphi^{-1}_p(Br)(AC+C_1(L))\bigg|\frac{1}{1+t_1}-\frac{1}{1+t_2}\bigg|+|C_1(t_1)-C_2(t_2)|\rightarrow 0, (t_1\rightarrow t_2), \end{eqnarray*}

    and

    \begin{eqnarray*} |\varphi_p((D_{q}Tx)(t_1))-\varphi_p((D_{q}Tx)(t_2))| = \bigg|\int^{t_2}_{t_1}\phi(s)f(s,x(s),D_{q}x(s))d_qs\bigg|\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \\ \leq Br\bigg|\int^{t_2}_{t_1}\phi(s)d_qs\bigg|\rightarrow 0,\; \; (t_1\rightarrow t_2)\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \end{eqnarray*}

    for all x\in \Omega . So T\Omega is equicontinuous on any compact interval of [0, +\infty) . Finally, for any x\in \Omega ,

    \begin{eqnarray*} \lim\limits_{t\rightarrow +\infty}\bigg|\frac{(Tx)(t)}{1+t}\bigg| = \lim\limits_{t\rightarrow +\infty}\frac{1}{1+t}\int^{t}_{0}\varphi^{-1}_p\bigg(\int^{+\infty}_s\phi(\tau)f(\tau,x(\tau),D_{q}x(\tau))d_q\tau\bigg)d_qs\\ \leq M\varphi^{-1}_p(Br)\lim\limits_{t\rightarrow +\infty}\varphi^{-1}_p\bigg(\int^{+\infty}_t\phi(s)d_qs\bigg) = 0,\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \end{eqnarray*}

    and

    \begin{eqnarray*} \lim\limits_{t\rightarrow +\infty}|D_{q}Tx)(t)| = \lim\limits_{t\rightarrow +\infty}\varphi^{-1}_p\bigg(\int^{+\infty}_t\phi(s)f(s,x(s),D_{q}x(s))d_qs\bigg)\\ \leq \varphi^{-1}_p(Br)\lim\limits_{t\rightarrow +\infty}\varphi^{-1}_p\bigg(\int^{+\infty}_t\phi(s)d_qs\bigg) = 0.\; \; \; \; \; \; \; \end{eqnarray*}

    So T\Omega is equiconvergent at infinity. By using Lemma 2.10, we obtain that T\Omega is relatively compact, that is, T is a compact operator. Hence, T:P\rightarrow P is completely continuous. The proof is complete.

    For the main result of this paper, we further assume that

    (H_3) f(t, (1+t)u, v)\leq\varphi_p (d/C) , for (t, u, v)\in [0, +\infty)\times[0, Md]\times[0, d] ;

    (H_4) f(t, (1+t)u, v) > \varphi_p (b/N) , for (t, u, v)\in [\frac{1}{k}, k]\times[\frac{b}{k}, \frac{(k+1)^2}{km}b]\times[0, d] ;

    (H_5) f(t, (1+t)u, v) < \varphi_p (a/MC) , for (t, u, v)\in [0, +\infty)\times[0, a]\times[0, d] ,

    where m = \min\{A, 1\} , N = \frac{1}{(k+1)^2}\int_{\frac{1}{k}}^{k}(g(s)+1)\varphi^{-1}_p(\int^{k}_s\phi(\tau)d_q\tau)d_qs .

    Theorem 3.1 Let A > 0 . Suppose (H_1)-(H_5) hold. Suppose further that there exist numbers a, b, d such that 0 < ka < bMmkd/(k+1)^2 . Then (1.1) has at least three positive solutions x_1, x_2, x_3 such that

    \sup\limits_{0\leq t < \infty}D_{q}x_{i}(t)\leq d , i = 1, 2, 3;

    \sup\limits_{0\leq t < \infty}\frac{|x_1(t)|}{1+t} < a , \sup\limits_{0\leq t < \infty}\frac{|x_2(t)|}{1+t} < \frac{(k+1)^2b}{km} , \min\limits_{\frac{1}{k}\leq t < k}x_2(t) < \frac{(k+1)b}{k} ;

    \sup\limits_{0\leq t < \infty}\frac{|x_3(t)|}{1+t} < Md , \min\limits_{\frac{1}{k}\leq t < k}x_3(t) > \frac{(k+1)b}{k} .

    Proof. Let X, P, \alpha, \gamma, \theta, \psi and T be defined as before respectively. It is easy to prove that the fixed points of T coincide with the solution of BVP (1.1). So it is enough to show that T has three positive fixed points. In fact, for any x\in \overline{P(\gamma^d)} , \sup\limits_{0\leq t < \infty}D_qx(t)\leq d and so \sup\limits_{0\leq t < \infty}\frac{x(t)}{1+t} < Md . Condition (H_3) implies that f(t, x(t), D_qx(t))\leq \varphi_p (d/C) for all t\in [0, +\infty) .

