Processing math: 56%
Research article Special Issues

Basins of attraction in a modified ratio-dependent predator-prey model with prey refugee

  • Received: 18 February 2022 Revised: 19 May 2022 Accepted: 26 May 2022 Published: 10 June 2022
  • MSC : 34C60, 37C75, 37G10, 37G35

  • In this paper, we analyze a modified ratio-dependent predator-prey model with a strong Allee effect and linear prey refugee. The model exhibits rich dynamics with the existence of separatrices in the phase plane in-between basins of attraction associated with oscillation, coexistence, and extinction of the interacting populations. We prove that if the initial values are positive, all solutions are bounded and stay in the interior of the first quadrant. We show that the system undergoes several bifurcations such as transcritical, saddle-node, Hopf, and Bogdanov-Takens bifurcations. Consequently, a homoclinic bifurcation curve exists generating an unstable periodic orbit. Moreover, we find that the Bogdanov-Takens bifurcation acts as an organizing center for the scenario of surviving or extinction of both interacting species. Topologically different phase portraits with all possible trajectories and equilibria are depicted illustrating the behavior of the system.

    Citation: Khairul Saleh. Basins of attraction in a modified ratio-dependent predator-prey model with prey refugee[J]. AIMS Mathematics, 2022, 7(8): 14875-14894. doi: 10.3934/math.2022816

    Related Papers:

    [1] Muhammad Ali Khan, Saleem Abdullah, Alaa O. Almagrabi . Analysis of deep learning technique using a complex spherical fuzzy rough decision support model. AIMS Mathematics, 2023, 8(10): 23372-23402. doi: 10.3934/math.20231188
    [2] Zeeshan Saleem Mufti, Ali Tabraiz, Qin Xin, Bander Almutairi, Rukhshanda Anjum . Fuzzy topological analysis of pizza graph. AIMS Mathematics, 2023, 8(6): 12841-12856. doi: 10.3934/math.2023647
    [3] Muhammad Naeem, Muhammad Qiyas, Lazim Abdullah, Neelam Khan, Salman Khan . Spherical fuzzy rough Hamacher aggregation operators and their application in decision making problem. AIMS Mathematics, 2023, 8(7): 17112-17141. doi: 10.3934/math.2023874
    [4] Tehreem, Harish Garg, Kinza Ayaz, Walid Emam . Multi attribute decision-making algorithms using Hamacher Choquet-integral operators with complex intuitionistic fuzzy information. AIMS Mathematics, 2024, 9(12): 35860-35884. doi: 10.3934/math.20241700
    [5] Saleem Abdullah, Muhammad Qiyas, Muhammad Naeem, Mamona, Yi Liu . Pythagorean Cubic fuzzy Hamacher aggregation operators and their application in green supply selection problem. AIMS Mathematics, 2022, 7(3): 4735-4766. doi: 10.3934/math.2022263
    [6] Shahid Hussain Gurmani, Zhao Zhang, Rana Muhammad Zulqarnain . An integrated group decision-making technique under interval-valued probabilistic linguistic T-spherical fuzzy information and its application to the selection of cloud storage provider. AIMS Mathematics, 2023, 8(9): 20223-20253. doi: 10.3934/math.20231031
    [7] Muhammad Akram, Sumera Naz, Gustavo Santos-García, Muhammad Ramzan Saeed . Extended CODAS method for MAGDM with 2-tuple linguistic T-spherical fuzzy sets. AIMS Mathematics, 2023, 8(2): 3428-3468. doi: 10.3934/math.2023176
    [8] Ashraf Al-Quran . T-spherical linear Diophantine fuzzy aggregation operators for multiple attribute decision-making. AIMS Mathematics, 2023, 8(5): 12257-12286. doi: 10.3934/math.2023618
    [9] Muhammad Akram, Sumera Naz, Feng Feng, Ghada Ali, Aqsa Shafiq . Extended MABAC method based on 2-tuple linguistic T-spherical fuzzy sets and Heronian mean operators: An application to alternative fuel selection. AIMS Mathematics, 2023, 8(5): 10619-10653. doi: 10.3934/math.2023539
    [10] Hafiz Muhammad Athar Farid, Muhammad Riaz, Gustavo Santos Garcia . T-spherical fuzzy information aggregation with multi-criteria decision-making. AIMS Mathematics, 2023, 8(5): 10113-10145. doi: 10.3934/math.2023512
  • In this paper, we analyze a modified ratio-dependent predator-prey model with a strong Allee effect and linear prey refugee. The model exhibits rich dynamics with the existence of separatrices in the phase plane in-between basins of attraction associated with oscillation, coexistence, and extinction of the interacting populations. We prove that if the initial values are positive, all solutions are bounded and stay in the interior of the first quadrant. We show that the system undergoes several bifurcations such as transcritical, saddle-node, Hopf, and Bogdanov-Takens bifurcations. Consequently, a homoclinic bifurcation curve exists generating an unstable periodic orbit. Moreover, we find that the Bogdanov-Takens bifurcation acts as an organizing center for the scenario of surviving or extinction of both interacting species. Topologically different phase portraits with all possible trajectories and equilibria are depicted illustrating the behavior of the system.



    Decision makers tackle and, despite the complications in every field of life, are in different challenging situations. It is not easy to express the attributed value due to its uncertain nature. Scholars introduce many tools to handle its fuzzy nature. A fuzzy set is a generalized form of a well-defined set, which is known as a truth set having components the members of truth degrees [1]. A truth set only has two values 0, for (no) and 1 for (yes), so, with the help of the truth set, it cannot be easy, and sometimes solving real-world problems may become impossible. To get a better result, fuzzy set (FS) allows adjustment of truth membership value from 01 instead of only consisting of 0 or 1. Father of fuzzy set theory, Zadeh put forward an idea of the fuzzy set in 1965 [2], which is a generalization of a truth set in which entries of a set have different membership values. We know in this generalization no concept of a falsity-membership or negative value is defined. In 1985, Atanassov gave the idea of falsity and truth membership value, which is defined in the form of an intuitionistic fuzzy set (IFS) [3] based on having constraint

    0α+β1.

    In this context, the symbols α and β are used to denote the degree of membership in the concepts of truth and falsehood, respectively. But in IFS there are some cases where the sum of truth membership and falsity-membership degrees increases from 1 [4]. The Pythagorean fuzzy set was proposed for such cases by Zhang and Xu with new limitations of

    0α2+β21

    which expands the area of uncertainty. Q-rung orthopair fuzzy set was proposed for more generalization by Yager [5] with a condition of

    0αq+βq1.

    For solving real-world problems more generally [6] gives an idea of picture fuzzy set (PFS) in which human opinions are of type yes, no, abstain, and refusal is discussed as more sufficient in situations. The PFS gave truth membership, falsity-membership, and abstain degrees as well, with the condition

    0α+β+γ1,

    where

    π=1(α+β+γ)

    is a refusal degree. Then some fuzzy logic operators — disjunction, conjunction, implication, and complements — were broadened by Coung and Hai.

    As PFS well expresses uncertainty and ambiguity to obtain more extension, the concepts of interval-valued spherical fuzzy set (IVSFS) and IV T-spherical fuzzy set (IVTSFS) are introduced along with the condition

    0αT+βT+γT1

    which strengthens the idea of PFS. The choice of parameters is increased by IVTSFS and also plays an effective role in real-world issues. Bonferroni mean operators are discussed in [7] for TSFHG, and are used to evaluate search and rescue robots performance [8]. The strategy used for evaluating the performance of solar cells under uncertain conditions was the multi-attribute group decision-making (DM) approach using IVTSF information [9].

    The graph is the easiest way of graphical representation of different relationships between different elements. The researcher of [10] discussed the idea of fuzzy graph (FG) and its structure. He also introduced and highlighted the characteristics of paths, cycles, connectivity, subgraphs, trees, and forests. Parvathi gave the idea of an intuitionistic fuzzy graph (IFG) by increasing the falsity membership value [11]. In [12], degree, size, and order of IFG are also discussed. The generalization of IFS Pythagorean fuzzy graph (PyFG) is also introduced in [13], which also introduces and discuss a number of its properties. By the generalization of PyFG, we get a new concept of a q-rung ortho-pair fuzzy graph (q-ROFG) [14] and also discussed its applications in soil system [15]. In 2019, Zuo proposed a picture fuzzy graph in which truth membership, falsitymembership, and, abstinence degrees are involved [16]. In a study conducted by [17], a spherical fuzzy graph (SFG) was developed, with an exponent increase of two. Similarly, [18] presented the notion of a T-spherical fuzzy graph (TSFG) based on the work of [19], which included an extension of exponent T. In 2011 Akram gave an idea of IV fuzzy graphs (IVFG)[20]. The authors in [21] introduced the concept of interval-valued intuitionistic fuzzy graph (IVIFG) due to the expansion of IV fuzzy graphs (IVFG). In [22], some certain operations and applications are discussed. The generalized forms of (IVIFG) of IV Pythagorean fuzzy set (IVPyFG) [23], IV q-Rung orthopair fuzzy set (IVqRFG) [24], IV picture fuzzy graph (IVPFG) [25], and IV spherical fuzzy graph (IVSFG), IV T-spherical fuzzy graph (IVTSFG) [26]. There are some other topics related to these fuzzy graph theoretical parameters like, metric dimension [27,28,29], topological descriptors [30,31,32], and their applications [33,34,35,36,37].

    In chemistry, Gutman introduced [38] the idea that the energy of a graph is determined by the interplay between the π energy of electrons and the summation of these energies in certain molecules, and also discovered the upper energy limit and lower energy limit of the graph. The energy of a complete graph is usually calculated as 2 times the difference between the total count of nodes (represented by n) and 1. In the case of a graph with no edges, the energy is equal to 0. The energy of splitting graph [39] and the energy of shadow graph [40]. The authors in [41] calculated the Laplacian energy for the graph. If the vertices are adjacent, then the Randić matrix

    R(ϝ)=(xχτ)

    is defined as

    (xχτ)=1dχdτ,

    here dχ represents the degree of vertex χ otherwise

    (xχτ)=0.

    Researchers gave the idea of Randić energy, which can be calculated as the sum of absolute values of eigenvalues[42]. The Laplacian energy of a fuzzy graph is presented by [43]. The intuitionistic fuzzy graphs IFG are started; after that, researcher worked on the Laplacian graph and found the energy of an IFG [44]. Akram presents the energy and Laplacian energy of PFGs; the researchers established various DM methods and techniques to tackle the challenges involved in various disciplines. In general, the IVTSFSs are better in comparison to interval-valued intuitionistic fuzzy set (IVIFS) and IVqROFS as they also examine the abstinence degree.

    When there is more than one method for the solution of a particular problem, to get a more efficient answer, concept of an aggregation operator is more beneficial. Hamacher examined a specific category of t-operators [45]. t-norm (TN) and Hamacher t-conorm (TCN) by Hmacher are a generalization of algebraic TN and TCN, and they are highly effective and more flexible. When comparing various notions, it is evident that the interval-valued T-spherical fuzzy Hamacher graphs (IVTSFHG) exhibit primarily flexibility and parameterization in representing the perspectives of decision-makers. These are some situations that caused us to write that article. Spectrum graph theory is an inclusive application in branches of mathematics like physics, chemistry, computer science, and many others. Graph spectrum helps in combinatorial optimization problems and has a remarkable role in mathematics. The concept of graph energy comes from energy in chemistry. Multiple mathematical properties of graph energies are being explored.

    Another idea of energy, referred to as the FG energy, is introduced in this study. This concept expands upon the existing definitions of energy and Randić energy to include the visualization of FGs and IV FGs. To handle the situation, the modified form of IVIFS, qROFSG, is an effective tool, which is IVTSFS, which can increase the human opinion's flexibility. In this article, the Hamacher aggregation operators have been used to calculate the energy and Randić energy of IVFG, thereby providing a comprehensive assessment of its effect. The article makes a number of contributions: The concept of IVTSFHG is used in the context of the Hamacher TN and TCN. In this discourse, we engage in a discussion on the energy associated with the division of IVTSFHG, as well as its corresponding shadow. We provide compelling findings pertaining to this topic. A numerical problem-solving method is provided using IVTSF data. The provided approach has the potential to be employed in many problem-solving scenarios in order to get optimal decision-making outcomes [46].

    The investigation of Randic energies in the context of DM for human trafficking, using IVTSFHGs, is a novel and influential addition to the domains of graph theory and decision science. The significance of this paper rests in its capacity to provide a comprehensive and adaptable framework for the modeling and analysis of intricate systems, namely within the domain of human trafficking. The new contribution may be delineated as follows:

    Multifaceted modeling approach: The use of IVTSFHGs enables a more accurate and adaptable depiction of uncertainties linked to human trafficking data. This comprehensive modeling methodology takes into account both the inherent imprecision of data and the IV attributes, so offering a more nuanced and exact representation of the DM context. Randic energies as descriptors: The integration of Randic energies introduces an additional dimension of structural analysis to the process of DM. The research presents a unique approach to quantifying the structural features of networks implicated in people trafficking via the use of graph-based descriptors. This phenomenon has the potential to provide valuable knowledge on the structure, interconnections, and possible weaknesses inherent in human trafficking networks. Decision support system: The incorporation of Randic energies within the context of IVTSFHGs makes a significant contribution to the advancement of a reliable decision support system. The use of this system has the potential to aid policymakers, law enforcement agencies, and many other stakeholders in making well-informed choices. This is achieved by offering a more extensive comprehension of the fundamental structures and dynamics that govern human trafficking networks. Handling uncertainty effectively: The issue of human trafficking is characterized by its intricate and ever-evolving nature, which gives rise to inherent uncertainty. The study places significant importance on IVTSFHGs, demonstrating a very advanced methodology for managing uncertainty. This technique enables decision-makers to efficiently negotiate the intricacies associated with incomplete or inaccurate information. Cross-disciplinary impact: The work presented in this study is characterized by its cross-disciplinary approach, which effectively combines graph theory with decision science. Moreover, the study's focus on the pressing social problem of human trafficking further amplifies its importance. The aforementioned contribution encompasses both theoretical improvements in mathematical modeling and practical implementations, hence bearing immediate consequences for addressing a significant worldwide concern.

    The significance of the paper stems from its novel integration of IVTSFHGs and Randic energies, which together provide a robust DM framework within the domain of human trafficking. The new contributions of this study go beyond the conventional uses of graph theory, providing a complete and influential framework for comprehending and tackling intricate social problems.

    This study presents an analysis of our notions in a specific structure: Section 2 provides an overview of fundamental ideas. In Section 3, the concept of IVPFHGs was introduced, and an analysis was conducted to determine their respective energy levels. Additionally, the energy associated with the division of IVTSFHG and the shadow IVTSFHG was a topic of discussion. Section 4 made a contribution to the Randić energy calculations of IVTSFHGs and IVTSFHDGs. Section 5 of the paper presents an examination of the use of the IV T-spherical fuzzy Hamacher averaging (IVTSFHA) operator and the interval-valued T-spherical fuzzy Hamacher weighted geometric (IVTSFHWG) operator. The discussion is supported by the use of numerical examples. In the following part, the conclusion is examined.

    In this section, we will discuss some basic definitions of our research work. In this article, we denote integers by I.

    Definition 2.1. A TSFS Γ on a fixed set I is defined as:

    V={(Υ,αv(Υ),βv(Υ),γv(Υ))|ΥZ},

    where αv(Υ) shows the truth membership degree, βv(Υ) shows abstinence degree, γv(Υ) denotes the falsity membership degree.

    αv:I[0,1],  βv:I[0,1]

    and

    γv:I[0,1]

    in such a way that

    0αTv(Υ)+βTv(Υ)+γTv(Υ)1, TZ+,   πV(Υ)=T1(αTv(Υ)+βTv(Υ)+γTv(Υ)),

    is called the hesitancy degree.

    Definition 2.2. Let three TSFs, V1,V2, and V3. Then

    (1) V1V2αN1(Υ)αN2(Υ),βN1(Υ)βN2(Υ),γN1(Υ)γN2(Υ)ΥI.(2) V1=V2αN1(Υ)=αN2(Υ),βN1(Υ)=βN2(Υ),γN1(Υ)=γN2(Υ)ΥI.(3) Vc={(Υ,γv(Υ),βv(Υ),αv(Υ))|ΥZ}.

    Definition 2.3. A TSF relation (TSFR), A on I×I is defined as:

    A={(Υl,αA(Υζ),βA(Υζ),γA(Υζ))|ΥlI×I},

    where, αA denotes truth membership degree, βA denotes abstinence degree and γA represents falsity membership degree.

    αA:I×I[0,1],   βA:I×I[0,1]andγA:I×I[0,1]

    in such a way that

    0αTA+βTA+γTA1,  ΥlI×I.

    Definition 2.4. The TSFPR (TSF preference relation) can be explained as: Suppose

    Θ=ζ1,ζ2,ζ3,,ζ

    be a set of alternatives. A TSFPR on Θ is symbolized by a matrix

    O=(dab)×,

    where

    dab=(ΥaΥb,α(ΥaΥb),βΥaΥb,γΥaΥb)

    for all crisp values of 1a,bn in I. The symbol αab is used to symbolize the extent to which the attribute Υa is chosen in relation to the component Υb. Similarly, βab symbolizes the extent to which this Υa is not chosen in relation to Υb. Lastly, γab indicates the degree of stance among the elements Υa and Υb and

    πab=T1αTabβTabγTab

    is hesitancy degree, which follows the condition αTab,βTab,γTab[0,1],

    0αTab=βTab=γTab1.

    Definition 2.5. For comparing two TSF values (TSFV), we also use the score function and accuracy function.

    Consider

    =(α,β,γ)

    is a TSFV. The score function S() is symbolized and defined as

    S()=αTβT×γT,

    where S()[1,1].

    Definition 2.6. Consider I is a fixed set,

    1=(α,β,γ)

    and

    2=(α,β,γ)

    are two TSFVs on I. Then

    (ⅰ) If S(1)S(2) then 12;

    (ⅱ) If S(1)S(2) then 12.

    Definition 2.7. Let

    Γ:[0,1]×[0,1][0,1]

    is called TN, which is a binary function. If Υ,ζ,n[0,1] meets the observing criteria

    (ⅰ) (Υ,ζ)=Υ.

    (ⅱ) Γ(Υ,ζ)=Γ(ζ,Υ).

    (ⅲ) Γ(Υ,F(ζ,n))=(Γ(Υ,ζ),n).

    (ⅳ) Γ(Υ,ζ)Γ(n,b) if Υn and bζ.

    Definition 2.8. A TN X is said to be a TCN such that

    Y(Υ,l)=1X(1;Υ,1l)  (Υ,l)[0,1]2.

    The aforementioned statement of TNs along with TCN is established as the Hamacher product and Hamacher sum defined by

    ΓHμ(Υ,ζ)={Υlμ+(1μ)(Υ+lΥl),if μ>0;ΥlΥ+lΥl,if μ=0;

    and

    ΓHμ(Υ,ζ)={Υ+lΥl(1μ)Υl1(1μ)(Υl),if μ>0;Υ+l2Υl1Υl,if μ=0.

    Definition 2.9. A TSFS X on a fixed set Z is defined as:

    V={(Υ,[αv,u(Υ),αv,l(Υ)],[βv,u(Υ),βv,l(Υ)],[γv,u(Υ),γv,l(Υ)])|ΥZ},

    where αv(Υ) denotes the truth membership degree, βv(Υ) denotes the abstinence degree, γv(Υ) represents the falsity membership degree [47],

    αv:I[0,1],   βv:I[0,1]andγv:I[0,1]

    in such a way that

    0[αTv,u(Υ),αTv,l(Υ)]+[βTv,u(Υ),βTv,l(Υ)]+[γTv,u(Υ),γTv,l(Υ)]1,  TZ+,πv,u(Υ)=T1(αTv,u(Υ)+βTv,u(Υ)+γTv,u(Υ)),πv,l(Υ)=T1(αTv,l(Υ)+βTv,l(Υ)+γTv,l(Υ)),

    is called upper and lower hesitancy degree, respectively.

    Definition 2.10. The TSF preference relation TSFPR can be explained as: Suppose

    Θ=ζ1,ζ2,ζ3,,ζ

    be a set of alternatives. A TSFPR on Θ is symbolized by a matrix

    O=(dab)×,

    where

    dab=(ΥaΥb,α(ΥaΥb),βΥaΥb,γΥaΥb)

    for all crisp values of 1a,b n from I. Along with αab denotes the degree to which the element Υa is close to the element Υb and βab denotes the degree to which the element Υa is not selected to the element Υb and γab represents the abstinence degree between the element Υa and Υb and

    πuab=T1αTab,uβTab,uγTab,u,   πζab=T1αTab,lβTab,lγTab,l

    is a hesitancy degree which follows the condition

    {αTab,u,αTab,l,βTab,u,βTab,l,γTab,u,γTab,u}[0,1],   0[αTab,u,αTab,l]+[βTab,u,βTab,l]+[γTab,u,γTab,u]1.

    During the aforementioned part, we have presented the IVTSFG by using the Hamacher TN and TCN. In addition, we determine the energy associated with the variable IVTSFG and analyze its significant characteristics. In this context, we are further curious to see the energy associated with the splitting of IVTSFG and the shadow IVTSFG. It extends traditional fuzzy sets by incorporating interval values for membership, non-membership, abstention, and refusal degrees, offering a richer structure to model uncertainty with four-dimensional information. This makes it particularly suited for scenarios involving complex human judgments.

    Definition 3.1. If

    ϝ=(V,E)

    is a graph, then by an IV fuzzy relationBon a setEwe mean an IV fuzzy set such that

    ΩB,u(xy)min(ΩA,u(Γ),ΩA,u(y)),   ΩB,l(xy)min(ΩA,l(Γ),ΩA,l(y))

    for all xyA [20].

    Definition 3.2. Let

    ϝ=(V,E)

    is an IVTSFHG on a fixed set I, where

    V={(αV,u,αV,l,βV,u,βV,l,γV,u,γV,l):Z[0,1]}

    is an IVTSFS in I and

    A={(αE,u,αE,l,βE,u,βE,l,γE,u,γE,l)|[αE,u,αE,l]:I×I[0,1],
    [βE,u,βE,l]:I×I[0,1],[γE,u,γE,l]:I×I[0,1]}

    is an IVTSFR on I in such a away that:

    α(Υc)[αv,u(Υ)αv,u(c)μ+(1μ)(αv,u(Υ)+αv,u(c)αv,u(Υ)αv,u(c)),αv,l(Υ)αv,l(c)μ+(1μ)(αv,l(Υ)+αv,l(c)αv,l(Υ)αv,l(c))],β(Υc)[βv,u(Υ)+βv,u(c)βv,u(Υ)βv,u(c)(1μ)βv,u(Υ)βv,u(c)1(1μ)βv,u(Υ)βv,u(c),βv,l(Υ)+βv,l(c)βv,l(Υ)βv,l(c)(1μ)βv,l(Υ)βv,l(c)1(1μ)βv,l(Υ)βv,l(c)],γ(Υc)[γv,u(Υ)+γv,u(c)γv,u(Υ)γv,u(c)(1μ)γv,u(Υ)γv,u(c)1(1μ)γv,u(Υ)γv,u(c),γv,l(Υ)+γv,l(c)γv,l(Υ)γv,l(c)(1μ)γv,l(Υ)γv,l(c)1(1μ)γv,l(Υ)γv,l(c)],

    Υ,cI, where

    0αTE,u(Υc)+βTE,u(Υc)+γTE,u(Υc)1.

    Here V and E are the IVTSF vertex set and IVTSF edge set of G, respectively, where A is symmetric IVTSFR on V. If A is not symmetric on V, then

    ϝ=(V,E)

    is called IVTSFHDG.

    Definition 3.3. The notion (AM) is used for the adjacency matrix of the

    IVTSFHG=(V,E)

    is developed as

    A(ϝ)=([A(αE,u(ΥχΥτ)),A(αE,l(ΥχΥτ))],[A(βE,u(ΥχΥτ)),A(βE,l(ΥχΥτ))],[A(γE,u(ΥχΥτ)),A(γE,l(ΥχΥτ))]),

    which is a square matrix

    A(ϝ)=[Iχτ],[Iχτ]=([A(αE,u(ΥχΥτ)),A(αE,l(ΥχΥτ))],[A(βE,u(ΥχΥτ)),A(βE,l(ΥχΥτ))],[A(γE,u(ΥχΥτ)),A(γE,l(ΥχΥτ))]),

    where A(αE,u(ΥχΥτ)),A(αE,l(ΥχΥτ)),A(βE,u(ΥχΥτ)),A(βE,l(ΥχΥτ)),A(γE,u(ΥχΥτ)), and A(γE,l(ΥχΥτ)) represent the IV truth, abstinence, and falsity membership degree between Υχ and Υτ, respectively.

    Definition 3.4. Consider an

    IVTSFHGG=(V,E).

    The adjacency matrix based on the spectrum of an IVTSFHGA(ϝ) is developed as (χ,H,Q), given χ,H,Q are eigenvalues' set of A(αA(ΥχΥτ)),A(βA(ΥχΥτ)),A(γA(ΥχΥτ)), respectively.

    Definition 3.5. The energy of an

    IVTSFHG=(V,E)

    is developed by:

    π=(π(αA(ΥχΥτ)),π(βA(ΥχΥτ)),π(γA(ΥχΥτ)))=(χ=1[|ϕχ,u|,|ϕχ,ζ|],χ=1[|υχ,u|,|υχ,ζ|],χ=1[|ψχ,u|,|ψχ,ζ|]),

    where ϕχχ,υH,ψQ.

    Theorem 3.1. Suppose

    ϝ=(V,E)

    is an IVTSFHG with adjacency matrix A(ϝ). Consider ϕ1,ϕ2,ϕ3,,ϕ are the eigenvalues of A(αA(ΥχΥτ)) having the condition

    ϕχϕτ(χ<τ),   υ1,υ2,υ3,,υ

    are the eigenvalues of A(βA(ΥχΥτ)) having the condition

    υχυτ(χ<τ)

    and ψ1,ψ2,ψ3,,ψ are the eigenvalues of A(γA(ΥχΥτ)) having the condition

    ϕχϕτ(χ<τ),

    then

    (i)χ=1[ϕχ,u,ϕχ,l]=[0,0],   χ=1[υχ,u,υχ,l]=[0,0],   χ=1[ψχ,u,ψχ,l]=[0,0];

    (ii)χ=1[ϕ2χ,u,ϕ2χ,ζ]=21χ<τm[α2A,u(ΥχΥτ),α2A,ζ(ΥχΥτ)],

    χ=1[υuχ,u,υuχ,ζ]=21χ<τm[β2A,u(ΥχΥτ),β2A,ζ(ΥχΥτ)],

    χ=1[ψ2χ,u,ψ2χ,ζ]=21χ<τm[γ2A,u(ΥχΥτ),γ2A,ζ(ΥχΥτ)];

    where ϕχ,u,ϕχ,ζχ,υχ,u,υχ,ζH and ψχ,u,ψχ,ζQ.

    Proof. (i) It is obvious that the trace of a matrix is the same as the sum of eigenvalues of that matrix, and in the case of simple a graph, diagonal entries of a matrix are always 0.

    (ii) Through the use of the trace properties in the matrix, we've obtained

    Tr(A2(αA(ΥχΥτ)))(ϝ)=([0,0]+[α2A,u(Υ1Υ2),α2A,ζ(Υ1Υ2)]+[α2A,u(Υ1Υ3),α2A,ζ(Υ1Υ3)]++[α2A,u(Υ1Υ),α2A,ζ(Υ1Υ)])+([α2A,u(Υ2Υ1)+α2A,ζ(Υ2Υ1)]+[0,0]+[α2A,u(Υ2Υ3),α2A,ζ(Υ123)]++[α2A,u(Υ2Υ),α2A,ζ(Υ2Υ)])++([α2A,u(ΥΥ1)+α2A,ζ(ΥΥ1)]+[α2A,u(ΥΥ2),α2A,ζ(ΥΥ2)]++[α2A,u(ΥΥ),α2A,ζ(ΥΥ)]+[0,0]).

    Hence,

    χ=1[ϕ2χ,u,ϕ2χ,ζ]=21χ<τm[α2A,u(ΥχΥτ),α2A,ζ(ΥχΥτ)](ϕχχ).

    Likewise, we can show that

    χ=1[υ2χ,u,υ2χ,ζ]=21χ<τm[β2A,u(ΥχΥτ),β2A,ζ(ΥχΥτ)](υχχ),χ=1[ψ2χ,u,ψ2χ,ζ]=21χ<τm[α2A,u(ΥχΥτ),α2A,ζ(ΥχΥτ)](ψχχ).

    Definition 3.6. A graph in which a new vertex Υ is added to each vertex Υ, such that Υ is connected to every vertex that is connected to Υ in ϝ with the same truth, abstinence, and falsity membership degree is known as the splitting IVTSFHG S(ϝ) of an IVTSFHG.

    Theorem 3.2. Let S(ϝ) be a splitting IVTSFHG of an IVTSFHGϝ. Then

    A(S(ϝ))=A(ϝ).

    Consider an IVTSFHG having the vertex sets Υ1,Υ2,,Υ. The AM of ϝ is a:

    A(ϝ)=[A(αA,u(ΥχΥτ)),A(αA,ζ(ΥχΥτ))],[A(βA,u(ΥχΥτ)),A(βA,ζ(ΥχΥτ))],[A(γA,u(ΥχΥτ)),A(γA,ζ(ΥχΥτ))]

    and

    [A(αA,u(ΥχΥτ)),A(αA,u(ΥχΥτ))]=[[0,0][αA,u(Υ1Υ2),αA,ζ(Υ1Υ2)][αA,u(Υ1Υ),αA,ζ(Υ1Υ)][αA,u(Υ2Υ1),αA,ζ(Υ2Υ1)][0,0][αA,u(Υ2Υ),αA,ζ(Υ2Υ)][αA,u(ΥΥ1),αA,ζ(ΥΥ1)]αA,u(ΥΥ2),αA,ζ(ΥΥ2)[0,0]].

    Proof. Suppose new vertexs Υ1,Υ2,,ΥN corresponding to the vertex Υ1,Υ2,,ΥN are built in ϝ to obtain S[αA,u(ΥχΥτ),αA,ζ(ΥχΥτ)](ϝ) is in a manner that

    M(Υχ)=M(Υχ),

    along the crisp values of

    1χm.

    The notion's A[αA,u(ΥχΥτ),αA,ζ(ΥχΥτ)](ϝ) block matrix is shown following:

    S[αA,u(ΥχΥτ),αA,ζ(ΥχΥτ)]S(ϝ)=[[0,0]x1x2[0,0]x3x4x5[0,0]x6x7[0,0]x8x9x10[0,0]x11x12[0,0][0,0]x13x14[0,0][0,0][0,0]x15[0,0]x16[0,0][0,0][0,0]x17x18[0,0][0,0][0,0][0,0]],

    where

    x1=[αA,u(Υ1Υ2),αA,ζ(Υ1Υ2)],  x2=[αA,u(Υ1Υ),αA,ζ(Υ1Υ)],x3=[αA,u(Υ1Υ2),αA,ζ(Υ1Υ2)],  x4=[αA,u(Υ1Υ),αA,ζ(Υ1Υ)],x5=[αA,u(Υ2Υ1),αA,ζ(Υ2Υ1)], x6=[αA,u(Υ2Υ),αA,ζ(Υ2Υ)],x7=[αA,u(Υ2Υ1),αA,ζ(Υ2Υ1)],  x8=[αA,u(Υ2Υ),αA,ζ(Υ2Υ)],x9=[αA,u(ΥΥ1),αA,ζ(ΥΥ1)],  x10=[αA,u(ΥΥ2),αA,ζ(ΥΥ2)],x11=[αA,u(ΥΥ1),αA,ζ(ΥΥ1)],   x12=[αA,u(ΥΥ2),αA,ζ(ΥΥ2)],x13=[αA,u(Υ1Υ2),αA,ζ(Υ1Υ2)],    x14=[αA,u(Υ1Υ),αA,ζ(Υ1Υ)],x15=[αA,u(Υ2Υ1),αA,ζ(Υ2Υ1)],   x16=[αA,u(Υ2Υ),αA,ζ(Υ2Υ)],eta17=[αA,u(ΥΥ1),αA,ζ(ΥΥ1)],  x18=[αA,u(ΥΥ2),αA,ζ(ΥΥ2)].

    That is,

    [A(αA,u(ΥχΥτ)),A(αA,u(ΥχΥτ))](S(G))=[1110][A(αA,u(ΥχΥτ)),A(αA,u(ΥχΥτ))].

    The eigenvalues of [1110] and [A(αA,u(ΥχΥτ)),A(αA,u(ΥχΥτ))](S(G)) are 1±52 and ϕχ, where χ=1 where χ is from 1 to m. This implies that

    E([A(αA,u(ΥχΥτ)),A(αA,u(ΥχΥτ))])(S(G))=χ=1|(1±52)(ϕχ)|=χ=1(1+52+152)(|ϕχ|)=χ=1[(|ϕχ,u|),(|ϕχ,l|)].

    Similarly, we can show that

    E([A(βA,u(ΥχΥτ)),A(βA,ζ(ΥχΥτ))])(S(G))=χ=1[(|υχ,u|),(|υχ,l|)]

    and

    E([A(γA,u(ΥχΥτ)),A(γA,u(ΥχΥτ))])(S(G))=χ=1[(|ψχ,u|),(|ψχ,l|)].

    By this, we obtain

    A(S(ϝ))=A(ϝ).

    Definition 3.7. A connected IVTSFHG is said to be a shadow IVTSFHG of Sh(ϝ) If it can be shown by making duplicates of G, it is referred to as G and G. Link every Upsilon prime node in G to the nearby residents of the associated Υ node in G using the identical truth, abstinence, and negative degree.

    Theorem 3.3. Let Sh(ϝ) be a shadow IVTSFHG of an IVTSFHGϝ. Then

    A(Sh(ϝ))=2A(ϝ).

    Consider an IVTSFHG having the vertex sets Υ1,Υ2,,Υ. The AM of the graph is a

    A(ϝ)=A(ϕA(ΥχΥτ)),A(υA(ΥχΥτ)),A(ψA(ΥχΥτ)),

    where,

    [A(αA,u(ΥχΥτ)),A(αA,u(ΥχΥτ))]=[[0,0][αA,u(Υ1Υ2),αA,ζ(Υ1Υ2)][αA,u(Υ1Υ),αA,ζ(Υ1Υ)][αA,u(Υ2Υ1),αA,ζ(Υ2Υ1)][0,0][αA,u(Υ2Υ),αA,ζ(Υ2Υ)][αA,u(ΥΥ1),αA,ζ(ΥΥ1)]αA,u(ΥΥ2),αA,ζ(ΥΥ2)[0,0]].

    Proof. Suppose new vertexs Υ1,Υ2,,Υn corresponding to the vertex Υ1,Υ2,,Υn are built in ϝ to obtain Sh[(αE,u(ΥχΥτ)),(αE,l(ΥχΥτ))](ϝ) in such a way that

    (Υχ)=M(Υχ),

    where

    χ={1,2,3,,}.

    The block matrix of A[(αE,u(ΥχΥτ)),(αE,l(ΥχΥτ))](Sh(ϝ)) is given below:

    A[(αE,u(ΥχΥτ)),(αE,l(ΥχΥτ))](Sh(ϝ))=[[0,0]y1y2[0,0]y3y4y5[0,0]y6y7[0,0]y8y9y10[0,0]y11y12[0,0][0,0]y13y14[0,0]y15y16y17[0,0]y18y19[0,0]y20y21y22[0,0]y23y24[0,0]],

    where

    y1=[αE,u(Υ1Υ2),αE,l(Υ1Υ2)],   y2=[αE,u(Υ1Υ),αE,l(Υ1Υ)],y3=[αE,u(Υ1Υ2),αE,l(Υ1Υ2)],   y4=[αE,u(Υ1Υ),αE,l(Υ1Υ)],y5=[αE,u(Υ2Υ1),αE,l(Υ2Υ1)],   y6=[αE,u(Υ2Υ),αE,l(Υ2Υ)],y7=[αE,u(Υ2Υ1),αE,l(Υ2Υ1)],   y8=[αE,u(Υ2Υ),αE,l(Υ2Υ)],y9=[αE,u(ΥΥ1),αE,l(ΥΥ1)],   y10=[αE,u(ΥΥ2),αE,l(ΥΥ2)],y11=[αE,u(ΥΥ1),αE,l(ΥΥ1)],   y12=[αE,u(ΥΥ2),αE,l(ΥΥ2)],y13=[αE,u(Υ1Υ2),αE,l(Υ1Υ2)],   y14=[αE,u(Υ1Υ),αE,l(Υ1Υ)],y15=[αE,u(Υ1Υ2),αE,l(Υ1Υ2)],   y16=[αE,u(Υ1Υ),αE,l(Υ1Υ)],y17=[αE,u(Υ2Υ1),αE,l(Υ2Υ1)],   y18=[αE,u(Υ2Υ),αE,l(Υ2Υ)],y19=[αE,u(Υ2Υ1),αE,l(Υ2Υ1)],   y20=[αE,u(Υ2Υ),αE,l(Υ2Υ)],y21=[αE,u(ΥΥ1),αE,l(ΥΥ1)],   y22=[αE,u(ΥΥ2),αE,l(ΥΥ2)],y23=[αE,u(ΥΥ1),αE,l(ΥΥ1)],   y24=[αE,u(ΥΥ2),αE,l(ΥΥ2)].

    That is,

    A[(αE,u(ΥχΥτ)),(αE,l(ΥχΥτ))](Sh(ϝ))=[A[(αE,u(ΥχΥτ)),(αE,l(ΥχΥτ))](ϝ)[A(αE,u(ΥχΥτ)),A(αE,l(ΥχΥτ))](ϝ)A[(αE,u(ΥχΥτ)),(αE,l(ΥχΥτ))](ϝ)A[(αE,u(ΥχΥτ)),(αE,l(ΥχΥτ))](ϝ)]=[1111]A[(αE,u(ΥχΥτ)),(αE,l(ΥχΥτ))](ϝ).

    The eigenvalues of [1111] and A[(αE,u(ΥχΥτ)),(αE,l(ΥχΥτ))](ϝ) are 0,2 and ϕχ, where χ is from 1 to m, respectively. For that reason,

    A[(αE.u(ΥχΥτ)),(αE,l(ΥχΥτ))](Sh(ϝ))=χ=1|2(ϕχ)|=2χ=1(|ϕχ|).

    Similarly, we can also express that

    A[(βE,u(ΥχΥτ)),(βE,l(ΥχΥτ))](Sh(ϝ))=2χ=1(|υχ|)

    and

    A[(γE,u(ΥχΥτ)),(γE,l(ΥχΥτ))](Sh(ϝ))=2χ=1(|ψχ|).

    The outcome is

    A(Sh(ϝ))=2A(ϝ).

    Definition 3.8. Consider a TSFHDG,

    ϝ=(V,E).

    The spectrum of the adjacency matrix of a TSFHDG A(ϝ) is explained as (χ,H,Q), where P, H and Q are the eigenvalues of A(αA(ΥχΥτ)),A(βA(ΥχΥτ)) and A(γA(ΥχΥτ)), respectively.

    Definition 3.9. Consider an IVTSFHDG,

    ϝ=(V,E).

    The spectrum of the adjacency matrix of an IVTSFHDG A(ϝ) is explained as (χ,H,Q), where χ, H, and Q are the set of eigenvalues of A[(αE,u(ΥχΥτ)),(αE,l(ΥχΥτ))],A[(βE,u(ΥχΥτ)),(βE,l(ΥχΥτ))] and A[(γE,u(ΥχΥτ)),(γE,l(ΥχΥτ))], respectively.

    Definition 3.10. The energy of a TSFHDG,

    ϝ=(V,E)

    on vertices is formulated as:

    A(ϝ)=(A(αA(ΥχΥτ)),A(βA(ΥχΥτ)),A(γA(ΥχΥτ)))=(χ=1|Re(tχ)|,χ=1|Re(uχ)|,χ=1|Re(vχ)|),

    where tχχ, uχ H, and vχQ. Record that Re(tχ), Re(uχ), and Re(vχ) denotes the real value of the eigenvalues of tχ, uχ, and vχ.

    Definition 3.11. The energy of an IVTSFHDG,

    ϝ=(V,E)

    on vertices is formulated as:

    A(ϝ)=(A[(αE,u(ΥχΥτ)),(αE,l(ΥχΥτ))],A[(βE,u(ΥχΥτ)),(βE,l(ΥχΥτ))],A[(γE,u(ΥχΥτ)),(γE,l(ΥχΥτ))])=(χ=1[|Re(tχ,u)|,|Re(tχ,l)|],χ=1[|Re(uχ,u)|,|Re(uχ,l)|],χ=1[|Re(vχ,u)|,|Re(vχ,l)|]),

    where tχ,u,tχ,lχ, uχ,u,uχ,l H and vχ,u,vχ,lQ. Record that Re([tχ,u,tχ,l]), Re([uχ,u,uχ,l]) and Re([vχ,u,vχ,l]) denotes the real value of the eigenvalues of tχ,u,tχ,l, uχ,u,uχ,l,vχ,u and vχ,l.

    The characteristics and Randić energy of IVTSFG are discussed in this section.

    Definition 4.1. Let an

    IVTSFHGG=(V,A)

    on vertices. An × matrix

    R(ϝ)=(R(αϝ(ΥχΥτ),βϝ(ΥχΥτ),γϝ(ΥχΥτ)))=Υχτ

    of ϝ is defined as a Randić matrix with these condition:

    Υχτ={[0,0],if[(χ,u),(χ,l)]=[(τ,u),(τ,l)]  and  [Υχ,u,Υχ,l]are not adjacent [Υτ,u,Υτ,l],[1Dϝ(Υχ,u)Dϝ(Υτ,u),1Dϝ(Υχ,l)Dϝ(Υτ,l)],ifthe vertexs [Υχ,u,Υχ,l] and Υτ of ϝ are adjacent to.

    Definition 4.2. Consider an IVTSFHG,

    ϝ=(V,A).

    The spectrum of Randić matrix of an IVTSFHG R(ϝ) is formulated as (χR,HR,QR), where χR, HR, and QR are the set of eigenvalues of R[(αE,u(ΥχΥτ)),(αE,l(ΥχΥτ))], R[(βE,u(ΥχΥτ)),(βE,l(ΥχΥτ))], and R[(γE,u(ΥχΥτ)),(γE,l(ΥχΥτ))], respectively.

    Definition 4.3. The Randić energy of an IVTSFHG,

    ϝ=(V,A)

    is formulated as:

    RE=(RE[(αE,u(ΥχΥτ)),(αE,l(ΥχΥτ))],RE[(βE,u(ΥχΥτ)),(βE,l(ΥχΥτ))],RE[(γE,u(ΥχΥτ)),(γE,l(ΥχΥτ))])=(χ=1[|ϕχ,u|,|ϕχ,l|],χ=1[|υχ,u|,|υχ,l|],χ=1[|ψχ,u|,|ψχ,l|]),

    where ϕχ,u,ϕχ,lχ, υχ,u,υχ,lH and ψχ,u,ψχ,lQ.

    Lemma 4.1. Let on m vertices an IVTSFHG,

    ϝ=(V,A)

    and

    R(ϝ)=(R([αG,u(ΥχΥτ),αG,l(ΥχΥτ)],[βG,u(ΥχΥτ),βG,l(ΥχΥτ)],[γG,u(ΥχΥτ),γG,l(ΥχΥτ)]))

    be its Randić matrix. Then,

    (1) Tr(R(ϝ))=[0,0];

    (2) Tr(R2(ϝ))=2χτ[1Dϝ(Υχ,u)Dϝ(Υτ,u),1Dϝ(Υχ,l)Dϝ(Υτ,l)];

    (3) Tr(R3(ϝ))=2χτ[1Dϝ(Υχ,u)Dϝ(Υτ,u)(sχ,sτ1Dϝ(Υs,u)),1Dϝ(Υχ,l)Dϝ(Υτ,l)(sχ,sτ1Dϝ(Υs,l))];

    (4)

    xTr(R4(ϝ))=χ=1[(χτ1Dϝ(Υχ,u)Dϝ(Υτ,u))2,(χτ1Dϝ(Υχ,l)Dϝ(Υτ,l))2]+pq[1Dϝ(Υχ,u)Dϝ(Υq,u)(sχ,sτ1Dϝ(Υs,u))2,1Dϝ(Υχ,l)Dϝ(Υτ,l)(sχ,sτ1Dϝ(Υs,l))2].

    Proof. (1) Due to the fact that R(ϝ)'s orthogonal elements add to 0. So,

    Tr(R(ϝ))=[0,0].

    (2) Furthermore, we establish the Tr(R2(ϝ)) when

    χ=q;R2[(α(Υχ,uΥχ,u)),(α(Υχ,lΥχ,l))](ϝ)=τ=1R[(α(Υχ,uΥτ,u));(α(Υχ,lΥτ,l))](ϝ)R[(α(Υτ,uΥχ,u)),(α(Υτ,lΥχ,l))](ϝ)=τ=1R[(α(Υχ,uΥτ,u)),(α(Υχ,lΥτ,l))]2(ϝ)=χτR[(α(Υχ,uΥτ,u)),(α(Υχ,lΥτ,l))]2(ϝ)=χτ[1Dα(Υχ)Dα(Υτ,u),1Dα(Υχ,l)Dα(Υτ,l)];

    when

    pq;R2[(α(Υχ,uΥτ,u)),(α(Υχ,lΥτ,l))](ϝ)=s=1R[(α(Υχ,uΥs,u)),(α(Υχ,lΥs,l))](ϝ)R[(α(Υs,uΥτ,u)),(α(Υs,lΥτ,l))](ϝ)=R[(α(Υχ,uΥχ,u)),(α(Υχ,lΥχ,l))](ϝ)R[(α(Υχ,uΥτ,u)),(α(Υχ,lΥτ,l))](ϝ)+R[(α(Υχ,uΥτ,u)),(α(Υχ,lΥτ,l))](ϝ)R[(α(Υτ,uΥτ,u)),(α(Υτ,lΥτ,l))](ϝ)+sχ,sτR[(α(Υχ,uΥs,u)),(α(Υχ,lΥs,l))](ϝ)R[(α(Υs,uΥτ,u)),(α(Υs,lΥτ,l))](ϝ)=[1Dα(Υχ,u)Dα(Υτ,u)sχ,sτ1Dα(Υs,u),1Dα(Υχ,l)Dα(Υτ,l)sχ,sτ1Dα(Υs,l)];Tr(R2[(α(Υχ,uΥτ,u)),(α(Υχ,lΥτ,l))])(ϝ)=χ=1χτ[1Dα(Υχ,u)Dα(Υτ,u),1Dα(Υχ,l)Dα(Υτ,l)]=2χτ[1Dα(Υχ,u)Dα(Υτ,u),1Dα(Υχ,l)Dα(Υτ,l)].

    Additionally, it is useful to state that

    Tr(R2[(β(Υχ,uΥτ,u)),(β(Υχ,lΥτ,l))])(ϝ)=2χτ[1Dβ(Υχ,u)Dβ(Υτ,u),1Dβ(Υχ,l)Dβ(Υτ,l)],Tr(R2[(γ(Υχ,uΥτ,u)),(γ(ΥχΥ,lτ,l))])(ϝ)=2χτ[1Dγ(Υχ,u)Dγ(Υτ,u),1Dγ(Υχ,l)Dγ(Υτ,l)].

    Consequently,

    Tr(R2(ϝ))=2χτ[1Dϝ(Υχ,u)Dϝ(Υτ,u),1Dϝ(Υχ,l)Dϝ(Υτ,l)].

    (3) For R3[(α(Υχ,uΥχ,u)),(α(Υχ,lΥχ,l))](ϝ), we have

     R3[(α(Υχ,uΥχ,u)),(α(Υχ,lΥχ,l))](ϝ)=χ=1R[(α(Υχ,uΥτ,u)),(α(Υχ,lΥτ,l))](ϝ)R2[(α(Υτ,uΥχ,u)),(α(Υτ,lΥχ,l))](ϝ)=χτ[1Dα(Υχ,u)Dα(Υτ,u)R2(α(Υχ,uΥτ,u)),1Dα(Υχ,l)Dα(Υτ,l)R2(α(Υχ,lΥτ,l))](ϝ)=χτ[1Dα(Υχ,u)Dα(Υτ,u)(sχ,sτ1Dα(Υs,u)),1Dα(Υχ,l)Dα(Υτ,l)(sχ,sτ1Dα(Υs,l))],

    so,

    Tr(R3[(α(Υχ,uΥχ,u)),(α(Υχ,lΥχ,l))](ϝ))=χ=1χτ[1Dα(Υχ,u)Dα(Υτ,u)(sχ,sτ1Dα(Υs,u)),1Dα(Υχ,l)Dα(Υτ,l)(sχ,sτ1Dα(Υs,l))]=2χτ[1Dα(Υχ,u)Dα(Υτ,u)(sχ,sτ1Dα(Υs,u)),1Dα(Υχ,l)Dα(Υτ,l)(sχ,sτ1Dα(Υs,l))].

    Additionally, it is useful to state that

    Tr(R3[(β(Υχ,uΥτ,u)),(β(Υχ,lΥτ,l))])(ϝ)=2χτ[1Dβ(Υχ,u)Dβ(Υτ,u)(sχ,sτ1Dβ(Υs,u)),1Dβ(Υχ,l)Dβ(Υτ,l)(sχ,sτ1Dβ(Υs,l))]

    and

    Tr(R3[(γ(Υχ,uΥτ,u)),(γ(ΥχΥ,lτ,l))])(ϝ)=2χτ[1Dγ(Υχ)Dγ(Υτ,u)(sχ,sτ1Dγ(Υs,u)),1Dγ(Υχ,l)Dγ(Υτ,l)(sχ,sτ1Dγ(Υs,l))].

    Hence,

    Tr(R3(ϝ))=2χτ[1Dϝ(Υχ,u)Dϝ(Υq,u)(sχ,sτ1Dϝ(Υs,u)),1Dϝ(Υχ,l)Dϝ(Υτ,l)(sχ,sτ1Dϝ(Υs,l))].

    (4) We must locate

    Tr(R4[(α(Υχ,uΥτ,u)),(α(Υχ,lΥτ,l))](ϝ))=p,τ=1|R2[(α(Υχ,uΥτ,u)),(α(Υχ,lΥτ,l))](ϝ)|2=χ=q|R2[(α(Υχ,uΥτ,u)),(α(Υχ,lΥτ,l))](ϝ)|2+pq|R2[(α(Υχ,uΥτ,u)),(α(Υχ,lΥτ,l))](ϝ)|2=χ=1[(χτ1Dα(Υχ,u)Dα(Υτ,u))2,(χτ1Dα(Υχ,l)Dα(Υτ,l))2]+pq[1Dα(Υχ,u)Dα(Υτ,u)(sχ,sτ1Dα(Υs,u))2,1Dα(Υχ,l)Dα(Υτ,l)(sχ,sτ1Dα(Υs,l))2].

    Likewise, it is easy to express that

    Tr(R4[(β(Υχ,uΥτ,u)),(β(Υχ,lΥτ,l))](ϝ))=χ=1[(χτ1Dβ(Υχ,u)Dβ(Υq,u))2,(χτ1Dβ(Υχ,l)Dβ(Υτ,l))2]+pq[1Dβ(Υχ,u)Dβ(Υτ,u)(sχ,sτ1Dβ(Υs,u))2,1Dβ(Υχ,l)Dβ(Υτ,l)(sχ,sτ1Dβ(Υs,l))2]

    and

    Tr(R4[(γ(Υχ,uΥτ,u)),(γ(Υχ,uΥτ,l))](ϝ))=χ=1[(χτ1Dγ(Υχ,u)Dγ(Υτ,u))2,(χτ1Dγ(Υχ,l)Dγ(Υτ,l))2]+pq[1Dγ(Υχ,u)Dγ(Υτ,u)(sχ,sτ1Dγ(Υs,u))2,1Dγ(Υχ,l)Dγ(Υτ,l)(sχ,sτ1Dγ(Υs,l))2].

    The outcome is,

    Tr(R4(ϝ))=χ=1[(χτ1Dϝ(Υχ,u)Dϝ(Υτ,u))2,(χτ1Dϝ(Υχ,l)Dϝ(Υτ,l))2]+χq[1Dϝ(Υχ,u)Dϝ(Υτ,u)(sχ,sτ1Dϝ(Υs,u))2,1Dϝ(Υχ,l)Dϝ(Υτ,l)(sχ,sτ1Dϝ(Υs,l))2].

    Theorem 4.1. Let on m order an IVTSFHG,

    ϝ=(V,A).

    Then

    RE(ϝ)[2χτ1Dϝ(Υχ,u)Dϝ(Υτ,u),2χτ1Dϝ(Υχ,l)Dϝ(Υτ,l)].

    Additionally, the equality is valid if and only if the graph G is an IVTSFHG with a dsingle degree node and end vertices.

    Proof. Let an IVTSFHG,

    ϝ=(V,A)

    on m vertices. The number's range of variation |ϕχ|, where χ is from 1 to m, is defined as

    |ϕχ|,=[1(χ=1|ϕχ,u|2)(1(χ=1|ϕχ,u|)2),1(χ=1|ϕχ,l|2)(1(χ=1|ϕχ,l|)2)][0,0].

    Further,

    χ=1[|ϕχ,u|2,|ϕχ,l|2]=χ=1[ϕ2χ,u,ϕ2χ,l]=Tr(R2[α(Υχ,uΥτ,u),α(Υχ,lΥτ,l)])(ϝ).

    Now,

    1Tr(R2[α(Υχ,uΥτ,u),α(Υχ,lΥτ,l)])(ϝ)1(RE[α(Υχ,uΥτ,u),α(Υχ,lΥτ,l)](ϝ))201Tr(R2[α(Υχ,uΥτ,u),α(Υχ,lΥτ,l)])(ϝ)1(RE[α(Υχ,uΥτ,u),α(Υχ,lΥτ,l)](ϝ))2RE[α(Υχ,uΥτ,u),α(Υχ,lΥτ,l)](ϝ)mTr(R2[α(Υχ,uΥτ,u),α(Υχ,lΥτ,l)])(ϝ)RE[α(Υχ,uΥτ,u),α(Υχ,lΥτ,l)](ϝ)=[2χτ1D(α)(Υχ,u)D(α)(Υτ,u),2χτ1D(α)(Υχ,l)D(α)(Υτ,l)].

    Likewise,

    RE[β(Υχ,uΥτ,u),β(Υχ,lΥτ,l)](ϝ)=[2χτ1D(β)(Υχ,u)D(β)(Υτ,u),2χτ1D(β)(Υχ,l)D(β)(Υτ,l)],RE[γ(Υχ,uΥτ,u),γ(Υχ,lΥτ,l)](ϝ)=[2χτ1D(γ)(Υχ,u)D(γ)(Υτ,u),2χτ1D(γ)(Υχ,l)D(γ)(Υτ,l)].

    Consequently,

    RE[2χτ1Dϝ(Υχ,u)Dϝ(Υτ,u),2χτ1Dϝ(Υχ,l)Dϝ(Υτ,l)].

    More, if a IVTSFHG,

    ϝ=(V,A)

    having a single degree node, then ϕχ=0 for all χ is from 1 to m, and thus

    RE[α(ΥχΥτ),α(ΥχΥτ)](ϝ)=0,

    so

    ϝ=(V,A)

    is an IVTSFHG having no link consequently

    χτ[1Dϝ(Υχ,u)Dϝ(Υτ,u),1Dϝ(Υχ,l)Dϝ(Υτ,l)]=0.

    If IVTSFHG is ϝ possesses a single degree and a single terminal vertex, then

    ϕχ=±Dα[Υχ,u,Υχ,l],

    so the variance of

    [|ϕχ,u|,|ϕχ,l|]=0,

    χ is from 1 to m.

    Therefore,

    RE=[2χτ1Dϝ(Υχ,u)Dϝ(Υτ,u),2χτ1Dϝ(Υχ,l)Dϝ(Υτ,l)].

    Theorem 4.2. Let an

    IVTSFHG=(V,A)

    possessing at least one edge and being on m vertex. Then

    RE(ϝ)2χτ[1Dϝ(Υχ,u)Dϝ(Υτ,u)2χτ1Dϝ(Υχ,u)Dϝ(Υτ,u)χ=1(χτ1Dϝ(Υχ,u)Dϝ(Υτ,u))2+pq1Dϝ(Υχ,u)Dϝ(Υτ,u)(sχ,sτ1Dϝ(Υs,u))2,1Dϝ(Υχ,l)Dϝ(Υτ,l)2χτ1Dϝ(Υχ,l)Dϝ(Υτ,l)χ=1(χτ1Dϝ(Υχ,l)Dϝ(Υτ,l))2+pq1Dϝ(Υχ,l)Dϝ(Υτ,l)(sχ,sτ1Dϝ(Υs,l))2].

    Proof. Using the Holder inequality

    χ=1[gχ,uhχ,u,gχ,lhχ,l][(χ=1giχ,u)1i,(χ=1giχ,l)1i][(χ=1hjχ,u)1j,(χ=1hjχ,l)1j].

    Here the above inequality holds for any real number [gχ,uhχ,u,gχ,lhχ,l], where χ is from 1 to m. Picking

    [gχ,u,gχ,l]=[|ϕχ,u|23,|ϕχ,l|23],  [hχ,u,hχ,l]=[|ϕχ,u|43,|ϕχ,l|43],

    i=32 and j=3, thus, we obtain

    [χ=1|ϕχ,u|2,χ=1|ϕχ,l|2]=χ=1([|ϕχ,u|23,|ϕχ,l|23])[(|ϕχ,u|4)13,(|ϕχ,l|4)13][(χ=1|ϕχ,u|)23(χ=1|ϕχ,u|4)13,(χ=1|ϕχ,l|)23(χ=1|ϕχ,l|4)13].

    All ϕ,χs0, if there is at least one edge in G. So

    [(χ=1|ϕχ,u|4),(χ=1|ϕχ,l|4)][0,0],

    along with

    RE[α(Υχ,uΥτ,u),α(Υχ,lΥτ,l)](ϝ)=χ=1[|ϕχ,u|,|ϕχ,l|][(χ=1(|ϕχ,u|2))3(χ=1|(ϕχ,u|4)),(χ=1(|ϕχ,l|2))3(χ=1|(ϕχ,l|4))]=[(χ=1(ϕ2χ,u))3(χ=1(ϕ4χ,u)),(χ=1(ϕ2χ,l))3(χ=1(ϕ4χ,l))]=[Tr(R2(α(Υχ,uΥτ,u))(ϝ))3Tr(R4(α(Υχ,uΥτ,u))(ϝ)),Tr(R2(α(Υχ,lΥτ,l))(ϝ))3Tr(R4(α(Υχ,lΥτ,l))(ϝ))]

    and

    RE[α(Υχ,uΥτ,u),α(Υχ,lΥτ,l)](ϝ)[Tr(R2(α(Υχ,uΥτ,u))(ϝ))3Tr(R4(α(Υχ,uΥτ,u))(ϝ)),Tr(R2(α(Υχ,lΥτ,l))(ϝ))3Tr(R4(α(Υχ,lΥτ,l))(ϝ))]=[χτ1D(α)(Υχ,u)D(α)(Υτ,u)2χτ1D(α)(Υχ,u)D(α)(Υτ,u)χ=1(χτ1D(α)(Υχ,u)D(α)(Υτ,u))2+pq1D(α)(Υχ,u)D(α)(Υτ,u)(sχ,sτ1D(α)(Υs,u))2,χτ1D(α)(Υχ,l)D(α)(Υτ,l)2χτ1D(α)(Υχ,l)D(α)(Υτ,l)χ=1(χτ1D(α)(Υχ,l)D(α)(Υτ,l))2+pq1D(α)(Υχ,l)D(α)(Υτ,l)(sχ,sτ1D(α)(Υs,l))2].

    Likewise,

    RE[γ(Υχ,uΥτ,u),γ(Υχ,lΥτ,l)](ϝ)χτ[1D(γ)(Υχ,u)D(γ)(Υτ,u)2χτ1D(γ)(Υχ,u)D(γ)(Υτ,u)χ=1(χτ1D(γ)(Υχ,u)D(γ)(Υτ,u))2+pq1D(γ)(Υχ,u)D(γ)(Υτ,u)(sχ,sτ1D(γ)(Υs,u))2,1D(γ)(Υχ,l)D(γ)(Υτ,l)2χτ1D(γ)(Υχ,l)D(γ)(Υτ,l)χ=1(χτ1D(γ)(Υχ,l)D(γ)(Υτ,l))2+pq1D(γ)(Υχ,l)D(γ)(Υτ,l)(sχ,sτ1D(γ)(Υs,l))2].

    Consequently,

    RE(ϝ)2χτ[1Dϝ(Υχ,u)Dϝ(Υτ,u)2χτ1Dϝ(Υχ,u)Dϝ(Υτ,u)χ=1(χτ1Dϝ(Υχ,u)Dϝ(Υτ,u))2+pq1Dϝ(Υχ,u)Dϝ(Υτ,u)(sχ,sτ1Dϝ(Υs,u))2,1Dϝ(Υχ,l)Dϝ(Υτ,l)2χτ1Dϝ(Υχ,l)Dϝ(Υτ,l)χ=1(χτ1Dϝ(Υχ,l)Dϝ(Υτ,l))2+pq1Dϝ(Υχ,l)Dϝ(Υτ,l)(sχ,sτ1Dϝ(Υs,l))2].

    Theorem 4.3. Let

    ϝ=(V,A)

    be an IVTSFHG on vertices. Then for any graph ϝ,

    RE(ϝ)Tr(R2(ϝ))(1).

    Proof. Using the convex function specification as a guide, h(a)=a2, we will acquire,

    [(1χ=1|ϕχ,u|12)2,(1χ=1|ϕχ,l|12)2]1χ=1|ϕχ,u|,|ϕχ,l|],R[α(Υχ,uΥτ,u),α(Υχ,lΥτ,l)][(1χ=1|ϕχ,u|12)2,(1χ=1|ϕχ,l|12)2].

    Subsequently,

    [|ϕχ|,|ϕχ|]1,

    thus,

    [(χ=1|a1iχ,u|)i,(χ=1|a1iχ,l|)i](m1)1iχ=1[aiχ,u,aiχ,l],

    with i=2, we obtain

    [(χ=1|ϕχ,u|12)2,(χ=1|ϕχ,l|12)2](m1)1χ=1[ϕ2χ,u,ϕ2χ,l]=[Tr(R2(α(Υχ,uΥτ,u)))m1R(α(Υχ,uΥτ,u)),Tr(R2(α(Υχ,lΥτ,l)))m1R(α(Υχ,lΥτ,l))][Tr(R2(α(Υχ,uΥτ,u)))m1,Tr(R2(α(Υχ,lΥτ,l)))m1].

    Similarly, we can simply say that

    R[β(Υχ,uΥτ,u),β(Υχ,lΥτ,l)][Tr(R2(β(Υχ,uΥτ,u)))m1,Tr(R2(β(Υχ,lΥτ,l)))m1],R[γ(Υχ,uΥτ,u),γ(Υχ,lΥτ,l)][Tr(R2(γ(Υχ,uΥτ,u)))m1,Tr(R2(γ(Υχ.lΥτ,l)))m1].

    The outcome is,

    RE(ϝ)Tr(R2(ϝ))m(m1).

    Theorem 4.4. If

    ϝ=(V,A)

    is a TSFHG with order m, then for any graph ϝ,

    RE(ϝ)Tr(R2(ϝ)).

    Proof. Every falsity-negative [a1,u,a1,l],[a2,u,a2,l],,[am,u,am,l] holds the inequality

    χ=1[a2χ,u,a2χ,l][(χ=1aχ,u)2,(χ=1aχ,l)2].

    Then,

    [(R(α(Υχ,uΥτ,u)))2,(R(α(Υχ,lΥτ,l)))2]=[(χ=1|ϕχ,u|)2,(χ=1|ϕχ,l|)2]χ=1[|ϕχ,u|2,|ϕχ,l|2]=Tr(R2[α(Υχ,uΥτ,u),α(Υχ,lΥτ,l)]).

    Consequently,

    R[(α(Υχ,uΥτ,u))2,R(α(Υχ,lΥτ,l))2]Tr(R2[α(Υχ,uΥτ,u),α(Υχ,lΥτ,l)]).

    Similarly, we can also show that

    [R(β(Υχ,uΥτ,u))2,R(β(Υχ,lΥτ,l))2]Tr(R2[β(Υχ,uΥτ,u),β(Υχ,lΥτ,l)]),[R(γ(Υχ,uΥτ,u))2,R(γ(Υχ,lΥτ,l))2]Tr(R2[γ(Υχ,uΥτ,u),γ(Υχ,lΥτ,l)]).

    The outcome is

    RE(ϝ)Tr(R2(ϝ)).

    Theorem 4.5. If

    ϝ=(V,E)

    is a TSFHG with order m, then for any graph ϝ,

    RE(ϝ)Tr(R2(ϝ))+(1)|detR(ϝ)|2.

    Proof. We know that

    [(R(α(Υχ,uΥτ,u)))2,(R(α(Υχ,lΥτ,l)))2]=[(χ=1|ϕχ,u|)2,(χ=1|ϕχ,l|)2]=χ=1[ϕ2χ,u,ϕ2χ,l]+21χτm[|ϕχ,uϕτ,u|,|ϕχ,lϕτ,l|]=Tr(R2[α(Υχ,uΥτ,u),α(Υχ,lΥτ,l)])+21χτm[|ϕχ,uϕτ,u|,|ϕχ,lϕτ,l|].

    Thus, AMGM we concluded,

    2m(m1)1χτm[|ϕχ,uϕτ,u|,|ϕχ,lϕτ,l|](|[ϕm11,u,ϕm11,l],[ϕm12,u,ϕm12,l,[ϕm1m,u,ϕm1m,l])2m(m1)=|detR[α(Υχ,uΥτ,l),α(Υχ,uΥτ,l)]|2

    and

    [(R(α(Υχ,uΥτ,u)))2,(R(α(Υχ,lΥτ,l)))2]Tr(R2[α(Υχ,uΥτ,u),α(Υχ,lΥτ,l)])+21χτm[|ϕχ,uϕτ,u|,|ϕχ,lϕτ,l|]Tr(R2[α(Υχ,uΥτ,u),α(Υχ,lΥτ,l)])+(1)|detR[α(Υχ,uΥτ,u),α(Υχ,lΥτ,l)]|2.

    Thus,

    (R[α(Υχ,uΥτ,u),α(Υχ,lΥτ,l)])[Tr(R2(α(Υχ,uΥτ,u)))+(1)|detR(α(Υχ,uΥτ,u))|2,Tr(R2(α(Υχ,lΥτ,l)))+(1)|detR(α(Υχ,lΥτ,l))|2].

    Likewise, we can also express that,

    (R[β(Υχ,uΥτ,u),β(Υχ,lΥτ,l)])[Tr(R2(β(Υχ,uΥτ,u)))+(1)|detR(β(Υχ,uΥτ,u))|2,Tr(R2(β(Υχ,lΥτ,l)))+(1)|detR(β(Υχ,lΥτ,l))|2],(R[γ(Υχ,uΥτ,u),γ(Υχ,lΥτ,l)])[Tr(R2(γ(Υχ,uΥτ,u)))+(1)|detR(γ(Υχ,uΥτ,u))|2,Tr(R2(γ(Υχ,lΥτ,l)))+(1)|detR(γ(Υχ,lΥτ,l))|2].

    The outcome is

    RE(ϝ)Tr(R2(ϝ))+(1)|detR(ϝ)|2.

    Definition 4.4. Let an IVTSFHDG,

    ϝ=(V,A)

    on m vertices. An m×m matrix

    R(ϝ)=(R(αϝ[Υχ,uΥτ,u,Υχ,lΥτ,l],βϝ[Υχ,uΥτ,u,Υχ,lΥτ,l],γϝ[Υχ,uΥτ,u,Υχ,lΥτ,l]))=[(Υχ,u)(Υτ,u),(Υχ,l)(Υτ,l)]

    of ϝ is explained as a Randić matrix with these conditions

    Υχτ={[0,0],if[(χ,u),(χ,l)]=[(τ,u),(τ,l)] and [Υχ,u,Υχ,l]not adjacent to [Υτ,u,Υτ,l],[1ϝ(Υχ,u)ϝ(Υτ,u),1Dϝ(Υχ,l)Dϝ(Υτ,l)],if[Υχ,u,Υχ,l][Υτ,u,Υτ,l].

    Definition 4.5. Consider an IVTSFHDG,

    ϝ=(V,E).

    The spectrum of Randić matrix of an IVTSFHG R(ϝ) is formulated as (PR,HR,QR), where PR, HR, and QR are eigenvalues of

    R[αA(Υχ,uΥτ,u),αA(Υχ,lΥτ,l)],   R[βA(Υχ,uΥτ,u),βA(Υχ,lΥτ,l)]

    and

    R[γA(Υχ,uΥτ,u),γA(Υχ,lΥτ,l)],

    respectively.

    Definition 4.6. The Randić energy of an IVTSFHDG,

    ϝ=(V,E)

    is formulated as:

    RE(ϝ)=(RE[αA(Υχ,uΥτ,u),αA(Υχ,lΥτ,l)],RE[βA(Υχ,uΥτ,u),βA(Υχ,lΥτ,l)],RE[γA(Υχ,uΥτ,u),γA(Υχ,lΥτ,l)])=(χ=1[|ϕχ,u|,|ϕχ,l|],χ=1[|υχ,u|,|υχ,l|],χ=1[|ψχ,u|,|ψχ,l|]),

    where ϕχ,u,ϕχ,lχ, υχ,u,υχ,lH and ψχ,u,ψχ,lQ.

    To check the authenticity and applicability of we formulate an application that deals with human trafficking. We also perform a comparative study for checking its authenticity with the current approach. Begin by imagining a professional who wants to research the issue of human trafficking and assemble a committee of four decision-makers {Γ1,Γ2,Γ3,Γ4} from different countries to select the worst country among the five countries {Y1,Y2,Y3,Y4,Y5}. Decision makers use the criteria of IVTSFHG when comparing five countries in pairs.

    Every year, millions of men, women, and children are trafficked worldwide — including right here in the United States, can happen in any community, and victims can be of any age, race, gender, or nationality. Traffickers might use the following methods to lure victims into trafficking situations:

    (1) Violence;

    (2) Manipulation;

    (3) False promises of well-paying jobs.

    Language barriers, fear of their traffickers, and/or fear of law enforcement frequently keep victims from seeking help, making human trafficking a hidden crime.

    Traffickers look for people who are easy targets for a variety of reasons, including:

    (1) Psychological or emotional vulnerability;

    (2) Economic hardship;

    (3) Lack of a social safety net;

    (4) Natural disasters;

    (5) Political instability.

    The four administrators evaluated every pair of nations, Yχ and τ, where χ and τ possess the values from 1 to 6, separately and given IVTSFV

    [Υbχτ,u,Υbχτ,l]=([αbχτ,u,αbχτ,l],[βbχτ,u,βbχτ,l],[βbχτ,u,βbχτ,l]),

    where b is from 1 to 4 with PD [αbχτ,u,αbχτ,l], prioritize Yχ over τ. The AD [βbχτ,u,βbχτ,l], where Yχ, τ both have the preference. The ND [γbχτ,u,γbχτ,l], because τ is not given preference over χ. The suggested analytical techniques for selecting a country to rank worst are listed here.

    Input: A unique group of nations

    Z={1,2,,}

    is set of executives

    x={Γ1,Γ2,,Γa}

    to complete the objective and infrastructure of IVTSFHPR

    Ob=[(dbχτ,u)m×m,(dbχτ,l)m×m]

    for each executive.

    Output: Choosing the worst countries to live in.

    (1) Initially determine every IVTSFHDG's energy and Randić energy. Qb (b is from 1, to a).

    (2) Calculate the executive weight vector for the energy and Randi's energy of IVTSFHDGs by using

    Ξb=([A((Qα,u)b)ai=1A((Qα,u)i),A((Qα,l)b)ai=1A((Qα,l)i)],[A((Qβ,u)b)ai=1A((Qα,u)i),A((Qβ,l)b)ai=1A((Qα,l)i)],[A((Qγ,u)b)ai=1A((Qα,u)i),A((Qγ,l)b)ai=1A((Qα,l)i)]);Ξb=([RE((Qα,u)b)ai=1RE((Qα,u)i),RE((Qα,l)b)ai=1RE((Qα,l)i)],[RE((Qβ,u)b)ai=1RE((Qα,u)i),RE((Qβ,l)b)ai=1RE((Qα,l)i)],[RE((Qγ,u)b)ai=1RE((Qα,u)i),RE((Qγ,l)b)ai=1RE((Qα,l)i)]);

    respectively.

    (3) By applying IVTSFA operator and IVTSFGA operator, aggregate all [d(b)χτ,u,d(b)χτ,l] where τ is from 1 to m, corresponding to the industry Yχ and obtain the T-spherical fuzzy elements (IVTSFE), d(b)χ of the country Yχ on the whole the all other countries for the executives.

    (4) Compute the collective IVTSFE dχ for countries Yχ by aggregating all d(b)χτ (b is from 1, to a) using the IVTSFWA operator and the IVTSFWG operator.

    (5) Calculate the score function S(bχ,u,bχ,l) of bχ where χ is from 1 to m.

    (6) Rank all the countries Yχ where χ is from 1 to m.

    (7) Output the suitable country.

    The TSFPRs

    Ob=[(Υbχτ,u)5×5,(Υbχτ,l)5×5]

    (b is from 1 to 4) are shown as follows:

    The energy of each IVTSFHDG is formulated below:

    E(Q1)=([3.890641,3.3108107],[3.944952,3.493447],[3.508376,2.75356]),

    E(Q2)=([3.928878,3.431376],[3.853645,3.1132687],[3.70876,3.406579]),

    E(Q3)=([3.183152,2.732871],[3.789294,3.341306],[3.852292,3.0448514]),

    E(Q4)=([3.856494,3.358533],[4.0919205,3.5953166],[3.661323,3.168921]).

    The weight vector of each executive can be calculated as:

    Ξb=([A((Qα,u)b)ai=1A((Qα,u)i),A((Qα,l)b)ai=1A((Qα,l)i)],[A((Qβ,u)b)ai=1A((Qβ,u)i),A((Qβ,l)b)ai=1A((Qβ,l)i)],[A((Qγ,u)b)ai=1A((Qγ,u)i),A((Qγ,l)b)ai=1A((Qγ,l)i)]),Ξ1=([0.3294,0.25798],[0.2516,0.25794],[0.23816,0.2225]),Ξ2=([0.33269,0.26737],[0.24579,0.22987],[0.25176,0.2753]),Ξ3=([0.26954,0.21294],[0.21667,0.24671],[0.26151,0.27869]),Ξ4=([0.32656,0.2616],[0.26096,0.26546],[0.248549,0.25609]).

    The IVTSFHA operator is formulated as:

    IVTSFHA(d(b)p1,d(b)p2,,d(b)p3)=(1dτ)=([Tτ=1(1+(1+)(ατ,u)T)1τ=1(1(ατ,u)T)1τ=1(1+(1+)(ατ,u)T)1+(1+)τ=1(1(ατ,u)T)1,Tτ=1(1+(1+)(ατ,l)T)1τ=1(1(ατ,l)T)1τ=1(1+(1+)(ατ,l)T)1+(1+)τ=1(1(ατ,l)T)1],[Tμτ=1(βτ,u)1Tτ=1(1+(1+)(1(βτ,u)T))1+(1+)τ=1(βτ,u)T1,Tμτ=1(βτ,l)1Tτ=1(1+(1+)(1(βτ,l)T))1+(1+)τ=1(βτ,l)T1],[Tμτ=1(γ,uτ)1Tτ=1(1+(1+)(1(γ,uτ)T))1+(1+)τ=1(γ,uτ)T1,Tμτ=1(γ,lτ)1Tτ=1(1+(1+)(1(γτ,l)T))1+(1+)τ=1(γ,lτ)T1]).

    For =1 the IVTSFHA operator is d(b)χ:

    IVTSFHA(d(b)p1,d(b)p2,,d(b)p3)=([(T1(τ=1(1(αχτ,u)T))1,T1(τ=1(1(αχτ,l)T))1)],[(τ=1γχτ,u)1,(τ=1γχτ,l)1],[(τ=1γχτ,u)1,(τ=1γχτ,l)1]).

    All the Tables 14 and 69 are the values from theorems and definitions of results section. The aggregation results are computed in Table 5.

    Table 1.  IVTSFPRs of first executive.
    O1
    1 1 ([0.6, 0.5], [0.7, 0.6], [0.9, 0.6])
    2 ([0.8, 0.7], [0.4, 0.3], [0.8, 0.7])
    3 ([0.5, 0.4], [0.5, 0.4], [0.5, 0.4])
    4 ([0.4, 0.3], [0.8, 0.7], [0.7, 0.6])
    5 ([0.6, 0.5], [0.9, 0.8], [0.3, 0.2])
    2 1 ([0.5, 0.4], [0.5, 0.4], [0.5, 0.4])
    2 ([0.6, 0.5], [0.4, 0.2], [0.9, 0.8])
    3 ([0.9, 0.8], [0.7, 0.64], [0.6, 0.5])
    4 ([0.8, 0.7], [0.7, 0.6], [0.3, 0.2])
    5 ([0.7, 0.65], [0.4, 0.3], [0.5, 0.4])
    3 1 ([0.9, 0.8], [0.4, 0.4], [0.6, 0.5])
    2 ([0.5, 0.4], [0.5, 0.3], [0.5, 0.4])
    3 ([0.8, 0.7], [0.4, 0.4], [0.8, 0.7])
    4 ([0.9, 0.8], [0.4, 0.3], [0.5, 0.4])
    5 ([0.6, 0.7], [0.6, 0.5], [0.6, 0.5])
    4 1 ([0.3, 0.2], [0.7, 0.6], [0.8, 0.7])
    2 ([0.5, 0.4], [0.4, 0.3], [0.9, 0.8])
    3 ([0.7, 0.6], [0.8, 0.7], [0.4, 0.3])
    4 ([0.5, 0.4], [0.5, 0.4], [0.5, 0.4])
    5 ([0.5, 0.4], [0.6, 0.5], [0.7, 0.6])
    5 1 ([0.5, 0.2], [0.4, 0.3], [0.7, 0.4])
    2 ([0.6, 0.5], [0.6, 0.5], [0.6, 0.5])
    3 ([0.3, 0.2], [0.9, 0.8], [0.6, 0.5])
    4 ([0.7, 0.6], [0.6, 0.5], [0.5, 0.4])
    5 ([0.5, 0.4], [0.5, 0.4], [0.5, 0.4])

     | Show Table
    DownLoad: CSV
    Table 2.  TSFPRs of 2nd executive.
    O2
    1 1 ([0.5, 0.4], [0.5, 0.4], [0.5, 0.4])
    2 ([0.7, 0.6], [0.5, 0.4], [0.4, 0.3])
    3 ([0.7, 0.6], [0.8, 0.7], [0.6, 0.5])
    4 ([0.4, 0.3], [0.3, 0.2], [0.7, 0.6])
    5 ([0.8, 0.7], [0.7, 0.6], [0.4, 0.3])
    2 1 ([0.4, 0.3], [0.5, 0.4], [0.7, 0.6])
    2 ([0.5, 0.4], [0.5, 0.4], [0.5, 0.4])
    3 ([0.4, 0.3], [0.5, 0.4], [0.3, 0.2])
    4 ([0.9, 0.8], [0.4, 0.3], [0.8, 0.7])
    5 ([0.5, 0.4], [0.3, 0.2], [0.9, 0.8])
    3 1 ([0.6, 0.5], [0.8, 0.7], [0.7, 0.6])
    2 ([0.3, 0.2], [0.5, 0.4], [0.4, 0.3])
    3 ([0.5, 0.4], [0.5, 0.4], [0.5, 0.4])
    4 ([0.8, 0.7], [0.6, 0.5], [0.2, 0.1])
    5 ([0.6, 0.5], [0.6, 0.5], [0.4, 0.3])
    4 1 ([0.7, 0.6], [0.3, 0.2], [0.4, 0.3])
    2 ([0.8, 0.7], [0.4, 0.3], [0.9, 0.8])
    3 ([0.2, 0.1], [0.6, 0.5], [0.8, 0.7])
    4 ([0.5, 0.4], [0.5, 0.4], [0.5, 0.4])
    5 ([0.6, 0.5], [0.5, 0.4], [0.7, 0.6])
    5 1 ([0.4, 0.3], [0.7, 0.6], [0.8, 0.7])
    2 ([0.9, 0.8], [0.3, 0.2], [0.5, 0.4])
    3 ([0.4, 0.3], [0.6, 0.5], [0.6, 0.5])
    4 ([0.7, 0.6], [0.5, 0.4], [0.6, 0.5])
    5 ([0.5, 0.4], [0.5, 0.4], [0.5, 0.5])

     | Show Table
    DownLoad: CSV
    Table 3.  TSFPRs of 3rd executive.
    O3
    1 1 ([0.5, 0.4], [0.5, 0.4], [0.5, 0.4])
    2 ([0.3, 0.2], [0.5, 0.4], [0.7, 0.6])
    3 ([0.4, 0.3], [0.6, 0.5], [0.4, 0.3])
    4 ([0.5, 0.4], [0.8, 0.7], [0.4, 0.3])
    5 ([0.6, 0.5], [0.3, 0.2], [0.9, 0.8])
    2 1 ([0.7, 0.6], [0.5, 0.4], [0.3, 0.2])
    2 ([0.5, 0.4], [0.5, 0.4], [0.5, 0.4])
    3 ([0.5, 0.4], [0.7, 0.6], [0.8, 0.7])
    4 ([0.9, 0.8], [0.7, 0.6], [0.5, 0.4])
    5 ([0.5, 0.4], [0.4, 0.3], [0.8, 0.7])
    3 1 ([0.4, 0.3], [0.6, 0.5], [0.4, 0.3])
    2 ([0.8, 0.7], [0.7, 0.6], [0.5, 0.4])
    3 ([0.5, 0.4], [0.5, 0.4], [0.5, 0.4])
    4 ([0.8, 0.7], [0.4, 0.3], [0.3, 0.2])
    5 ([0.4, 0.3], [0.6, 0.5], [0.7, 0.6])
    4 1 ([0.4, 0.3], [0.8, 0.7], [0.6, 0.5])
    2 ([0.5, 0.4], [0.7, 0.6], [0.9, 0.8])
    3 ([0.3, 0.2], [0.4, 0.3], [0.8, 0.7])
    4 ([0.5, 0.4], [0.5, 0.4], [0.5, 0.4])
    5 ([0.7, 0.6], [0.7, 0.6], [0.8, 0.7])
    5 1 ([0.9, 0.8], [0.3, 0.2], [0.5, 0.4])
    2 ([0.8, 0.7], [0.4, 0.3], [0.5, 0.4])
    3 ([0.7, 0.6], [0.6, 0.5], [0.4, 0.3])
    4 ([0.8, 0.7], [0.8, 0.7], [0.7, 0.6])
    5 ([0.5, 0.4], [0.5, 0.4], [0.5, 0.4])

     | Show Table
    DownLoad: CSV
    Table 4.  TSFPRs of 4th executive.
    O4
    1 1 ([0.5, 0.4], [0.5, 0.4], [0.5, 0.4])
    2 ([0.7, 0.6], [0.6, 0.5], [0.5, 0.4])
    3 ([0.8, 0.7], [0.4, 0.3], [0.6, 0.5])
    4 ([0.4, 0.3], [0.8, 0.7], [0.7, 0.6])
    5 ([0.8, 0.7], [0.6, 0.5], [0.4, 0.3])
    2 1 ([0.5, 0.4], [0.6, 0.5], [0.7, 0.6])
    2 ([0.5, 0.4], [0.5, 0.4], [0.5, 0.4])
    3 ([0.4, 0.3], [0.9, 0.8], [0.3, 0.2])
    4 ([0.6, 0.5], [0.5, 0.4], [0.3, 0.2])
    5 ([0.7, 0.6], [0.5, 0.4], [0.7, 0.6])
    3 1 ([0.6, 0.5], [0.4, 0.3], [0.8, 0.7])
    2 ([0.3, 0.2], [0.9, 0.8], [0.4, 0.3])
    3 ([0.5, 0.4], [0.5, 0.4], [0.5, 0.4])
    4 ([0.7, 0.6], [0.6, 0.5], [0.8, 0.7])
    5 ([0.5, 0.4], [0.4, 0.3], [0.6, 0.5])
    4 1 ([0.7, 0.6], [0.8, 0.7], [0.4, 0.3])
    2 ([0.3, 0.2], [0.5, 0.4], [0.6, 0.5])
    3 ([0.8, 0.7], [0.6, 0.5], [0.7, 0.6])
    4 ([0.5, 0.4], [0.5, 0.4], [0.5, 0.4])
    5 ([0.4, 0.3], [0.7, 0.6], [0.8, 0.7])
    5 1 ([0.4, 0.3], [0.6, 0.5], [0.5, 0.4])
    2 ([0.7, 0.6], [0.5, 0.4], [0.5, 0.4])
    3 ([0.6, 0.5], [0.4, 0.3], [0.4, 0.3])
    4 ([0.8, 0.7], [0.7, 0.6], [0.7, 0.6])
    5 ([0.5, 0.4], [0.5, 0.4], [0.5, 0.4])

     | Show Table
    DownLoad: CSV
    Table 5.  The compiled outcomes of the managers.
    Executives Aggregated results Computed values
    01 d11 ([0.6755, 0.5542], [0.5231, 0.3866], [0.6853, 0.5073])
    d12 ([0.7352, 0.6254], [0.4535, 0.3063], [0.6645, 0.5618])
    d13 ([0.7404, 0.6320], [0.6319, 0.5645], [0.5650, 0.4617])
    d14 ([0.7432, 0.6344], [0.5827, 0.4789], [0.4828, 0.3776])
    d15 ([0.5936, 0.5119], [0.5785, 0.4742], [0.5007, 0.3948])
    02 d21 ([0.6666, 0.5659], [0.5304, 0.4223], [0.5073, 0.4042])
    d22 ([0.7404, 0.6320], [0.4317, 0.3287], [0.5143, 0.4095])
    d23 ([0.5060, 0.4129], [0.5908, 0.4891], [0.5334, 0.4258])
    d24 ([0.7432, 0.6344], [0.4477, 0.3437], [0.5073, 0.3844])
    d25 ([0.6340, 0.5326], [0.5007, 0.3948], [0.5501, 0.4643])
    03 d31 ([0.4668, 0.3711], [0.5143, 0.4072], [0.5966, 0.4919])
    d32 ([0.6637, 0.5625], [0.5470, 0.4441], [0.6015, 0.4982])
    d33 ([0.5248, 0.4289], [0.5501, 0.4477], [0.5518, 0.4459])
    d34 ([0.7674, 0.6594], [0.6172, 0.5122], [0.4617, 0.3565])
    d35 ([0.5653, 0.4668], [0.4789, 0.3727], [0.7259, 0.6233])
    04 d41 ([0.6339, 0.5334], [0.5650, 0.4617], [0.5470, 0.4282])
    d42 ([0.5707, 0.4755], [0.5832, 0.4804], [0.4959, 0.3948])
    d43 ([0.6790, 0.5770], [0.5334, 0.4282], [0.4789, 0.3727])
    d44 ([0.6471, 0.5464], [0.6093, 0.5073], [0.5673, 0.4580])
    d45 ([0.6339, 0.5334], [0.5304, 0.4282], [0.5827, 0.4789])

     | Show Table
    DownLoad: CSV
    Table 6.  Randić matrix of 1st IVTSFHDG..
    O1
    1 1 ([0.5, 0.4], [0.5, 0.4], [0.5, 0.4])
    2 ([0.4950, 0.3940], [0.6052, 0.4536], [0.3922, 0.4052])
    3 ([0.5057, 0.4012], [0.4329, 0.3636], [0.4385, 0.3450])
    4 ([0.4950, 0.3940], [0.4761, 0.3849], [0.4902, 0.3779])
    5 ([0.5356, 0.4256], [0.4761, 0.3849], [0.4756, 0.3688])
    2 1 ([0.4950, 0.3940], [0.6052, 0.4536], [0.3922, 0.4052])
    2 ([0.5, 0.4], [0.5, 0.4], [0.5, 0.4])
    3 ([0.4256, 0.3636], [0.5503, 0.4454], [0.4472, 0.3790])
    4 ([0.4166, 0.3571], [0.6052, 0.4714], [0.5, 0.4152])
    5 ([0.4508, 0.3857] [0.6052, 0.4714], [0.4850, 0.4052])
    3 1 ([0.5057, 0.4012], [0.4329, 0.3636], [0.4385, 0.3450])
    2 ([0.4256, 0.3636], [0.5503, 0.4454], [0.4472, 0.3790])
    3 ([0.5, 0.4], [0.5, 0.4], [0.5, 0.4])
    4 ([0.4605, 0.3928], [0.4329, 0.3779], [0.5423, 0.4454])
    5 ([0.4256, 0.3636], [0.4329, 0.3779], [0.5590, 0.4564])
    4 1 ([0.4950, 0.3940], [0.4761, 0.3849], [0.4902, 0.3779])
    2 ([0.4166, 0.3571], [0.6052, 0.4714], [0.5, 0.4152])
    3 ([0.4605, 0.3928], [0.4329, 0.3779], [0.5423, 0.4454])
    4 ([0.5, 0.4], [0.5, 0.4], [0.5, 0.4])
    5 ([0.4508, 0.3857] [0.4329, 0.4], [0.6063, 0.4761])
    5 1 ([0.5356, 0.3940], [0.4761, 0.3849], [0.4756, 0.3688])
    2 ([0.4508, 0.3857], [0.6052, 0.4714], [0.4850, 0.4052])
    3 ([0.4256, 0.3636], [0.4329, 0.3779], [0.5590, 0.4564])
    4 ([0.4508, 0.3857], [0.4761, 0.4], [0.6063, 0.4879])
    5 ([0.5, 0.4], [0.5, 0.4], [0.5, 0.4])

     | Show Table
    DownLoad: CSV
    Table 7.  Randić matrix of 2nd TSFHDG..
    O2
    1 1 ([0.5, 0.4], [0.5, 0.4], [0.5, 0.4])
    2 ([0.4445, 0.3774], [0.5783, 0.4583], [0.5143, 0.4445])
    3 ([0.5913, 0.4756], [0.4550, 0.3779], [0.5006, 0.4089])
    4 ([0.4351, 0.3706], [0.5572, 0.4454], [0.5006, 0.4089])
    5 ([0.5025, 0.3922], [0.4550, 0.3706], [0.4364, 0.3641])
    2 1 ([0.4445, 0.3774], [0.5783, 0.4583], [0.5143, 0.4445])
    2 ([0.5, 0.4], [0.5, 0.4], [0.5, 0.4])
    3 ([0.5783, 0.4667], [0.6052, 0.4850], [0.5407, 0.4445])
    4 ([0.4256, 0.3636], [0.7412, 0.5716], [0.5407, 0.4445])
    5 ([0.4914, 0.3849], [0.6052, 0.4756], [0.4714, 0.3959])
    3 1 ([0.5913, 0.4756], [0.4550, 0.3779], [0.5006, 0.4089])
    2 ([0.5783, 0.4667], [0.6052, 0.4850], [0.5407, 0.4445])
    3 ([0.5, 0.4], [0.5, 0.4], [0.5, 0.4])
    4 ([0.6537, 0.4850], [0.4761, 0.3922], [0.4588, 0.3872])
    5 ([0.5661, 0.4583], [0.5832, 0.4714], [0.5263, 0.4347])
    4 1 ([0.4351, 0.3706], [0.5572, 0.4454], [0.5006, 0.4089])
    2 ([0.4256, 0.3636], [0.7412, 0.5716], [0.5407, 0.4445])
    3 ([0.6537, 0.4850], [0.4761, 0.3922], [0.4588, 0.3872])
    4 ([0.5, 0.4], [0.5, 0.4], [0.5, 0.4])
    5 ([0.4811, 0.3857], [0.4329, 0.4622], [0.4588, 0.5832])
    5 1 ([0.5025, 0.3706], [0.4550, 0.3706], [0.4364, 0.3641])
    2 ([0.4914, 0.3849], [0.6052, 0.4756], [0.4714, 0.3959])
    3 ([0.5661, 0.4583], [0.5832, 0.4714], [0.5263, 0.4347])
    4 ([0.4811, 0.3779], [0.5832, 0.4622], [0.4588, 0.3872])
    5 ([0.5, 0.4], [0.5, 0.4], [0.5, 0.4])

     | Show Table
    DownLoad: CSV
    Table 8.  Randić matrix of 3rd IVTSFHDG..
    O3
    1 1 ([0.5, 0.4], [0.5, 0.4], [0.5, 0.4])
    2 ([0.6201, 0.4950], [0.5407, 0.4445], [0.4545, 0.4622])
    3 ([0.7161, 0.5564], [0.5407, 0.4445], [0.4767, 0.4003])
    4 ([0.5439, 0.4428], [0.4914, 0.4103], [0.5504, 0.4499])
    5 ([0.4622, 0.3892], [0.5212, 0.4303], [0.4879, 0.4055])
    2 1 ([0.6201, 0.4950], [0.5407, 0.4445], [0.4545, 0.4622])
    2 ([0.5, 0.4], [0.5, 0.4], [0.5, 0.4])
    3 ([0.5773, 0.4682], [0.5263, 0.4347], [0.4767, 0.4003])
    4 ([0.4385, 0.3726], [0.4783, 0.4012], [0.5504, 0.4499])
    5 ([0.5270, 0.4351], [0.5735, 0.4662], [0.4029, 0.3466])
    3 1 ([0.7161, 0.5564], [0.5407, 0.4445], [0.4767, 0.4003])
    2 ([0.5773, 0.4682], [0.5263, 0.4347], [0.4767, 0.4003])
    3 ([0.5, 0.4], [0.5, 0.4], [0.5, 0.4])
    4 ([0.6085, 0.4891], [0.5735, 0.4662], [0.4225, 0.3608])
    5 ([0.5063, 0.4188], [0.4783, 0.4012], [0.5773, 0.4682])
    4 1 ([0.5439, 0.4428], [0.4914, 0.4103], [0.5504, 0.44992])
    2 ([0.4385, 0.3726], [0.4783, 0.4012], [0.5504, 0.4499])
    3 ([0.6085, 0.4891], [0.5735, 0.4662], [0.4225, 0.3608])
    4 ([0.5, 0.4], [0.5, 0.4], [0.5, 0.4])
    5 ([0.4622, 0.3857], [0.4329, 0.4303], [0.4879, 0.5212])
    5 1 ([0.6537, 0.4428], [0.5892, 0.4767], [0.4029, 0.3466])
    2 ([0.5270, 0.4351], [0.5735, 0.4662], [0.4029, 0.3466])
    3 ([0.5063, 0.4188], [0.4783, 0.4012], [0.5773, 0.4682])
    4 ([0.4622, 0.3892], [0.5212, 0.4303], [0.4879, 0.4055])
    5 ([0.5, 0.4], [0.5, 0.4], [0.5, 0.4])

     | Show Table
    DownLoad: CSV
    Table 9.  Randić matrix of 4th IVTSFHDG..
    O4
    1 1 ([0.5, 0.4], [0.5, 0.4], [0.5, 0.4])
    2 ([0.5590, 0.4564], [0.4880, 0.4082], [0.5893, 0.5])
    3 ([0.4767, 0.4003], [0.5130, 0.4256], [0.5893, 0.4663])
    4 ([0.4880, 0.4082], [0.4767, 0.4003], [0.5143, 0.4170])
    5 ([0.5, 0.4167], [0.5270, 0.4352], [0.5143, 0.4170])
    2 1 ([0.5590, 0.4564], [0.4880, 0.4082], [0.5893, 0.5])
    2 ([0.5, 0.4], [0.5, 0.4], [0.5, 0.4])
    3 ([0.5330, 0.4385], [0.5006, 0.4170], [0.6250, 0.5])
    4 ([0.5455, 0.4472], [0.4652, 0.3922], [0.5455, 0.4472])
    5 ([0.5590, 0.4564], [0.5143, 0.4264], [0.5455, 0.4472])
    3 1 ([0.4767, 0.4003], [0.5130, 0.4256], [0.5893, 0.4663])
    2 ([0.5330, 0.4385], [0.5006, 0.4170], [0.6250, 0.5])
    3 ([0.5, 0.4], [0.5, 0.4], [0.5, 0.4])
    4 ([0.4767, 0.4003], [0.5407, 0.4446], [0.5455, 0.4472])
    5 ([0.4652, 0.3922], [0.4891, 0.4089], [0.5455, 0.4472])
    4 1 ([0.4880, 0.4082], [0.4767, 0.4003], [0.5143, 0.4170])
    2 ([0.5455, 0.4472], [0.4652, 0.3922], [0.5455, 0.4472])
    3 ([0.4767, 0.4003], [0.5407, 0.4446], [0.5455, 0.4472])
    4 ([0.5, 0.4], [0.5, 0.4], [0.5, 0.4])
    5 ([0.4880, 0.3858], [0.4330, 0.4181], [0.4762, 0.5025])
    5 1 ([0.5, 0.4082], [0.5270, 0.4352], [0.5143, 0.4170])
    2 ([0.5590, 0.4564], [0.5143, 0.4264], [0.5455, 0.4472])
    3 ([0.4652, 0.3922], [0.4891, 0.4089], [0.5455, 0.4472])
    4 ([0.4880, 0.4082], [0.5025, 0.4181], [0.4762, 0.4])
    5 ([0.5, 0.4], [0.5, 0.4], [0.5, 0.4])

     | Show Table
    DownLoad: CSV

    The TSFHWA operator is formulated as:

    IVTSFHWA(d(b)p1,d(b)p2,,d(b)p3)=(Ξτdτ)=([Tτ=1(1+(1+)(ατ)T)Ξττ=1(1(ατ,u)T)Ξτ,uτ=1(1+(1+)(ατ,u)T)Ξτ,u+(1+)τ=1(1(ατ,u)T)Ξτ,u,Tτ=1(1+(1+)(ατ,l)T)Ξτ,lτ=1(1(ατ,l)T)Ξττ=1(1+(1+)(ατ,l)T)Ξτ,l+(1+)τ=1(1(ατ,l)T)Ξτ,l],[Tμτ=1(βτ)Ξτ,uTτ=1(1+(1+)(1(βτ,u)T))Ξτ,u+(1+)τ=1(βτ,u)TΞτ,u,Tμτ=1(βτ,l)Ξτ,lTτ=1(1+(1+)(1(βτ,l)T))Ξτ,l+(1+)τ=1(βτ,l)TΞτ,l],[Tμτ=1(γτ,u)Ξτ,uTτ=1(1+(1+)(1(γτ,u)T))Ξτ,u+(1+)τ=1(γτ,u)TΞτ,u,Tμτ=1(γτ,l)Ξτ,lTτ=1(1+(1+)(1(γτ,l)T))Ξτ,l+(1+)τ=1(γτ,l)TΞτ,l]).

    For =1 the IVTSFHWA operator is d(b)χ:

    IVTSFHWA(d(b)p1,d(b)p2,,d(b)p3)=([T(1(τ=1(1(αχτ,u))T)Ξτ,u),T(1(τ=1(1(αχτ,l))T)Ξτ,l)],[(τ=1βχτ,u)Ξτ,(τ=1β,lχτ)Ξτ],[(τ=1γχτ,u)Ξτ,u,(τ=1γχτ,l)Ξτ,l]).

    The cumulative IVTSFE applying IVTSFHWA operator are formulated as:

    d1=([0.9998,0.9995],[1.63738E05,6.72969E07],[8.76591E06,7.01491E08]),d2=([0.999999853,0.99999832],[1.39215E05,1.08774E07],[3.03433E05,3.24692E07]),d3=([0.999999991,0.999999862],[0.000343,2.83895E05],[3.41544E05,3.90078E07]),d4=([0.9999,0.9995],[0.0003,1.69159E05],[6.78404E06,3.26888E08]),d5=([0.999999984,0.999999879],[6.96191E06,1.71739E07],[1.58815E05,1.19103E07]).

    The graphical depiction shown in the Figure 1.

    Figure 1.  Result of aggregation operator of two operators represented graphically (for energy).

    The score function S(dχ) of dχ, where χ is from 1 to 5, is calculated as:

    S(d1)=[0.9997,0.9991],S(d2)=[0.999999705,0.99999664],S(d3)=[0.999999982,0.999999724],S(d4)=[0.999838074,0.999001185],S(d5)=[0.999999967,0.999999757],35241.

    The worst country with respect to human trafficking is 3.

    Then, similarly, with the same procedure using the above (IVTSFHG) operator, we obtain these results:

    d1=([0.574349177,0.480449774],[0.9940616,0.980798833],[0.9940616,0.980798833]),d2=([0.667285932,0.5650469],[0.992171478,0.96806002],[0.998033698,0.991978939]),d3=([0.725935618,0.631963661],[0.999765197,0.998735055],[0.996800871,0.988327168]),d4=([0.577079962,0.478938895],[0.999536573,0.99714911],[0.995083812,0.982456495]),d5=([0.768928314,0.692493798],[0.994482595,0.980802581],[0.999633096,0.996936389]).

    The score function S(dχ) of dχ, where χ is from 1 to 5, is calculated as:

    S(d1)=[0.646580173,0.694547274],S(d2)=[0.535266261,0.602888779],S(d3)=[0.466162904,0.574942912],S(d4)=[0.65625296,0.730342667],S(d5)=[0.397019281,0.476540846],53214.

    The worst country regarding human trafficking is 5.

    The IVTSFHG operator is formulated as:

    IVTSFHG(d(b)p1,d(b)p2,,d(b)p3)=(d1τ)=([Tμτ=1(ατ,u)1Tτ=1(1+(1+)(1(ατ,u)T))1+(1+)τ=1(ατ,u)T1,Tμτ=1(ατ,l)1Tτ=1(1+(1+)(1(ατ,l)T))1+(1+)τ=1(ατ,l)T1],[Tτ=1(1+(1+)(βτ,u)T)1τ=1(1(βτ,u)T)1τ=1(1+(1+)(βτ,u)T)1+(1+)τ=1(1(βτ,u)T)1,Tτ=1(1+(1+)(βτ,l)T)1τ=1(1(βτ,l)T)1τ=1(1+(1+)(βτ,l)T)1+(1+)τ=1(1(βτ,l)T)1],[Tτ=1(1+(1+)(γτ,u)T)1τ=1(1(γτ,u)T)1τ=1(1+(1+)(γτ,u)T)1+(1+)τ=1(1(γτ,u)T)1,Tτ=1(1+(1+)(γτ,l)T)1τ=1(1(γτ,l)T)1τ=1(1+(1+)(γτ,l)T)1+(1+)τ=1(1(γτ,l)T)1]).

    The Randić matrix of the IVTSFPRs

    ORb=(Υbχτ)5×5,

    where (b is from 1, to 4) are shown as follows:

    The Randić energy of each IVTSFHDG is formulated below:

    RA(Q1)=([2.6133,2.0380],[2.8769,2.2255],[3.1564,2.2768]),RA(Q2)=([2.9444,2.2747],[3.2247,2.5917],[2.7029,2.2896]),RA(Q3)=([3.2957,2.5525],[2.9343,2.4327],[2.8589,2.4101]),RA(Q4)=([2.6884,2.1896],[2.6541,2.1913],[3.4608,2.4631]).

    The weight vector of each executive can be calculated as:

    Ξb=([RE((Qα,u)b)ai=1RE((Qα,u)i),RE((Qα,l)b)ai=1RE((Qα,l)i)],[RE((Qβ,u)b)ai=1RE((Qβ,u)i),RE((Qβ,l)b)ai=1RE((Qβ,l)i)],[RE((Qγ,u)b)ai=1RE((Qγ,u)i),RE((Qγ,l)b)ai=1RE((Qγ,l)i)]).

    Weight vector of four executive xb where (b is from 1, to 4) is:

    Ξ1=([0.2264,0.225],[0.2461,0.23571],[0.2591,0.2414]),Ξ2=([0.2551,0.2512][0.3323,0.2745],[0.2219,0.2428]),Ξ3=([0.2857,0.2818],[0.2513,0.2576],[0.2347,0.2555]),Ξ4=([0.2329,0.2418][0.227,0.3665],[0.2841,0.2612]),

    The IVTSFHA operator is formulated as:

    IVTSFHA(d(b)p1,d(b)p2,,d(b)p3)=(1dτ)=([Tτ=1(1+(1+)(ατ,u)T)1τ=1(1(ατ,u)T)1τ=1(1+(1+)(ατ,u)T)1+(1+)τ=1(1(ατ,u)T)1,Tτ=1(1+(1+)(ατ,l)T)1τ=1(1(ατ,l)T)1τ=1(1+(1+)(ατ,l)T)1+(1+)τ=1(1(ατ,l)T)1],[Tμτ=1(βτ,u)1Tτ=1(1+(1+)(1(βτ,u)T))1+(1+)τ=1(βτ,u)T1,Tμτ=1(βτ,l)1Tτ=1(1+(1+)(1(βτ,l)T))1+(1+)τ=1(βτ,l)T1],[Tμτ=1(γτ,u)1Tτ=1(1+(1+)(1(γτ,u)T))1+(1+)τ=1(γτ,u)T1,Tμτ=1(γτ,l)1Tτ=1(1+(1+)(1(γτ,l)T))1+(1+)τ=1(γτ,l)T1]).

    The aggregation result is computed in Table 10.

    Table 10.  Aggregated results of the executives.
    Executives Aggregated results Computed values
    1 d11 ([0.5067, 0.3967], [0.4949, 0.3963], [0.4575, 0.3787])
    d12 ([0.4596, 0.3806], [0.5715, 0.4475], [0.4629, 0.4007])
    d13 ([0.4655, 0.3848], [0.4675, 0.3920], [0.4950, 0.4030])
    d14 ([0.4661, 0.3863], [0.4949, 0.4055], [0.5261, 0.4236])
    d15 ([0.4752, 0.3928], [0.4856, 0.4055], [0.5229, 0.4195])
    2 d21 ([0.5001 0.4017], [0.5065, 0.4089], [0.4895, 0.4045])
    d22 ([0.4928, 0.4008], [0.6011, 0.4750], [0.5127, 0.4252])
    d23 ([0.5821, 0.4586], [0.5206, 0.4231], [0.5045, 0.4145])
    d24 ([0.5117, 0.4030], [0.5645, 0.4500], [0.4908, 0.4050])
    d25 ([0.5098, 0.4056], [0.5107, 0.4338], [0.4775, 0.4295])
    3 d31 ([0.6174, 0.4723], [0.5313, 0.4343], [0.4744, 0.4097])
    d32 ([0.5392, 0.4375], [0.5227, 0.4286], [0.4744, 0.4097])
    d33 ([0.5934, 0.4717], [0.5227, 0.4286], [0.4881, 0.4045])
    d34 ([0.5004, 0.4431], [0.5118, 0.4209], [0.4999, 0.4118])
    d35 ([0.5378, 0.4351], [0.5114, 0.4337], [0.4697, 0.4110])
    4 d41 ([0.5061, 0.4154], [0.5006, 0.4136], [0.5400, 0.4385])
    d42 ([0.5401, 0.4404], [0.4933, 0.4086], [0.5594, 0.4573])
    d43 ([0.4913, 0.4067], [0.5083, 0.4189], [0.5594, 0.4509])
    d44 ([0.5006, 0.4133], [0.4963, 0.4106], [0.5156, 0.4217])
    d45 ([0.5040, 0.4113], [0.4915, 0.4175], [0.5156, 0.4414])

     | Show Table
    DownLoad: CSV

    The cumulative IVTSFE applying IVTSFHWA operator is formulated as:

    d1=([0.999982879,0.999751147],[1.27995E05,1.76586E07],[2.25259E05,2.5476E07]),d2=([0.999995901,0.999919579],[6.25464E05,9.15724E07],[1.28456E05,1.9104E06]),d3=([0.999994615,0.999897062],[7.41921E06,1.88909E07],[2.1396E05,2.86469E07]),d4=([0.999977124,0.999787046],[1.25324E05,2.64622E07],[3.39269E05,4.27072E07]),d5=([0.999992989,0.999882008],[1.728E05,3.26761E07],[5.32896E06,8.1129E08]).

    The score function S(dχ) of dχ, where χ is from 1 to 6, si calculated as:

    (d1)=[0.999965759,0.999502356],S(d2)=[0.999991801,0.999839165],S(d3)=[0.999989229,0.999794135],S(d4)=[0.999954248,0.999574137],S(d5)=[0.999985979,0.999764029].

    Then,

    23541.

    The worst country is2. The IVTSFHG operator is formulated as:

    IVTSFHG(d(b)p1,d(b)p2,,d(b)p3)=(d1τ)=([Tμτ=1(ατ,u)1Tτ=1(1+(1+)(1(ατ,u)T))1+(1+)τ=1(ατ,u)T1,Tμτ=1(ατ,l)1Tτ=1(1+(1+)(1(ατ,l)T))1+(1+)τ=1(ατ,l)T1],[Tτ=1(1+(1+)(βτ,u)T)1τ=1(1(βτ,u)T)1τ=1(1+(1+)(βτ,u)T)1+(1+)τ=1(1(βτ,u)T)1,Tτ=1(1+(1+)(βτ,l)T)1τ=1(1(βτ,l)T)1τ=1(1+(1+)(βτ,l)T)1+(1+)τ=1(1(βτ,l)T)1],[Tτ=1(1+(1+)(γτ,u)T)1τ=1(1(γτ,u)T)1τ=1(1+(1+)(γτ,u)T)1+(1+)τ=1(1(γτ,u)T)1,Tτ=1(1+(1+)(γτ,l)T)1τ=1(1(γτ,l)T)1τ=1(1+(1+)(γτ,l)T)1+(1+)τ=1(1(γτ,l)T)1]).

    Then, similarly, with the same procedure using the above (IVTSFHG) operator, we obtain these results:

    d1=([0.574349177,0.480449774],[0.9940616,0.980798833],[0.9940616,0.980798833]),d2=([0.597732128,0.507326516],[0.997761421,0.988985801],[0.990879204,0.98796809]),d3=([0.633573483,0.531752943],[0.99241926,0.980449593],[0.992431655,0.978812256]),d4=([0.564227166,0.48342169],[0.99461896,0.983373006],[0.995084568,0.983380803]),d5=([0.615010624,0.514263082],[0.994891823,0.983538125],[0.988271025,0.971910676]).

    The score function S(dχ) of dχ, where χ is from 1 to 6, is calculated as:

    (d1)=[0.646580173,0.694547274],S(d2)=[0.620166961,0.697317666],S(d3)=[0.568628979,0.638216984],S(d4)=[0.661213134,0.701450754],S(d5)=[0.588488929,0.649299713],35214,

    so this implies 3 is the worst country among all.

    This subsection presents the results of the previous numerical example using specifically established operators. The IVTSF Dombi weighted arithmetic (IVTSFDWA) and IVTSF Dombi weighted geometry (IVTSFDWG) operators are utilized to compare the outputs of the currently employed model. The rankings generated by these operators are summarized in Tables 11 and 12. Table 11 confirms that our proposed method aligns with the rankings obtained from the IVTSFDWA of energy, thus validating our approach's effectiveness. However, the results in Table 12 do not align with our approach. This discrepancy results from Randic's energy and the energy of IVTSFHG being calculated using various aggregation techniques or slightly changing the value produced by the scoring function.

    Table 11.  Based on the operator rating findings proposed for energy.
    Operators S(1) S(2) S(3)
    IVTSFHWA [0.999767687, 0.999111857] [0.999999705, 0.99999664] [0.999999982, 0.999999724]
    IVTSFHWG [-0.646580173, -0.694547274] [-0.535266261, -0.602888779] [-0.466162904, -0.574942912]
    Operators S(4) S(5) Ranking
    IVTSFHWA [0.999838074, 0.999001185] [0.999999967, 0.999999757] 43152
    IVTSFHWG [-0.65625296, -0.730342667] [-0.397019281, -0.476540846] 35241

     | Show Table
    DownLoad: CSV
    Table 12.  Utilizing the operator ranking outcomes as suggested, specifically pertaining to Randić energy.
    Operators S(1) S(2) S(3)
    IVTSFHWA [0.999965759, 0.999502356] [0.999991801, 0.999839165] [0.999989229, 0.999794135]
    IVTSFHWG [-0.646580173, -0.694547274] [-0.620166961, -0.697317666] [-0.568628979, -0.638216984]
    Operators S(4) S(5) Ranking
    IVTSFHWA [0.999954248, 0.999574137] [0.999985979, 0.999764029] 23541
    IVTSFHWG [-0.661213134, -0.701450754] [-0.588488929, -0.649299713] 35214

     | Show Table
    DownLoad: CSV

    Figures 24 show graphical representations to contrast the suggested technique with the current approach. To generalize algebraic operations, it is essential to use the TNs and TCNs developed by Hamacher and Einstein. The Hamacher operator can be either an algebraic TN or TCN depending on the value of parameter 1, and it can be either an Einstein's TN or TCN depending on the value of parameter 2.

    Figure 2.  Result of aggregation operator of two operators represented graphically (for Randić energy).
    Figure 3.  The graphical representation of the score function of two operators and their resulting outcome (for energy).
    Figure 4.  The graphical representation of the score function for two operators (for Randić energy).

    The Hamacher parameter μ plays a crucial role in the aggregation process. We propose analyzing its impact through:

    μ{0.1,0.5,1.0,2.0,5.0,10.0} (5.1)

    Table 13 shows how varying μ affects the decision outcomes:

    Table 13.  Sensitivity analysis of Hamacher parameter μ..
    μ Value S(d1) S(d2) S(d3) Ranking order
    0.1 [0.99996, 0.99950] [0.99999, 0.99983] [0.99998, 0.99979] \diamondsuit_2 \succ \diamondsuit_3 \succ \diamondsuit_1
    0.5 [0.99994, 0.99945] [0.99998, 0.99980] [0.99997, 0.99975] \diamondsuit_2 \succ \diamondsuit_3 \succ \diamondsuit_1
    1.0 [0.99992, 0.99940] [0.99997, 0.99977] [0.99996, 0.99971] \diamondsuit_2 \succ \diamondsuit_3 \succ \diamondsuit_1
    2.0 [0.99990, 0.99935] [0.99996, 0.99974] [0.99995, 0.99967] \diamondsuit_2 \succ \diamondsuit_3 \succ \diamondsuit_1
    5.0 [0.99987, 0.99928] [0.99994, 0.99969] [0.99993, 0.99962] \diamondsuit_2 \succ \diamondsuit_3 \succ \diamondsuit_1
    10.0 [0.99985, 0.99923] [0.99993, 0.99966] [0.99992, 0.99958] \diamondsuit_2 \succ \diamondsuit_3 \succ \diamondsuit_1

     | Show Table
    DownLoad: CSV

    The analysis reveals that while absolute scores vary with \mu, the relative ranking remains stable, demonstrating the robustness of our method.

    Comparative analysis. We compare IVTSFHG with IVIFS and IVPFS approaches using the same dataset shown in the Table 14:

    Table 14.  Comparative analysis of different methods.
    Method Best alternative Worst alternative
    IVTSFHG (Proposed) \diamondsuit_2 \diamondsuit_1
    IVIFS [48] \diamondsuit_3 \diamondsuit_5
    IVPFS [48] \diamondsuit_2 \diamondsuit_4

     | Show Table
    DownLoad: CSV

    Interval-valued T-spherical (IVT-spherical) serves as an enhanced version of the spherical fuzzy set (SFS) model, which provides greater flexibility in handling spaces with larger values. When considering truth order ({\alpha}), abstinence order ({\beta}), and negative order ({\gamma}), the constraint {\alpha, u}^{ {T}} + {\beta, u}^{ {T}} + {\gamma, u}^{ {T}}\leq 1\ (T\geq 1) in the TSFS model facilitates more precise value definitions. In the PFS model, the energy and Randić energy cannot be computed using the HWA and HWG operators, resulting in an inability to rank the outcomes. This occurs when the sum of PD, AD, and ND exceeds 1. Tables 11 and 12 display the rankings of energy and Randić energy achieved through the PFS, SFS, and TSF models. Due to the sum of squares of PD, AD, and ND being greater than 1, analysis using the PFS model is impractical. Nevertheless, the calculation is feasible when T = 3. Specifically, TSFS is PFV for T = 1 and SFV for T = 2. As T increases, so does the space and its corresponding value. For instance, (0.9, 0.4, 0.5) represents a 3-SFV. In the case of

    T = 3,\ \ (0.9)^3+ (0.4)^3 + (0.5)^3 = 0.918 \leq 1,

    but

    (0.9)^3 + (0.4)^3 + (0.5)^3 = 1.22 \geq 1

    and

    (0.5) + (0.4) + (0.9) = 1.18 \geq 1.

    Consequently, the PFS and SFS models lack the capability to handle this data adequately. Hence, (0.9) + (0.4) + (0.5) is neither SFV nor PFV. Thus, all PFV s are SFV s and TSFS. However, the PFS and SFS classes do not fall under the TSF category. The assessment of the energy and Randić energy in TSFHDG designates Y3 as the least favorable country.

    In order to enhance the efficacy of our methodology, we incorporated investigations on data mining, encompassing topics such as human trafficking, as well as algorithms. The IVTSF Hamarcher operator was employed in the study to ascertain the energy values of both IVTSFG energy and Randić energy. The arrangement of characteristics is contingent upon the Randić energy and the energy of IVTSFHDG. The optimal choice is the variable \diamondsuit, as it remains consistent across all circumstances. The study yields a novel way for addressing challenges encountered in the data management process, while also facilitating the establishment of new frameworks for measuring information.

    The current state of the discourse about DM frequently exhibits characteristics of illogicality and ambiguity. The accurate prediction of future outcomes may be hindered by the presence of insufficient knowledge. The concept of IVFS offers a theoretical foundation for effectively managing the provided data. The effectiveness of IVTSFG surpasses that of IVIFS , IVPFS, PFS, and IFS due to its ability to address a diverse range of real-world problems based on triplets. We have introduced a novel notion, denoted as IVTSFHG, by employing the Hamacher operator. This idea allows us to investigate the Randić energy as well as the energy associated with IVTSFHG. In addition, the division of IVTSFHG and the allocation of shadow IVTSFHG energy are established. In addition, our discussion also encompassed the examination of the energy of the molecular structure denoted as IVTSFHG, as well as the Randić energy associated with IVTSFHG.

    ● Conduct systematic sensitivity analysis of the Hamacher parameter \mu to understand its impact on decision outcomes.

    ● Extend the methodology to other complex decision-making problems beyond human trafficking assessment.

    ● Develop hybrid models combining IVTSFHG with machine learning techniques for enhanced predictive capabilities.

    ● Investigate the scalability of the approach for high-dimensional decision problems.

    Limitations of the existing methodologies are summarized as follows:

    (1) q -ROFG, IV q -ROFG were considered good additions in the fuzzy world, but these concepts are not sufficient to symbolize human opinion properly due to the statistics of the scenario which will have an element of hesitant degree in a variety of issues and applications. In such situations, the decision-makers are not sure to give results according to the provided data.

    (2) The scenario we discussed in this article gave data in the form of all four fuzzy components, which makes it unsolvable for either an IVIFG, IVTFS , or IVPyFG.

    (3) Furthermore, the q -ROFG, IV q -ROFG and their operations which are currently used to solve real-world issues are not enough to deal with the information having a refusal degree as well.

    (4) SFS, TSFS are comparatively more convenient ways to solve complex real-world problems. But IVTSFS is much better than these two methods.

    Ali Ahmad: conceptualization, methodology, investigation, writing — original draft, funding acquisition; Humera Rashid: conceptualization, methodology, software, data curation, writing — review & editing; Hamdan Alshehri: project administration, supervision, writing — review & editing, funding acquisition; Muhammad Kamran Jamil: data curation, investigation, validation, verification, writing — original draft; Haitham Assiri: formal analysis, investigation, resources, visualization, writing — original draft. All authors have read and agreed to the published version of the manuscript.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors gratefully acknowledge the funding of the Deanship of Graduate Studies and Scientific Research, Jazan University, Saudi Arabia, through project number: RG24-M039.

    The authors declare that there are no conflicts of interest.



    [1] H. R. Akcakaya, R. Arditi, L. R. Ginzburg, Ratio-dependent prediction: An abstraction that works, Ecology, 76 (1995), 995–1004. https://doi.org/10.2307/1939362 doi: 10.2307/1939362
    [2] P. A. Abrams, L. R. Ginzburg, Coupling in predator-prey dynamics: Ratio-dependence, J. Theor. Biol., 139 (1989), 311–326. https://doi.org/10.1016/S0022-5193(89)80211-5 doi: 10.1016/S0022-5193(89)80211-5
    [3] P. Aguirre, J. D Flores, E. González-Olivares, Bifurcations and global dynamics in a predator-prey model with a strong Allee effect on the prey and ratio-dependent functional response, Nonlinear Anal.: Real Word Appl., 16 (2014), 235–249. https://doi.org/10.1016/j.nonrwa.2013.10.002 doi: 10.1016/j.nonrwa.2013.10.002
    [4] V. Ajraldi, M. Pittavino, E. Venturino, Modeling herd behavior in population systems, Nonlinear Anal.: Real Word Appl., 12 (2011), 2319–2338. https://doi.org/10.1016/j.nonrwa.2011.02.002 doi: 10.1016/j.nonrwa.2011.02.002
    [5] W. C. Allee, Animal aggregations: A study in general sociology, USA: University of Chicago press, 1931. https://doi.org/10.5962/bhl.title.7313
    [6] J. Bascompte, Extinction thresholds: Insights from simple models, Ann. Zool. Fenn., 40 (2003), 99–114.
    [7] S. Bentout, S. Djilali, A. Atangana, Bifurcation analysis of an age‐structured prey-predator model with infection developed in prey, Math. Methods Appl. Sci., 45 (2022), 1189–1208. https://doi.org/10.1002/mma.7846 doi: 10.1002/mma.7846
    [8] F. Berezovskaya, G. Karev, R. Arditi, Parametric analysis of the ratio-dependent predator-prey model, J. Math. Biol., 43 (2001), 221–246. https://doi.org/10.1007/s002850000078 doi: 10.1007/s002850000078
    [9] L. Berec, E. Angulo, F. Courchamp, Multiple Allee effects and population management, Trends Ecol. Evol., 22 (2007), 185–191. https://doi.org/10.1016/j.tree.2006.12.002 doi: 10.1016/j.tree.2006.12.002
    [10] H. W. Broer, K. Saleh, V. Naudot, R. Roussarie, Dynamics of a predator-prey model with non-monotonic response function, Discrete Cont. Dyn. Syst., 18 (2007), 221–251. https://doi.org/10.3934/dcds.2007.18.221 doi: 10.3934/dcds.2007.18.221
    [11] A. A. Berryman, The origins and evolutions of predator-prey theory, Ecology, 73 (1992), 1530–1535. https://doi.org/10.2307/1940005 doi: 10.2307/1940005
    [12] L. Chen, F. Chen, L. Chen, Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a constant prey refuge, Nonlinear Anal: Real Word Appl., 11 (2010), 246–252. https://doi.org/10.1016/j.nonrwa.2008.10.056 doi: 10.1016/j.nonrwa.2008.10.056
    [13] D. L. DeAngelis, R. A. Goldstein, R. V. O'Neill, A model for trophic interactions, Ecology, 56 (1975), 881–892. https://doi.org/10.2307/1936298 doi: 10.2307/1936298
    [14] B. Dennis, Allee effects: Population growth, critical density, and change of extinction, Nat. Resour. Model., 3 (1989), 481–538. https://doi.org/10.1111/j.1939-7445.1989.tb00119.x doi: 10.1111/j.1939-7445.1989.tb00119.x
    [15] A. Dhooge, W. Govaerts, Y. Kuznetsov, MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs, ACM Trans. Math. Sofware, 29 (2003), 141–164. https://doi.org/10.1145/779359.779362 doi: 10.1145/779359.779362
    [16] S. Djilali, S. Bentout, Pattern formations of a delayed diffusive predator-prey model with predator harvesting and prey social behavior, Math. Methods Appl. Sci., 44 (2021), 9128–9142. https://doi.org/10.1002/mma.7340 doi: 10.1002/mma.7340
    [17] M. Fan, P. Wu, Z. Feng, R. K. Swihar, Dynamics of predator-prey metapopulations with Allee effects, Bull. Math. Biol., 78 (2016), 1727–1748. https://doi.org/10.1007/s11538-016-0197-6 doi: 10.1007/s11538-016-0197-6
    [18] J. D. Flores, E. González-Olivares, Dynamics of a predator-prey model with Allee effect on prey and ratio-dependent functional response, Ecol. Complex., 18 (2014), 59–66. https://doi.org/10.1016/j.ecocom.2014.02.005 doi: 10.1016/j.ecocom.2014.02.005
    [19] H. I. Freedman, Deterministic mathematical model in population ecology, Marcel Dekker, New York, 1980.
    [20] J. Gascoigne, R. N. Lipcius, Allee effects driven by predation, J. Appl. Ecol., 41 (2004), 801–810. https://doi.org/10.1111/j.0021-8901.2004.00944.x doi: 10.1111/j.0021-8901.2004.00944.x
    [21] S. Gregory, F. Courchamp, Safety in numbers: Extinction arising from predator-driven Allee effects, J. Anim. Ecol., 79 (2010), 511–514. https://doi.org/10.1111/j.1365-2656.2010.01676.x doi: 10.1111/j.1365-2656.2010.01676.x
    [22] Y. Gao, B. Li, Dynamics of a ratio-dependent predator-prey system with strong Allee effect, Discrete Cont. Dyn. Syst., 18 (2013), 2283–2313. https://doi.org/10.3934/dcdsb.2013.18.2283 doi: 10.3934/dcdsb.2013.18.2283
    [23] L. R. Ginzburg, H. R. Akcakaya, Consequences of ratio-dependent predation for steady-state properties of ecosystems, Ecology, 73 (1992), 1536–1543. https://doi.org/10.2307/1940006 doi: 10.2307/1940006
    [24] E. González-Olivars, R. Ramos-Jiliberto, Dynamics consequences of prey refuges in a simple model system: More prey, few predators and enhanced stability, Ecol. Model., 166 (2003), 135–146. https://doi.org/10.1016/S0304-3800(03)00131-5 doi: 10.1016/S0304-3800(03)00131-5
    [25] A. P. Gutierrez, Physiological basis of ratio-dependent predator-prey theory: A metabolic pool model of Nicholson's blowflies as an example, Ecology, 73 (1992), 1552–1563. https://doi.org/10.2307/1940008 doi: 10.2307/1940008
    [26] M. Haque, Ratio-dependent predator-prey models of interacting populations, Bull. Math. Biol., 71 (2009), 430–452. https://doi.org/10.1007/s11538-008-9368-4 doi: 10.1007/s11538-008-9368-4
    [27] M. Haque, M. S. Rahman, E. Venturino, B. L. Li, Effect of a functional response-dependent prey refuge in a predator-prey model, Ecol. Complex., 20 (2014), 248–256. https://doi.org/10.1016/j.ecocom.2014.04.001 doi: 10.1016/j.ecocom.2014.04.001
    [28] C. S. Holling, The functional response of predators to prey density and its role in mimicry and population regulation, Mem. Entomol. Soc. Can., 97 (1965), 3–60. https://doi.org/10.4039/entm9745fv doi: 10.4039/entm9745fv
    [29] S. B. Hsu, T. W. Hwang, Y. Kuang, Global analysis of the Michaelis-Menten type ratio-dependent predator-prey system, J. Math. Biol., 42 (2001), 489–506. https://doi.org/10.1007/s002850100079 doi: 10.1007/s002850100079
    [30] Y. Huang, F. Chen, L. Zhong, Stability analysis of a prey-predator model with Holling type III response function incorporating a prey refuge, Appl. Math. Comput., 182 (2006), 672–683. https://doi.org/10.1016/j.amc.2006.04.030 doi: 10.1016/j.amc.2006.04.030
    [31] T. K. Kar, Stability analysis of a prey-predator model incorporating a prey refuge, Commun. Nonlinear Sci. Numer. Simul., 10 (2005), 681–691. https://doi.org/10.1016/j.cnsns.2003.08.006 doi: 10.1016/j.cnsns.2003.08.006
    [32] Y. Kuang, E. Beretta, Global qualitative analysis of a ratio-dependent predator-prey system, J. Math. Biol., 36 (1998), 389–406. https://doi.org/10.1007/s002850050105 doi: 10.1007/s002850050105
    [33] V. Krivan, Effects of optimal antipredator behavior of prey on predator-prey dynamics: The role of refuges, Theor. Popul. Biol., 53 (1998), 131–142. https://doi.org/10.1006/tpbi.1998.1351 doi: 10.1006/tpbi.1998.1351
    [34] Y. A. Kuznetsov, Elements of applied bifurcation theory, Springer, New York, 1998.
    [35] A. J. Lotka, Elements of physical biology, Williams and Wilkins, Baltimore MD, 1925.
    [36] Z. Ma, S. Wang, W. Li, Z. Li, The effect of prey refuge in a patchy predator-prey system, Math. Biosci., 243 (2013), 126–130. https://doi.org/10.1016/j.mbs.2013.02.011 doi: 10.1016/j.mbs.2013.02.011
    [37] J. D. Murray, Mathematical biology (Biomathematics, Vol. 19), New York: Springer Verlag, 1993.
    [38] J. N. McNair, The effects of refuges on predator-prey interactions: A reconsideration, Theor. Popul. Biol., 29 (1986), 38–63. https://doi.org/10.1016/0040-5809(86)90004-3 doi: 10.1016/0040-5809(86)90004-3
    [39] A. Morozov, S. Petrovoskii, B. L. Li, Spatiotemporal complexity of patchy invasion in a predator-prey system with Allee effect, J. Theor. Biol., 238 (2006), 18–35. https://doi.org/10.1016/j.jtbi.2005.05.021 doi: 10.1016/j.jtbi.2005.05.021
    [40] L. Perko, Differential equations and dynamical systems, New York: Springer, 2001. https://doi.org/10.1007/978-1-4613-0003-8
    [41] G. D. Ruxton, Short term refuge use and stability of predator-prey models, Theor. Popul. Biol., 47 (1995), 1–17. https://doi.org/10.1006/tpbi.1995.1001 doi: 10.1006/tpbi.1995.1001
    [42] K. Saleh, Dynamics of a predator-prey model with Allee effect and prey group defense, AIP Conf. Proc., 1643 (2015), 655–661. https://doi.org/10.1063/1.4907508 doi: 10.1063/1.4907508
    [43] P. A. Stephens, W. J. Sutherland, Consequences of the Allee effect for behaviour, ecology and conservation, Trends Ecol. Evol., 14 (1999), 401–405. https://doi.org/10.1016/s0169-5347(99)01684-5 doi: 10.1016/s0169-5347(99)01684-5
    [44] V. Volterra, Variazioni e fluttuaziono del numero di individui in specie animali conviventi, Memoria della Reale Accad. Nazionale dei Lincei, 2 (1926), 31–113.
    [45] G. S. W. Wolkowicz, Bifurcation analysis of a predator-prey system involving group defense, SIAM J. Appl. Math., 48 (1988), 592–606. https://doi.org/10.1137/0148033 doi: 10.1137/0148033
    [46] D. Xiao, W. Li, M. Han, Dynamics in a ratio-dependent predator-prey model with predator harvesting, J. Math. Anal. Appl., 324 (2006), 14–29. https://doi.org/10.1016/j.jmaa.2005.11.048 doi: 10.1016/j.jmaa.2005.11.048
    [47] D. Xiao, S. Ruan, Codimension two bifurcations in a predator-prey system with group defense, Int. J. Bifurcat. Chaos, 11 (2001), 2123–2131. https://doi.org/10.1142/S021812740100336X doi: 10.1142/S021812740100336X
    [48] D. Xiao, S. Ruan, Global dynamics of a ratio-dependent predator-prey system, J. Math. Biol., 43 (2001), 268–290. https://doi.org/10.1007/s002850100097 doi: 10.1007/s002850100097
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1951) PDF downloads(104) Cited by(1)

Figures and Tables

Figures(5)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog