In this article we have introduced a metric named complex valued controlled metric type space, more generalized form of controlled metric type spaces. This concept is a new extension of the concept complex valued b-metric type space and this one is different from complex valued extended b-metric space. Using the idea of this new metric, some fixed point theorems involving Banach, Kannan and Fisher contractions type are proved. Some examples togetheran application are described to sustain our primary results.
Citation: Muhammad Suhail Aslam, Mohammad Showkat Rahim Chowdhury, Liliana Guran, Manar A. Alqudah, Thabet Abdeljawad. Fixed point theory in complex valued controlled metric spaces with an application[J]. AIMS Mathematics, 2022, 7(7): 11879-11904. doi: 10.3934/math.2022663
[1] | Zhao Xiaoqing, Yi Yuan . Square-free numbers in the intersection of Lehmer set and Piatetski-Shapiro sequence. AIMS Mathematics, 2024, 9(12): 33591-33609. doi: 10.3934/math.20241603 |
[2] | Yanbo Song . On two sums related to the Lehmer problem over short intervals. AIMS Mathematics, 2021, 6(11): 11723-11732. doi: 10.3934/math.2021681 |
[3] | Bingzhou Chen, Jiagui Luo . On the Diophantine equations x2−Dy2=−1 and x2−Dy2=4. AIMS Mathematics, 2019, 4(4): 1170-1180. doi: 10.3934/math.2019.4.1170 |
[4] | Jinyun Qi, Zhefeng Xu . Almost primes in generalized Piatetski-Shapiro sequences. AIMS Mathematics, 2022, 7(8): 14154-14162. doi: 10.3934/math.2022780 |
[5] | Yukai Shen . kth powers in a generalization of Piatetski-Shapiro sequences. AIMS Mathematics, 2023, 8(9): 22411-22418. doi: 10.3934/math.20231143 |
[6] | Zhenjiang Pan, Zhengang Wu . The inverses of tails of the generalized Riemann zeta function within the range of integers. AIMS Mathematics, 2023, 8(12): 28558-28568. doi: 10.3934/math.20231461 |
[7] | Mingxuan Zhong, Tianping Zhang . Partitions into three generalized D. H. Lehmer numbers. AIMS Mathematics, 2024, 9(2): 4021-4031. doi: 10.3934/math.2024196 |
[8] | Jinmin Yu, Renjie Yuan, Tingting Wang . The fourth power mean value of one kind two-term exponential sums. AIMS Mathematics, 2022, 7(9): 17045-17060. doi: 10.3934/math.2022937 |
[9] | Wenpeng Zhang, Jiafan Zhang . The hybrid power mean of some special character sums of polynomials and two-term exponential sums modulo p. AIMS Mathematics, 2021, 6(10): 10989-11004. doi: 10.3934/math.2021638 |
[10] | Guangwei Hu, Huixue Lao, Huimin Pan . High power sums of Fourier coefficients of holomorphic cusp forms and their applications. AIMS Mathematics, 2024, 9(9): 25166-25183. doi: 10.3934/math.20241227 |
In this article we have introduced a metric named complex valued controlled metric type space, more generalized form of controlled metric type spaces. This concept is a new extension of the concept complex valued b-metric type space and this one is different from complex valued extended b-metric space. Using the idea of this new metric, some fixed point theorems involving Banach, Kannan and Fisher contractions type are proved. Some examples togetheran application are described to sustain our primary results.
Let q be a positive integer. For each integer a with 1⩽a<q,(a,q)=1, we know that there exists one and only one ˉa with 1⩽ˉa<q such that aˉa≡1(q). Let r(q) be the number of integers a with 1⩽a<q for which a and ˉa are of opposite parity.
D. H. Lehmer (see [1]) posed the problem to investigate a nontrivial estimation for r(q) when q is an odd prime. Zhang [2,3] gave some asymptotic formulas for r(q), one of which reads as follows:
r(q)=12ϕ(q)+O(q12d2(q)log2q). |
Zhang [4] generalized the problem over short intervals and proved that
∑a≤Na∈R(q)1=12Nϕ(q)q−1+O(q12d2(q)log2q), |
where
R(q):={a:1⩽a⩽q,(a,q)=1,2∤a+ˉa}. |
Let n⩾2 be a fixed positive integer, q⩾3 and c be two integers with (n,q)=(c,q)=1. Let 0<δ1,δ2≤1. Lu and Yi [5] studied the Lehmer problem in the sense of short intervals as
rn(δ1,δ2,c;q):=∑a⩽δ1q∑ˉa⩽δ2qaˉa≡cmodqn∤a+ˉa1, |
and obtained an interesting asymptotic formula,
rn(δ1,δ2,c;q)=(1−n−1)δ1δ2ϕ(q)+O(q12d6(q)log2q). |
Liu and Zhang [6] r-th residues and roots, and obtained two interesting mean value formulas. Guo and Yi [7] found the Lehmer problem also has good distribution properties on Beatty sequences. For fixed real numbers α and β, the associated non-homogeneous Beatty sequence is the sequence of integers defined by
Bα,β:=(⌊αn+β⌋)∞n=1, |
where ⌊t⌋ denotes the integer part of any t∈R. Such sequences are also called generalized arithmetic progressions. If α is irrational, it follows from a classical exponential sum estimate of Vinogradov [8] that Bα,β contains infinitely many prime numbers; in fact, one has the asymptotic estimate
#{ prime p⩽x:p∈Bα,β}∼α−1π(x) as x→∞ |
where π(x) is the prime counting function.