    Therefore,

    \begin{eqnarray*} \gamma(Tx) = \sup\limits_{0\leq t < \infty}(D_qTx)(t) = (D_qTx)(0) = \varphi^{-1}_p\bigg(\int^{+\infty}_s\phi(s)f(s,x(s),D_{q}x(s))d_qs\bigg)\\ \leq \frac{d}{c}\varphi^{-1}_p\bigg(\int^{+\infty}_s\phi(s)d_qs\bigg) = d.\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \end{eqnarray*}

    Hence, T:\overline{P(\gamma^d)}\rightarrow \overline{P(\gamma^d)} is completely continuous. Obviously, \alpha, \gamma, \theta, \psi satisfy the assumptions in Theorem 2.7. Next, we show that conditions (1)-(3) in Theorem 2.7 hold.

    Firstly, choose the function x(t) = (1-\frac{1}{k+1}e^{-\frac{kt}{A}})^{\frac{(k+1)^2b}{km}} , 0\leq t < +\infty . It can be checked that x\in P(\alpha_b, \theta^c, \gamma^d) with \alpha(x) > b , where c = \frac{(k+1)^2b}{km} , thus \{x\in P(\alpha_b, \theta^c, \gamma^d)|\alpha(x) > b\}\neq\emptyset . For any x\in P(\alpha_b, \theta^c, \gamma^d) , we obtain

    \begin{eqnarray*} \frac{b}{k}\leq\frac{1}{k+1} \min\limits_{\frac{1}{k}\leq t < k}x(t) < \frac{x(t)}{1+t}\leq\frac{(k+1)^2b}{km},\; \; t\in [\frac{1}{k},k], \end{eqnarray*}

    and 0\leq D_{q}x(t)\leq d , t\in [0, +\infty) . In view of assumption (H_4) together with Lemma 2.14, we obtain

    \begin{eqnarray*} \alpha(Tx)\geq\frac{1}{k+1}\theta(Tx) = \frac{1}{k+1}\sup\limits_{0\leq t < \infty}\frac{(Tx)(t)}{1+t}\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \\ = \frac{1}{k+1}\sup\limits_{0\leq t < \infty}\frac{1}{1+t}\bigg[\int^{+\infty}_{0}g(s)\varphi^{-1}_p\bigg(\int^{+\infty}_s\phi(\tau)f(\tau,x(\tau),D_{q}x(\tau))d_q\tau\bigg)d_qs\; \; \; \; \; \; \; \\ +\int^{t}_{0}\varphi^{-1}_p\bigg(\int^{+\infty}_s\phi(\tau)f(\tau,x(\tau),D_{q}x(\tau))d_q\tau\bigg)d_qs\bigg]\; \; \; \; \; \; \; \; \; \; \\ \geq\frac{1}{(k+1)^2}\bigg[\int^{k}_{\frac{1}{k}}g(s)\varphi^{-1}_p\bigg(\int^{k}_s\phi(\tau)f(\tau,x(\tau),D_{q}x(\tau))d_q\tau\bigg)d_qs\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \\ +\int^{k}_{\frac{1}{k}}\varphi^{-1}_p\bigg(\int^{k}_s\phi(\tau)f(\tau,x(\tau),D_{q}x(\tau))d_q\tau\bigg)d_qs\bigg]\; \; \; \; \; \; \; \; \; \; \; \; \\ > \frac{b}{N}\frac{1}{(k+1)^2}\int^{k}_{\frac{1}{k}}(g(s)+1)\varphi^{-1}_p\bigg(\int^{k}_s\phi(\tau)d_q\tau\bigg)d_qs = b.\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \end{eqnarray*}

    Hence, \alpha(Tx) > b for x\in P(\alpha_b, \theta^c, \gamma^d) .

    Next, we will verify that the condition (2) of Theorem 2.7 is satisfied. Let x\in P(\alpha_b, \gamma^d) with \theta(Tx) > c , it follows from Lemma 2.14 that

    \begin{eqnarray*} \alpha(Tx)\geq\frac{1}{k+1}\theta(Tx) > \frac{1}{k+1}c = \frac{1}{k+1}\frac{(k+1)^2b}{km} = \frac{(k+1)b}{km} > b, \end{eqnarray*}

    Thus, \alpha(Tx) > b for all x\in P(\alpha_b, \gamma^d) with \theta(Tx) > c . Finally, we show that condition (3) of Theorem 2.7 is satisfied. It is clear that 0\in R(\psi_a, \gamma^d) . Suppose that x\in R(\psi_a, \gamma^d) with \psi(x) = a , then by condition (H_5) and Lemma 2.13, we obtain

    \begin{eqnarray*} \psi(Tx)\leq M\gamma(Tx) = MD_q(Tx)(0)\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \\ = M\varphi^{-1}_p\bigg(\int^{+\infty}_0\phi(s)f(s,x(s),D_{q}x(s))d_qs\bigg)\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \\ \leq M\frac{a}{MC}\varphi^{-1}_p\bigg(\int^{+\infty}_0\phi(s)d_qs\bigg) = a.\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \end{eqnarray*}

    Therefore, T has at least three fixed points x_1, x_2, x_3\in \overline{P(\gamma^d)} such that \psi(x_1) < a, \psi(x_2) > a with \alpha(x_2) < b, \alpha(x_3) > b . In addition, condition (H_2) guarantees that those fixed points are positive. So (1.1) has at least three positive solutions x_1, x_2, x_3 and the proof is completed.

    Consider the q -difference equation IBVP

    \begin{eqnarray} \left\{\begin{array}{cc} D_{q}(|D_{q}x|D_{q}x)+e_q^{-t}f(t,x(t),\; D_{q} x(t)) = 0,\; \; \; \; \; 0 < t < +\infty,\; \\ x(0) = \int_0^{+\infty} e_q^{-2s} D_{q}x(s)d_qs,\; \; \lim\limits_{t\rightarrow +\infty}D_{q}x(t) = 0,\; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \end{array}\right . \end{eqnarray} (4.1)

    where e_q^x = \sum_{j = 0}^{\infty}\frac{x^j}{[j]!} , and

    \begin{eqnarray*} f(t,u,v) = \bigg\{\begin{array}{cc}\frac{|\sin t|}{100}+10^4(\frac{u}{1+t})^{10}+\frac{1}{100}(\frac{v}{400}),\; \; \; u\leq1,\\ \frac{|\sin t|}{100}+10^4(\frac{1}{1+t})^{10}+\frac{1}{100}(\frac{v}{400}),\; \; \; u\geq1. \end{array} \end{eqnarray*}

    Set \phi(t) = e_q^{-t} and it is easy to verify that (H_1) and (H_2) hold. Choose k = 3 , a = \frac{1}{3} , b = 2 , d = 400 . By simple calculations, we can obtain M = 1 , m = \frac{1}{2} , C = 1 ,

    \begin{eqnarray*} N = \frac{1}{16}\int_\frac{1}{3}^3(e_q^{-2s}+1)\sqrt{e_q^{-s}-e^{-3}}d_qs\geq\frac{1}{16}\int_\frac{1}{3}^3\sqrt{e_q^{-s}-e^{-3}}d_qs > -\frac{1}{8}(e_q^{-\frac{3}{2}}-e_q^{-\frac{1}{6}}). \end{eqnarray*}

    So the nonlinear term f satisfies

    (1) f(t, (1+t)u, v)\leq0.01+10^4+0.01 < 1.6\times10^5 = \varphi_3 (d/C) , for (t, u, v)\in [0, +\infty)\times[0,400]\times[0,400] ;

    (2) f(t, (1+t)u, v)\geq10^4 > \frac{256}{(e_q^{-\frac{3}{2}}-e_q^{-\frac{1}{6}})^2} = \varphi_3 (b/N) , for (t, u, v)\in [\frac{1}{3}, 3]\times[\frac{2}{3}, \frac{64}{3}]\times[0,400] ;

    (3) f(t, (1+t)u, v)\leq0.01+10^4\times(\frac{1}{4})^{10}+0.01 < \frac{1}{9} = \varphi_3 (a/MC) , for (t, u, v)\in [0, +\infty)\times[0, \frac{1}{3}]\times[0,400] .

    Therefore, the conditions in Theorem 3.1 are all satisfied. So (4.1) has at least three positive solutions x_1 , x_2 , x_3 such that

    \sup\limits_{0\leq t < \infty}D_qx_i(t)\leq 400 , i = 1, 2, 3;

    \sup\limits_{0\leq t < \infty}\frac{|x_1(t)|}{1+t} < \frac{1}{3}, \; \; \frac{1}{3} < \sup\limits_{0\leq t < \infty}\frac{|x_2(t)|}{1+t} < \frac{64}{3} , \min\limits_{\frac{1}{k}\leq t < k}x_2(t) < \frac{8}{3} ;

    \sup\limits_{0\leq t < \infty}\frac{|x_3(t)|}{1+t} < 400 , \min\limits_{\frac{1}{k}\leq t < k}x_3(t) > \frac{8}{3} .

    This research obtains the existence results of triple positive solutions for a class of q -difference equations boundary value problems with integral boundary conditions with p -Laplacian on infinite intervals by applying the Avery-Peterson fixed point theorem in a cone, which enrich the theories for q -difference equations on infinite intervals, and provide the theoretical guarantee for the application of q -difference equations in every field, such as aerodynamics, electrodynamics of complex medium, capacitor theory, electrical circuits, control theory, and so on. In the future, we will use bifurcation theory, critical point theory, variational method, and other methods to continue our works in this area.

    The author is very grateful to the referees for their very helpful comments and suggestions. The research project is supported by the National Natural Science Foundation of China (11772007), Beijing Natural Science Foundation (1172002, Z180005), the Natural Science Foundation of Hebei Province (A2015208114), and the Foundation of Hebei Education Department (QN2017063).

    The authors declare that they have no competing interests.



    [1] F. H. Jackson, On q-functions and a certain difference operator, Earth Env. Sci. T. R. So., 46 (1909), 253–281.
    [2] F. H. Jackson, On q-difference equations, Amer. J. Math., 32 (1910), 305–314. doi: 10.2307/2370183
    [3] T. Ernst, A comprehensive treatment of q-calculus, 1 Eds, Basel: Birkhäuser, 2012.
    [4] B. Ahmad, S. Ntouyas, J. Tariboon, Quantum Calculus: New Concepts, Impulsive IVPs and BVPs, Inequalities, Singapore : World Scientific, 2016.
    [5] B. Ahmad, Bounday value problems for nonlinear third-order q-difference equations, Electron. J. Differ. Equ., 94 (2011), 1–7.
    [6] C. Yu, J. Wang, Existence of solutions for nonlinear second-order q-difference equations with first-order q-derivatives, Adv. Differ. Equ., 124 (2013), 1–11.
    [7] R. I. Avery, A. C. Peterson, Three positive fixed points of nonlinear operators on ordered Banach spaces, Comput. Math. Appl., 42 (2001), 312–322.
    [8] Z. Bai, Z. Gui, W. Ge, Multiple positive solutions for some p-Laplacian boundary value problems, J. Math. Anal. Appl., 300 (2004), 477–490. doi: 10.1016/j.jmaa.2004.06.053
    [9] D. J. Guo, Multiple positive solutions for nth-order impulsive integro-differential equations in Banach spaces, Nonlinear Anal-Theor, 60 (2005), 955–976. doi: 10.1016/j.na.2004.10.010
    [10] J. Henderson, H. B. Thompson, Existence of multiple solutions for second order boundary value problems, J. Differ. Equ., 166 (2000), 443–454. doi: 10.1006/jdeq.2000.3797
    [11] D. Ji, W. Ge, Multiple positive solutions for some p-Laplacian boundary value problems, Appl. Math. Comput., 187 (2007), 1315–1325.
    [12] J. Wang, The existence of positive solutions for the one-dimensional p-Laplacian, Proc. Am. Math. Soc., 125 (1997), 2275–2283. doi: 10.1090/S0002-9939-97-04148-8
    [13] B. Yan, Multiple unbounded solutions of boundary value problems for second-order differential equations on the half-line, Nonlinear Anal-Theor, 51 (2002), 1031–1044. doi: 10.1016/S0362-546X(01)00877-X
    [14] H. Lian, H. Pang, W. Ge, Triple positive solutions for boundary value problems on infinite intervals, Nonlinear Anal-Theor, 67 (2007), 2199–2207. doi: 10.1016/j.na.2006.09.016
    [15] Y. Guo, C. Yu, J. Wang, Existence of three positive solutions for m-point boundary value problems on infinite intervals, Nonlinear Anal-Theor, 71 (2009), 717–722. doi: 10.1016/j.na.2008.10.126
    [16] V. Kac, P. Cheung, Quantum Calculus, 1 Eds, New York: Springer-Verlag, 2002.
    [17] C. Yu, J. Wang, Y. Guo, H. Wei, Positive solutions for boundary value problems with integral boundary conditions on infinite intervals, Electron. J. Differ. Equ., 2012 (2012), 1–9. doi: 10.1186/1687-1847-2012-1
    [18] Y. Liu, A boundary value problem for a second-order differential equation on an unbounded domain, Acta Anal. Funct. Appl., 4 (2002), 211–216.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3012) PDF downloads(132) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog