Processing math: 72%
Research article

Extended DEA method for solving multi-objective transportation problem with Fermatean fuzzy sets

  • Received: 26 July 2022 Revised: 12 September 2022 Accepted: 15 September 2022 Published: 13 October 2022
  • MSC : 90C32, 90C70

  • Data envelopment analysis (DEA) is a linear programming approach used to determine the relative efficiencies of multiple decision-making units (DMUs). A transportation problem (TP) is a special type of linear programming problem (LPP) which is used to minimize the total transportation cost or maximize the total transportation profit of transporting a product from multiple sources to multiple destinations. Because of the connection between the multi-objective TP (MOTP) and DEA, DEA-based techniques are more often used to handle practical TPs. The objective of this work is to investigate the TP with Fermatean fuzzy costs in the presence of numerous conflicting objectives. In particular, a Fermatean fuzzy DEA (FFDEA) method is proposed to solve the Fermatean fuzzy MOTP (FFMOTP). In this regard, every arc in FFMOTP is considered a DMU. Additionally, those objective functions that should be maximized will be used to define the outputs of DMUs, while those that should be minimized will be used to define the inputs of DMUs. As a consequence, two different Fermatean fuzzy effciency scores (FFESs) will be obtained for every arc by solving the FFDEA models. Therefore, unique FFESs will be obtained for every arc by finding the mean of these FFESs. Finally, the FFMOTP will be transformed into a single objective Fermatean fuzzy TP (FFTP) that can be solved by applying standard algorithms. A numerical example is illustrated to support the proposed method, and the results obtained by using the proposed method are compared to those of existing techniques. Moreover, the advantages of the proposed method are also discussed.

    Citation: Muhammad Akram, Syed Muhammad Umer Shah, Mohammed M. Ali Al-Shamiri, S. A. Edalatpanah. Extended DEA method for solving multi-objective transportation problem with Fermatean fuzzy sets[J]. AIMS Mathematics, 2023, 8(1): 924-961. doi: 10.3934/math.2023045

    Related Papers:

    [1] Yuwei Cao, Bing Li . Existence and global exponential stability of compact almost automorphic solutions for Clifford-valued high-order Hopfield neutral neural networks with D operator. AIMS Mathematics, 2022, 7(4): 6182-6203. doi: 10.3934/math.2022344
    [2] Nina Huo, Bing Li, Yongkun Li . Global exponential stability and existence of almost periodic solutions in distribution for Clifford-valued stochastic high-order Hopfield neural networks with time-varying delays. AIMS Mathematics, 2022, 7(3): 3653-3679. doi: 10.3934/math.2022202
    [3] Xiaofang Meng, Yongkun Li . Pseudo almost periodic solutions for quaternion-valued high-order Hopfield neural networks with time-varying delays and leakage delays on time scales. AIMS Mathematics, 2021, 6(9): 10070-10091. doi: 10.3934/math.2021585
    [4] Jin Gao, Lihua Dai . Anti-periodic synchronization of quaternion-valued high-order Hopfield neural networks with delays. AIMS Mathematics, 2022, 7(8): 14051-14075. doi: 10.3934/math.2022775
    [5] Abdulaziz M. Alanazi, R. Sriraman, R. Gurusamy, S. Athithan, P. Vignesh, Zaid Bassfar, Adel R. Alharbi, Amer Aljaedi . System decomposition method-based global stability criteria for T-S fuzzy Clifford-valued delayed neural networks with impulses and leakage term. AIMS Mathematics, 2023, 8(7): 15166-15188. doi: 10.3934/math.2023774
    [6] Qian Cao, Xiaojin Guo . Anti-periodic dynamics on high-order inertial Hopfield neural networks involving time-varying delays. AIMS Mathematics, 2020, 5(6): 5402-5421. doi: 10.3934/math.2020347
    [7] Xiaojin Guo, Chuangxia Huang, Jinde Cao . Nonnegative periodicity on high-order proportional delayed cellular neural networks involving D operator. AIMS Mathematics, 2021, 6(3): 2228-2243. doi: 10.3934/math.2021135
    [8] Yongkun Li, Xiaoli Huang, Xiaohui Wang . Weyl almost periodic solutions for quaternion-valued shunting inhibitory cellular neural networks with time-varying delays. AIMS Mathematics, 2022, 7(4): 4861-4886. doi: 10.3934/math.2022271
    [9] Qi Shao, Yongkun Li . Almost periodic solutions for Clifford-valued stochastic shunting inhibitory cellular neural networks with mixed delays. AIMS Mathematics, 2024, 9(5): 13439-13461. doi: 10.3934/math.2024655
    [10] Hedi Yang . Weighted pseudo almost periodicity on neutral type CNNs involving multi-proportional delays and D operator. AIMS Mathematics, 2021, 6(2): 1865-1879. doi: 10.3934/math.2021113
  • Data envelopment analysis (DEA) is a linear programming approach used to determine the relative efficiencies of multiple decision-making units (DMUs). A transportation problem (TP) is a special type of linear programming problem (LPP) which is used to minimize the total transportation cost or maximize the total transportation profit of transporting a product from multiple sources to multiple destinations. Because of the connection between the multi-objective TP (MOTP) and DEA, DEA-based techniques are more often used to handle practical TPs. The objective of this work is to investigate the TP with Fermatean fuzzy costs in the presence of numerous conflicting objectives. In particular, a Fermatean fuzzy DEA (FFDEA) method is proposed to solve the Fermatean fuzzy MOTP (FFMOTP). In this regard, every arc in FFMOTP is considered a DMU. Additionally, those objective functions that should be maximized will be used to define the outputs of DMUs, while those that should be minimized will be used to define the inputs of DMUs. As a consequence, two different Fermatean fuzzy effciency scores (FFESs) will be obtained for every arc by solving the FFDEA models. Therefore, unique FFESs will be obtained for every arc by finding the mean of these FFESs. Finally, the FFMOTP will be transformed into a single objective Fermatean fuzzy TP (FFTP) that can be solved by applying standard algorithms. A numerical example is illustrated to support the proposed method, and the results obtained by using the proposed method are compared to those of existing techniques. Moreover, the advantages of the proposed method are also discussed.



    As is well known, in the practical application of neural networks (NNs), it is often necessary to use and design NN models with different dynamic characteristics for different application scenarios and purposes. Therefore, the study of the dynamic behavior of NNs has become an important issue that is widely concerned in both theoretical research and practical applications of NNs. Therefore, the dynamics of various types of NNs, especially numerous classical NNs such as recurrent NNs [1,2], bidirectional associative memory NNs [3], inertial NNs [4,5], Hopfield NNs [6], Cohen-Grossberg NNs [7], etc., have been widely studied. It should be mentioned here that due to the stronger approximation, faster convergence speed, larger storage capacity, and higher fault tolerance of high-order NNs compared to low-order NNs, the dynamics research of high-order NNs has received widespread attention [8,9,10,11,12].

    Meanwhile, owing to the fact that algebra-valued NNs, such as complex-valued [13,14], quaternion-valued [15,16,17,18], Clifford-valued [19,20,21,22,23], and octonion-valued NNs [24,25,26], are extensions of real-valued NNs and have more advantages than real-valued NNs in many application scenarios, research on the dynamics of algebra-valued NNs has gradually become a new hotspot in the field of NN research in recent years. It is worth mentioning here that the Clifford-valued high-order Hopfield fuzzy NN represents a sophisticated integration of Clifford algebra, high-order synaptic connections, and fuzzy logic, enabling it to achieve advanced applications in multidimensional data processing and complex system modeling. For example, it has applications in the fields of multidimensional signal processing, secure communication and image encryption, optimization and control systems, neuroscience, and cognitive modeling [27,28,29,30].

    On the one hand, from both theoretical and practical perspectives, NN models with time-varying connection weights and time-varying external inputs are more realistic than those with constant connection weights and constant external inputs. Meanwhile, time delay effects are inevitable. As a result, the rate of change in the state of a neuron depends not only on its current state but also on its historical state, and even more so, on the rate of change in its historical state. It is precisely for these reasons that researchers have proposed various neutral-type NN models with D operators and conducted extensive research on their dynamics [31,32,33,34]. In addition, fuzzy logic and NNs complement each other: fuzzy systems provide interpretability and handle uncertainty, while NNs offer powerful learning from data. Their integration bridges the gap between data-driven machine learning and human-like reasoning, making systems more adaptable, transparent, and robust in real-world applications. Indeed, fuzzy NNs have been successfully applied in many fields such as signal processing, pattern recognition, associative memory, and image processing [35,36,37,38,39].

    On the other hand, as is well known, almost periodic oscillation is an important dynamic of NNs with time-varying connection weights and time-varying external inputs. In the past few decades, the almost periodic oscillations of various NNs have been studied by countless scholars [23,31,33,34]. We know that besides Bohr's concept of almost periodicity, there are also Stepanov almost periodicity, Weyl almost periodicity, Besicovitch almost periodicity, and so on [40]. It should be pointed out here that Besicovitch almost periodicity is the most complex almost periodicity among Bohr almost periodicity, Stepanov almost periodicity, and Weyl almost periodicity, and that Stepanov almost periodicity, Weyl almost periodicity, and Besicovitch almost periodicity are referred to as generalized almost periodicity. Meanwhile, it should be noted that the product of two generalized almost periodic functions in the same sense may not necessarily be a generalized almost periodic function in that sense. Because of this reason, the emergence of high-order terms in high-order NNs poses difficulties for studying the generalized almost periodic oscillations of high-order NNs. As a consequence, the results of generalized almost periodic oscillations for high-order NNs are still very rare. Thereupon, it is necessary to further study the generalized almost periodic oscillation problem of high-order NNs.

    Inspired by the above observations, this paper considers a class of Clifford-valued high-order Hopfield fuzzy NNs with time-varying delays and D operators as follows:

    [xi(t)ai(t)xi(tτi(t))]=bi(t)xi(t)+nj=1cij(t)fj(xj(t))+nj=1uij(t)fj(xj(tσij(t)))+nj=1γij(t)μj(t)+vj=1nk=1θijk(t)gj(xj(tδijk(t)))gk(xk(tδijk(t)))+nj=1αij(t)fj(xj(tηij(t)))+nj=1βij(t)fj(xj(tηij(t)))+nj=1nk=1qijk(t)gj(xj(tδijk(t)))gk(xk(tδijk(t)))+nj=1nk=1νijk(t)gj(xj(tδijk(t)))gk(xk(tδijk(t)))+nj=1Tij(t)μj(t)+nj=1Sij(t)μj(t)+Ii(t), (1.1)

    where iJ:={1,2,,n}, xi(t)A indicates the state of the ith unit at time t; A is a real Clifford algebra; bi(t)A represents the self feedback coefficient at time t; αij(t),βij(t),Tij(t),Sij(t)A stand for the elements of the fuzzy feedback MIN template and fuzzy feed forward MAX template, respectively; ai(t),cij(t),uij(t) and θijk(t),qijk(t),νijk(t)A represent the first-order and second-order connection weights of the NN; γij(t) stands for the element of the feed forward template; and denote the fuzzy AND and OR operations, respectively; μj(t)A represents the input of the jth neuron; Ii(t)A corresponds to the external input to the ith unit; fj and gj:AA signify the nonlinear activation functions; and τi(t),σij(t),ηij(t),δijk(t)R+ denote the transmission delays.

    The initial value condition associated with (1.1) is given as

    xi(s)=φi(s),s[ϱ,0],iJ, (1.2)

    where φiBC([ϱ,0],A),ϱ=maxi,j,kJ{suptRτi(t),suptRσij(t),suptRηij(t),suptRδijk(t)}.

    The main purpose of this paper is to investigate the existence and stability of Besicovitch almost periodic solutions for system (1.1). The main contributions of this paper are as follows:

    1. This paper is the first one to investigate the existence of Besicovitch almost periodic solutions for system (1.1), and the results of this paper still hold true and are new in the following special cases of system (1.1).

    (ⅰ) System (1.1) is a real-valued, complex-valued, or quaternion-valued system.

    (ⅱ) System (1.1) is a real-valued, complex-valued, or quaternion-valued system without D operators, i.e. ai(t)=0.

    (ⅲ) System (1.1) is a real-valued system without D operators and fuzzy terms, i.e., ai(t)=αij(t)=qijk(t)=νijk(t)=Tij(t)=Sij(t)0.

    2. The research method proposed in the paper can be used to study the generalized almost periodic dynamics for other high-order NNs.

    Remark 1.1. The method we propose can be summarized as follows: First, we use the fixed point theorem to prove the existence of solutions for system (1.1) that are bounded and continuous with respect to the Besicovitch seminorm on a closed subset of an appropriate Banach space. Then, we apply the definition and inequality techniques to prove that this solution is Besicovitch almost periodic.

    The remaining part of the paper is arranged as follows: In the second section, we review some relevant concepts, introduce some symbols used in this article, cite a useful lemma, and state and prove the completeness of the space we will use. In the third section, we investigate the existence and stability of Besicovitch almost periodic solutions for system (1.1). In the fourth section, we provide an example to demonstrate the correctness of our results. Finally, in the fifth section, we provide a brief conclusion.

    Let A={AΩxAeAR} indicate a real Clifford algebra over Rm [41], where Ω={,1,2,,A,,12,,m}, eA=eh1eh2ehv, 1h1<h2<<hvm, and in addition, e=e0=1, and eh, h=1,2,,m are said to be Clifford generators and satisfy ep=1,p=0,1,2,,s,e2p=1,p=s+1,s+2,,m, where s<m, and epeq+eqep=0,pq,p,q=1,2,,m. For every x=AΩxAeAA and y=(y1,y2,,yn)TAn, we define |x|1=maxAΩ{|xA|} and |y|n=maxiJ{|yi|1}, respectively, and then the spaces (A,||1) and (An,||) are Banach ones.

    Since there is no order relation among Clifford numbers, as in [42], for x=AΩxAeA,y=AΩyAeA, we define xy=AΩ(min{xA,yA})eA and xy=AΩ(max{xA,yA})eA. According to this regulation, for example, regarding the 6th and 7th terms on the right-hand side of Equation (1.1), we have

    nj=1αij(t)fj(xj(tηij(t)))=AΩ(min1jn{αAij(t)fAj(xj(tηij(t)))})eA

    and

    nj=1βij(t)fj(xj(tηij(t)))=AΩ(max1jn{αAij(t)fAj(xj(tηij(t)))})eA.

    For x=AΩxAeAA, we indicate xc=xx.

    For the sake of generality in the subsequent discussion of this section, let (X,) be a Banach space and Lploc(R,X) with 1p<+ be the space consisting of measurable and locally p-integrable functions from R into X. In the next section, we will take X=R, X=A, or X=An.

    Definition 2.1. [40] A bounded continuous function φ:RX is said to be almost periodic, if for every ε>0, there exists a number (ε)>0 such that for each aR, there exists a point σ[a,a+] satisfying

    φ(t+σ)φ(t)<ε.

    The family of such functions will be signified by AP(R,X).

    For φLploc(R,X), the Besicovitch seminorm is defined as the following:

    φBp={¯liml12lllφ(t)pdt}1p.

    Definition 2.2. [43] A function φLploc(R,X) is called Bp-continuous if limh0φ(+h)φ()Bp=0 and is called Bp-bounded if φBp<.

    Henceforth, we will denote the set of all functions that are Bp-continuous and Bp-bounded by BCBp(R,X).

    Definition 2.3. [40] A function φLploc(R,X) is said to be Besicovitch almost periodic, if for every ε>0, there exists a positive number >0 such that for each aR, there exists a point σ[a,a+] satisfying

    φ(+σ)φ()Bp<ε.

    Denote by BpAP(R,X) the class of such functions and, for simplicity, call them Bp-almost periodic functions.

    Lemma 2.1. [44] If αij,βijC(R,A),gjC(A,A),i,jJ, then one has

    |ni=1αij(t)gj(x)ni=1αij(t)gj(y)|1ni=1|αij(t)gj(x)gj(y)|1,|ni=1βij(t)gj(x)ni=1βij(t)gj(y)|1ni=1βij(t)|gj(x)gj(y)|1.

    Let L(R,X) be the set of all essentially bounded measurable functions from R to X, then (L(R,X),) is a Banach space, where :=esssuptR denotes the essential supremum norm.

    Denote

    Z={x|xL(R,X)BCBp(R,X)}.

    Then we have the following lemma which is crucial for the proof of our main result of this paper.

    Lemma 2.2. The space (Z,) is a Banach space.

    Proof. Let {ϕn}Z be a Cauchy sequence, and then for every ε>0, there is a positive integer N1 such that for n,m>N1,

    ϕn()ϕm()<ε3.

    Since {ϕn}ZL(R,X) and (L(R,X),) is a Banach space, there exists ϕL(R,An) such that ϕnϕ as n with respect to the norm . To complete the proof, it suffices to prove that ϕBCBp(R,X). From limnϕn=ϕ in regard to the essential supremum norm, it follows that there exists a positive integer N2 such that for n>N2,

    ϕn()ϕ()<ε3.

    Now, take N0=max{N1,N2}, and then, due to the fact that ϕN0+1BCBp(R,X), there exists a δ=δ(ε)>0 such that for any hR with |h|<ε, it holds that

    ϕN0+1(+h)ϕN0+1()Bp<ε3.

    Consequently,

    ϕ(+h)ϕ()Bpϕ(+h)ϕN0+1(+h)Bp+ϕN0+1(+h)ϕN0+1()Bp+ϕN0+1()ϕ()Bpϕ(+h)ϕN0+1(+h)+ϕN0+1(+h)ϕN0+1()Bp+ϕN0+1()ϕ()ε3+ε3+ε3=ε,

    which implies ϕBCBp(R,X). The proof is completed.

    In this section, for xL(R,A), we denote |x|=maxAΩ{esssuptR|xA(t)|} and for z=(z1,z2,,zn)T=(AzA1eA,AzA2eA,,AzAneA)TL(R,An), we denote z=maxiJ{|zi|}. Let Z={z|zL(R,An)BCBp(R,An)}, and then, according to Lemma 2.2, (Z,) is a Banach space. For xBpAP(R,A) and zBpAP(R,An), we will use |x|Bp and zBp to represent the seminorms of x and z, respectively.

    In what follows, we will employ the following symbols:

    ˉg=suptRg(t)Yandg_=inftRg(t)Y,

    where g:RY is a bounded function and (Y,Y) is a normed space. Moreover, we will use the following assumptions:

    (A1) For i,j,kJ, functions biAP(R,R+) with b_i>0, ai,bci,μj,cij,uij,αij,βij,θijk,qijk,νijkAP(R,A),τi,σij,ηij,δijkAP(R,R)C1(R,R+) with τi(t)ˉτi<1,σij(t)ˉσij<1,ηij(t)ˉηij<1,δijk(t)ˉδijk<1, where ˉτ,ˉσ,ˉη,ˉδ are constants, and γij,Tij,Sij,IiL(R,A)BpAP(R,A).

    (A2) For all jJ, functions fj,gjC(A,A) with fj(0)=0,gj(0)=0, and there exist positive constants Lfj,Lgj,Mgj, and Mgk such that for any u,vA,

    |fj(u)fj(v)|1Lfj|uv|1,|gj(u)gj(v)|1Lgj|uv|1,|gj(u)|1Mgj,|gk(u)|1Mgk.

    (A3) For iJ, there exist positive constants ϑi such that

    ρ:=maxiJ{ˉai+1b_i[ˉbiˉai+ˉbci+ϑ1i(nj=1ˉcijLfjϑj+nj=1ˉuijLfjϑj+ni=1nk=1ˉθijkLgjMgkϑj+nj=1ˉαijLfjϑj+nj=1ˉβijLfjϑj+ni=1nk=1ˉqijkLgjMgkϑj+ni=1nk=1ˉνijkLgjMgkϑj)]}<1.

    (A4) For the constants ϑi,iJ, mentioned in (A3), and p,q>1 with 1p+1q=1, it holds that

    P:=2p1maxiJ{4p1(ˉai)p11ˉτi+70p1(1b_i)p+qq(ˉaiˉbi)peb_iˉτi1ˉτi+70p1(1b_i)p+qq(ˉbci)p+35p1ϑpi(1b_i)p+qq(nj=1(ˉcij)q)pqnj=1(Lfjϑj)p+70p1ϑpi(1b_i)p+1q(nj=1(ˉuij)q)pq×nj=1(Lfjϑj)peb_iˉσij1ˉσij+140p1ϑpi(1b_i)p+qqn2pq[nj=1nk=1(ˉθijkMgkLgjϑj)p+nj=1nk=1(ˉθijkMgjLgkϑk)p]eb_iˉδijk1ˉδijk+70p1ϑpi(1b_i)p+qq(nj=1(ˉαij)q)pq×nj=1(Lfjϑj)peb_iˉηij1ˉηij+70p1ϑpi(1b_i)p+qq(nj=1(ˉβij)q)pqnj=1(Lfjϑj)peb_iˉηij1ˉηij+140p1ϑpi(1b_i)p+qqn2pq(nj=1nk=1(ˉqijkMgkLgjϑj)p+nj=1nk=1(ˉqijkMgjLgkϑk)p)×eb_iˉδijk1ˉδijk+140p1ϑpi(1b_i)p+qqn2pq(nj=1nk=1(ˉνijkMgkLgjϑj)p+nj=1nk=1(ˉνijkMgjLgkϑk)p)epqb_iˉδijk1ˉδijk}<1.

    For iJ, let yi(t)=ϑ1ixi(t),Zi(t)=yi(t)ai(t)yi(tτi(t)), where ϑi>0 are constants, and then system (1.1) turns into

    Zi(t)=bi(t)Zi(t)bi(t)ai(t)yi(tτi(t))bci(t)yi(t)+ϑ1i[nj=1cij(t)fj(ϑjyj(t)+nj=1uij(t)fj(ϑjyj(tσij(t)))+nj=1γij(t)μj(t)+nj=1nk=1θijk(t)gj(ϑjyj(tδijk(t)))gk(ϑkyk(tγijk(t)))+nj=1αij(t)fj(ϑjyj(tηij(t)))+nj=1βij(t)fj(ϑjyj(tηij(t)))+nj=1nk=1qijk(t)gj(ϑjyj(tδijk(t)))gk(ϑkyk(tδijk(t)))+nj=1nk=1νijk(t)gj(ϑjyj(tδijk(t)))gk(ϑkyk(tδijk(t)))+nj=1Tij(t)μi(t)+nj=1Sij(t)μi(t)+Ii(t)],iJ. (3.1)

    Multiplying both sides of (3.1) with ett0bi(u)du and integrating over the interval [t0,t], then it holds that

    yi(t)=ai(t)yi(tτi(t))+[yi(t0)ai(t0)yi(t0τi(t0))]ett0bi(u)du+tt0etsbi(u)du(Ny)i(s)ds,iJ, (3.2)

    where

    (Ny)i(s)=bi(s)ai(s)yi(sτi(s))bci(s)yi(s)+ϑ1i(nj=1cij(s)fj(ϑjyj(s))+nj=1uij(s)fj(ϑjyj(sσij(s)))+nj=1γij(s)μj(s)+nj=1nk=1θijk(s)gj(ϑjyj(sδijk(s)))gk(ϑkyk(sδijk(s)))+nj=1αij(s)fj(ϑjyj(sηij(s)))+nj=1βij(s)fj(ϑjyj(sηij(s)))+nj=1nk=1qijk(s)gj(ϑjyj(sδijk(s)))gk(ϑkyk(sδijk(s)))+nj=1nk=1νijk(s)gj(ϑjyj(sδijk(s)))gk(ϑkyk(sδijk(s)))+nj=1Tij(s)μi(s)+nj=1Sij(s)μi(s)+Ii(s)).

    It is easy to verify that if y(t)=(y1(t),y2(t),,yn(t)) solves system (3.1), then x(t)=(x1(t),x2(t),,xn(t))=(ϑ11y1(t),ϑ12y2(t),,ϑ1nyn(t)) solves system (1.1).

    Definition 3.1. A function x=(x1,x2,,xn):RAn is called a solution of (1.1) provided that there exist positive numbers ϑi such that yi(t)=ϑ1ixi(t),iJ fulfill (3.2).

    Set

    ˆφ=(ˆφ1(t),ˆφ2(t),,ˆφn(t))T,

    where

    ˆφi(t)=tetsbi(u)du(nj=1γij(s)μj(s)+nj=1Tij(s)μj(s)+nj=1Sij(s)μj(s)+Ii(s))ds,iJ.

    It is easy to see that ˆφ is well defined under condition (A1). Choose a positive constant r with r>ˆφ.

    Then, we are now in a position to present and prove our existence result.

    Theorem 3.1. Assume that (A1)(A4) hold. Then, system (1.1) admits a unique Bp-almost periodic solution in Z:={φ|φZ,φˆφρr1ρ}.

    Proof. Letting t0, from (3.2), one gets

    yi(t)=ai(t)yi(tτi(t))+tetsbi(u)du(Ny)i(s)ds,iJ.

    Define a mapping T:ZZ by setting (Tφ)(t)=((Tφ)1(t),(Tφ)2(t),,(Tφ)n(t))T for φZ and tR, where (Tφ)i(t)=ai(t)φi(tτi(t))+tetsbi(u)du(Nφ)i(s)ds,iJ.

    To begin with, we show that T(Z)Z.

    Note that, for any φZ, it holds that

    φφˆφ+ˆφρr1ρ+r=r1ρ

    and Nφ<.

    For every φZ, we infer that

    Tφˆφ=maxiJ{esssuptR|ai(t)φi(tτi(t))+tetsbi(u)du[bi(s)ai(s)φi(sτi(s))bci(s)φi(s)+ϑ1i(nj=1cij(s)fj(ϑjφj(s))+nj=1uij(s)fj(ϑjφj(sσij(s)))+ni=1nk=1θijk(s)gj(ϑjφj(sδijk(s)))gk(ϑkφk(sδijk(s)))+nj=1αij(s)fj(ϑjφj(sηij(s)))+nj=1βij(s)fj(ϑjφj(sηij(s)))+nj=1nk=1qijk(s)gj(ϑjφj(sδijk(s)))gk(ϑkφk(sδijk(s)))+nj=1nk=1νijk(s)gj(ϑjφj(sδijk(s)))gk(ϑkφk(sδijk(s))))]ds|1}maxiJ{ˉaiφ+teb_i(ts)[ˉbiˉai+ˉbci+ϑ1i(nj=1ˉcijLfjϑj+nj=1ˉuijLfjϑj+ni=1nk=1ˉθijkLgjMgkϑjϑk+nj=1ˉαijLfjϑj+nj=1ˉβijLfjϑj+nj=1nk=1ˉqijkLgjMgkϑjϑk+nj=1nk=1ˉνijkLgjMgkϑjϑk)]φds}maxiJ{ˉai+1b_i(ˉbiˉai+ˉbci+nj=1ˉcijLfj+nj=1ˉuijLfj+ni=1nk=1ˉθijkLgjMgk+nj=1ˉαijLfj+nj=1ˉβijLfj+ni=1nk=1ˉqijkLgjMgk+ni=1nk=1ˉνijkLgjMgk)}φ=ρφ<r1ρ,iJ.

    In addition, by condition (A1) and the fact that φZ, we have that for every ε>0, there exists a positive number δ=δ(ε)(<ε) such that for any hR with |h|<δ, it holds

    |ai(t+h)ai(t)|1<ε,|φi(+h)φi()|Bp<ε,|τi(t+h)τi(t)|<δ,iJ.

    Without loss of generality, in the sequel, we assume that h>0, then we deduce that

    Tφ(+h)Tφ()pBp2p1maxiJ{¯liml12lll|ai(t+h)φi(t+hτi(t+h))ai(t)φi(tτi(t))|p1dt}+2p1maxiJ{¯liml12lll|t+het+hsbi(u)du(Nφ)i(s)dstetsbi(u)du(Nφ)i(s)ds|p1dt}6p1maxiJ{¯liml12lll|ai(t+h)ai(t)|p1|φi(t+hτi(t+h))|p1dt}+6p1maxiJ{¯liml12lll|ai(t)|p1|φi(t+hτi(t+h))φi(tτi(t+h))|p1dt}+6p1maxiJ{¯liml12lll|ai(t)|p1|φi(tτi(t+h))φi(tτi(t))|p1dt}+4p1maxiJ{¯liml12lll|t|et+hsbi(u)duetsbi(u)du|(Nφ)i(s)ds|p1dt}+4p1maxiJ{¯liml12lll|t+htet+hsbi(u)du(Nφ)i(s)ds|p1dt}6p1maxiJ{¯liml12lll|ai(t+h)ai(t)|p1|φi(t+hτi(t+h))|p1dt}+6p1maxiJ{¯liml12lll|ai(t)|p1|φi(t+hτi(t+h))φi(tτi(t+h))|p1dt}+6p1maxiJ{¯liml12lll|ai(t)|p1|φi(tτi(t+h))φi(tτi(t))|p1dt}+4p1maxiJ{¯liml12lll|teb_i(ts)|t+hsbi(u)dutsbi(u)du|(Nφ(s))ids|p1}+4p1maxiJ{¯liml12lll|t+htet+hsbi(u)du(Nφ)i(s)ds|p1dt}maxiJ{6p1εpφp+6p1ˉapiεp+6p1ˉapiεp+4p1hp[(ˉbib_i)p+(1b_i)p]Nφp}maxiJ{6p1φp+6p1ˉai+6p1ˉai+4p1[(ˉbib_i)p+(1b_i)p]Nφp}εp,

    which implies T\varphi\in BCB^{p}(\mathbb{R}, \mathcal{A}^{n}) . Therefore, T(\mathbb{Z}^*)\subset \mathbb{Z}^* .

    Next, we will prove that T is a contraction mapping. In fact, for any \varphi, \psi\in\mathbb{Z}^*, i\in\mathcal{J}, we have

    \begin{align*} \|T\varphi-T\psi\|_{\infty} \leq\, & ess\sup\limits_{t\in\mathbb{R}}|a_{i}(t)(\varphi_{i}(t-\tau_{i}(t))-\psi_{i}(t-\tau_{i}(t)))|_{1}\\ &+ess\sup\limits_{t\in\mathbb{R}}\bigg|\int_{-\infty}^{t}e^{-\int_{s}^{t}b_{i}^{\emptyset}(u)du}\bigg[-b_{i}^{\emptyset}(s)a_{i}(s)(\varphi_{i}(s-\tau_{i}(s))-\psi_{i}(s-\tau_{i}(s)))\\ &-b_{i}^{c}(s)(\varphi_{i}(s)-\psi_{i}(s))+\vartheta_{i}^{-1}\bigg(\sum\limits_{j = 1}^{n}c_{ij}(s)(f_{j}(\vartheta_{j}\varphi_{j}(s))-f_{j}(\vartheta_{j}\psi_{j}(s)))\\ &+\sum\limits_{j = 1}^{n}u_{ij}(s)(f_{j}(\vartheta_{j}\varphi_{j}(s-\sigma_{ij}(s)))-f_{j}(\vartheta_{j}\psi_{j}(s-\sigma_{ij}(s))))\\ &+\sum\limits_{i = 1}^{n}\sum\limits_{k = 1}^{n}\theta_{ijk}(s)(g_{j}(\vartheta_{j}\varphi_{j}(s-\delta_{ijk}(s)))g_{k}(\vartheta_{k}\varphi_{k}(s-\delta_{ijk}(s)))\\ &-g_{j}(\vartheta_{j}\psi_{j}(s-\delta_{ijk}(s))))g_{k}(\vartheta_{k}\psi_{k}(s-\delta_{ijk}(s))))\\ &+\sum\limits_{j = 1}^{n}\alpha_{ij}(s)(f_{j}(\vartheta_{j}\varphi_{j}(s-\eta_{ij}(s)))-f_{j}(\vartheta_{j}\psi_{j}(s-\eta_{ij}(s))))\\ &+\sum\limits_{j = 1}^{n}\beta_{ij}(s)(f_{j}(\vartheta_{j}\varphi_{j}(s-\eta_{ij}(s)))-f_{j}(\vartheta_{j}\psi_{j}(s-\eta_{ij}(s))))\\ &+\sum\limits_{i = 1}^{n}\sum\limits_{k = 1}^{n}q_{ijk}(s)(g_{j}(\vartheta_{j}\varphi_{j}(s-\delta_{ijk}(s)))g_{k}(\vartheta_{k}\varphi_{k}(s-\delta_{ijk}(s)))\\ &-g_{j}(\vartheta_{j}\psi_{j}(s-\delta_{ijk}(s))))g_{k}(\vartheta_{k}\psi_{k}(s-\delta_{ijk}(s))))\\ &+\sum\limits_{i = 1}^{n}\sum\limits_{k = 1}^{n}\nu_{ijk}(s)(g_{j}(\vartheta_{j}\varphi_{j}(s-\delta_{ijk}(s)))g_{k}(\vartheta_{k}\varphi_{k}(s-\delta_{ijk}(s)))\\ &-g_{j}(\vartheta_{j}\psi_{j}(s-\delta_{ijk}(s))))g_{k}(\vartheta_{k}\psi_{k}(s-\delta_{ijk}(s)))\bigg]ds\\ \leq\, &\bar{a}_{i}\|\varphi-\psi\|_{\infty}+\int_{-\infty}^{t}e^{\underline{b}_{i}^{\emptyset}(t-s)}\bigg[\bar{b}_{i}^{\emptyset}\bar{a}_{i}+\bar{b}_{i}^{c}+\vartheta_{i}^{-1}\bigg(\sum\limits_{j = 1}^{n}\bar{c}_{ij}L_{j}^{f}\vartheta_{j}\\ &+\sum\limits_{j = 1}^{n}\bar{u}_{ij}L_{j}^{f}\vartheta_{j}+\sum\limits_{j = 1}^{n}\sum\limits_{k = 1}^{n}\bar{\theta}_{ijk}L_{j}^{g}M_{k}^{g}\vartheta_{j}+\sum\limits_{j = 1}^{n}\bar{\alpha}_{ij}L_{j}^{f}\vartheta_{j}+\sum\limits_{j = 1}^{n}\bar{\beta}_{ij}L_{j}^{f}\vartheta_{j}\\ &+\sum\limits_{j = 1}^{n}\sum\limits_{k = 1}^{n}\bar{q}_{ijk}L_{j}^{g}M_{k}^{g}\vartheta_{j}+\sum\limits_{j = 1}^{n}\sum\limits_{k = 1}^{n}\bar{\nu}_{ijk}L_{j}^{g}M_{k}^{g}\vartheta_{j}\bigg)\bigg]\|\varphi-\psi\|_{\infty}ds\\ \leq&\max\limits_{i\in\mathcal{J}}\bigg\{\bar{a}_{i}+\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg[\bar{b}_{i}^{\emptyset}\bar{a}_{i}+\bar{b}_{i}^{c}+\vartheta_{i}^{-1}\bigg(\sum\limits_{j = 1}^{n}\bar{c}_{ij}L_{j}^{f}\vartheta_{j}+\sum\limits_{j = 1}^{n}\bar{u}_{ij}L_{j}^{f}\vartheta_{j}\\ &+\sum\limits_{i = 1}^{n}\sum\limits_{k = 1}^{n}\bar{\theta}_{ijk}L_{j}^{g}M_{k}^{g}\vartheta_{j}+\sum\limits_{j = 1}^{n}\bar{\alpha}_{ij}L_{j}^{f}\vartheta_{j}+\sum\limits_{j = 1}^{n}\bar{\beta}_{ij}L_{j}^{f}\vartheta_{j}\\ &+\sum\limits_{i = 1}^{n}\sum\limits_{k = 1}^{n}\bar{q}_{ijk}L_{j}^{g}M_{k}^{g}\vartheta_{j}+\sum\limits_{i = 1}^{n}\sum\limits_{k = 1}^{n}\bar{\nu}_{ijk}L_{j}^{g}M_{k}^{g}\vartheta_{j}\bigg)\bigg]\bigg\}\|\varphi-\psi\|_{\infty}\\ = \, &\rho\|\varphi-\psi\|_{\infty}, \, \, i\in\mathcal{J}, \end{align*}

    which combined with condition (A_{3}) means that T is a contraction mapping. Thereupon, T has a unique fixed point \varphi^{*}\in\mathbb{Z}^*.