We define type τ=τ(α) for any irrational number α by the following definition:
τ:=sup{t∈R:lim infn→∞nt‖ |
Based on the results obtained, we consider the high-dimensional Lehmer problem related to Beatty sequences over incomplete intervals in this paper. That is,
r_{n}\left(\delta_{1}, \delta_{2}, \cdots ,\delta_{k}, c, \alpha, \beta ; q\right): = \mathop {\sum\limits_{{x_{1} \leqslant \delta_{1} q}} { \cdots \sum\limits_{{x_{k} \leqslant \delta_{k} q}} {} } }\limits_{\scriptstyle {x_{1} \cdots x_{k} \equiv c\bmod q } \atop {\scriptstyle {x_{1}, \cdots x_{k-1} \in B_{\alpha,\beta}} \atop \scriptstyle {n \nmid x_{1}+\cdots+x_{k}}}} 1,(0 < \delta_{1}, \delta_{2},\cdots, \delta_{k} \leq 1), |
and where k = 2, we get the result of [7].
By using the properties of Beatty sequences and the estimates for hyper Kloosterman sums, we obtain the following result.
Theorem 1.1. Let k \geq 2 be a fixed positive integer, q\geq n^{3} and c be two integers with (n, q) = (c, q) = 1 , and \delta_{1}, \delta_{2}, \cdots, \delta_{k} be real numbers satisfying 0 < \delta_{1}, \delta_{2}, \cdots, \delta_{k} \leq 1 . Let \alpha > 1 be an irrational number of finite type. Then, we have the following asymptotic formula:
r_{n}\left(\delta_{1}, \delta_{2}, \cdots ,\delta_{k}, c, \alpha, \beta ; q\right) = \left(1-n^{-1}\right) \alpha^{-(k-1)} \delta_{1} \delta_{2} \cdots \delta_{k}\phi^{k-1}(q)+O(q^{k-1-\frac{1}{\tau+1}+\varepsilon} ), |
where \phi(\cdot) is the Euler function, \varepsilon is a sufficiently small positive number, and the implied constant only depends on n .
Notation. In this paper, we denote by \lfloor t\rfloor and \{t\} the integral part and the fractional part of t , respectively. As is customary, we put
\mathbf{e}(t): = e^{2 \pi i t} \quad \text { and } \quad\{t\}: = t-\lfloor t\rfloor . |
The notation \|t\| is used to denote the distance from the real number t to the nearest integer; that is,
\|t\|: = \min \limits_{n \in \mathbb{Z}}|t-n| . |
Let \chi^{0} be the principal character modulo q . The letter p always denotes a prime. Throughout the paper, \varepsilon always denotes an arbitrarily small positive constant, which may not be the same at different occurrences; the implied constants in symbols O, \ll and \gg may depend (where obvious) on the parameters \alpha, n, \varepsilon but are absolute otherwise. For given functions F and G , the notations F \ll G , G \gg F and F = O(G) are all equivalent to the statement that the inequality |F| \leqslant \mathcal{C}|G| holds with some constant \mathcal{C} > 0 .
To complete the proof of the theorem, we need the following several definitions and lemmas.
Definition 2.1. For an arbitrary set \mathcal{S} , we use \mathbf{1}_{\mathcal{S}} to denote its indicator function:
\mathbf{1}_{\mathcal{S}}(n): = \begin{cases}1 & { if } \;n \in \mathcal{S}, \\ 0 & { if }\; n \notin \mathcal{S} .\end{cases} |
We use \mathbf{1}_{\alpha, \beta} to denote the characteristic function of numbers in a Beatty sequence:
\mathbf{1}_{\alpha, \beta}(n): = \begin{cases}1 & { if } \;n \in \mathcal{B}_{\alpha, \beta}, \\ 0 & { if }\; n \notin \mathcal{B}_{\alpha, \beta}.\end{cases} |
Lemma 2.2. Let a, q be integers, \delta \in(0, 1) be a real number, \theta be a rational number. Let \alpha be an irrational number of finite type \tau and H = q^{\varepsilon} > 0 . We have
\sum\limits_{\scriptstyle {a \le \delta q} \atop \scriptstyle{a \in {{\cal B}_{\alpha ,\beta }}}} ' 1 = \alpha^{-1} \delta \phi(q)+O\left((\phi(q))^{\frac{\tau}{\tau+1}+\varepsilon}\right), |
and
\sum\limits_{\substack{a \leqslant \delta q \\ a \in \mathcal{B}_{\alpha, \beta}}} \mathbf{e}(\theta a) = \alpha^{-1} \sum\limits_{a \leqslant \delta_1 q} \mathbf{e}(\theta a)+O\left(\|\theta\|^{-1} q^{-\varepsilon}+q^{\varepsilon}\right). |
Taking
H = \|\theta\|^{-\frac{1}{\tau+1}+\varepsilon}, |
we have
\sum\limits_{\substack{a \leqslant \delta q \\ a \in B_{\alpha, \beta}}} \mathbf{e}(\theta a) = \alpha^{-1} \sum\limits_{a \leqslant \delta_1 q} \mathbf{e}(\theta a)+O\left(\|\theta\|^{-\left(\frac{\tau}{\tau+1}+\varepsilon\right)}\right) . |
Proof. This is Lemma 2.4 and Lemma 2.5 of [7].
Lemma 2.3. Let
\mathbf{Kl}(r_{1},r_{2},\cdots,r_{k};q) = \sum\limits_{x_{1} \leqslant q-1} \cdots \sum\limits_{x_{k-1} \leqslant q-1} \mathbf{e}\left(\frac {r_{1}x_{1}+\cdots+r_{k-1}x_{k-1}+ r_{k}\overline{x_{1} \cdots x_{k-1}}}{p}\right). |
Then
\mathbf{Kl}(r_{1},r_{2},\cdots,r_{k};q) \ll q^{\frac{k-1}{2}} k^{\omega(q)}\left(r_{1}, r_{k}, q\right)^{\frac{1}{2}} \cdots\left(r_{k-1}, r_{k}, q\right)^{\frac{1}{2}} |
where (a, b, c) is the greatest common divisor of a, b and c .
Proof. See [9].
Lemma 2.4. Assume that U is a positive real number, K is a positive integer and that a and b are two real numbers. If
a = \frac{s}{r}+\frac{\theta}{r^{2}}, \quad(r, s) = 1, r \geq 1,|\theta| \leq 1, |
then
\sum\limits_{k \leqslant K} \min (U, \frac{1}{\|a k+b\|}) \ll (\frac{K}{r}+1 )(U+r \log r). |
Proof. The proof is given in [10].
We begin by the definition
r_{n}\left(\delta_{1}, \delta_{2}, \cdots ,\delta_{k}, c, \alpha, \beta ; q\right) = S_{1}-S_{2}, |
where
S_{1}: = \mathop {\sum\limits_{{x_{1} \leqslant \delta_{1} q}} { \cdots \sum\limits_{{x_{k} \leqslant \delta_{k} q}} {} } }\limits_{\scriptstyle {x_{1} \cdots x_{k} \equiv c\bmod q } \atop {\scriptstyle {x_{1}, \cdots x_{k-1} \in \mathcal{B}_{\alpha,\beta}} }} 1, |
and
S_{2}: = \mathop {\sum\limits_{{x_{1} \leqslant \delta_{1} q}} { \cdots \sum\limits_{{x_{k} \leqslant \delta_{k} q}} {} } }\limits_{\scriptstyle{x_{1} \cdots x_{k} \equiv c\bmod q }\atop {\scriptstyle{x_{1}, \cdots x_{k-1} \in \mathcal{B}_{\alpha,\beta}}\atop \scriptstyle{n \mid x_{1}+\cdots+x_{k}}}} 1. |
By the Definition 2.1, Lemma 2.2 and congruence properties, we have
\begin{aligned} S_{1}& = \mathop{\sum\limits_{x_{1} \leqslant \delta_{1} q} \cdots \sum\limits_{x_{k} \leqslant \delta_{k} q}}_{x_{1} \cdots x_{k} \equiv c\bmod q }\mathbf{1}_{\alpha,\beta}\left( x_{1} \right) \cdots \mathbf{1}_{\alpha,\beta}\left( x_{k-1} \right)\\ & = \frac{1}{\phi(q)} \sum\limits_{x_{1} \leqslant \delta_{1} q} \cdots \sum\limits_{x_{k} \leqslant \delta_{k} q} \sum\limits_{\chi \bmod q}\chi(x_{1}) \cdots \chi(x_{k}) \chi(\overline c)\mathbf{1}_{\alpha,\beta} \left( x_{1} \right) \cdots \mathbf{1}_{\alpha,\beta}\left( x_{k-1} \right)\\ & = S_{11}+S_{12}, \end{aligned} |
where
\begin{align*} S_{11}: = \frac{1}{\phi(q)}\mathop{ {\sum}^{\prime}}_{x_{1} \leqslant \delta_{1} q} \cdots \mathop{ {\sum}^{\prime}}_{x_{k} \leqslant \delta_{k} q} \mathbf{1}_{\alpha,\beta}\left( x_{1} \right) \cdots \mathbf{1}_{\alpha,\beta}\left( x_{k-1} \right), \end{align*} |
and
S_{12}: = \frac{1}{\phi(q)} \mathop{\sum\limits_{\chi \bmod q}}_{\chi \neq \chi_{0}} \chi(\overline c) \left(\sum\limits_{x_{1} \leqslant \delta_{1} q} \cdots \sum\limits_{x_{k} \leqslant \delta_{k} q} \chi(x_{1}) \cdots \chi(x_{k}) \mathbf{1}_{\alpha,\beta} ( x_{1}) \cdots \mathbf{1}_{\alpha,\beta}( x_{k-1} )\right). |
For S_{2} , it follows that
\begin{aligned} S_{2}& = \frac{1}{\phi(q)} \mathop{\sum\limits_{x_{1} \leqslant \delta_{1} q} \cdots \sum\limits_{x_{k} \leqslant \delta_{k} q}}_{n \mid x_{1}+\cdots+x_{k}} \sum\limits_{\chi \bmod q}\chi(x_{1}) \cdots \chi(x_{k}) \chi(\overline c)\mathbf{1}_{\alpha,\beta} \left( x_{1} \right) \cdots \mathbf{1}_{\alpha,\beta}\left( x_{k-1} \right)\\ & = S_{21}+S_{22}, \end{aligned} |
where
\begin{align*} S_{21}: = \frac{1}{\phi(q)} \mathop{\mathop{ {\sum}^{\prime}}_{x_{1} \leqslant \delta_{1} q} \cdots \mathop{ {\sum}^{\prime}}_{x_{k} \leqslant \delta_{k} q} }_{n \mid x_{1}+\cdots+x_{k}} \mathbf{1}_{\alpha,\beta}\left( x_{1} \right) \cdots \mathbf{1}_{\alpha,\beta}\left( x_{k-1} \right), \end{align*} |
and
\begin{align*} S_{22}: = \frac{1}{\phi(q)} \mathop{\sum\limits_{\chi \bmod q}}_{\chi \neq \chi_{0}} \chi(\overline c) \mathop{{\sum\limits_{x_{1} \leqslant \delta_{1} q}} \cdots {\sum\limits_{x_{k} \leqslant \delta_{k} q}}}_{n \mid x_{1}+\cdots+x_{k}} \chi(x_{1}) \cdots \chi(x_{k-1}) \mathbf{1}_{\alpha,\beta} \left( x_{1} \right) \cdots \mathbf{1}_{\alpha,\beta}\left( x_{k-1}\right) . \end{align*} |
From the classical bound
\sum \limits_{a \le \delta q}' 1 = \delta \phi(q)+O\left(d(q)\right) |
and Lemma 2.2, we have
\begin{align} S_{11}& = \frac{1}{\phi(q)} \left(\mathop{{\sum}^{\prime}}_{x_{1} \leqslant \delta_{1} q} \mathbf{1}_{\alpha,\beta}( x_{1} )\right) \cdots \left(\mathop{{\sum}^{\prime}}_{x_{k-1} \leqslant \delta_{k-1} q}\mathbf{1}_{\alpha,\beta}( x_{k-1} )\right) \left(\mathop{{\sum}^{\prime}}_{x_{k} \leqslant \delta_{k} q}1\right) \\ & = \left(\delta_{k}+O\left(\frac{d(q)}{\phi(q)}\right)\right)\prod \limits_{i = 1}^{k-1}\left( \alpha^{-1} \delta_{i} \phi(q)+O\left((\phi(q))^{\frac{\tau}{\tau+1}+\varepsilon}\right)\right) \\ & = \alpha^{-(k-1)}\phi^{k-1}(q)\prod \limits_{i = 1}^{k-1} \delta_{i}+O\left(q^{k-1-\frac{1}{\tau+1}+\varepsilon}\right). \end{align} | (3.1) |
From Lemma 2.2, we obtain
\begin{align} S_{21}& = \frac{1}{\phi(q)}\left(\mathop{{\sum}^{\prime}}_{x_{1} \leqslant \delta_{1} q} \mathbf{1}_{\alpha,\beta}( x_{1} )\right) \cdots \left(\mathop{{\sum}^{\prime}}_{x_{k-1} \leqslant \delta_{k-1} q}\mathbf{1}_{\alpha,\beta}( x_{k-1} )\right)\left(\mathop{\mathop{{\sum}^{\prime}}_{x_{k} \leqslant \delta_{k} q}}_{n \mid x_{k}+(x_{1}+ \cdots +x_{k-1})}1\right) \\ & = \frac{1}{\phi(q)}\left(\mathop{{\sum}^{\prime}}_{x_{1} \leqslant \delta_{1} q} \mathbf{1}_{\alpha,\beta}( x_{1} )\right) \cdots \left(\mathop{{\sum}^{\prime}}_{x_{k-1} \leqslant \delta_{k-1} q}\mathbf{1}_{\alpha,\beta}( x_{k-1} )\right) \left(\mathop{\sum\limits_{x_{k} \leqslant \delta_{k} q }}_{x_{k} \equiv-(x_{1}+ \cdots +x_{k-1}) \bmod n} \sum\limits_{\substack{d \mid(x_{k}, q)}} \mu(d)\right)\\ & = \frac{1}{\phi(q)}\left(\mathop{{\sum}^{\prime}}_{x_{1} \leqslant \delta_{1} q} \mathbf{1}_{\alpha,\beta}( x_{1} )\right) \cdots \left(\mathop{{\sum}^{\prime}}_{x_{k-1} \leqslant \delta_{k-1} q}\mathbf{1}_{\alpha,\beta}( x_{k-1} )\right)\left( \sum\limits_{\substack{d \mid q}} \mu(d) \mathop{\mathop{\sum\limits_{x_{k} \leqslant \delta_{k}q}}_{d \mid x_{k}}}_{x_{k} \equiv-(x_{1}+ \cdots +x_{k-1})\bmod n} 1 \right) \\ & = \frac{1}{\phi(q)} \left(\mathop{{\sum}^{\prime}}_{x_{1} \leqslant \delta_{1} q} \mathbf{1}_{\alpha,\beta}( x_{1} )\right) \cdots \left(\mathop{{\sum}^{\prime}}_{x_{k-1} \leqslant \delta_{k-1} q}\mathbf{1}_{\alpha,\beta}( x_{k-1} )\right)\left( \sum\limits_{\substack{d \mid q}} \mu(d) \left( \frac{\delta_{k}q}{nd}+O(1)\right)\right) \\ & = \frac{1}{\phi(q)}\left(\frac{\delta_{k}\phi(q)}{n}+O\left(d(q)\right) \right)\prod \limits_{i = 1}^{k-1}\left( \alpha^{-1} \delta_{i} \phi(q)+O\left((\phi(q))^{\frac{\tau}{\tau+1}+\varepsilon}\right)\right)\\ & = \alpha^{-(k-1)}n^{-1}\phi^{k-1}(q)\prod \limits_{i = 1}^{k-1} \delta_{i}+O (q^{k-1-\frac{1}{\tau+1}+\varepsilon} ). \end{align} | (3.2) |
By the properties of exponential sums,
\begin{align} S_{22} = &\frac{1}{n \phi(q)} \mathop{\sum\limits_{\chi \mathrm{mod} q}}_{\chi \neq \chi_{0}} \chi(\overline c) \left({\sum\limits_{x_{1} \leqslant \delta_{1} q}}\cdots {\sum\limits_{x_{k} \leqslant \delta_{k-1} q}}\chi(x_{1}) \cdots \chi(x_{k}) \mathbf{1}_{\alpha,\beta} \left( x_{1} \right) \cdots \mathbf{1}_{\alpha,\beta}\left( x_{k-1} \right)\right) \\ &\times \left(\sum \limits_{l = 1}^{n}\mathbf{e}(\frac{x_{1}+\cdots+x_{k}}{n}l) \right)\\ = &\frac{1}{n \phi(q)} \mathop{\sum\limits_{\chi \mathrm{mod} q}}_{\chi \neq \chi_{0}} \chi(\overline c)\sum \limits_{l = 1}^{n} \prod \limits_{i = 1}^{k-1}\left( \sum\limits_{x_{i} \leqslant \delta_{i} q}\mathbf{1}_{\alpha, \beta}(x_{i}) \chi(x_{i}) \mathbf{e}(\frac{x_{i}}{n} l)\right)\left( \sum\limits_{x_{k} \leqslant \delta_{k} q} \chi(x_{k}) \mathbf{e} (\frac{x_{k}}{n} l)\right). \end{align} | (3.3) |
Let
G(r, \chi): = \sum\limits_{h = 1}^{q} \chi(h) \mathbf{e} (\frac{r h}{q} ) |
be the Gauss sum, and we know that for \chi \neq \chi_{0} ,
\chi(x_{i}) = \frac{1}{q} \sum\limits_{r = 1}^{q} G(r, \chi) \mathbf{e} (-\frac{x_{i} r}{q} ) = \frac{1}{q} \sum\limits_{r = 1}^{q-1} G(r, \chi) \mathbf{e} (-\frac{x_{i} r}{q} ), |
and
\frac{l}{n}-\frac{r}{q} \neq 0 |
for 1 \leqslant l \leqslant n, 1 \leqslant r \leqslant q-1 and (n, q) = 1 .
Therefore,
\begin{equation} \sum\limits_{x_{k} \leqslant \delta_{k} q} \chi(x_{k}) \mathbf{e} (\frac{x_{k}}{n} l ) = \frac{1}{q} \sum\limits_{r_{k} = 1}^{q-1} G\left(r_{k}, \chi\right) \frac{f\left(\delta_{k}, l, r_{k} ; n, q\right)}{\mathbf{e} (\frac{r_{k}}{q}-\frac{l}{h})-1}, \end{equation} | (3.4) |
where
f(\delta, l, r ; n, p): = 1-\mathbf{e}\left( (\frac{l}{n}-\frac{r}{q} )\lfloor\delta q\rfloor\right) |
and
\left|f\left(\delta_{k}, l, r_{k} ; n, q\right)\right| \leqslant 2. |
For x_{i}(1\leqslant i \leqslant k-1) , using Lemma 2.2, we also have
\begin{align} & \sum\limits_{x_{i} \leqslant \delta_{i} q} \mathbf{1}_{\alpha, \beta}(x_{i}) \chi(x_{i}) \mathbf{e} (\frac{x_{i}}{n} l ) \\ = & \frac{1}{q} \sum\limits_{x_{i} \leqslant \delta_{i} q} \mathbf{1}_{\alpha, \beta}(x_{i}) \sum\limits_{r_{i} = 1}^{q-1} G\left(r_{i}, \chi\right) \mathbf{e}\left( (\frac{l}{n}-\frac{r_{i}}{q} ) x_{i}\right) \\ = & \frac{1}{q} \sum\limits_{r_{i} = 1}^{q-1} G\left(r_{i}, \chi\right) \sum\limits_{x_{i} \leqslant \delta_{i} q} \mathbf{1}_{\alpha, \beta}(x_{i}) \mathbf{e}\left( (\frac{l}{n}-\frac{r_{i}}{q} ) x_{i}\right) \\ = & \frac{1}{q} \sum\limits_{r_{i} = 1}^{q-1} G\left(r_{i}, \chi\right) \left(\alpha^{-1}\sum\limits_{a \leqslant \delta_{i} q} \mathbf{e}\left( (\frac{l}{n}-\frac{r_{i}}{q} ) x_{i}\right)+O\left(\frac{q^{-\varepsilon}}{\|\frac{l}{n}-\frac{r_{i}}{q}\|} +q^{\varepsilon}\right)\right) \\ = &\frac{1}{q \alpha} \sum\limits_{r_{i} = 1}^{q-1} G\left(r_{i}, \chi\right) \left(\frac{f\left(\delta_{i} , l, r_{i} ; n, q\right)}{\mathbf{e} (\frac{r_{i}}{q}-\frac{l}{n} )-1}+O\left(\frac{q^{-\varepsilon}}{\|\frac{l}{n}-\frac{r_{i}}{q}\|} +q^{\varepsilon}\right)\right) . \end{align} | (3.5) |
Let
\begin{align} S_{23}& = \frac{1}{n \phi(q)} \mathop{\sum\limits_{\chi \mathrm{mod} q}}_{\chi \neq \chi_{0}} \chi(\overline c)\sum \limits_{l = 1}^{n}\prod\limits_{i = 1}^{k-1} \left(\frac{1}{q \alpha} \sum\limits_{r_{i} = 1}^{q-1} G\left(r_{i}, \chi\right) \frac{f\left(\delta_{i}, l, r_{i} ; n, q\right)}{\mathbf{e} (\frac{r_{i}}{q}-\frac{l}{n})-1}\right)\left(\frac{1}{q} \sum\limits_{r_{k} = 1}^{q-1} G\left(r_{k}, \chi\right) \frac{f\left(\delta_{k}, l, r_{k} ; n, q\right)}{\mathbf{e}(\frac{r_{k}}{q}-\frac{l}{n})-1}\right) \\ & = \frac{1}{n \phi(q) q^{k} \alpha^{k-1}} \sum\limits_{l = 1}^{n}\sum\limits_{r_{1} = 1}^{q-1}\cdots \sum\limits_{r_{k} = 1}^{q-1} \frac{f\left(\delta_{1} , l, r_{1} ; n, q\right)\cdots f\left(\delta_{k}, l, r_{k} ; n, q\right)}{\left(\mathbf{e} (\frac{r_{1}}{q}-\frac{l}{n} )-1\right)\cdots \left(\mathbf{e} (\frac{r_{k}}{q}-\frac{l}{n} )-1\right)} \\ &\times \mathop{\sum\limits_{\chi \mathrm{mod} q}}_{\chi \neq \chi_{0}} \chi(\overline c)G\left(r_{1}, \chi\right)\cdots G\left(r_{k}, \chi\right). \end{align} | (3.6) |
From the definition of Gauss sum and Lemma 2.3, we know that
\begin{align} &\sum\limits_{\chi \mathrm{mod} q}\chi(\overline c)G\left(r_{1}, \chi\right)\cdots G\left(r_{k}, \chi\right)\\ = &\sum\limits_{h_{1} = 1}^{q-1}\cdots \sum\limits_{h_{k} = 1}^{q-1}\sum\limits_{\chi \mathrm{mod}q}\chi(\overline c)\chi(h_{1})\cdots \chi(h_{k})\mathbf{e} ( \frac{r_{1}h_{1}+\cdots +r_{k}h_{k}}{q} )\\ = &\phi(q)\mathop{\sum\limits_{h_{1} = 1}^{q-1}\cdots \sum\limits_{h_{k} = 1}^{q-1}}_{h_{1} \cdots h_{k} \equiv c \bmod q}\mathbf{e} ( \frac{r_{1}h_{1}+ \cdots +r_{k}h_{k}}{q} )\\ = &\phi(q)\sum\limits_{h_{1} = 1}^{q-1}\cdots \sum\limits_{h_{k} = 1}^{q-1}\mathbf{e} ( \frac{r_{1}h_{1}+ \cdots r_{k-1}h_{k-1}+r_{k}c\overline{h_{1} \cdots h_{k-1}}}{q} )\\ = &\phi(q) \mathbf{Kl}(r_{1},r_{2},\cdots,r_{k}c;q) \\ \ll& \phi(q) q^{\frac{k-1}{2}} k^{\omega(q)}\left(r_{1}, r_{k}c, q\right)^{\frac{1}{2}} \cdots\left(r_{k-1}, r_{k}c, q\right)^{\frac{1}{2}} \\ \ll&\phi(q) q^{\frac{k-1}{2}} k^{\omega(q)}\left(r_{1}, q\right) \cdots\left(r_{k}, q\right). \end{align} | (3.7) |
By Mobius inversion, we get
G(r, \chi_{0}) = \sum\limits_{h = 1}^{q}' \mathbf{e} (\frac{r h}{q} ) = \mu\left(\frac{q}{(r, q)}\right) \frac{\varphi(q)}{\varphi(q /(r, q))} \ll(r, q), |
and
\chi_{0}(\overline c)G\left(r_{1}, \chi_{0}\right)\cdots G\left(r_{k}, \chi_{0}\right) \ll\left(r_{1}, q\right) \cdots\left(r_{k}, q\right). |
Hence,
\begin{align} &\mathop{\sum\limits_{\chi \mathrm{mod} q}}_{\chi \neq \chi_{0}}\chi(\overline c)G\left(r_{1}, \chi\right)\cdots G\left(r_{k}, \chi\right)\\ = &\sum\limits_{\chi \mathrm{mod} q}\chi(\overline c)G\left(r_{1}, \chi\right)\cdots G\left(r_{k}, \chi\right)-\chi_{0}(\overline c)G\left(r_{1}, \chi_{0}\right)\cdots G\left(r_{k}, \chi_{0}\right)\\ \ll&\phi(q) q^{\frac{k-1}{2}} k^{\omega(q)}\left(r_{1}, q\right) \cdots\left(r_{k}, q\right). \end{align} | (3.8) |
From (3.8) we may deduce the following result:
\begin{align} S_{23}&\ll \frac{k^{\omega(q)}}{n q^{\frac{k+1}{2}} \alpha^{k-1}}\sum\limits_{l = 1}^{n}\left(\sum\limits_{r = 1}^{q-1} \frac{(r,q)}{\left|\mathbf{e} (\frac{r}{q}-\frac{l}{n} )-1\right|}\right)^{k}\\ &\ll \frac{k^{\omega(q)}}{n q^{\frac{k+1}{2}} \alpha^{k-1}}\sum\limits_{l = 1}^{n}\left(\sum\limits_{r = 1}^{q-1} \frac{(r,q)}{\left|\sin \pi (\frac{r}{q}-\frac{l}{n} )\right|}\right)^{k}\\ &\ll \frac{k^{\omega(q)}}{n q^{\frac{k+1}{2}} \alpha^{k-1}}\sum\limits_{l = 1}^{n}\left(\sum\limits_{r = 1}^{q-1} \frac{(r,q)}{\|\frac{r}{q}-\frac{l}{n}\|}\right)^{k}\\ & = \frac{k^{\omega(q)}}{n q^{\frac{k+1}{2}} \alpha^{k-1}}\sum\limits_{l = 1}^{n}\left(\mathop{\sum\limits_{d \mid q}}_{d < q }\mathop{\sum\limits_{r \leq q-1}}_{(r,q) = d }\frac{d}{\|\frac{r}{q}-\frac{l}{n}\|}\right)^{k }\\ & = \frac{k^{\omega(q)}}{n q^{\frac{k+1}{2}} \alpha^{k-1}}\sum\limits_{l = 1}^{n}\left(\mathop{\sum\limits_{d \mid q}}_{d < q }d\mathop{\sum\limits_{m \leq\frac{q-1}{d} }}_{(m,q) = 1}\frac{1}{\|\frac{md}{q}-\frac{l}{n}\|}\right)^{k }\\ & = \frac{k^{\omega(q)}}{n q^{\frac{k+1}{2}} \alpha^{k-1}}\sum\limits_{l = 1}^{n}\left(\mathop{\sum\limits_{d \mid q}}_{d < q }d\sum\limits_{k \mid q}\mu(k)\sum\limits_{m \leq\frac{q-1}{kd} }\frac{1}{\|\frac{mkd}{q}-\frac{l}{n}\|}\right)^{k }. \end{align} |
It is easy to see
\|\frac{mkd}{q}-\frac{l}{n}\| = \|\frac{mkn-l(q/d)}{(q/d)n}\| \geq \frac{1}{(q/d)n}, |
and we obtain
S_{23}\ll\frac{k^{\omega(q)}}{n \phi(q) q^{\frac{k+1}{2}} \alpha^{k-1}}\sum\limits_{l = 1}^{n}\left(\mathop{\sum\limits_{d \mid q\\{d < q }}}d\sum\limits_{k \mid q}\sum\limits_{m \leq\frac{q-1}{kd} }\min (\frac{qn}{d},\frac{1}{\|\frac{mkd}{q}-\frac{l}{n}\|} )\right)^{k }. |
Let k d / q = h_{0} / q_{0} , where q_{0} \geq 1, \left(h_{0}, q_{0}\right) = 1 , and we will easily obtain q /(k d) \leq q_{0} \leq q / d . By using Lemma 2.4, we have
\begin{align} S_{23}&\ll \frac{k^{\omega(q)}}{n q^{\frac{k+1}{2}} \alpha^{k-1}}\sum\limits_{l = 1}^{n}\left(\sum\limits_{\substack{d \mid q \\ d < q}} d \sum\limits_{k \mid q}\left(\frac{(q-1) /(k d)}{q_{0}}+1\right) (\frac{q n}{d}+q_{0} \log q_{0} )\right)^{k}\\ &\ll \frac{k^{\omega(q)}}{n q^{\frac{k+1}{2}} \alpha^{k-1}}\sum\limits_{l = 1}^{n}\left(\sum\limits_{\substack{d \mid q \\ d < q}} d \sum\limits_{k \mid q}\left(\frac{(q-1) /(k d)}{q/(kd)}+1\right) (\frac{q n}{d}+\frac{q}{d} \log \frac{q}{d} )\right)^{k}\\ &\ll \frac{k^{\omega(q)}q^{\frac{k-1}{2}}}{ \alpha^{k-1}}\left(\sum\limits_{\substack{d \mid q \\ d < q}} \sum\limits_{k \mid q}n+\log q\right)^{k}\\ &\ll q^{\frac{k-1}{2}}d^{2k}(q)(\log q+n)^{k}. \end{align} |
Let
S_{24}: = \frac{q^{(k-1)(-\varepsilon)}}{n \phi(q)}\mathop{\sum\limits_{\chi \mathrm{mod} q\\{\chi \neq \chi_{0}}} }\chi(\overline c)\sum \limits_{l = 1}^{n}\prod\limits_{i = 1}^{k-1}\left(\frac{1}{q \alpha} \sum\limits_{r_{i} = 1}^{q-1} G(r_{i}, \chi)\frac{1}{\|\frac{l}{n}-\frac{r_{i}}{q}\|} \right) \left(\frac{1}{q} \sum\limits_{r_{k} = 1}^{q-1} G\left(r_{k}, \chi\right) \frac{f\left(\delta_{k}, l, r_{k} ; n, q\right)}{\mathbf{e}(\frac{r_{k}}{q}-\frac{l}{n})-1}\right) |
and
S_{25}: = \frac{q^{(k-1)(\varepsilon)}}{n \phi(q)}\mathop{\sum\limits_{\chi \mathrm{mod} q\\{\chi \neq \chi_{0}}}} \chi(\overline c)\sum \limits_{l = 1}^{n}\prod\limits_{i = 1}^{k-1}\left(\frac{1}{q \alpha} \sum\limits_{r_{i} = 1}^{q-1} G(r_{i}, \chi) \right) \left(\frac{1}{q} \sum\limits_{r_{k} = 1}^{q-1} G\left(r_{k}, \chi\right) \frac{f\left(\delta_{k}, l, r_{k} ; n, q\right)}{\mathbf{e}(\frac{r_{k}}{q}-\frac{l}{n})-1}\right). |
By the same argument of S_{23} , it follows that
S_{24} \ll q^{\frac{k-1}{2}-\varepsilon}d^{2k}(q)(\log q+n)^{k}, |
S_{25} \ll q^{\frac{k-3}{2}+\varepsilon}(\log q+n). |
Since n\ll q^{\frac{1}{3}} , we have
\begin{equation} S_{25} \ll S_{24} \ll S_{23} \ll q^{\frac{k-1}{2}+\varepsilon}n^{k}\ll q^{k-2+\varepsilon}. \end{equation} | (3.9) |
Taking n = 1 , we get
\begin{equation} S_{12}\ll q^{\frac{k-1}{2}+\varepsilon}. \end{equation} | (3.10) |
With (3.1), (3.2), (3.9) and (3.10), the proof is complete.
This paper considers the high-dimensional Lehmer problem related to Beatty sequences over incomplete intervals. And we give an asymptotic formula by the properties of Beatty sequences and the estimates for hyper Kloosterman sums.
This work is supported by Natural Science Foundation No. 12271422 of China. The authors would like to express their gratitude to the referee for very helpful and detailed comments.
The authors declare that there are no conflicts of interest regarding the publication of this paper.
[1] |
A. Azam, J. Ahmad, P. Kumam, Common fixed point theorems for multi-valued mappings in complex valued metric spaces, J. Inequal. Appl., 2013 (2013), 578. https://doi.org/10.1186/1029-242X-2013-578 doi: 10.1186/1029-242X-2013-578
![]() |
[2] |
A. Azam, B. Fisher, M. Khan, Common fixed point theorems in complex valued metric spaces, Numer. Func. Anal. Opt., 32 (2011), 243–253. https://doi.org/10.1080/01630563.2011.533046 doi: 10.1080/01630563.2011.533046
![]() |
[3] |
H. Afshari, S. M. A. Aleomraninejad, Some fixed point results of F-contraction mapping in D-metric spaces by Samet's method, J. Math. Anal. Model., 2 (2021), 1–8. https://doi.org/10.48185/jmam.v2i3.299 doi: 10.48185/jmam.v2i3.299
![]() |
[4] |
M. A. Almalahi, S. K. Panchal, Existence and delta-approximate solution of implicit fractional pantographequations in the frame of Hilfer-Katugampola operator, J. Fracy. Calc. Nonlinear Syst., 2 (2021), 1–17. https://doi.org/10.48185/jfcns.v2i1.59 doi: 10.48185/jfcns.v2i1.59
![]() |
[5] |
M. S. Aslam, M. F. Bota, M. S. R. Chowdhury, L. Guran, N. Saleem, Common fixed points technique for existence of a solution of Urysohn type integral equations system in complex valued b-metric spaces, Mathematics, 9 (2021), 400. https://doi.org/10.3390/math9040400 doi: 10.3390/math9040400
![]() |
[6] | A. Belhenniche, S. Benahmed, L. Guran, Existence of a solution for integral Urysohn type equations system via fixed points technique in complex valued extended b-metric spaces, J. Prime Res. Math., 16 (2020), 109–122. |
[7] | I. A. Bakhtin, The contraction mapping principle in quasimetric spaces, Funct. Anal., 30 (1989), 26–37. |
[8] | N. Bouteraa, S. Benaicha, H. Djourdem, On the existence and multiplicity of positive radial solutions for nonlinear elliptic equation on bounded annular domains via fixed point index, Maltepe J. Math., 1 (2019), 30–47. |
[9] | S. Banach, Sur les operation dans les ensembles abstraits et applications aux equations integrals, Fund. Math., 3 (1922), 133–181. |
[10] |
S. Barootkoob, H. Lakzian, Z. D. Mitrović, The best proximity points for weak MT-cyclic Reich type contractions, J. Math. Ext., 16 (2022), 1–21. https://doi.org/10.30495/JME.2022.1886 doi: 10.30495/JME.2022.1886
![]() |
[11] |
S. Chandok, D. Kumar, Some common fixed point results for rational type contraction mappings in complex valued metric spaces, J. Oper., 2013 (2013), 1–7. https://doi.org/10.1155/2013/813707 doi: 10.1155/2013/813707
![]() |
[12] | S. K. Chatterjea, Fixed point theorem, C. R. Acad. Bulgare Sci., 25 (1972), 727–730. |
[13] | S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav., 1 (1993), 5–11. |
[14] | S. Czerwik, Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Univ. Modena, 46 (1998), 263–276. |
[15] |
M. Edelstein, On fixed and periodic points under contractive mappings, J. Lond. Math. Soc., 1 (1962), 74–79. https://doi.org/10.1112/jlms/s1-37.1.74 doi: 10.1112/jlms/s1-37.1.74
![]() |
[16] |
H. A. Hammad, H. Aydi, Y. U. Gaba, Exciting fixed point results on a novel space with supportive applications, J. Funct. Space., 2021 (2021), 6613774. https://doi.org/10.1155/2021/6613774 doi: 10.1155/2021/6613774
![]() |
[17] |
Z. Hammouch, M. Yavuz, N. Özdemir, Numerical solutions and synchronization of a variable-order fractional chaotic system, Math. Model. Numer. Simul. Appl., 1 (2021), 11–23. https://doi.org/10.53391/mmnsa.2021.01.002 doi: 10.53391/mmnsa.2021.01.002
![]() |
[18] |
E. Karapınar, A short survey on the recent fixed point results on b-metric spaces, Constr. Math. Anal., 1 (2018), 15–44. https://doi.org/10.33205/cma.453034 doi: 10.33205/cma.453034
![]() |
[19] |
T. Kamran, M. Samreen, Q. Ul Ain, A generalization of b-metric space and some fixed point theorems, Mathematics, 5 (2017), 19. https://doi.org/10.3390/math5020019 doi: 10.3390/math5020019
![]() |
[20] |
D. Lateef, Fisher type fixed point results in controlled metric spaces, J. Math. Comput. Sci., 20 (2020), 234–240. http://dx.doi.org/10.22436/jmcs.020.03.06 doi: 10.22436/jmcs.020.03.06
![]() |
[21] | D. Lateef, Kannan fixed point theorem in C-metric spaces, J. Math. Anal., 10 (2019), 34–40. |
[22] |
Z. H. Ma, L. N. Jiang, H. K. Sun, C^*-algebra valued metric spaces and related fixed point theorems, Fixed Point Theory Appl., 2014 (2014), 206. https://doi.org/10.1186/1687-1812-2014-206 doi: 10.1186/1687-1812-2014-206
![]() |
[23] |
N. Mlaiki, H. Aydi, N. Souayah, T. Abdeljawad, Controlled metric type spaces and related contraction principle, Mathematics, 6 (2018), 1–6. https://doi.org/10.3390/math6100194 doi: 10.3390/math6100194
![]() |
[24] |
N. Mlaiki, H. Aydi, N. Souayah, T. Abdeljawad, An improvement of recent results in controlled metric type spaces, Filomat, 34 (2020), 1853–1862, https://doi.org/10.2298/FIL2006853M doi: 10.2298/FIL2006853M
![]() |
[25] |
N. Saleem, J. Vujaković, W. U. Baloch, S. Radenović, Coincidence point results for multivalued Suzuki type mappings using \Theta-contraction in b-metric spaces, Mathematics, 7 (2019), 1017. https://doi.org/10.3390/math7111017 doi: 10.3390/math7111017
![]() |
[26] |
J. Patil, B. Hardan, A. Bachhav, A common coincidence of fixed point for generalized Caristi fixed point theorem, J. Math. Anal. Model., 2 (2021), 40–46. https://doi.org/10.48185/jmam.v2i1.151 doi: 10.48185/jmam.v2i1.151
![]() |
[27] |
J. Roshan, V. Parvaneh, S. Sedghi, N. Shobkolaei, W. Shatanawai, Common fixed points of almost generalized (\psi, \varphi)_{s}-contractive mapping in ordered b-metric spaces, Fixed Point Theory Appl., 2013 (2013), 159. https://doi.org/10.1186/1687-1812-2013-159 doi: 10.1186/1687-1812-2013-159
![]() |
[28] | K. P. R. Rao, P. R. Swamy, J. R. Prasad, A common fixed point theorem in complex valued b-metric spaces, Bull. Math. Stat. Res., 1 (2013), 1–8. |
[29] |
A. Som Babu, T. Došenović, MD. Mustaq Ali, S. Radenović, K. P. R. Rao, Some presic type results in b-dislocated metric spaces, Constr. Math. Anal., 2 (2019), 40–48. https://doi.org/10.33205/cma.499171 doi: 10.33205/cma.499171
![]() |
[30] |
E. Tarafdar, An approach to fixed-point theorems on uniform spaces, Trans. Amer. Math. Soc., 191 (1974), 209–225. https://doi.org/10.2307/1996991 doi: 10.2307/1996991
![]() |
[31] |
N. Ullah, M. S. Shagari, A. Azam, Fixed point theorems in complex valued extended b metric spaces, Moroccan J. Pure Appl. Anal., 5 (2019), 140–163. https://doi.org/10.2478/mjpaa-2019-0011 doi: 10.2478/mjpaa-2019-0011
![]() |