    Finally, we will examine that \varphi^{*} is B^p -almost periodic.

    Since \varphi^{*}\in\mathbb{Z}^*\subset BCB^p(\mathbb{R}, \mathcal{A}^n) , for any \varepsilon > 0 , there exists a \sigma > 0 (\sigma < \varepsilon) such that, for any \hbar\in \mathbb{R} with |\hbar| < \sigma ,

    \begin{align*} |\varphi^*_i(\cdot+\hbar)-\varphi^*_i(\cdot)|_{B^p} < \varepsilon, \, \, i\in \mathcal{J}. \end{align*}

    Based on this and (A_1) , there exists {\flat} such that, for all i\in\mathcal{J} ,

    \begin{align} |a_{i}(\cdot+{\flat} )-a_{i}(\cdot)|_{1} < \varepsilon, \, \, \, \, |b_{i}^{\emptyset }(\cdot+{\flat})-b_{i}^{\emptyset }(\cdot)| < \varepsilon, \, \, \, \, |b_{i}^{c }(\cdot+{\flat})-b_{i}^{c}(\cdot)|_{1} < \varepsilon, \end{align} (3.3)
    \begin{align} |c_{ij}(\cdot+{\flat} )-c_{ij}(\cdot)|_{1} < \varepsilon, \, \, \, \, |u_{ij}(\cdot+{\flat} )-u_{ij}(\cdot)|_{1} < \varepsilon, \, \, \, \, |\gamma_{ij}(\cdot+{\flat} )-\gamma_{ij}(\cdot)|_{B^{p}} < \varepsilon, \end{align} (3.4)
    \begin{align} |\theta _{ijk}(\cdot+{\flat} )-\theta _{ijk}(\cdot)|_{1} < \varepsilon, \, \, \, \, |\alpha _{ij}(\cdot+{\flat} )-\alpha _{ij}(\cdot)|_{1} < \varepsilon, \, \, \, \, |\beta_{ij}(\cdot+{\flat} )-\beta_{ij}(\cdot)|_{1} < \varepsilon, \end{align} (3.5)
    \begin{align} |q_{ijk}(\cdot+{\flat} )-q_{ijk}(\cdot)|_{1} < \varepsilon, \, \, \, \, |\nu_{ijk}(\cdot+{\flat} )-\nu_{ijk}(\cdot)|_{1} < \varepsilon, \, \, \, \, |T_{ij}(\cdot+{\flat} )-T_{ij}(\cdot)|_{B^{p}} < \varepsilon, \end{align} (3.6)
    \begin{align} |\tau_i(t+\flat)-\tau(t)| < \varepsilon, \, \, |\sigma_{ij}(t+\flat)-\sigma_{ij}(t)| < \varepsilon, \, \, |\delta_{ijk}(t+\flat)-\delta_{ijk}(t)| < \varepsilon, \end{align} (3.7)
    \begin{align} |\eta_{ij}(t+\flat)-\eta_{ij}(t)| < \varepsilon, \, \, |S_{ij}(\cdot+{\flat} )-S_{ij}(\cdot)|_{B^{p}} < \varepsilon, \, \, \, \, |I_{i}(\cdot+{\flat} )-I_{i}(\cdot)|_{B^{p}} < \varepsilon, \end{align} (3.8)
    \begin{align} |\varphi_{i}^{*}(\cdot-\tau_{i}(\cdot+{\flat}))-\varphi_{i}^{*}(\cdot-\tau_{i}(\cdot))|_{B^p} < \varepsilon, \, \, \, \, |\varphi_{j}^{*}(\cdot-\sigma_{ij}(\cdot+{\flat}))-\varphi_{j}^{*}(\cdot-\sigma_{ij}(\cdot))|_{B^p} < \varepsilon, \end{align} (3.9)
    \begin{align} |\varphi_{i}^{*}(\cdot-\eta_{ij}(\cdot+{\flat}))-\varphi_{i}^{*}(\cdot-\eta_{ij}(\cdot))|_{B^p} < \varepsilon, \, \, \, \, |\varphi_{j}^{*}(\cdot-\delta_{ijk}(\cdot+{\flat}))-\varphi_{j}^{*}(\cdot-\delta_{ijk}(\cdot))|_{B^p} < \varepsilon, \end{align} (3.10)
    \begin{align} |\varphi_{k}^{*}(\cdot-\delta_{ijk}(\cdot+{\flat}))-\varphi_{k}^{*}(\cdot-\delta_{ijk}(\cdot))|_{B^p} < \varepsilon. \end{align} (3.11)

    Then, we deduce that

    \begin{align*} & \|\varphi^*(t+{\flat})-\varphi^*(t)\|_{B^p}^p \\ \leq\, & 2^{p-1} \max _{i \in \mathcal{J}}\bigg\{\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-l}^l | a_i(t+{\flat}) \varphi_i^*(t+{\flat}-\tau_i(t+{\flat}))-a_i(t) \varphi_i^*(t-\tau_i(t))|_1 ^p d t\bigg\} \\ & +2^{p-1} \max _{i \in \mathcal{J}}\bigg\{\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-l}^l \bigg|\int_{-\infty}^{t+{\flat}} e^{-\int_s^{t+{\flat}} b_i^{\emptyset}(u+{\flat}) d u}(N^{\varphi^*}) i(s) d s \\ & -\int_{-\infty}^t e^{-\int_s^t b_i^{\emptyset}(u) d u}(N^{\varphi^*})_i(s) d s\bigg|_1 ^p d t\bigg\} \\ \leq\, & 4^{p-1} \max _{i \in \mathcal{J}}\bigg\{\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-l}^l|a_i(t+{\flat})(\varphi_i^*(t+{\flat}-\tau_i(t+{\flat}))-\varphi_i^*(t-\tau_i(t)))|_1^p d t\bigg\} \\ & +4^{p-1} \max _{i \in \mathcal{J}}\bigg\{\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-l}^l|(a_i(t+{\flat})-a_i(t)) \varphi_i^*(t-\tau_i(t))|_1^p d t\bigg\} \\ & +2^{p-1} \max _{i \in \mathcal{J}}\bigg\{\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-l}^l\bigg| \int_{-\infty}^t e^{-\int_s^t b_i^{\emptyset}(u+{\flat}) d u} (N^{\varphi^*})_i(s+{\flat}) d s \\ &-\int_{-\infty}^t e^{-\int_s^t b_i^{\emptyset}(u) d u}(N^{\varphi^*})_i(s) d s\bigg|_1 ^p d t\bigg\} \\ \leq\, & 4^{p-1} \max _{i \in \mathcal{J}}\bigg\{\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-l}^{l}|a_i(t+{\flat})( \varphi_i^*(t+{\flat}-\tau_i(t+{\flat}))-\varphi_i^*(t-\tau_i(t)))|_1 ^p d t\bigg\} \\ & +4^{p-1} \max _{i \in \mathcal{J}}\bigg\{\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-l}^{l}|(a_i(t+{\flat})-a_i(t)) \varphi_i^*(t-\tau_i(t))|_1^p d t\bigg\} \\ &+70^{p-1} \max _{i \in \mathcal{J}}\bigg\{\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-l}^{l}\bigg| \int_{-\infty}^t e^{-\int_s^t b_i^{\emptyset}(u+{\flat}) d u} a_i(s+{\flat}) b_i^{\emptyset}(s+{\flat})\\ &\times(\varphi_i^*(s+{\flat}-\tau_i(s+{\flat}))-\varphi_i^*(s-\tau_i(s))) d s\bigg|_1^p d t\bigg\}\\ & +70^{p-1} \max _{i \in \mathcal{J}}\bigg\{\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-l}^l \bigg|\int_{-\infty}^t e^{-\int_s^t b_i^{\emptyset}(u+{\flat}) d u}(a_i(s+{\flat})-a_i(s)) b_i^{\emptyset}(s+{\flat})\\ &\times\varphi_i^*(s-\tau_i(s)) d s\bigg|_1 ^p d t\bigg\} \\ & +70^{p-1} \max _{i \in\mathcal{J}}\bigg\{\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-l}^l \bigg| \int_{-\infty}^t e^{-\int_s^t b_i^{\emptyset}(u+{\flat}) d u} a_i(s)(b_i^{\emptyset}(s+{\flat})\\ &-b_i^{\emptyset}(s))\varphi_i^*(s-\tau_i(s)) d s\bigg|_1 ^p d t\bigg\} \\ &+70^{p-1} \max _{i \in\mathcal{J}}\bigg\{\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-1}^l\bigg|\int_{-\infty}^t\Big| e^{-\int_s^t b_i^{\emptyset}(u+{\flat}) d u}-e^{-\int_s^t b_i^{\emptyset} (u) du}\Big|\\ &\times a_i(s) b_i^{\emptyset}(s) \varphi_i^*(s-\tau_{i}(s)) d s\bigg|_1 ^p d t\bigg\} \\ & +70^{p-1} \max _{i \in\mathcal{J}}\bigg\{\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-l}^l \bigg| \int_{-\infty}^t e^{-\int_s^t b_i^{\emptyset}(u+{\flat}) d u}(b_i^c(s+{\flat}) \varphi_i^*(s+{\flat})-b_i^c(s) \varphi_i^*(s))d s\bigg|_1 ^p d t\bigg\} \\ & +70^{p-1} \max _{i \in \mathcal{J}}\bigg\{\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-l}^l\bigg|\int_{-\infty}^t\Big| e^{-\int_s^t b_i^{\emptyset}(u+{\flat}) d u}-e^{-\int_s^t b_i^{\emptyset}(u) d u} \Big|b_i^c(s) \varphi_i^*(s) d s\bigg|_1 ^p d t \bigg\}\\ \end{align*}
    \begin{align*} &\;\;\;\;+70^{p-1} \vartheta_i^{-p} \max _{i \in\mathcal{J}}\bigg\{\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-l}^l \bigg| \int_{-\infty}^t e^{-\int_s^t b_i^{\emptyset}(u+{\flat}) d u} \sum\limits_{j = 1}^n c_{i j}(s+{\flat})(f_j(\vartheta_j \varphi_j^*(s+{\flat}))\\ &\;\;\;\;-f_j(\vartheta_j \varphi_i^*(s)))d s\bigg|_1 ^p d t\bigg\} \\ &\;\;\;\; +70^{p-1} \vartheta_i^{-p} \max _{i \in\mathcal{J}}\bigg\{\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-l}^l \bigg| \int_{-\infty}^t e^{-\int_s^t b_i^{\emptyset}(u+{\flat}) d u} \sum\limits_{j = 1}^n(c_{i j}(s+{\flat})\\ &\;\;\;\;-c_{i j}(s))f_j(\vartheta_j \varphi_j^*(s)) d s\bigg|_1 ^p d t\bigg\} \\ &\;\;\;\; +70^{p-1} \vartheta_i^{-p} \max _{i \in\mathcal{J}}\bigg\{\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-l}^l\bigg|\int_{-\infty}^t\Big| e^{-\int_s^t b_i^{\emptyset}(u+{\flat}) d u}-e^{-\int_s^t b_i^{\emptyset}(u) d u} \Big| \\ &\;\;\;\;\times\sum\limits_{j = 1}^n c_{i j}(s) f_j(\vartheta_j \varphi_j^*(s)) d s\bigg|_1 ^p d t\bigg\}\\ &\;\;\;\; +70^{p-1} \vartheta_i^{-p} \max _{i \in\mathcal{J}}\bigg\{\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-l}^l \bigg|\int_{-\infty}^t e^{-\int_s^t b_i^{\emptyset}(u+{\flat}) d u} \sum\limits_{j = 1}^n u_{i j}(s+{\flat})\\ &\;\;\;\;\times(f_j(\vartheta_j \varphi_j^*(s+{\flat}-\sigma_{i j}(s+{\flat})))-f_j(\vartheta_j \varphi_j^*(s-\sigma_{i j}(s)))) d s\bigg|_1 ^p d t\bigg\} \\ &\;\;\;\; +70^{p-1} \vartheta_i^{-p} \max _{i \in\mathcal{J}}\bigg\{\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-l}^l \bigg| \int_{-\infty}^t e^{-\int_s^t b_i^{\emptyset}(u+{\flat}) d u} \sum\limits_{j = 1}^n(u_{i j}(s+{\flat})-u_{i j}(s))\\ &\;\;\;\;\times f_j(\vartheta_j \varphi_j^*(s-\sigma_{i j}(s))) d s\bigg|_1 ^p d t\bigg\} \\ &\;\;\;\; +70^{p-1} \vartheta_i^{-p} \max _{i \in\mathcal{J}}\bigg\{\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-l}^l\bigg|\int_{-\infty}^t\Big| e^{-\int_s^t b_i^{\emptyset}(u+{\flat}) d u}-e^{-\int_s^t b_i^{\emptyset}(u) d u} \Big|\\ &\;\;\;\;\times\sum\limits_{j = 1}^n u_{i j}(s) f_j(\vartheta_j \varphi_j^*(s-\sigma_{i j}(s))) d s\bigg|_1 ^p d t\bigg\} \\ &\;\;\;\; +70^{p-1} \vartheta_i^{-p} \max _{i \in\mathcal{J}}\bigg\{\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-l}^l\bigg|\int_{-\infty}^t e^{-\int_s^t b_i^{\emptyset}(u+{\flat}) d u} \bigg(\sum\limits_{j = 1}^n \gamma_{i j}(s+{\flat}) \mu_j(s+{\flat}) \\ &\;\;\;\;-\sum\limits_{j = 1}^n \gamma_{i j}(s) \mu_j(s)\bigg)d s\bigg|_1 ^p d t \bigg\}\\ &\;\;\;\; +70^{p-1} \vartheta_i^{-p} \max _{i \in\mathcal{J}}\bigg\{\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-l}^l\bigg|\int_{-\infty}^t \Big|e^{-\int_s^t b_i^{\emptyset}(u+{\flat}) d u} -e^{-\int_{s}^{t}b_{i}^{\emptyset}(u)du}\Big|\sum\limits_{j = 1}^n \gamma_{i j}(s) \mu_j(s)d s\bigg|_1 ^p d t \bigg\}\\ &\;\;\;\; +70^{p-1} \vartheta_i^{-p} \max _{i \in\mathcal{J}}\bigg\{\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-l}^l \bigg |\int_{-\infty}^t e^{-\int _s^t b_i^{\emptyset}( u+{\flat}) d u} \sum\limits_{j = 1}^n \sum\limits_{k = 1}^n \theta_{i j k}(s+{\flat})\\ &\;\;\;\;\times(g_j(\vartheta_j \varphi_j^*(s+{\flat}-\delta_{i j k}(s+{\flat}))) g_k ( \vartheta_k \varphi_k^*(s+{\flat}-\delta_{i j k}(s+{\flat}))) \\ &\;\;\;\; -g_j(\vartheta_j \varphi_j^*(s-\delta_{i j k}(s))) g_k(\vartheta_k \varphi_k^*(s-\delta_{i j k}(s )))) d s\bigg|_1 ^p d t\bigg\} \\ &\;\;\;\; +70^{p-1} \vartheta_i^{-p} \max _{i \in\mathcal{J}}\bigg\{\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-l}^l \bigg|\int_{-\infty}^t e^{-\int_s^t b_i^{\emptyset}(u+{\flat}) d u} \sum\limits_{j = 1}^n \sum\limits_{k = 1}^n(\theta_{i j k}(s+{\flat})\\ &\;\;\;\; -\theta_{i j k}(s)) g_j(\vartheta_j \varphi_j^*(s-\delta_{ijk} k(s))) g_k(\vartheta_k \varphi_k^*(s-\delta_{i j k}(s) )) d s\bigg|_1 ^p d t\bigg\}\\ &\;\;\;\; +70^{p-1} \vartheta_i^{-p} \max _{i \in\mathcal{J}}\bigg\{\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-l}^l\bigg|\int_{-\infty}^t\Big| e^{-\int_s^t b_i^{\emptyset}(u+{\flat}) d u}-e^{-\int_s^t b_i^{\emptyset}(u) d u} \Big| \\ &\;\;\;\; \times \sum\limits_{j = 1}^n \sum\limits_{k = 1}^n \theta_{i j k}(s) g_j(\vartheta_j \varphi_j^*(s-\delta_{i j k}(s))) g_k(\vartheta_k \varphi_k^*(s-\delta_{i j k}(s))) d s\bigg|_1 ^p d t\bigg\} \\ \end{align*}
    \begin{align*} &\;\;\;\; +70^{p-1} \vartheta_i^{-p} \max _{i \in\mathcal{J}}\bigg\{\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-l}^l \bigg| \int_{-\infty}^t e^{-\int_s^t b_i^{\emptyset}(u+{\flat}) d u} \sum\limits_{j = 1}^n \alpha_{i j}(s+{\flat})\\ &\;\;\;\;\times(f _ { j } (\vartheta _ { j } \varphi _ { j } ^ { * } (s+{\flat}-\eta_{i j}(s+{\flat})))-f_j(\vartheta_j \varphi_j^* ( s-\eta_{ij}(s))))d s\bigg|_1 ^p d t \bigg\} \\ &\;\;\;\; +70^{p-1} \vartheta_i^{-p} \max _{i \in \mathcal{J}}\bigg\{\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-l}^l \bigg| \int_{-\infty}^t e^{-\int_s^t b_i^{\emptyset} ( u+{\flat}) d u} \sum\limits_{j = 1}^n(\alpha_{i j} ( s+{\flat})-\alpha_{i j}(s)) \\ &\;\;\;\;\times f_j(\vartheta_{j}\varphi_j^*(s-\eta_{j j}(s))) d s\bigg|_1 ^p d t\bigg\} \\ &\;\;\;\; +70^{p-1} \vartheta_i^{-p} \max _{i \in\mathcal{J}}\bigg\{\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-l}^l\bigg|\int_{-\infty}^t\Big| e^{-\int_s^t b_i^{\emptyset}(u+{\flat}) d u}-e^{-\int_s^t b_i^{\emptyset}(u) d u} \Big|\\ &\;\;\;\;\times\sum\limits_{j = 1}^n \alpha_{i j}(s) f_j(\vartheta_{j}\varphi_j^*(s-\eta_{j j}(s))) d s\bigg|_1^p d t\bigg\}\\ &\;\;\;\; +70^{p-1} \vartheta_i^{-p} \max _{i \in\mathcal{J}}\bigg\{\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-l}^l \bigg| \int_{-\infty}^t e^{-\int_s^t b_i^{\emptyset}(u+{\flat}) d u} \sum\limits_{j = 1}^n \beta_{i j}(s+{\flat})\\ &\;\;\;\;\times(f _ { j } (\vartheta _ { j } \varphi _ { j } ^ { * } (s+{\flat}-\eta_{i j}(s+{\flat})))-f_j(\vartheta_j \varphi_j^* ( s-\eta_{ij}(s))))d s\bigg|_1 ^p d t \bigg\} \\ &\;\;\;\; +70^{p-1} \vartheta_i^{-p} \max _{i \in \mathcal{J}}\bigg\{\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-l}^l \bigg| \int_{-\infty}^t e^{-\int_s^t b_i^{\emptyset} ( u+{\flat}) d u} \sum\limits_{j = 1}^n(\beta_{i j} ( s+{\flat})-\beta_{i j}(s)) \\ &\;\;\;\;\times f_j(\vartheta_{j}\varphi_j^*(s-\eta_{j j}(s))) d s\bigg|_1 ^p d t\bigg\} \\ &\;\;\;\; +70^{p-1} \vartheta_i^{-p} \max _{i \in\mathcal{J}}\bigg\{\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-l}^l\bigg|\int_{-\infty}^t\Big| e^{-\int_s^t b_i^{\emptyset}(u+{\flat}) d u}-e^{-\int_s^t b_i^{\emptyset}(u) d u} \Big|\\ &\;\;\;\;\times\sum\limits_{j = 1}^n \beta_{i j}(s) f_j(\vartheta_{j}\varphi_j^*(s-\eta_{j j}(s))) d s\bigg|_1^p d t\bigg\}\\ &\;\;\;\; +70^{p-1} \vartheta_i^{-p} \max _{i \in\mathcal{J}}\bigg\{\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-l}^l \bigg| \int_{-\infty}^t e^{-\int_s^t b_i^{\emptyset} ( u+{\flat}) d u} \sum\limits_{j = 1}^n \sum\limits_{k = 1}^n q_{i j k}(s+{\flat})\\ &\;\;\;\;\times(g _ { j } (\vartheta_j \varphi_j^*(s+{\flat}-\delta_{i j k}(s+{\flat})) g_k(\vartheta_k \varphi_k^*(s+{\flat}-\delta_{i j k}(s + {\flat})))\\ &\;\;\;\;-g_j(\vartheta_j \varphi_j^*(s-\delta_{i j k}(s))) g_k (\vartheta_k \varphi_k^*(s-\delta_{i j k}(s)))) d s\bigg|_1^p d t\bigg\} \\ \end{align*}
    \begin{align*} &\;\;\;\;+70^{p-1} \vartheta_i^{-p} \max _{i \in\mathcal{J}}\bigg\{\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-l}^l \bigg| \int_{-\infty}^t e^{-\int_s^t b_{i}^{\emptyset}(u+{\flat}) d u}\sum\limits_{j = 1}^n \sum\limits_{k = 1}^n(q_{i j k}(s+{\flat})\\ &\;\;\;\;-q_{i j k}(s)) g_j(\vartheta_j \varphi_j^*(s-\delta_{i j k}(s))) g_k(\vartheta_k \varphi_k^*(s-\delta_{i j k}(s))) d s\bigg|_1^p d t\bigg\} \\ &\;\;\;\; +70^{p-1} \vartheta_i^{-p} \max _{i \in \mathcal{J}}\bigg\{\limsup _ { l \rightarrow \infty }(2l)^{-1} \int_{-l}^l\bigg|\int_{-\infty}^t\Big| e^{-\int_s^t b_i^{\emptyset}(u+{\flat}) d u}-e^{-\int_s^t b_i^{\emptyset}(u) d u} \Big|\\ &\;\;\;\;\times \sum\limits_{j = 1}^n \sum\limits_{k = 1}^n q_{i j k}(s)g_j(\vartheta_j \varphi_j^*(s-\delta_{i j k}(s))) g_k(\vartheta_k \varphi_k^*(s-\delta_{i j k}(s))) d s\bigg|_1 ^p d t\bigg\}\\ &\;\;\;\; +70^{p-1} \vartheta_i^{-p} \max _{i \in\mathcal{J}}\bigg\{\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-l}^l \bigg| \int_{-\infty}^t e^{-\int_s^t b_i^{\emptyset} ( u+{\flat}) d u} \sum\limits_{j = 1}^n \sum\limits_{k = 1}^n \nu_{i j k}(s+{\flat})\\ &\;\;\;\;\times(g _ { j } (\vartheta_j \varphi_j^*(s+{\flat}-\delta_{i j k}(s+{\flat})) g_k(\vartheta_k \varphi_k^*(s+{\flat}-\delta_{i j k}(s + {\flat})))\\ &\;\;\;\;-g_j(\vartheta_j \varphi_j^*(s-\delta_{i j k}(s))) g_k (\vartheta_k \varphi_k^*(s-\delta_{i j k}(s)))) d s\bigg|_1^p d t\bigg\} \\ &\;\;\;\;+70^{p-1} \vartheta_i^{-p} \max _{i \in\mathcal{J}}\bigg\{\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-l}^l \bigg| \int_{-\infty}^t e^{-\int_s^t b_{i}^{\emptyset}(u+{\flat}) d u}\sum\limits_{j = 1}^n \sum\limits_{k = 1}^n(\nu_{i j k}(s+{\flat})\\ &\;\;\;\;-\nu_{i j k}(s)) g_j(\vartheta_j \varphi_j^*(s-\delta_{i j k}(s))) g_k(\vartheta_k \varphi_k^*(s-\delta_{i j k}(s))) d s\bigg|_1^p d t\bigg\} \\ &\;\;\;\;+70^{p-1} \vartheta_i^{-p} \max _{i \in \mathcal{J}}\bigg\{\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-l}^l\bigg|\int_{-\infty}^t\Big| e^{-\int_s^t b_i^{\emptyset}(u+{\flat}) d u}-e^{-\int_s^t b_i^{\emptyset}(u) d u} \Big|\\ &\;\;\;\;\times \sum\limits_{j = 1}^n \sum\limits_{k = 1}^n \nu_{i j k}(s)g_j(\vartheta_j \varphi_j^*(s-\delta_{i j k}(s))) g_k(\vartheta_k \varphi_k^*(s-\delta_{i j k}(s))) d s\bigg|_1 ^p d t\bigg\}\\ \end{align*}
    \begin{align*} &\;\;\;\; +70^{p-1} \vartheta_i^{-p} \max _{i \in\mathcal{J}}\bigg\{\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-l}^l\bigg|\int_{-\infty}^t e^{-\int_s^t b_i^{\emptyset}(u+{\flat}) d u} \bigg(\sum\limits_{j = 1}^n T_{i j}(s+{\flat}) \mu_j(s+{\flat}) \\ &\;\;\;\;-\sum\limits_{j = 1}^n T_{i j}(s) \mu_j(s)\bigg)d s\bigg|_1 ^p d t \bigg\}\\ &\;\;\;\; +70^{p-1} \vartheta_i^{-p} \max _{i \in\mathcal{J}}\bigg\{\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-l}^l\bigg|\int_{-\infty}^t \Big|e^{-\int_s^t b_i^{\emptyset}(u+{\flat}) d u} -e^{-\int_{s}^{t}b_{i}^{\emptyset}(u)du}\Big|\sum\limits_{j = 1}^n T _{i j}(s) \mu_j(s)d s\bigg|_1 ^p d t \bigg\}\\ &\;\;\;\; +70^{p-1} \vartheta_i^{-p} \max _{i \in\mathcal{J}}\bigg\{\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-l}^l\bigg|\int_{-\infty}^t e^{-\int_s^t b_i^{\emptyset}(u+{\flat}) d u} \bigg(\sum\limits_{j = 1}^n S_{i j}(s+{\flat}) \mu_j(s+{\flat}) \\ &\;\;\;\;-\sum\limits_{j = 1}^n S_{i j}(s) \mu_j(s)\bigg)d s\bigg|_1 ^p d t \bigg\}\\ &\;\;\;\; +70^{p-1} \vartheta_i^{-p} \max _{i \in\mathcal{J}}\bigg\{\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-l}^l\bigg|\int_{-\infty}^t \Big|e^{-\int_s^t b_i^{\emptyset}(u+{\flat}) d u} -e^{-\int_{s}^{t}b_{i}^{\emptyset}(u)du}\Big|\sum\limits_{j = 1}^n S _{i j}(s) \mu_j(s)d s\bigg|_1 ^p d t \bigg\}\\ &\;\;\;\; +70^{p-1} \vartheta_i^{-p} \max _{i \in\mathcal{J}}\bigg\{\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-l}^l\bigg|\int_{-\infty}^t e^{-\int_s^t b_i^{\emptyset}(u+{\flat}) d u} (I_{i}(s+{\flat})- I_{i}(s))d s\bigg|_1 ^p d t \bigg\}\\ &\;\;\;\; +70^{p-1} \vartheta_i^{-p} \max _{i \in\mathcal{J}}\bigg\{\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-l}^l\bigg|\int_{-\infty}^t \Big|e^{-\int_s^t b_i^{\emptyset}(u+{\flat}) d u} -e^{-\int_{s}^{t}b_{i}^{\emptyset}(u)du}\Big| I _{i}(s) d s\bigg|_1 ^p d t \bigg\}\\ &\;\;\;\;: = \sum\limits_{i = 1}^{37}K_{i}. \end{align*}

    Furthermore, based on inequalities (3.3)–(3.11), the Hölder inequality, and the Fubini theorem, we can deduce that

    \begin{align*} K_{1}\leq\, &8^{p-1} \max _{i \in \mathcal{J}}\bigg\{\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \bigg[\int_{-l}^{l}|a_i(t+{\flat})|^{p}(| \varphi_i^*(t+{\flat}-\tau_i(t+{\flat}))\\ &-\varphi_{i}^{*}(t-\tau_{i}(t+{\flat}))|_{1}^{p}+|\varphi_{i}^{*}(t-\tau_{i}(t+{\flat}))-\varphi_i^*(t-\tau_i(t))|_{1}^{p}) d t\bigg\}\\ \leq\, &8^{p-1} \max _{i \in \mathcal{J}}\bigg\{(\bar{a}_{i})^{p}\frac{1}{1-\bar{\tau^{\prime}}_{i}}| \varphi_i^*(t+{\flat})-\varphi_{i}^{*}(t)|_{B^{p}}^{p}+(\bar{a}_{i})^{p}\varepsilon^{p}\bigg\}, \\ K_{2}\leq\, &4^{p-1} \max _{i \in \mathcal{J}}\{\|\varphi^*\|_{\infty}^{p}\varepsilon^{p}\}, \\ K_{3} \leq\, &140^{p-1} \max _{i \in \mathcal{J}}\bigg\{\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-l}^{l}\bigg[\int_{-\infty}^t e^{-\int_s^t b_i^{\emptyset}(u+{\flat}) d u}ds\bigg]^{\frac{p}{q}}\int_{-\infty}^t e^{-\int_s^t b_i^{\emptyset}(u+{\flat}) d u}\\ &\times|a_i(s+{\flat})b_i^{\emptyset}(s+{\flat})|_1(|\varphi_i^*(s+{\flat}-\tau_i(s+{\flat}))-\varphi_i^*(s-\tau_i(s+{\flat}))|_1^p\\ &+|\varphi_i^*(s-\tau_i(s+{\flat}))-\varphi_i^*(s-\tau_i(s))|_{1}^{p}) d s d t\bigg\}\\ \leq\, &140^{p-1}\max\limits_{i\in\mathcal{J}}\bigg\{\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p}{q}}(\bar{a}_{i}\bar{b}_{i}^{\emptyset})^{p}\bigg[\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-l}^{l}\int_{-\infty}^{t-\tau_{i}(t+{\flat})}\frac{e^{-\underline{b}_{i}^{\emptyset}(t-s-\bar{\tau}_{i})}}{1-\bar{\tau}_{i}^{\prime}}\\ &\times|\varphi_{i}^{*}(s+{\flat})-\varphi_{i}^{*}(s)|_{1}^{p}dsdt\bigg]+\frac{\varepsilon^{p}}{\underline{b}_{i}^{\emptyset}}\bigg\}\\ \leq\, &140^{p-1}\max\limits_{i\in\mathcal{J}}\bigg\{\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p}{q}}(\bar{a}_{i}\bar{b}_{i}^{\emptyset})^{p} \bigg[\frac{e^{\underline{b}_{i}^{\emptyset}\bar{\tau}_{i}}}{1-\bar{\tau^{\prime}}_{i}}\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-l}^{l}\int_{-\infty}^{t}e^{-\underline{b}_{i}^{\emptyset}(t-s)}\\ &\times|\varphi_{i}^{*}(s+{\flat})-\varphi_{i}^{*}(s)|_{1}^{p}dsdt\bigg]+\frac{\varepsilon^{p}}{\underline{b}_{i}^{\emptyset}}\bigg\}\\ \leq\, &140^{p-1}\max\limits_{i\in\mathcal{J}}\bigg\{\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p}{q}}(\bar{a}_{i}\bar{b}_{i}^{\emptyset})^{p} \bigg[\frac{e^{\underline{b}_{i}^{\emptyset}\bar{\tau}_{i}}}{1-\bar{\tau^{\prime}}_{i}}\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-\infty}^{l}(2l)^{-1}\int_{s-2l}^{s}e^{-\underline{b}_{i}^{\emptyset}(l-s)}\\ &\times|\varphi_{i}^{*}(t+{\flat})-\varphi_{i}^{*}(t)|_{1}^{p}dtds\bigg]+\frac{\varepsilon^{p}}{\underline{b}_{i}^{\emptyset}}\bigg\}\\ \leq\, &140^{p-1}\max\limits_{i\in\mathcal{J}}\bigg\{\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+q}{q}}(\bar{a}_{i}\bar{b}_{i}^{\emptyset})^{p} \bigg(\frac{e^{\underline{b}_{i}^{\emptyset}\bar{\tau}_{i}}}{1-\bar{\tau^{\prime}}_{i}}\|\varphi^{*}(t+{\flat})-\varphi^{*}(t)\|_{B^{p}}^{p}+\varepsilon^{p}\bigg)\bigg\}, \\ K_{4}\leq\, &70^{p-1} \max _{i \in \mathcal{J}}\bigg\{\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-l}^l \bigg(\int_{-\infty}^t e^{-\int_s^t b_i^{\emptyset}(u+{\flat}) d u}ds\bigg)^{\frac{p}{q}}\\ &\times\int_{-\infty}^t e^{-\int_s^t b_i^{\emptyset}(u+{\flat}) d u}|(a_i(s+{\flat})-a_i(s)) b_i^{\emptyset}(s+{\flat})\varphi_i^*(s-\tau_i(s)) |_{1}^{p}d s d t\bigg\} \\ \leq\, & 70^{p-1} \max _{i \in \mathcal{J}}\bigg\{\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+q}{q}}(\bar{b}_{i}^{\emptyset})^{p}\|\varphi^*\|_{\infty}^{p}\varepsilon^{p}\bigg\}.\\ K_{5}\leq\, &70^{p-1} \max _{i \in \mathcal{J}}\bigg\{\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+q}{q}}(\bar{a}_{i})^{p}\|\varphi^*\|_{\infty}^{p}\varepsilon^{p}\bigg\}, \\ K_{6} \leq\, &70^{p-1} \max _{i \in\mathcal{J}}\bigg\{\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-1}^l\bigg[\int_{-\infty}^t\Big| e^{-\int_s^t b_i^{\emptyset}(u+{\flat}) d u}-e^{-\int_s^t b_i^{\emptyset} (u) du}\Big|ds\bigg]^{\frac{p}{q}}\\ &\times \int_{-\infty}^t\Big| e^{-\int_s^t b_i^{\emptyset}(u+{\flat}) d u}-e^{-\int_s^t b_i^{\emptyset} (u) du}\Big||a_i(s) b_i^{\emptyset}(s) \varphi_i^*(s-\tau_{i}(s)) |_1 ^p d s d t\bigg\} \\ \leq\, &70^{p-1} \max _{i \in\mathcal{J}}\bigg\{\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{2(p+q)}{q}} (\bar{a}_{i}\bar{b}_{i}^{\emptyset})^{p}\|\varphi^*\|^{p}_{\infty}\varepsilon^{\frac{p+q}{q}}\bigg\}, \\ K_{7} \leq\, &70^{p-1} \max _{i \in\mathcal{J}}\bigg\{\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-l}^l \bigg[\int_{-\infty}^t e^{-\int_s^t b_i^{\emptyset}(u+{\flat}) d u}ds\bigg]^{\frac{p}{q}}\\ &\times\int_{-\infty}^t e^{-\int_s^t b_i^{\emptyset}(u+{\flat}) d u}|b_i^c(s+{\flat}) \varphi_i^*(s+{\flat})-b_i^c(s) \varphi_i^*(s)|_{1}^{p}d sd t\bigg\} \\ \leq\, &140^{p-1} \max _{i \in\mathcal{J}}\bigg\{\bigg( \frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p}{q}}\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-\infty}^l e^{-\underline{b}_i^{\emptyset}(l-s) }\int_{s-2l}^{s}((\bar{b}_i^c)^{p} \\ \end{align*}
    \begin{align*} &\times|\varphi_i^*(t+{\flat})-\varphi_i^*(t)|_{1}^{p}+|b_i^c(t+{\flat})-b_i^c(t)|_{1}^{p}\|\varphi^*\|_\infty^{p}) d td s\bigg\} \\ \leq\, &140^{p-1} \max _{i \in\mathcal{J}}\bigg\{\bigg( \frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+q}{q}}((\bar{b}_i^c)^{p} \|\varphi^*(t+{\flat})-\varphi^*(t)\|_{B^{p}}^{p}+\|\varphi^*\|_{\infty}^{p}\varepsilon^{p})\bigg\}, \\ K_{8}\leq\, & 70^{p-1} \max _{i \in\mathcal{J}}\bigg\{(\frac{1}{\underline{b}_{i}^{\emptyset}})^{\frac{2(p+q)}{q}} (\bar{b}_{i}^{\emptyset})^{p}\|\varphi^*\|^{p}_{\infty}\varepsilon^{\frac{p+q}{q}}\bigg\}, \\ K_{9}\leq\, &70^{p-1} \max _{i \in\mathcal{J}}\bigg\{\vartheta_i^{-p}\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-l}^l \bigg[ \int_{-\infty}^te^{-\int_s^t b_i^{\emptyset}(u+{\flat}) d u}ds \bigg]^{\frac{p}{q}}\\ &\times\int_{-\infty}^t e^{-\int_s^t b_i^{\emptyset}(u+{\flat}) d u} \bigg|\sum\limits_{j = 1}^n c_{i j}(s+{\flat})(f_j(\vartheta_j \varphi_j^*(s+{\flat}))-f_j(\vartheta_j \varphi_i^*(s)))\bigg|_1 ^pd sd t\bigg\} \\ \leq\, &70^{p-1} \max _{i \in\mathcal{J}}\bigg\{ \vartheta_i^{-p} \bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p}{q}}\bigg(\sum\limits_{j = 1}^{n}(\bar{c}_{ij})^{q}\bigg)^{\frac{p}{q}}\sum\limits_{j = 1}^{n}(L_{j}^{f}\vartheta_{j})^{p}\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-\infty}^l e^{- \underline{b}_i^{\emptyset}(l-s)}\\ &\times\int_{s-2l}^{s} |\varphi_j^*(t+{\flat}))- \varphi_i^*(t)|_1 ^p d t d s\bigg\} \\ \leq\, &70^{p-1} \max _{i \in\mathcal{J}}\bigg\{ \vartheta_i^{-p} \bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+q}{q}}\bigg(\sum\limits_{j = 1}^{n}(\bar{c}_{ij})^{q}\bigg)^{\frac{p}{q}}\sum\limits_{j = 1}^{n}(L_{j}^{f}\vartheta_{j})^{p}\|\varphi^*(t+{\flat}))- \varphi^*(t)\|_{B^{p}} ^p\bigg\}, \\ K_{10}\leq\, &70^{p-1} \max _{i \in\mathcal{J}}\bigg\{\vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+q}{q}}n^{\frac{p}{q}}\sum\limits_{j = 1}^{n}(L_{j}^{f}\vartheta_{j})^{p}\|\varphi^*\|_{\infty}^{p}\varepsilon^{p}\bigg\}, \\ K_{11}\leq\, &70^{p-1} \max _{i \in\mathcal{J}}\bigg\{\vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{2(p+q)}{q}} \bigg(\sum\limits_{j = 1}^{n}(\bar{c}_{ij})^{q}\bigg)^{\frac{p}{q}}\sum\limits_{j = 1}^{n}(L_{j}^{f}\vartheta_{j})^{p}\|\varphi^*\|_{\infty}^{p}\varepsilon^{\frac{p+q}{q}}\bigg\}, \\ K_{12} \leq\, &140^{p-1} \max _{i \in\mathcal{J}}\bigg\{\vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+1}{q}} \bigg(\sum\limits_{j = 1}^{n}(\bar{u}_{ij})^{q}\bigg)^{\frac{p}{q}} \sum\limits_{j = 1}^{n}(L_{j}^{f}\vartheta_{j})^{p}\\ &\times\bigg[\frac{e^{\underline{b}_{i}^{\emptyset}\bar{\sigma}_{ij}}}{1-\bar{\sigma^{\prime}}_{ij}}\|\varphi^*(t+{\flat})-\varphi^*(t)\|_{B^{p}}^{p}+\varepsilon^{p}\bigg]\bigg\}, \\ \end{align*}
    \begin{align*} K_{13} \leq\, &70^{p-1} \max _{i \in\mathcal{J}}\bigg\{\vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+q}{q}}\sum\limits_{j = 1}^{n}(L_{j}^{f}\vartheta_{j})^{p}n^{\frac{p}{q}}\|\varphi^*\|_{\infty}^{p}\varepsilon^{p}\bigg\}, \\ K_{14}\leq\, &70^{p-1} \vartheta_i^{-p} \max _{i \in\mathcal{J}}\bigg\{\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-l}^l\bigg[\int_{-\infty}^t\Big| e^{-\int_s^t b_i^{\emptyset}(u+{\flat}) d u}-e^{-\int_s^t b_i^{\emptyset}(u) d u} \Big|^{\frac{q}{p}}ds\bigg]^{\frac{p}{q}}\\ &\times\int_{-\infty}^t\Big| e^{-\int_s^t b_i^{\emptyset}(u+{\flat}) d u}-e^{-\int_s^t b_i^{\emptyset}(u) d u} \Big|^{\frac{p}{q}}\bigg|\sum\limits_{j = 1}^n u_{i j}(s) f_j(\vartheta_j \varphi_j^*(s-\sigma_{i j}(s))) \bigg|_1 ^pd s d t\bigg\} \\ \leq\, &70^{p-1} \max _{i \in\mathcal{J}}\bigg\{\vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{2(p+q)}{q}}\bigg(\sum\limits_{j = 1}^{n}(\bar{u}_{ij})^{q}\bigg)^{\frac{p}{q}}\sum\limits_{j = 1}^{n}(L_{j}^{f}\vartheta_{j})^{p}\|\varphi^*\|_{\infty}^{p}\varepsilon^{\frac{p+q}{q}}\bigg\}, \\ K_{15} \leq\, &140^{p-1} \max _{i \in\mathcal{J}}\bigg\{ \vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+q}{q}}\bigg[\sum\limits_{j = 1}^{n}(\bar{\mu}_{j})^{p}+\sum\limits_{j = 1}^{n}|\gamma_{ij}|^{p}_\infty\bigg]\varepsilon^{p} \bigg\}, \\ K_{16}\leq\, &70^{p-1} \vartheta_i^{-p} \max _{i \in\mathcal{J}}\bigg\{\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-l}^l\bigg[\int_{-\infty}^t \Big|e^{-\int_s^t b_i^{\emptyset}(u+{\flat}) d u} -e^{-\int_{s}^{t}b_{i}^{\emptyset}(u)du}\Big|^{\frac{q}{p}}ds\bigg]^{\frac{p}{q}}\\ &\times\int_{-\infty}^t \Big|e^{-\int_s^t b_i^{\emptyset}(u+{\flat}) d u} -e^{-\int_{s}^{t}b_{i}^{\emptyset}(u)du}\Big|^{\frac{p}{q}}\bigg|\sum\limits_{j = 1}^n \gamma_{i j}(s) \mu_j(s)\bigg|_1 ^pd s d t \bigg\}\\ \leq\, &70^{p-1} \max _{i \in\mathcal{J}}\bigg\{\vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{2(p+q)}{q}} \bigg(\sum\limits_{j = 1}^{n}|\gamma_{ij}|^{q}_\infty\bigg)^{\frac{p}{q}}\sum\limits_{j = 1}^{n}(\bar{\mu}_{j})^{p}\varepsilon^{\frac{p+q}{q}}\bigg\}, \\ K_{17}\leq\, &70^{p-1} \max _{i \in\mathcal{J}}\bigg\{\vartheta_i^{-p}\overline{\lim\limits_{l\to\infty}}{ \frac{1}{2l}} \int_{-l}^l \bigg(\int_{-\infty}^t e^{-\int _s^t b_i^{\emptyset}( u+{\flat}) d u} ds\bigg)^{\frac{p}{q}}\int_{-\infty}^t e^{-\int _s^t b_i^{\emptyset}( u+{\flat}) d u} \\ &\times\bigg(\sum\limits_{j = 1}^n\sum\limits_{k = 1}^n \bar{\theta}_{i j k}(M^g_k|g_j(\vartheta_j \varphi_j^*(s+{\flat}-\delta_{i j k}(s+{\flat})))-g_j(\vartheta_j \varphi_j^*(s-\delta_{i j k}(s)))|_{1} \\ &+ M_j^g|g_k ( \vartheta_k \varphi_k^*(s+{\flat}-\delta_{i j k}(s+{\flat})))- g_k(\vartheta_k \varphi_k^*(s-\delta_{i j k}(s )))) |_{1})d sd t\bigg)^p\bigg\} \\ \leq\, &280^{p-1} \max _{i \in\mathcal{J}}\bigg\{\vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+q}{q}}n^{\frac{2p}{q}}\bigg[\sum\limits_{j = 1}^n \sum\limits_{k = 1}^n( \bar{\theta}_{i j k}M_k^gL_j^g\vartheta_j)^p+\sum\limits_{j = 1}^{n}\sum\limits_{k = 1}^{n}(\bar{\theta}_{ijk}M_j^gL_{k}^{g}\vartheta_{k})^{p}\bigg]\\ &\times\bigg(\frac{e^{\underline{b}_{i}^{\emptyset}\bar{\delta}_{ijk}}}{1-\bar{\delta^{\prime}}_{ijk}}\|\varphi^*(t+{\flat})-\varphi^*(t)\|_{B^{p}}^{p}+\varepsilon^{p}\bigg)\bigg\}, \\ K_{18} \leq\, &70^{p-1} \max _{i \in\mathcal{J}}\bigg\{\vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+q}{q}}n^{\frac{2p}{q}}\sum\limits_{k = 1}^{n} \sum\limits_{j = 1}^{n}(M_j^gM_{k}^{g})^{p}\varepsilon^{p}\bigg\}, \\ K_{19}\leq\, &70^{p-1}\max\limits_{i\in\mathcal{J}}\bigg\{\vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{2(p+q)}{p}}n^{\frac{2p}{q}} \sum\limits_{j = 1}^{n}\sum\limits_{k = 1}^{n}(\bar{\theta}_{ijk}M_j^gM_k^g)^{p}\varepsilon^{\frac{p+q}{q}}\bigg\}, \\ K_{20}\leq\, &140^{p-1} \max _{i \in\mathcal{J}}\bigg\{\vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+q}{q}}\bigg(\sum\limits_{j = 1}^n( \bar{\alpha}_{i j})^{q}\bigg)^{\frac{p}{q}}\sum\limits_{j = 1}^{n}(L_{j}^{f}\vartheta_{j})^{p} \\ &\times\bigg[\frac{e^{\underline{b}_{i}^{\emptyset}\bar{\eta}_{ij}}}{1-\bar{\eta^{\prime}}_{ij}}\|\varphi^*(t+{\flat})-\varphi^*(t)\|_{B^{p}}^{p}+\varepsilon^{p}\bigg]\bigg\}, \\ K_{21} \leq\, &70^{p-1} \max _{i \in \mathcal{J}}\bigg\{\vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+q}{q}}n^{\frac{p}{q}}\sum\limits_{j = 1}^{n}(L_{j}^{f}\vartheta_{j})^{p}\|\varphi^*\|_{\infty}^{p}\varepsilon^{p}\bigg\}, \\ \end{align*}
    \begin{align*} K_{22} \leq\, &70^{p-1} \max _{i \in\mathcal{J}}\bigg\{\vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{2(p+q)}{q}} \bigg(\sum\limits_{j = 1}^{n}(\bar{\alpha}_{ij})^{q}\bigg)^{\frac{p}{q}}\sum\limits_{j = 1}^{n}(L_{j}^{f}\vartheta_{j})^{p}\|\varphi^*\|_{\infty}^{p}\varepsilon^{\frac{p+q}{q}}\bigg\}, \\ K_{23} \leq\, &140^{p-1} \max _{i \in\mathcal{J}}\bigg\{\vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+q}{q}}\bigg(\sum\limits_{j = 1}^n (\bar{\beta}_{i j})^{q}\bigg)^{\frac{p}{q}}\sum\limits_{j = 1}^{n}(L_{j}^{f}\vartheta_{j})^{p}\\ &\times\bigg[\frac{e^{\underline{b}_{i}^{\emptyset}\bar{\eta}_{ij}}}{1-\bar{\eta^{\prime}}_{ij}}\|\varphi^*(t+{\flat})-\varphi^*(t)\|_{B^{p}}^{p} + \varepsilon^{p}\bigg] \bigg\}, \\ K_{24} \leq\, &70^{p-1} \max _{i \in \mathcal{J}}\bigg\{ \vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+q}{q}}n^{\frac{p}{q}}\sum\limits_{j = 1}^{n}(L_{j}^{f}\vartheta_{j})^{p}\|\varphi^*\|_{\infty}^{p}\varepsilon^{p}\bigg\}, \\ K_{25} \leq\, &70^{p-1} \max _{i \in\mathcal{J}}\bigg\{\vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{2(p+q)}{q}} \bigg(\sum\limits_{j = 1}^{n}(\bar{\beta}_{ij})^{q}\bigg)^{\frac{p}{q}}\sum\limits_{j = 1}^{n}(L_{j}^{f}\vartheta_{j})^{p}\|\varphi^*\|_{\infty}^{p}\varepsilon^{\frac{p+q}{q}}\bigg\}, \\ K_{26} \leq\, &280^{p-1} \max _{i \in\mathcal{J}}\bigg\{\vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+q}{q}}n^{\frac{2p}{q}}\bigg(\sum\limits_{j = 1}^n \sum\limits_{k = 1}^n(\bar{q}_{ijk}M_k^gL_{j}^{g}\vartheta_{j})^{p}+\sum\limits_{j = 1}^n \sum\limits_{k = 1}^n(\bar{q}_{ijk}M_j^gL_k^g\vartheta_k)^p\bigg)\\ &\times\bigg(\frac{e^{\underline{b}_{i}^{\emptyset}\bar{\delta}_{ijk}}}{1-\bar{\delta}_{ijk}^{\prime}}\|\varphi^*(t+{\flat})-\varphi^*(t)\|_{B^{p}}^{p}+\varepsilon^{p}\bigg)\bigg\}, \\ K_{27} \leq\, &70^{p-1} \max _{i \in\mathcal{J}}\bigg\{\vartheta_i^{-p} \bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+q}{q}}n^{\frac{2p}{q}}\sum\limits_{k = 1}^{n} \sum\limits_{j = 1}^{n}(M_j^gM_{k}^{g})^{p}\varepsilon^{p}\bigg\}, \\ K_{28} \leq\, &70^{p-1} \max _{i \in\mathcal{J}}\bigg\{\vartheta_i^{-p}(\frac{1}{\underline{b}_{i}^{\emptyset}})^{\frac{2(p+q)}{p}}n^{\frac{2p}{q}}\sum\limits_{j = 1}^{n}\sum\limits_{k = 1}^{n}(\bar{q}_{ijk}M_j^gM_k^g)^p\varepsilon^{\frac{p+q}{q}}\bigg\}, \\ K_{29} \leq\, &280^{p-1} \max _{i \in\mathcal{J}}\bigg\{\vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+q}{q}}n^{\frac{2p}{q}}\bigg(\sum\limits_{j = 1}^n \sum\limits_{k = 1}^n( \bar{\nu}_{ijk}M_{k}^{g}L_{j}^{g}\vartheta_{j})^{p}+\sum\limits_{j = 1}^n \sum\limits_{k = 1}^n( \bar{\nu}_{ijk}M_{j}^{g}L_{k}^{g}\vartheta_{k})^{p}\bigg)\\ &\times\bigg(\frac{e^{\frac{p}{q}\underline{b}_{i}^{\emptyset}\bar{\delta}_{ijk}}}{1-\bar{\delta^{\prime}}_{ijk}}\|\varphi^*(t+{\flat})-\varphi^*(t)\|_{B^{p}}^{p}+\varepsilon^{p}\bigg)\bigg\}, \\ K_{30} \leq\, &70^{p-1}\max\limits_{i\in\mathcal{J}}\bigg\{\vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+q}{q}} n^{\frac{2p}{q}}\sum\limits_{k = 1}^{n}\sum\limits_{j = 1}^{n}(M_j^gM_k^g )^p\varepsilon^{p}\bigg\}, \\ K_{31}\leq\, & 70^{p-1} \max _{i \in\mathcal{J}}\bigg\{\vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{2(p+q)}{p}}n^{\frac{2p}{q}}\sum\limits_{j = 1}^{n}\sum\limits_{k = 1}^{n}(\bar{\nu}_{ijk}M_j^gM_k^g)^p\varepsilon^{\frac{p+q}{q}}\bigg\}, \\ K_{32} \leq\, &140^{p-1} \max _{i \in\mathcal{J}}\bigg\{\vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+q}{q}}\bigg[\bigg(\sum\limits_{j = 1}^{n}(\bar{\mu}_{j})^{q}\bigg)^{\frac{p}{q}} +\bigg(\sum\limits_{j = 1}^{n}(|T_{ij}|_\infty)^{q}\bigg)^{\frac{p}{q}}\bigg]\varepsilon^{p} \bigg\}, \\ K_{33} \leq\, &70^{p-1} \max _{i \in\mathcal{J}}\bigg\{\vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{2(p+q)}{q}} n^{\frac{p}{q}}\sum\limits_{j = 1}^{n}(|T_{ij}|_\infty\bar{\mu}_{j})^{p}\varepsilon^{\frac{p+q}{q}}\bigg\}, \\ K_{34} \leq\, &140^{p-1} \max _{i \in\mathcal{J}}\bigg\{\vartheta_i^{-p} \bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+1}{q}}\bigg[\bigg(\sum\limits_{j = 1}^{n}(\bar{\mu}_{j})^{q}\bigg)^{\frac{p}{q}} +\bigg(\sum\limits_{j = 1}^{n}(|S_{ij}|_\infty)^{q}\bigg)^{\frac{p}{q}}\bigg]\varepsilon^{p} \bigg\}, \\ K_{35} \leq\, &70^{p-1} \max _{i \in\mathcal{J}}\bigg\{ \vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{2(p+q)}{q}} n^{\frac{p}{q}}\sum\limits_{j = 1}^{n}(|S_{ij}|_\infty\bar{\mu}_{j})^{p}\varepsilon^{\frac{p+q}{q}}\bigg\}, \\ K_{36} \leq\, &70^{p-1} \max _{i \in\mathcal{J}}\bigg\{\vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+q}{q}}\varepsilon^{p} \bigg\}, \\ K_{37} \leq\, &70^{p-1} \max _{i \in\mathcal{J}}\bigg\{\vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{2(p+q)}{q}}|I_{i}|_\infty^{p}\varepsilon^{\frac{p+q}{q}}\bigg\}. \end{align*}

    From the above estimates, it follows that

    \begin{align} &\|\varphi^*(t+{\flat})-\varphi^*(t)\|_{B^{p}}^{p} \leq P\|\varphi^*(t+{\flat})-\varphi^*(t)\|_{B^{p}}^{p}+Q\varepsilon^{p}, \end{align} (3.12)

    where P is defined in condition (A_4) and

    \begin{align*} Q = \, & 2^{p-1}\max _{i \in \mathcal{J}}\bigg\{4^{p-1}(\bar{a}_{i})^{p}\varepsilon^{p-1}+2^{p-1} \bigg( \frac{r}{1-\rho}\bigg)^p\varepsilon^{p-1}+70^{p-1}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+q}{q}}(\bar{a}_{i}\bar{b}_{i}^{\emptyset})^{p}\varepsilon^{p-1}\\ &+35^{p-1} \bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+q}{q}}(\bar{b}_{i}^{\emptyset})^{p}\bigg(\frac{r}{1-\rho}\bigg)^{p}\varepsilon^{p-1}+35^{p-1} \bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+q}{q}}(\bar{a}_{i})^{p}\bigg(\frac{r}{1-\rho}\bigg)^{p}\varepsilon^{p-1}\\ &+35^{p-1} \bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{2(p+q)}{q}} (\bar{a}_{i}\bar{b}_{i}^{\emptyset})^{p}\bigg(\frac{r}{1-\rho}\bigg)^{p}\varepsilon^{\frac{p}{q}}+70^{p-1} \bigg( \frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+q}{q}}\bigg(\frac{r}{1-\rho}\bigg)^{p}\varepsilon^{p-1}\\ &+35^{p-1} (\frac{1}{\underline{b}_{i}^{\emptyset}})^{\frac{2(p+q)}{q}} (\bar{b}_{i}^{\emptyset})^{p}\bigg(\frac{r}{1-\rho}\bigg)^{p}\varepsilon^{\frac{p}{q}}+35^{p-1} \vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+q}{q}}n^{\frac{p}{q}}\sum\limits_{j = 1}^{n}(L_{j}^{f}\vartheta_{j})^{p}\\ &\times\bigg(\frac{r}{1-\rho}\bigg)^{p} \varepsilon^{p-1}+35^{p-1} \vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{2(p+q)}{q}} \bigg(\sum\limits_{j = 1}^{n}(\bar{c}_{ij})^{q}\bigg)^{\frac{p}{q}}\sum\limits_{j = 1}^{n}(L_{j}^{f}\vartheta_{j})^{p}\bigg(\frac{r}{1-\rho}\bigg)^{p}\varepsilon^{\frac{p}{q}}\\ &+ 70^{p-1}\vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+1}{q}} \bigg(\sum\limits_{j = 1}^{n}(\bar{u}_{ij})^{q}\bigg)^{\frac{p}{q}} \sum\limits_{j = 1}^{n}(L_{j}^{f}\vartheta_{j})^{p}\varepsilon^{p-1}+35^{p-1} \vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+q}{q}}\\ &\times \sum\limits_{j = 1}^{n}(L_{j}^{f}\vartheta_{j})^{p}n^{\frac{p}{q}}\bigg(\frac{r}{1-\rho}\bigg)^{p}\varepsilon^{p-1}+35^{p-1} \vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{2(p+q)}{q}} \bigg(\sum\limits_{j = 1}^{n}(\bar{u}_{ij})^{q}\bigg)^{\frac{p}{q}}\sum\limits_{j = 1}^{n}(L_{j}^{f}\vartheta_{j})^{p}\\ &\times \bigg(\frac{r}{1-\rho}\bigg)^{p}\varepsilon^{\frac{p}{q}}+70^{p-1} \vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+q}{q}}\bigg[\sum\limits_{j = 1}^{n}(\bar{\mu}_{j})^{p}+\sum\limits_{j = 1}^{n}|\gamma_{ij}|^{p}_\infty\bigg]\varepsilon^{p-1} \\ &+35^{p-1} \vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{2(p+q)}{q}} \bigg(\sum\limits_{j = 1}^{n}|\gamma_{ij}|^{q}_\infty\bigg)^{\frac{p}{q}}\sum\limits_{j = 1}^{n}(\bar{\mu}_{j})^{p}\varepsilon^{\frac{p}{q}}+140^{p-1} \vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+q}{q}}n^{\frac{2p}{q}}\\ &\times\bigg[\sum\limits_{j = 1}^n \sum\limits_{k = 1}^n( \bar{\theta}_{i j k}M_k^gL_j^g\vartheta_j)^p+\sum\limits_{j = 1}^{n}\sum\limits_{k = 1}^{n}(\bar{\theta}_{ijk}M_j^gL_{k}^{g}\vartheta_{k})^{p}\bigg]\varepsilon^{p-1}\bigg\} +35^{p-1} \vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+q}{q}}\\ &\times n^{\frac{2p}{q}}\sum\limits_{k = 1}^{n} \sum\limits_{j = 1}^{n}(M_j^gM_{k}^{g})^{p}\varepsilon^{p-1}+35^{p-1}\vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{2(p+q)}{p}}n^{\frac{2p}{q}} \sum\limits_{j = 1}^{n}\sum\limits_{k = 1}^{n}(\bar{\theta}_{ijk}M_j^gM_k^g)^{p}\varepsilon^{\frac{p}{q}}\\ &+70^{p-1} \vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+q}{q}}\bigg(\sum\limits_{j = 1}^n( \bar{\alpha}_{i j})^{q}\bigg)^{\frac{p}{q}}\sum\limits_{j = 1}^{n}(L_{j}^{f}\vartheta_{j})^{p}\varepsilon^{p-1}\bigg]+35^{p-1} \vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+q}{q}}\\ &\times n^{\frac{p}{q}}\sum\limits_{j = 1}^{n}(L_{j}^{f}\vartheta_{j})^{p}\|\varphi^*\|_{\infty}^{p}\varepsilon^{p-1}+35^{p-1} \vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{2(p+q)}{q}} \bigg(\sum\limits_{j = 1}^{n}(\bar{\alpha}_{ij})^{q}\bigg)^{\frac{p}{q}}\sum\limits_{j = 1}^{n}(L_{j}^{f}\vartheta_{j})^{p}\\ &\times \bigg(\frac{r}{1-\rho}\bigg)^{p}\varepsilon^{\frac{p}{q}}+700^{p-1} \vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+q}{q}}\bigg(\sum\limits_{j = 1}^n (\bar{\beta}_{i j})^{q}\bigg)^{\frac{p}{q}}\sum\limits_{j = 1}^{n}(L_{j}^{f}\vartheta_{j})^{p}\varepsilon^{p-1} \end{align*}
    \begin{align*} &\;\;\;\;\;\;+35^{p-1} \vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+q}{q}}n^{\frac{p}{q}}\sum\limits_{j = 1}^{n}(L_{j}^{f}\vartheta_{j})^{p}\bigg(\frac{r}{1-\rho}\bigg)^{p}\varepsilon^{p-1}+35^{p-1} \vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{2(p+q)}{q}}\\ &\;\;\;\;\;\;\times\bigg(\sum\limits_{j = 1}^{n}(\bar{\beta}_{ij})^{q}\bigg)^{\frac{p}{q}}\sum\limits_{j = 1}^{n}(L_{j}^{f}\vartheta_{j})^{p}\|\varphi^*\|_{\infty}^{p}\varepsilon^{\frac{p}{q}}+140^{p-1} \vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+q}{q}}n^{\frac{2p}{q}}\\ &\;\;\;\;\;\;\times\bigg(\sum\limits_{j = 1}^n \sum\limits_{k = 1}^n(\bar{q}_{ijk}M_k^gL_{j}^{g}\vartheta_{j})^{p}+\sum\limits_{j = 1}^n \sum\limits_{k = 1}^n(\bar{q}_{ijk}M_j^gL_k^g\vartheta_k)^p\bigg)\varepsilon^{p-1}+35^{p-1} \vartheta_i^{-p} \bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+q}{q}}\\ &\;\;\;\;\;\;\times n^{\frac{2p}{q}} \sum\limits_{k = 1}^{n}\sum\limits_{j = 1}^{n}(M_j^gM_{k}^{g})^{p}\varepsilon^{p-1}+35^{p-1} \vartheta_i^{-p}(\frac{1}{\underline{b}_{i}^{\emptyset}})^{\frac{2(p+q)}{p}}n^{\frac{2p}{q}}\sum\limits_{j = 1}^{n}\sum\limits_{k = 1}^{n}(\bar{q}_{ijk}M_j^gM_k^g)^p\varepsilon^{\frac{p}{q}}\\ &\;\;\;\;\;\;+140^{p-1} \vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+q}{q}}n^{\frac{2p}{q}}\bigg(\sum\limits_{j = 1}^n \sum\limits_{k = 1}^n( \bar{\nu}_{ijk}M_{k}^{g}L_{j}^{g}\vartheta_{j})^{p}+\sum\limits_{j = 1}^n \sum\limits_{k = 1}^n( \bar{\nu}_{ijk}M_{j}^{g}L_{k}^{g}\vartheta_{k})^{p}\bigg)\varepsilon^{p-1}\\ &\;\;\;\;\;\;+35^{p-1}\vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+q}{q}} n^{\frac{2p}{q}}\sum\limits_{k = 1}^{n}\sum\limits_{j = 1}^{n}(M_j^gM_k^g )^p\varepsilon^{p-1}+35^{p-1}\vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{2(p+q)}{p}}n^{\frac{2p}{q}}\\ &\;\;\;\;\;\;\times\sum\limits_{j = 1}^{n}\sum\limits_{k = 1}^{n}(\bar{\nu}_{ijk}M_j^gM_k^g)^p\varepsilon^{\frac{p}{q}}+70^{p-1} \vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+q}{q}}\bigg[\bigg(\sum\limits_{j = 1}^{n}(\bar{\mu}_{j})^{q}\bigg)^{\frac{p}{q}}\\ &\;\;\;\;\;\;+\bigg(\sum\limits_{j = 1}^{n}(|T_{ij}|_\infty)^{q}\bigg)^{\frac{p}{q}}\bigg]\varepsilon^{p-1}+35^{p-1} \vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{2(p+q)}{q}} n^{\frac{p}{q}}\sum\limits_{j = 1}^{n}(|T_{ij}|_\infty\bar{\mu}_{j})^{p}\varepsilon^{\frac{p}{q}}\\ &\;\;\;\;\;\;+70^{p-1} \vartheta_i^{-p} \bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+1}{q}}\bigg[\bigg(\sum\limits_{j = 1}^{n}(\bar{\mu}_{j})^{q}\bigg)^{\frac{p}{q}} +\bigg(\sum\limits_{j = 1}^{n}(|S_{ij}|_\infty)^{q}\bigg)^{\frac{p}{q}}\bigg]\varepsilon^{p-1} \\ &\;\;\;\;\;\;+35^{p-1} \vartheta_i^{-p} \bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{2(p+q)}{q}} n^{\frac{p}{q}}\sum\limits_{j = 1}^{n}(|S_{ij}|_\infty\bar{\mu}_{j})^{p}\varepsilon^{\frac{p}{q}}+35^{p-1}\vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{p+q}{q}}\varepsilon^{p-1} \\ &\;\;\;\;\;\;+35^{p-1} \vartheta_i^{-p}\bigg(\frac{1}{\underline{b}_{i}^{\emptyset}}\bigg)^{\frac{2(p+q)}{q}}|I_{i}|_\infty^{p}\varepsilon^{\frac{p}{q}}\bigg\}. \end{align*}

    Hence, by (3.12) and (A_4) , it holds that

    \begin{align*} \|\varphi^*(t+{\flat})-\varphi^*(t)\|_{B^{p}}^{p} \leq\frac{Q\varepsilon^{p}}{1-P}, \end{align*}

    which implies that \varphi^{*} is B^p -almost periodic. The proof is finished.

    Remark 3.1. Although we can prove that W = (L^\infty(\mathbb{R}, \mathcal{A})\cap B_{AP}^p(\mathbb{R}, \mathcal{A}), \|\cdot\|_\infty) is a Banach space, we still cannot directly use the fixed point theorem to determine the existence of almost periodic solutions for (1.1). Because there are higher-order terms in system (1.1), and W is not an algebra, we cannot prove that operator T is a self mapping.

    It is easy to prove the following stability results using the same method as the proof of Theorem 4.1 in [33] or the proof of Theorem 15 in [31].

    Theorem 3.2. Assume that (A_{1})-(A_{4}) hold. Then system (1.1) possesses a unique Besicovitch almost periodic solution, which is globally exponentially stable, i.e., if \bar{x} is the Besecovitch almost periodic solution with initial value \bar{\varphi} and x(t) is an arbitrary solution of system (1.1) with initial value \varphi , then there exist positive numbers \zeta > 0 and N > 0 satisfying

    |x(t)-\bar{x}(t)|_{1}\leq N\|\varphi-\bar{\varphi}\|_{\varrho}e^{-\zeta t}, \, \, \, t > 0,

    in which \|\varphi-\bar{\varphi}\|_{\varrho} = \max\limits_{i\in\mathcal{J}}\bigg\{\sup\limits_{t\in[- \varrho, 0]}|\varphi_{i}(t)-a_{i}(t)\varphi_{i}(t)-(\bar{\varphi}_{i}(t)-a_{i}(t)\bar{\varphi}_{i}(t))|_{1}\bigg\} .

    In this section, we provide an example to demonstrate the validity of the results obtained in this paper.

    Example 4.1. In system (1.1), let m = 3, n = 2 , and for i, j, k = 1, 2 , take the coefficients are as follows:

    \begin{align*} x_i(t) = \, &e_0x_i^0(t)+e_1x_i^1(t)+e_2x_i^2(t)+e_3x_i^3(t)+e_{12}x_i^{12}(t)+e_{13}x_i^{13}(t)+e_{23}x_i^{23}(t)+e_{123}x_i^{123}(t), \\ f_j(x) = \, &\frac{1}{100}e_{0}\sin{x_j^{12}}+\frac{3}{250}\sin(x_j^{12}+x_j^{123})e_{1}+\frac{1}{168}\sin(x_j^{1}+x_j^{13})e_{2}+\frac{1}{53}\sin(x_j^{2}+x_j^{123})e_{3}\\ &+\frac{1}{125}e_{12}\arctan{x_j^{3}}+\frac{1}{156}\sin(x_j^{3}+x_j^{123})e_{13}+\frac{1}{150}e_{23}\tanh{x_j^{12}}+\frac{1}{40}\sin(x_j^{1}+x_j^{12}\\ &+x_j^{123})e_{123}, \\ g_j(x) = \, &\frac{1}{48}e_{0}\sin{x_j^{13}}+\frac{1}{153}\sin(x_j^{12}+x_j^{23})e_{1}+\frac{1}{150}e_{2}\arctan{x_j^{13}}+\frac{1}{120}\sin(x_j^{12}+x_j^{123})e_{3}\\ &+\frac{1}{150}\sin(x_j^{12}-x_j^{23})e_{12}+\frac{1}{250}\sin(x_j^{2}+x_j^{13})e_{13}+\frac{1}{57}e_{23}\sin{x_j^{13}}+\frac{1}{60}\sin(x_j^{0}+x_j^{3}\\ &+x_j^{23})e_{123}, \\ a_1(t) = \, &(0.01+0.004\sin{t})e_0+(0.01+0.001\sin{\sqrt{6}t})e_1+(0.01+0.001\cos{\sqrt{3}t})e_2\\ &+(0.01+0.002\sin{\sqrt{5}t})e_3+(0.01+0.003\sin{t})e_{12}+(0.01+0.002\cos{t})e_{13}\\ &+(0.01+0.002\cos{\sqrt{2}t})e_{23}+(0.01+0.002\sin{\sqrt{2}t})e_{123}, \\ a_2(t) = \, &(0.01+0.002\sin{t})e_0+(0.01+0.002\cos{3t})e_1+(0.01+0.001\sin{\sqrt{2}t})e_2\\ &+(0.01+0.001\sin{\sqrt{7}t})e_3+(0.01+0.001\sin{\sqrt{5}t})e_{12}+(0.01+0.002\cos{t})e_{13}\\ &+(0.01+0.002\cos{\sqrt{5}t})e_{23}+(0.01+0.002\sin{\sqrt{3}t})e_{123}, \\ b_{1}(t) = \, & (10+0.05\sin t)e_0+(0.2+0.01\cos\sqrt{2}t)e_1+(0.2+0.02\sin t)e_2\\ &+(0.2+0.01\sin\sqrt{3}t)e_3+(0.2+0.06\sin3t)e_{12}+(0.2+0.05\sin2t)e_{13}\\ &+(0.2+0.01\sin t)e_{23}+(0.2+0.01\cos\sqrt{3}t)e_{123}, \\ b_2(t) = \, & (0.2+0.01\cos\sqrt{3}t)e_0+(0.2+0.02\sin t)e_1+(0.2+0.07\cos t)e_2\\ &+(0.2+0.05\cos\sqrt{5}t)e_3+(10+0.05\sin\sqrt{5}t)e_{12}+(0.2+0.02\cos\sqrt{5}t)e_{13}\\ &+(0.2+0.01\sin t)e_{23}+(0.2+0.01\sin7t)e_{123}, \\ c_{11}(t) = \, &0.01e_{0}\sin{2t}+0.02e_{3}\sin{2t}+0.02e_{23}\cos{\sqrt{2}t}+0.03e_{123}\cos{11t}, \\ c_{12}(t) = \, &0.01e_{0}\sin{\sqrt{5}t}+0.02e_{2}\cos^{2}{3t}+0.01e_{3}\sin{5t}+0.03e_{12}\sin{\sqrt{3}t}, \\ c_{21}(t) = \, &0.01e_{0}\sin{6t}+0.02e_{3}\cos{\sqrt{2}t}+0.03e_{23}\cos{\sqrt{3}t}+0.03e_{123}\cos^{2}{2t}, \\ c_{22}(t) = \, &0.01e_{0}\sin^{2}{7t}+0.04e_{2}\cos{6t}+0.04e_{3}\sin{\sqrt{5}t}+0.03e_{12}\cos{7t}, \\ u_{11}(t) = \, &0.02e_{0}\sin{4t}+0.01e_{3}\cos{\sqrt{2}t}+0.04e_{23}\cos{\sqrt{3}t}+0.03e_{123}\sin^{2}{2t}, \\ u_{12}(t) = \, &0.02e_{0}\cos{9t}+0.03e_{2}\cos^{2}{3t}+0.04e_{3}\sin{5t}+0.01e_{12}\sin{3t}, \\ u_{21}(t) = \, &0.02e_{0}\sin{3t}+0.03e_{3}\cos{\sqrt{3}t}+0.01e_{23}\cos{\sqrt{3}t}+0.02e_{123}\sin^{2}{7t}, \\ u_{22}(t) = \, &0.02e_{0}\cos{t}+0.03e_{2}\sin^{2}{5t}+0.03e_{3}\sin{3t}+0.04e_{12}\cos{2t}, \\ \alpha_{11}(t) = \, &0.01e_{3}\sin{3t}+0.04e_{12}\cos{5t}+0.02e_{13}\cos{\sqrt{5}t}+0.03e_{123}\sin^{2}{3t}, \\ \alpha_{12}(t) = \, &0.01e_{2}\sin{\sqrt{3}t}+0.02e_{3}\sin{4t}+0.03e_{12}\sin{7t}+0.01e_{123}\cos^{2}{5t}, \\ \alpha_{21}(t) = \, &0.03e_{3}\cos{4t}+0.01e_{12}\sin{\sqrt{5}t}+0.03e_{23}\cos{4t}+0.01e_{123}\cos^{2}{5t}, \\ \alpha_{22}(t) = \, &0.01e_{0}\cos{\sqrt{5}t}+0.04e_{3}\sin{3t}+0.03e_{12}\sin^{2}{3t}+0.02e_{123}\cos{4t}, \\ \beta_{11}(t) = \, &0.01e_{0}\cos{5t}+0.02e_{1}\sin{3t}+0.01e_{2}\sin{\sqrt{7}t}+0.03e_{123}\cos{3t}, \\ \beta_{12}(t) = \, &0.03e_{0}\sin{7t}+0.02e_{1}\sin{t}+0.03e_{2}\sin{\sqrt{3}t}+0.02e_{23}\sin{3t}, \\ \beta_{21}(t) = \, &0.03e_{0}\cos{7t}+0.02e_{1}\sin{\sqrt{5}t}+0.04e_{2}\sin{\sqrt{6}t}+0.01e_{123}\sin{5t}, \\ \beta_{22}(t) = \, &0.03e_{0}\cos{2t}+0.02e_{1}\cos{3t}+0.04e_{2}\cos{\sqrt{2}t}+0.02e_{23}\cos{3t}, \\ \theta_{111}(t) = \, &0.03e_{0}\sin{\sqrt{2}t}+0.02e_{1}\cos{\sqrt{5}t}+0.01e_{2}\sin{\sqrt{7}t}+0.02e_{12}\cos{2t}, \\ \theta_{112}(t) = \, &0.04e_{0}\cos{\sqrt{5}t}+0.02e_{1}\sin{3t}+0.03e_{2}\sin{\sqrt{3}t}+0.03e_{13}\cos{\sqrt{3}t}, \\ \theta_{121}(t) = \, &0.02e_{0}\sin{\sqrt{3}t}+0.02e_{2}\cos{3t}+0.04e_{12}\sin{\sqrt{6}t}+0.01e_{23}\cos{3t}, \\ \theta_{122}(t) = \, &0.03e_{0}\sin{\sqrt{5}t}+0.04e_{2}\cos{5t}+0.03e_{12}\sin{\sqrt{5}t}+0.02e_{23}\cos{4t}, \\ \theta_{211}(t) = \, &0.03e_{0}\sin{3t}+0.03e_{1}\cos{t}+0.01e_{2}\cos{4t}+0.01e_{12}\sin{5t}, \\ \theta_{212}(t) = \, &0.04e_{0}\cos{3t}+0.02e_{1}\sin{t}+0.01e_{2}\cos{3t}+0.01e_{13}\sin{3t}, \\ \theta_{221}(t) = \, &0.03e_{0}\sin{4t}+0.03e_{2}\cos{\sqrt{2}t}+0.02e_{12}\sin{5t}+0.03e_{23}\cos{3t}, \\ \theta_{222}(t) = \, &0.01e_{0}\sin{4t}+0.01e_{2}\cos{3t}+0.01e_{12}\sin{4t}+0.04e_{123}\cos{2t}, \\ q_{111}(t) = \, &0.06e_{0}\sin{5t}+0.04e_{1}\cos{6t}+0.03e_{12}\sin{\sqrt{3}t}+0.03e_{23}\sin^{2}{2t}, \\ q_{112}(t) = \, &0.05e_{0}\sin{2t}+0.02e_{1}\cos{\sqrt{2}t}+0.04e_{2}\sin{3t}+0.02e_{23}\cos{3t}, \\ q_{121}(t) = \, &0.02e_{0}\cos{4t}+0.02e_{1}\cos^{2}{3t}+0.05e_{2}\sin{4t}+0.03e_{23}\cos{4t}, \\ q_{122}(t) = \, &0.05e_{0}\sin{4t}+0.03e_{1}\cos{\sqrt{3}t}+0.03e_{12}\cos{2t}+0.04e_{23}\sin{3t}, \\ q_{211}(t) = \, &0.01e_{0}\cos{\sqrt{5}t}+0.02e_{1}\sin{3t}+0.04e_{12}\cos{\sqrt{3}t}+0.02e_{23}\sin{t}, \\ q_{212}(t) = \, &0.01e_{0}\cos{4t}+0.06e_{1}\cos{\sqrt{2}t}+0.03e_{12}\sin{5t}+0.04e_{23}\cos{2t}, \\ q_{221}(t) = \, &0.01e_{0}\cos{3t}+0.02e_{1}\sin{t}+0.02e_{2}\cos{\sqrt{3}t}+0.01e_{23}\sin{2t}, \\ q_{222}(t) = \, &0.01e_{0}\cos{9t}+0.05e_{1}\cos^{2}{3t}+0.03e_{12}\sin{t}+0.05e_{23}\cos{t}, \\ \nu_{111}(t) = \, &0.02e_{0}\sin{3t}+0.03e_{1}\cos{\sqrt{3}t}+0.01e_{2}\cos{5t}+0.01e_{12}\sin{4t}, \\ \nu_{112}(t) = \, &0.02e_{0}\cos{t}+0.03e_{1}\sin^{2}{5t}+0.02e_{12}\cos{3t}+0.03e_{23}\sin{2t}, \\ \nu_{121}(t) = \, &0.05e_{0}\sin{3t}+0.04e_{2}\sin{3t}+0.03e_{12}\cos{2t}+0.02e_{23}\sin{3t}, \\ \nu_{122}(t) = \, &0.03e_{0}\cos{2t}+0.04e_{2}\cos{\sqrt{3}t}+0.05e_{12}\sin{\sqrt{2}t}+0.04e_{23}\cos{\sqrt{3}t}, \\ \nu_{211}(t) = \, &0.03e_{0}\sin{7t}+0.04e_{1}\sin{3t}+0.02e_{2}\cos{\sqrt{3}t}+0.03e_{12}\sin{2t}, \\ \nu_{212}(t) = \, &0.05e_{0}\cos{5t}+0.02e_{2}\cos{4t}+0.03e_{12}\sin{7t}+0.04e_{23}\cos{t}, \\ \nu_{221}(t) = \, &0.02e_{0}\sin{3t}+0.03e_{2}\cos{2t}+0.04e_{12}\sin{t}+0.01e_{23}\cos{2t}, \\ \nu_{222}(t) = \, &0.03e_{0}\sin{6t}+0.03e_{2}\cos{t}+0.01e_{12}\sin{2t}+0.04e_{23}\cos{3t}, \\ I_1(t) = \, &0.32e_{0}(\sin{\sqrt{5}t}+\frac{1}{1+t^2})+0.5e_{1}\cos{\sqrt{2}t}+0.36e_{2}\sin{\sqrt{3}t}+0.23e_{3}\cos{\sqrt{3}t}\\ &+0.49e_{12}\sin{\sqrt{2}t}+0.25e_{13}\cos{\sqrt{5}t}+0.42e_{23}\cos{\sqrt{5}t}+0.15e_{123}(\sin{\sqrt{3}t}+e^{-|t|}), \\ I_2(t) = \, &0.25e_{0}\cos{\sqrt{3}t}+0.42e_{1}(\sin{\sqrt{2}t}+e^{-|t|})+0.28e_{2}\sin{\sqrt{3}t}+0.45e_{3}\cos{\sqrt{3}t}\\ &+0.32e_{12}(\cos{\sqrt{2}t}+\frac{1}{1+t^{2}})+0.46e_{13}\sin{\sqrt{3}t}+0.15e_{23}\sin{\sqrt{5}t}+0.26e_{123}\cos{\sqrt{3}t}, \\ \gamma_{ij}(t) = \, &0.07e_{0}\cos{2t}+0.03e_{1}\sin{2t}+0.04e_{2}(\sin{2t}+\frac{1}{1+t^{2}})+0.06e_{3}\cos{t}\\ &+0.08e_{12}(\sin{t}+e^{-|t|})+0.02e_{13}\cos{t}+0.05e_{23}\sin{2t}+0.04e_{123}\cos{t}, \\ \mu_{j}(t) = \, &0.2e_{0}\sin{\sqrt{2}t}+0.3e_{1}\sin{\sqrt{3}t}+0.4e_{2}\sin{\sqrt{2}t}+0.6e_{3}\cos{\sqrt{2}t}\\ &+0.8e_{12}\cos{\sqrt{3}t}+0.3e_{13}\cos{\sqrt{5}t}+0.4e_{23}\sin{\sqrt{3}t}+0.2e_{123}\cos{\sqrt{6}t}, \\ T_{ij}(t) = \, &0.006e_{0}\sin{t}+0.004e_{1}\sin{t}+0.003e_{2}(\sin{t}+\frac{1}{1+t^{2}})+0.001e_{3}\cos{t}\\ &+0.002e_{12}\sin{t}+0.003e_{13}(\cos{t}+e^{-|t|})+0.002e_{23}\cos{t}+0.005e_{123}\sin{t}, \\ S_{ij}(t) = \, &0.002e_{0}\cos{t}+0.003e_{1}\sin{t}+0.001e_{2}\cos{t}+0.001e_{3}(\sin{t}+\frac{1}{2+t^{2}})\\ &+0.003e_{12}(\sin{t}+e^{-|t+1|})+0.002e_{13}\cos{t}+0.001e_{23}\sin{t}+0.002e_{123}\cos{t}, \\ \sigma_{ij}(t) = \, &1-0.3\sin{t}, \quad \eta_{ij}(t) = 1-0.8\cos{3t}, \quad \delta_{ijk}(t) = 1-0.6\sin{2t}, \\ \tau_1(t) = \, &1-0.1\sin{t}, \quad \tau_2(t) = 1-0.3\cos{t} . \end{align*}

    Then, it is easy to see that conditions (A_1) and (A_2) are satisfied.

    Moreover, take \vartheta_{1} = \vartheta_{2} = 1, p = 3, q = \frac{3}{2} , then through simple calculations, we obtain

    \begin{align*} &\bar{a}_{1} = 0.014, \bar{a}_{2} = 0.012, \bar{b}_{1}^{\emptyset} = 10.05, \bar{b}_{1}^{c} = 0.26, \underline{b}_{1}^{\emptyset} = 9.95, \bar{b}_{2}^{\emptyset} = 10.05, \bar{b}_{2}^{c} = 0.27, \underline{b}_{2}^{\emptyset} = 9.95, \\ &\bar{c}_{11} = 0.03, \bar{c}_{12} = 0.03, \bar{c}_{21} = 0.03, \bar{c}_{22} = 0.04, \bar{u}_{11} = 0.04, \bar{u}_{12} = 0.04, \bar{u}_{21} = 0.03, \bar{u}_{22} = 0.04, \\ &\bar{\alpha}_{11} = 0.04, \bar{\alpha}_{12} = 0.03, \bar{\alpha}_{21} = 0.03, \bar{\alpha}_{22} = 0.04, \bar{\beta}_{11} = 0.03, \bar{\beta}_{12} = 0.03, \bar{\beta}_{21} = 0.04, \bar{\beta}_{22} = 0.04, \\ &\bar{\theta}_{111} = 0.03, \bar{\theta}_{112} = 0.04, \bar{\theta}_{121} = 0.04, \bar{\theta}_{122} = 0.04, \bar{\theta}_{211} = 0.03, \bar{\theta}_{212} = 0.04, \bar{\theta}_{221} = 0.03, \\ &\bar{\theta}_{222} = 0.04, \bar{q}_{111} = 0.06, \bar{q}_{112} = 0.05, \bar{q}_{121} = 0.05, \bar{q}_{122} = 0.05, \bar{q}_{211} = 0.04, \bar{q}_{212} = 0.06, \\ &\bar{q}_{221} = 0.02, \bar{q}_{222} = 0.05, \bar{\nu}_{111} = 0.03, \bar{\nu}_{112} = 0.03, \bar{\nu}_{121} = 0.05, \bar{\nu}_{122} = 0.05, \bar{\nu}_{211} = 0.04, \\ &\bar{\nu}_{212} = 0.05, \bar{\nu}_{221} = 0.04, \bar{\nu}_{222} = 0.04, \bar{\tau}_{i} = \bar{\tau}'_{i} = 0.1, \bar{\sigma}_{ij} = \bar{\sigma}'_{ij} = 0.3, \bar{\eta}_{ij} = \bar{\eta}'_{ij} = 0.8, \\ &\bar{\delta}_{ijk} = \bar{\delta}'_{ijk} = 0.6, L_{1}^{f} = L_{2}^{f} = \frac{1}{40}, L_{1}^{g} = L_{2}^{g} = \frac{1}{48}, M_{1}^{g} = M_{2}^{g} = \frac{1}{48} , \rho \approx0.054972 < 1, \\ &P\approx0.518973 < 1 . \end{align*}

    Hence, (A_{3}) and (A_{4}) are also satisfied. Consequently, in view of Theorem 3.2, we know that system (1.1) has a unique Besicovitch almost periodic solution that is globally exponentially stable (see Figures 14).

    Figure 1.  Curves of x_{1}^{0}(t), x_{2}^{0}(t), x_{1}^{1}(t) , and x_{2}^{1}(t) of system (1.1) with two different initial values.
    Figure 2.  Curves of x_{1}^{2}(t), x_{2}^{2}(t), x_{1}^{3}(t) , and x_{2}^{3}(t) of system (1.1) with two different initial values.
    Figure 3.  Curves of x_{1}^{12}(t), x_{2}^{12}(t), x_{1}^{13}(t) , and x_{2}^{13}(t) of system (1.1) with two different initial values.
    Figure 4.  Curves of x_{1}^{23}(t), x_{2}^{23}(t), x_{1}^{123}(t) , and x_{2}^{123}(t) of system (1.1) with two different initial values.

    Remark 4.1. Even when the system considered in Example 4.1 degenerates into a real-valued system, there are no existing results to derive the results of Example 4.1.

    This article introduces a new method to establish the existence and global exponential stability of Besicovitch almost periodic solutions for Clifford-valued high-order Hopfield fuzzy NNs with D operators. The methods and results of this article can be applied to study the generalized almost periodic and almost automorphic dynamics of high-order NNs.

    Bing Li: Methodology, Conceptualization, Writing - review and editing; Yuan Ning: Writing - original draft, Visualization; Yongkun Li: Methodology, Conceptualization, Funding acquisition, Writing - review and editing. All authors have read and approved the final version of the manuscript for publication.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported by the National Natural Science Foundation of China, grant number 12261098.

    The authors declare no conflict of interest.



    [1] A. Charnes, W. W. Cooper, E. Rhodes, Measuring the efficiency of decision making units, Eur. J. Oper. Res., 2 (1978), 429–444. https://doi.org/10.1016/0377-2217(78)90138-8 doi: 10.1016/0377-2217(78)90138-8
    [2] A. Charnes, W. W. Cooper, B. Golany, L. Seiford, J. Stutz, Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions, J. Econometrics, 30 (1985), 91–107. https://doi.org/10.1016/0304-4076(85)90133-2 doi: 10.1016/0304-4076(85)90133-2
    [3] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [4] L. Sahoo, An approach for solving fuzzy matrix games using signed distance method, J. Inf. Comput. Sci., 12 (2017), 73–80.
    [5] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3
    [6] R. R. Yager, Pythagorean membership grades in multi-criteria decision making, IEEE T. Fuzzy Syst., 22 (2014), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989 doi: 10.1109/TFUZZ.2013.2278989
    [7] R. R. Yager, Pythagorean fuzzy subsets, In: 2013 Joint IFSA world congress and NAFIPS annual meeting, 2013, 57–61. https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375
    [8] T. Senapati, R. R. Yager, Fermatean fuzzy sets, J. Amb. Intel. Hum. Comp., 11 (2020), 663–674. https://doi.org/10.1007/s12652-019-01377-0 doi: 10.1007/s12652-019-01377-0
    [9] T. Senapati, R. R. Yager, Fermatean fuzzy weighted averaging/geometric operators and its application in multi-criteria decision making methods, Eng. Appl. Artif. Intel., 85 (2019), 112–121. https://doi.org/10.1016/j.engappai.2019.05.012 doi: 10.1016/j.engappai.2019.05.012
    [10] T. Senapati, R. R. Yager, Some new operations over Fermatean fuzzy numbers and application of Fermatean fuzzy WPM in multiple criteria decision making, Informatica, 30 (2019), 391–412.
    [11] L. Sahoo, Some score functions on Fermatean fuzzy sets and its application to bride selection based on TOPSIS method, Int. J. Fuzzy Syst. Appl., 10 (2021), 18–29. https://doi.org/10.4018/IJFSA.2021070102 doi: 10.4018/IJFSA.2021070102
    [12] L. Sahoo, Similarity measures for Fermatean fuzzy sets and its applications in group decision-making, Decis. Sci. Lett., 11 (2022), 167–180. https://doi.org/10.5267/j.dsl.2021.11.003 doi: 10.5267/j.dsl.2021.11.003
    [13] R. E. Bellman, L. A. Zadeh, Decision making in a fuzzy environment, Manage. Sci., 17 (1970), 141–164. https://doi.org/10.1287/mnsc.17.4.B141 doi: 10.1287/mnsc.17.4.B141
    [14] H. J. Zimmerman, Fuzzy programming and linear programming with several objective functions, Fuzzy Set. Syst., 1 (1978), 45–55. https://doi.org/10.1016/0165-0114(78)90031-3 doi: 10.1016/0165-0114(78)90031-3
    [15] T. Allahviranloo, F. H. Lotfi, M. L. Kiasary, N. A. Kiani, L. A. Zadeh, Solving fully fuzzy linear programming problem by the ranking function, Appl. Math. Sci., 2 (2008), 19–32.
    [16] M. Akram, I. Ullah, S. A. Edalatpanah, T. Allahviranloo, Fully Pythagorean fuzzy linear programming problems with equality constraints, Comput. Appl. Math., 40 (2021), 120. https://doi.org/ 10.1007/s40314-021-01503-9 doi: 10.1007/s40314-021-01503-9
    [17] M. Akram, I. Ullah, T. Allahviranloo, S. A. Edalatpanah, LR-type fully Pythagorean fuzzy linear programming problems with equality constraints, J. Inte. Fuzzy Syst., 41 (2021), 1975–1992. https://doi.org/ 10.3233/JIFS-210655 doi: 10.3233/JIFS-210655
    [18] M. Akram, G. Shahzadi, A. A. H. Ahmadini, Decision-making framework for an effective sanitizer to reduce COVID-19 under Fermatean fuzzy environment, J. Math., 2020 (2020), 3263407. https://doi.org/10.1155/2020/3263407 doi: 10.1155/2020/3263407
    [19] M. Akram, I. Ullah, M. G. Alharbi, Methods for solving LR-type Pythagorean fuzzy linear programming problems with mixed constraints, Math. Probl. Eng., 2021 (2021), 4306058. https://doi.org/10.1155/2021/4306058 doi: 10.1155/2021/4306058
    [20] M. Akram, S. M. U. Shah, M. A. Al-Shamiri, S. A. Edalatpanah, Fractional transportation problem under interval-valued Fermatean fuzzy sets, AIMS Mathematics, 7 (2022), 17327–17348. https://doi.org/ 10.3934/math.2022954 doi: 10.3934/math.2022954
    [21] M. A. Mehmood, M. Akram, M. G. Alharbi, S. Bashir, Solution of fully bipolar fuzzy linear programming models, Math. Probl. Eng., 2021 (2021), 9961891. https://doi.org/10.1155/2021/9961891 doi: 10.1155/2021/9961891
    [22] M. A. Mehmood, M. Akram, M. G. Alharbi, S. Bashir, Optimization of LR-type fully bipolar fuzzy linear programming problems, Math. Probl. Eng., 2021 (2021), 1199336. https://doi.org/10.1155/2021/1199336 doi: 10.1155/2021/1199336
    [23] J. Ahmed, M. G. Alharbi, M. Akram, S. Bashir, A new method to evaluate linear programming problem in bipolar single-valued neutrosophic environment, Comp. Model. Eng., 129 (2021), 881–906. https://doi.org/10.32604/cmes.2021.017222 doi: 10.32604/cmes.2021.017222
    [24] F. L. Hitchcock, The distribution of product from several resources to numerous localities, J. Math. Phys., 20 (1941), 224–230. https://doi.org/10.1002/sapm1941201224 doi: 10.1002/sapm1941201224
    [25] R. D. Banker, A. Charnes, W. W. Cooper, Some models for estimating technical and scale inefficiencies in data envelopment analysis, Manage. Sci., 30 (1984), 1078–1092. https://doi.org/10.1287/mnsc.30.9.1078 doi: 10.1287/mnsc.30.9.1078
    [26] T. Ahn, A. Charnes, W. W. Cooper, Some statistical and DEA evaluations of relative efficiencies of public and private institutions of higher learning, Socio-Econ. Plan. Sci., 22 (1988), 259–269. https://doi.org/10.1016/0038-0121(88)90008-0 doi: 10.1016/0038-0121(88)90008-0
    [27] Y. Roll, W. D. Cook, B. Golany, Controlling factor weights in data envelopment analysis, IIE Trans., 23 (1991), 2–9. https://doi.org/10.1080/07408179108963835 doi: 10.1080/07408179108963835
    [28] J. K. Sengupta, A fuzzy systems approach in data envelopment analysis, Comput. Math. Appl., 24 (1992), 259–266. https://doi.org/10.1016/0898-1221(92)90203-T doi: 10.1016/0898-1221(92)90203-T
    [29] C. Kao, S. T. Liu, Fuzzy efficiency measures in data envelopment analysis, Fuzzy Set. Syst., 113 (2000), 427–437. https://doi.org/10.1016/S0165-0114(98)00137-7 doi: 10.1016/S0165-0114(98)00137-7
    [30] S. Saati, M. Memariani, G. R. Jahanshahloo, Efficiency analysis and ranking of DMUs with fuzzy data, Fuzzy Optim. Decis. Ma., 1 (2002), 255–267. https://doi.org/10.1023/A:1019648512614 doi: 10.1023/A:1019648512614
    [31] S. Lertworasirikul, S. C. Fang, J. A. Joines, H. L. Nuttle, Fuzzy data envelopment analysis (DEA): A possibility approach, Fuzzy Set. Syst., 139 (2003), 379–394. https://doi.org/10.1016/S0165-0114(02)00484-0 doi: 10.1016/S0165-0114(02)00484-0
    [32] A. L. M. Zerafat, S. M. Saati, M. Mokhtaran, An alternative approach to assignment problem with nonhomogeneous costs using common set of weights in DEA, Far East J. Math. Sci., 10 (2003), 29–39.
    [33] W. W. Cooper, L. M. Seiford, K. Tone, Introduction to data envelopment analysis and its uses: With DEA-solver software and references, New York: Springer, 2006.
    [34] P. Zhou, B. W. Ang, K. L. Poh, A survey of data envelopment analysis in energy and environmental studies, Eur. J. Oper. Res., 189 (2008), 1–18. https://doi.org/10.1016/j.ejor.2007.04.042 doi: 10.1016/j.ejor.2007.04.042
    [35] P. Guo, Fuzzy data envelopment analysis and its applications to location problems, Inform. Sci., 179 (2009), 820–829. https://doi.org/10.1016/j.ins.2008.11.003 doi: 10.1016/j.ins.2008.11.003
    [36] F. H. Lotfi, G. R. Jahanshahloo, A. R. Vahidi, A. Dalirian, Efficiency and effectiveness in multi-activity network DEA model with fuzzy data, Appl. Math. Sci., 3 (2009), 2603–2618.
    [37] F. H. Lotfi, G. R. Jahanshahloo, M. Soltanifar, A. Ebrahimnejad, S. M. Mansourzadeh, Relationship between MOLP and DEA based on output-orientated CCR dual model, Expert Syst. Appl., 37 (2010), 4331–4336. https://doi.org/10.1016/j.eswa.2009.11.066 doi: 10.1016/j.eswa.2009.11.066
    [38] S. H. Mousavi-Avval, S. Rafiee, A. Mohammadi, Optimization of energy consumption and input costs for apple production in Iran using data envelopment analysis, Energy, 36 (2011), 909–916. https://doi.org/10.1016/j.energy.2010.12.020 doi: 10.1016/j.energy.2010.12.020
    [39] A. Amirteimoori, An extended transportation problem: A DEA-based approach, Cent. Eur. J. Oper. Res., 19 (2011), 513–521. https://doi.org/10.1007/s10100-010-0140-0 doi: 10.1007/s10100-010-0140-0
    [40] A. Amirteimoori, An extended shortest path problem: A data envelopment analysis approach, Appl. Math. Lett., 25 (2012), 1839–1843. https://doi.org/10.1016/j.aml.2012.02.042 doi: 10.1016/j.aml.2012.02.042
    [41] A. Nabavi-Pelesaraei, R. Abdi, S. Rafiee, H. G. Mobtaker, Optimization of energy required and greenhouse gas emissions analysis for orange producers using data envelopment analysis approach, J. Clean. Prod., 65 (2014), 311–317. https://doi.org/10.1016/j.jclepro.2013.08.019 doi: 10.1016/j.jclepro.2013.08.019
    [42] Z. Zhu, K. Wang, B. Zhang, Applying a network data envelopment analysis model to quantify the eco-efficiency of products: A case study of pesticides, J. Clean. Prod., 69 (2014), 67–73. https://doi.org/10.1016/j.jclepro.2014.01.064 doi: 10.1016/j.jclepro.2014.01.064
    [43] M. Azadi, M. Jafarian, S. R. Farzipoor, S. M. Mirhedayatian, A new fuzzy DEA model for evaluation of efficiency and effectiveness of suppliers in sustainable supply chain management context, Comput. Oper. Res., 54 (2015), 274–285. https://doi.org/10.1016/j.cor.2014.03.002 doi: 10.1016/j.cor.2014.03.002
    [44] G. H. Shirdel, A. Mortezaee, A DEA-based approach for the multi-criteria assignment problem, Croat. Oper. Res. Rev., 6 (2015), 145–154. https://doi.org/10.17535/crorr.2015.0012 doi: 10.17535/crorr.2015.0012
    [45] A. Azar, M. Z. Mahmoudabadi, A. Emrouznejad, A new fuzzy additive model for determining the common set of weights in data envelopment analysis, J. Inte. Fuzzy Syst., 30 (2016), 61–69. https://doi.org/10.3233/IFS-151710 doi: 10.3233/IFS-151710
    [46] A. Mardania, E. Kazimieras, Zavadskasb, Streimikienec, A. Jusoha, M. Khoshnoudia, A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency, Renew. Sust. Energ. Rev., 70 (2017), 1298–1322. https://doi.org/10.1016/j.rser.2016.12.030 doi: 10.1016/j.rser.2016.12.030
    [47] A. Hatami-Marbini, A. Ebrahimnejad, S. Lozano, Fuzzy efficiency measures in data envelopment analysis using lexicographic multiobjective approach, Comput. Ind. Eng., 105 (2017), 362–376. https://doi.org/10.1016/j.cie.2017.01.009 doi: 10.1016/j.cie.2017.01.009
    [48] A. Hatami-Marbini, S. Saati, Efficiency evaluation in two-stage data envelopment analysis under a fuzzy environment: A common weights approach, Appl. Soft Comput., 72 (2018), 156–165. https://doi.org/10.1016/j.asoc.2018.07.057 doi: 10.1016/j.asoc.2018.07.057
    [49] R. M. Rizk-Allaha A. E. Hassanienb, M. Elhoseny, A multi-objective transportation model under neutrosophic environment, Comput. Electr. Eng., 69 (2018), 705–719. https://doi.org/10.1016/j.compeleceng.2018.02.024 doi: 10.1016/j.compeleceng.2018.02.024
    [50] M. Tavana, K. Khalili-Damghani, A new two-stage Stackelberg fuzzy data envelopment analysis model, Measurement, 53 (2014), 277–296. https://doi.org/10.1016/j.measurement.2014.03.030 doi: 10.1016/j.measurement.2014.03.030
    [51] S. A. Edalatpanah, F. Smarandache, Data envelopment analysis for simplified neutrosophic sets, Neutrosophic Sets Sy., 29 (2019), 215–226. https://doi.org/10.5281/zenodo.3514433 doi: 10.5281/zenodo.3514433
    [52] J. Liu, J. Song, Q. Xu, Z. Tao, H. Chen, Group decision making based on DEA cross-efficiency with intuitionistic fuzzy preference relations, Fuzzy Optim. Decis. Ma., 18 (2019), 345–370. https://doi.org/10.1007/s10700-018-9297-0 doi: 10.1007/s10700-018-9297-0
    [53] S. A. Edalatpanah, Data envelopment analysis based on triangular neutrosophic numbers, CAAI T. Intell. Techno., 5 (2020), 94–98. https://doi.org/10.1049/trit.2020.0016 doi: 10.1049/trit.2020.0016
    [54] M. Bagheri, A. Ebrahimnejad, S. Razavyan, F. H. Lotfi, N. Malekmohammadi, Solving the fully fuzzy multi-objective transportation problem based on the common set of weights in DEA, J. Inte. Fuzzy Syst., 39 (2020), 3099–3124. https://doi.org/10.3233/JIFS-191560 doi: 10.3233/JIFS-191560
    [55] M. R. Soltani, S. A. Edalatpanah, F. M. Sobhani, S. E. Najafi, A novel two-stage DEA model in fuzzy environment: Application to industrial workshops performance measurement, Int. J. Comput. Int. Sys., 13 (2020), 1134–1152. https://doi.org/10.2991/ijcis.d.200731.002 doi: 10.2991/ijcis.d.200731.002
    [56] L. Sahoo, A new score function based Fermatean fuzzy transportation problem, Results Control Optim., 1 (2021), 100040. https://doi.org/10.1016/j.rico.2021.100040 doi: 10.1016/j.rico.2021.100040
    [57] S. Ghosh, S. K. Roy, A. Ebrahimnejad, J. L. Verdegay, Multi-objective fully intuitionistic fuzzy fixed-charge solid transportation problem, Complex Intell. Syst., 7 (2021), 1009–1023. https://doi.org/10.1007/s40747-020-00251-3 doi: 10.1007/s40747-020-00251-3
    [58] A. Mondal, S. K. Roy, S. Midya, Intuitionistic fuzzy sustainable multi-objective multi-item multi-choice step fixed-charge solid transportation problem, J. Amb. Intel. Hum. Comp., 2021, 1–25. https://doi.org/10.1007/s12652-021-03554-6 doi: 10.1007/s12652-021-03554-6
    [59] B. K. Giri, S. K. Roy, Neutrosophic multi-objective green four-dimensional fixed-charge transportation problem, Int. J. Mach. Learn. Cyb., 13 (2022), 3089–3112. https://doi.org/10.1007/s13042-022-01582-y doi: 10.1007/s13042-022-01582-y
    [60] S. Ghosh, K-H. Kufer, S. K. Roy, G-W. Weber, Carbon mechanism on sustainable multi-objective solid transportation problem for waste management in Pythagorean hesitant fuzzy environment, Complex Intell. Syst., 8 (2022). https://doi.org/10.1007/s40747-022-00686-w doi: 10.1007/s40747-022-00686-w
    [61] M. Akram, S. M. U. Shah, T. Allahviranloo, A new method to determine the Fermatean fuzzy optimal solution of transportation problems, J. Intell. Fuzzy Syst., 2022. https://doi.org/10.3233/JIFS-221959 doi: 10.3233/JIFS-221959
    [62] M. Bagheri, A. Ebrahimnejad, S. Razavyan, F. H. Lotfi, N. Malekmohammadi, Fuzzy arithmetic DEA approach for fuzzy multi-objective transportation problem, Oper. Res., 22 (2022), 1479–1509. https://doi.org/10.1007/s12351-020-00592-4 doi: 10.1007/s12351-020-00592-4
    [63] Y. M. Wang, Y. Luo, L. Liang, Fuzzy data envelopment analysis based upon fuzzy arithmetic with an application to performance assessment of manufacturing enterprises, Expert Syst. Appl., 36 (2009), 5205–5211. https://doi.org/10.1016/j.eswa.2008.06.102 doi: 10.1016/j.eswa.2008.06.102
    [64] A. Mahmoodirad, T. Allahviranloo, S. Niroomand, A new effective solution method for fully fuzzy transportation problem, Soft Comput., 23 (2019), 4521–4530. https://doi.org/10.1007/s00500-018-3115-z doi: 10.1007/s00500-018-3115-z
    [65] M. Ehrgott, Multi-criteria optimization, Berlin, Heidelberg: Springer, 2005.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2838) PDF downloads(215) Cited by(39)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog