
In this article, a new generalized q-Mittag-Leffler function is introduced and investigated. Motivated by the newly defined function and using the concept of differential subordination, a new subclass of multivalent functions is introduced. Some geometric properties of them are obtained. Furthermore, the radii for the aforementioned subclass associated with a generalized Srivastava-Attiya integral operator are also studied.
Citation: Sarem H. Hadi, Maslina Darus, Choonkil Park, Jung Rye Lee. Some geometric properties of multivalent functions associated with a new generalized q-Mittag-Leffler function[J]. AIMS Mathematics, 2022, 7(7): 11772-11783. doi: 10.3934/math.2022656
[1] | Naeem Ud Din, Muhammad Ishaq, Zunaira Sajid . Values and bounds for depth and Stanley depth of some classes of edge ideals. AIMS Mathematics, 2021, 6(8): 8544-8566. doi: 10.3934/math.2021496 |
[2] | Zahid Iqbal, Muhammad Ishaq . Depth and Stanley depth of edge ideals associated to some line graphs. AIMS Mathematics, 2019, 4(3): 686-698. doi: 10.3934/math.2019.3.686 |
[3] | Tazeen Ayesha, Muhammad Ishaq . Some algebraic invariants of the edge ideals of perfect [h,d]-ary trees and some unicyclic graphs. AIMS Mathematics, 2023, 8(5): 10947-10977. doi: 10.3934/math.2023555 |
[4] | Bakhtawar Shaukat, Muhammad Ishaq, Ahtsham Ul Haq . Algebraic invariants of edge ideals of some circulant graphs. AIMS Mathematics, 2024, 9(1): 868-895. doi: 10.3934/math.2024044 |
[5] | Fatma Salama, Randa M. Abo Elanin . On total edge irregularity strength for some special types of uniform theta snake graphs. AIMS Mathematics, 2021, 6(8): 8127-8148. doi: 10.3934/math.2021471 |
[6] | Mohra Zayed, Ali Ahmad, Muhammad Faisal Nadeem, Muhammad Azeem . The comparative study of resolving parameters for a family of ladder networks. AIMS Mathematics, 2022, 7(9): 16569-16589. doi: 10.3934/math.2022908 |
[7] | Mohammad Hamidi, Florentin Smarandache . Valued-inverse Dombi neutrosophic graph and application. AIMS Mathematics, 2023, 8(11): 26614-26631. doi: 10.3934/math.20231361 |
[8] | Wei Lu, Yuangang Li, Yixiu Kong, Liangli Yang . Generalized triangular Pythagorean fuzzy weighted Bonferroni operators and their application in multi-attribute decision-making. AIMS Mathematics, 2023, 8(12): 28376-28397. doi: 10.3934/math.20231452 |
[9] | Xinfeng Liang, Mengya Zhang . Triangular algebras with nonlinear higher Lie n-derivation by local actions. AIMS Mathematics, 2024, 9(2): 2549-2583. doi: 10.3934/math.2024126 |
[10] | Shama Liaqat, Zeeshan Saleem Mufti, Yilun Shang . Newly defined fuzzy Misbalance Prodeg Index with application in multi-criteria decision-making. AIMS Mathematics, 2024, 9(8): 20193-20220. doi: 10.3934/math.2024984 |
In this article, a new generalized q-Mittag-Leffler function is introduced and investigated. Motivated by the newly defined function and using the concept of differential subordination, a new subclass of multivalent functions is introduced. Some geometric properties of them are obtained. Furthermore, the radii for the aforementioned subclass associated with a generalized Srivastava-Attiya integral operator are also studied.
Let S:=K[x1,…,xr] be a polynomial algebra over a filed K. Let X be a finitely generated Zr-graded S-module. A Stanley decomposition of X is a presentation of K-vector space X as a finite direct sum
T:X=a⨁f=1zfK[Wf], |
where zf∈X is a homogeneous element and Wf⊂{x1,…,xr} and zfK[Wf] is the K-subspace of X generated by all elements zfb, where b is a monomial in K[Wf]. The Zr-graded K-subspace zfK[Wf]⊂X is called a Stanley space of dimension |Wf|, if zfK[Wf] is a free K[Wf]-module. Define
sdepth(T)=min{|Wf|:f=1,…,a},and |
sdepth(X)=max{sdepth(T):TisaStanleydecompositionofX}. |
The number sdepth(T) is called the Stanley depth of decomposition T and sdepth(X) is called the Stanley depth of X. Let R be a local noetherian ring with a unique maximal ideal m and X be a finitely generated R-module. The common length of all maximal X-sequences in m is called the depth of X. Stanley conjectured in [27] that for a Zr-graded module X, sdepth(X)≥depth(X). Afterwards, a number of articles have been published in which this conjecture has been discussed for different cases. This conjecture was disproved by Duval et al. in [8]. Stanley depth gained attention when Herzog et al. gave an algorithm in [10] for computing sdepth(X) for module of the type X=Q2/Q1, where Q1⊂Q2⊂S are monomial ideals. Though the algorithm is useful for studying Stanley depth in some special cases, but computing Stanley depth by using this algorithm is a hard combinatorial problem, in general. In [24], Rinaldo gave a computer implementation for this algorithm, in the computer algebra system CoCoA. This algorithm is useful only when the ring has small number of variables. Therefore, it's worth giving values and bounds for Stanley depth of some classes of modules. For some literature related to depth and Stanley depth the readers are referred to [7,12,14,15,16,20,22,23]. Herzog conjectured in [11]:
Conjecture 1.1. (Herzog) Let Q⊂S be a monomial ideal. Then sdepth(Q)≥sdepth(S/Q).
The above conjecture has been proved in some special cases; see for instance [13,17,21,23]. In this paper we study depth and Stanley depth of the edge ideals and their residue class rings for some classes of graphs which we call multi triangular snake graphs and multi triangular ouroboros snake graphs. We find the exact values of depth and Stanley depth of the cyclic module associated to the triangular and multi triangular snake graphs, when n≡1(mod2) and give tight bounds when n≡0(mod2). We also find the exact values of depth and Stanley depth of cyclic modules associated to the triangular and multi triangular ouraboros snake graphs. In the last section of this paper we give a lower bound for Stanley depth of edge ideal of triangular and multi triangular snake and ouraboros snake graphs and we prove the the Conjecture 2.11 for the edge ideal of all classes of graphs we considered. The use of the computer algebra system CoCoA [28] is gratefully acknowledged.
Let G=(V(G),E(G)) be a graph with vertex set V(G) and edge set E(G). A graph is called simple if it has no loops and no multiple edges. In this paper we consider only simple graphs. If V(G)={x1,x2,…,xr} and S=K[x1,x2,…,xr], then the edge ideal I(G) of the graph G is the ideal of S generated by all monomials of the form xixj such that {xi,xj}⊂E(G). Note that by abuse of notation, xi will denote both a vertex of a graph G and the corresponding variable of the given polynomial ring. For a given graph G, K[V(G)] will denote the polynomial ring whose variables are the vertices of the graph G. If G is a graph on {x1,x2,…,xr} vertices, then G is called a path if E(G)={{xi,xi+1}:i=1,2,…,r−1}. A path on r vertices is usually denoted by Pr. The number of edges in the path Pr is called the length of Pr. Let G be a connected graph. If xi,xj∈V(G) then the distance between xi and xj is the length of the shortest path between xi and xj, denoted by d(xi,xj). The maximum distance between any two vertices of a graph G is called the diameter of G and is denoted by diam(G). A vertex in a connected graph is a cutvertex if removing it (and edges through it) disconnects the graph.
Definition 2.1. A block of a graph G is a maximal connected subgraph of G that has no cut vertex. If G itself is connected and has no cut vertex, then G is a block.
Definition 2.2. ([6]) The blockcutvertex graph of a connected graph G, denoted bc(G), is a graph whose vertices are the blocks and cut vertices of G. The edges of bc(G) join cut vertices with those blocks to which they belong.
An example of the block cut vertex graph bc(G), associated to a graph G, is given in Figure 1.
Definition 2.3. ([25]) A triangularsnake is a connected graph in which all blocks are triangles and the block cut point (or block cut vertex) graph is a path. If we have n blocks in a triangular snake graph then this graph is denoted by Δn.
Definition 2.4. ([26]) Let n≥1 and m≥2, then Δn,m is a triangular snake with n blocks and every block has m number of triangles with one common edge.
Let m,n≥1. We call Δn,m an m-triangular snake. In particular, if m=1, then Δn,1=Δn is a triangular snake, and if m≥2, then we call Δn,m a multi triangular snake. For i∈{1,2,…,n}, the vertices in the i-th block that are connected by the common edge of the m triangles in Δn,m are labeled as yi and yi+1, while the remaining vertices in the i-th block of Δn,m are labeled by {ui1,ui2,…,uim}, see Figure 2 for examples and labeling of Δn,m. Let Sn,m:=K[V(Δn,m)] be the ring of polynomials whose variables are the vertices of Δn,m. Clearly, |V(Δn,m)|=nm+n+1 and |E(Δn,m)|=2nm+n. For some more types of snake graphs, we refer readers to [18,19].
Let us consider a super graph Δ∗n,m of the graph Δn,m. For m≥2, the vertex and edge sets of Δ∗n,m are V(Δ∗n,m)=V(Δn,m)⋃{u(n+1)1,u(n+1)2,…,u(n+1)m} and E(Δ∗n,m)=E(Δn,m)⋃{yn+1u(n+1)1,yn+1u(n+1)2,…,yn+1u(n+1)m,}. See Figure 2 for example of Δ∗n,m.
Definition 2.5. The vertices x1 and x2 in a graph G are said to be fusedormergedoridentified, if x1 and x2 are replaced by a single new vertex x, such that, every edge that was adjacent to either x1 or x2 or both, is adjacent to x.
If we fuse vertices y1 and yn+1 in the Δn,m graph, we get a new graph denoted Ωn,m, we call Ωn,m an m−triangularouraborossnake. In particular, if m=1, then we call Ωn,1 a triangular ouroboros snake, and if m≥2, then we call Ωn,m a multi triangular ouroboros snake. For i∈{1,2,…,n}, the vertices of degree two in the i-th block of Ωn,m are labeled as {ui1,ui2,…,uim}, while the remaining vertices in the i-th block for i∈{2,…,n−1} are labeled by yi and yi+1. The fused vertex v in Ωn,m is labeled as y1. Clearly, |V(Ωn,m)|=nm+n and |E(Ωn,m)|=2nm+n. Let us consider a super graph Δ∗∗n,m of the graph Δ∗n,m. The vertex and edge sets of Δ∗∗n,m are V(Δ∗∗n,m)=V(Δ∗n,m)⋃{q1,q2,…,qm} and E(Δ∗∗n,m)=E(Δ∗n,m)⋃{y1q1,y1q2,…,y1qm}. See Figure 3 for examples of Δ∗∗n,m and Ωm,n.
Definition 2.6. Let k≥2. A k-star denoted Sk is a graph on k vertices, in which one vertex has degree k−1 and all other vertices have degree 1.
The following theorem give the values of depth and Stanley depth for the cyclic module associated to a k-star.
Theorem 2.7. ([1,Theorem 2.6]) Let Sk be a {k-{star}}. If Q=I(Sk), then depth(K[V(Sk)]/Q)=sdepth(K[V(Sk)]/Q)=1.
Now we recall two lemmas that play a key role in proofs of our main theorems.
Lemma 2.8. ([23,Lemma 2.2])For a short exact sequence 0→U1→U2→U3→0 of Zn-graded S-modules, we have
sdepth(U2)≥min{sdepth(U1),sdepth(U3)}. |
Lemma 2.9. (Depth Lemma) If 0→U1→U2→U3→0 is a short exact sequence of modules over alocal ring S, or a Noetherian graded ring with S0 local, then
(1) depth(U2)≥min{depth(U1),depth(U3)}.
(2) depth(U1)≥min{depth(U2),depth(U3)+1}.
(3) depth(U3)≥min{depth(U1)−1,depth(U2)}.
We have the following intresting result of Biro et. al. for the graded maximal ideal of S.
Theorem 2.10. ([2,Theorem 2.2])Let m=(x1,x2,…,xr) be the graded maximal ideal of S. Then sdepth(m)=⌈r2⌉, where ⌈t⌉, with t∈Q, denotes the smallest integer which is not less than t.
The following corollaries and lemmas are frequently used in this paper.
Corollary 2.11. ([3,Corollary 1.3])Let Q be a monomial ideal of S. Then sdepth(S/Q)≤sdepth(S/(Q:q)) for all monomials q∉Q.
Corollary 2.12. ([23,Corollary 1.3]) Let Q be a monomial ideal of S. Then depth(S/Q)≤depth(S/(Q:q)) for all monomials q∉Q.
Lemma 2.13. ([10,Lemma 3.6])Let Q1⊂Q2 be a monomial ideals of S and S′=S[xr+1] be the polynomial ring in variable xr+1 over S. Then depth(Q2S′/Q1S′)=depth(Q2/Q1)+1 and sdepth(Q1S′/Q1S′)=sdepth(Q2/Q1)+1.
Lemma 2.14. ([13,Lemma 4.1])Let A1 and A2 be two non-empty subsets of {x1,x2,…,xr} and A1∩A2=∅. If Q1⊂K[A1]andQ2⊂K[A2] are squarefree monomial ideals such that sdepthK[A1](Q1)>sdepth(K[A1]/Q1). Then
sdepthK[A1∪A2](Q1+Q2)≥sdepth(K[A1]/Q1)+sdepthK[A2](Q2). |
Fouli et al. gave the following lower bound for depth and Stanley depth of S/I(G).
Theorem 2.15. ([9,Theorems 3.1 and 4.18])Let G be a connected graph. If Q=I(G)⊂S and δ=diam(G), then depth(S/Q),sdepth(S/Q)≥⌈δ+13⌉.
We end this section with the following elementary lemma for the Stanley depth of I(Sk).
Lemma 2.16. Let k≥2. If Q=I(Sk), then sdepthK[V(Sk)](Q)=1+⌈k−12⌉.
Proof. Since Q=I(Sk)=(xy1,xy2,…,xyk−1), then Q=xQ′ and Q′=(I:x)=(y1,y2,…,yk−1). By Lemma 2.13 and Theorem 2.10, we have sdepthK[V(Sk)](Q)=sdepthK[V(Sk)](Q′)=sdepthT(Q′)+1, where T=K[y1,y2,…,yk−1]. Now using [4,Theorem 1.1], we get sdepthK[V(Sk)](Q)=⌈k−12⌉+1.
In this section we find the value of depth and Stanley depth of the cyclic module Sn,m/I(Δn,m) when n≡1(mod2), and give tight bounds when n≡0(mod2). For this purpose, we first find depth and Stanley depth of the cyclic module S∗n,m/I(Δ∗n,m). We will use these results in our main proofs.
Lemma 3.1. Let n,m≥1. Then depth(S∗n,m/I(Δ∗n,m))=sdepth(S∗n,m/I(Δ∗n,m))=⌈n+12⌉.
Proof. Let us consider two sets, An,m:={yn,un1,un2,…,unm,u(n+1)1,u(n+1)2,…,u(n+1)m} and A′n,m:={u(n+1)1,u(n+1)2,…,u(n+1)m}. We have the following short exact sequence:
0⟶S∗n,m/(I(Δ∗n,m):yn+1)⋅yn+1→S∗n,m/I(Δ∗n,m)⟶S∗n,m/(I(Δ∗n,m),yn+1)⟶0. |
If n=1, then (I(Δ∗1,m):y2)=(A1,m) and S∗1,m/(I(Δ∗1,m):y2)≅K[y2], so depth(S∗1,m/(I(Δ∗1,m):y2))=1. Since (I(Δ∗1,m),y2)=(I(Sm+1),y2) and S∗1,m/(I(Δ∗1,m),y2)≅K[V(Sm+1)]/I(Sm+1)[A′1,m], thus by Theorem 2.7 and Lemma 2.13, we get depth(S∗1,m/(I(Δ∗1,m),y2))=1+m. Hence by Depth Lemma depth(S∗1,m/I(Δ∗1,m))=1, as required. If n=2, then (I(Δ∗2,m):y3)=(I(Sm+1),A2,m) and S∗2,m/(I(Δ∗2,m):y3)≅K[V(Sm+1)]/I(Sm+1)[y3], again by Lemma 2.13 and Theorem 2.7 depth(S∗2,m/(I(Δ∗2,m):y3))=1+1=2. Also we have, (I(Δ∗2,m),y3)=(I(Δ∗1,m),y3) and S∗2,m/(I(Δ∗2,m),y3)≅S∗1,m/I(Δ∗1,m)[A′2,m], thus by case n=1 and Lemma 2.13, depth(S∗2,m/(I(Δ∗2,m),y3))=1+m. Hence by Depth Lemma, depth(S∗2,m/I(Δ∗2,m))=2, this proves the result for n=2. Let n≥3. We have (I(Δ∗n,m):yn+1)=(I(Δ∗n−2,m),An,m) and (I(Δ∗n,m),yn+1)=(I(Δ∗n−1,m),yn+1), thus S∗n,m/(I(Δ∗n,m):yn+1)≅S∗n−2,m/I(Δ∗n−2,m)[yn+1] and S∗n,m/(I(Δ∗n,m),yn+1)≅S∗n−1,m/I(Δ∗n−1,m)[A′n,m]. Now by induction on n and Lemma 2.13 we get depth(S∗n,m/(I(Δ∗n,m):yn+1))=⌈n−12⌉+1=⌈n+12⌉ and depth(S∗n,m/(I(Δ∗n,m),yn+1))=⌈n2⌉+m=⌈n+2m2⌉. Hence by Depth Lemma depth(S∗n,m/I(Δ∗n,m))=⌈n+12⌉.
Applying Lemma 2.8 instead of Depth Lemma on the above short exact sequence and proceeding on the same lines we get, sdepth(S∗n,m/(I(Δ∗n,m)))≥⌈n+12⌉. Now we prove that this lower bound is an upper bound as well. Since yn+1∉I(Δ∗n,m), by Corollary 2.11, we get sdepth(S∗n,m/I(Δ∗n,m))≤sdepth(S∗n,m/(I(Δ∗n,m):yn+1)). Using the same arguments as we used in the case of depth, sdepth(S∗1,m/(I(Δ∗1,m):y2))=1 and sdepth(S∗2,m/(I(Δ∗2,m):y3))=2. This implies that sdepth(S∗n,m/I(Δ∗n,m))≤⌈n+12⌉, for n=1,2. Let n≥3. Then sdepth(S∗n,m/I(Δ∗n,m))≤sdepth(S∗n,m/(I(Δ∗n,m):yn+1))=sdepth(S∗n−2,m/I(Δ∗n−2,m)[yn+1]). The proof follows by applying induction on n.
Theorem 3.2. Let n,m≥1. Then ⌈n2⌉≤depth(Sn,m/I(Δn,m)),sdepth(Sn,m/I(Δn,m))≤⌈n+12⌉.
Proof. Let Bn,m:={yn,un1,un2,…,unm} be a set of variables. Consider the following short exact sequence:
0⟶Sn,m/(I(Δn,m):yn+1)⋅yn+1→Sn,m/I(Δn,m)⟶Sn,m/(I(Δn,m),yn+1)⟶0. |
If n=1, then (I(Δ1,m):y2)=(B1,m) and S1,m/(I(Δ1,m):y2)≅K[y2], so depth(S1,m/(I(Δ1,m):y2))=1. Also (I(Δ1,m),y2)=(I(Sm+1),y2), that is, S1,m/(I(Δ1,m),y2)≅K[V(Sm+1)]/I(Sm+1), so by Theorem 2.7 depth(S1,m/(I(Δ1,m),y2))=1. Hence by Depth Lemma depth(S1,m/I(Δ1,m))=1. If n=2, then (I(Δ2,m):y3)=(I(Sm+1),B2,m), and S2,m/(I(Δ2,m):y3)≅K[V(Sm+1)]/I(Sm+1)[y3]. By Lemma 2.13 and Theorem 2.7 depth(S2,m/(I(Δ2,m):y3))=2. We have (I(Δ2,m),y3)=(I(Δ∗1,m),y3) and S2,m/(I(Δ2,m),y3)≅S∗1,m/I(Δ∗1,m), thus by case n=1, depth(S2,m/(I(Δ2,m),y3))=1. Applying Depth Lemma, we get depth(S2,m/I(Δ2,m))≥1. Since y3∉I(Δ2,m), by Corollary 2.12, we get depth(S2,m/I(Δ2,m))≤depth(S2,m/(I(Δ2,m):y3)). This shows that depth(S2,m/I(Δ2,m))≤2, which proves the result for n=2. Let n≥3. We have (I(Δn,m):yn+1)=(I(Δ∗n−2,m),Bn,m), that is, Sn,m/(I(Δn,m):yn+1)≅(S∗n−2,m/(I(Δ∗n−2,m)))[yn+1]. Also we have that (I(Δn,m),yn+1)=(I(Δ∗n−1,m),yn+1) and Sn,m/I(Δn,m),yn+1)≅S∗n−1,m/(I(Δ∗n−1,m). By Lemmas 3.1 and 2.13 we have depth(Sn,m/(I(Δn,m):yn+1))=⌈n+12⌉, depth(Sn,m/(I(Δn,m),yn+1))=⌈n2⌉ and by Depth Lemma, depth(Sn,m/I(Δn,m))≥⌈n2⌉. For the upper bound since yn+1∉I(Δn,m) by Corollary 2.12, we get depth(Sn,m/I(Δn,m))≤depth(Sn,m/(I(Δn,m):yn+1))=⌈n+12⌉.
Proof for Stanley depth is similar we use Lemma 2.8 instead of Depth Lemma and Corollary 2.11 instead of Corollary 2.12.
Corollary 3.3. If n≡1(mod2), then depth(Sn,m/I(Δn,m))=sdepth(Sn,m/I(Δn,m))=⌈n+12⌉.
Remark 3.4. If n≥2 and m≥1, then our Theorem 3.2 says that depth(Sn,m/I(Δn,m)),sdepth(Sn,m/I(Δn,m))∈{⌈n2⌉,⌈n+12⌉\big\}. Whereas, one of the existing known bound for theses modules is given in Theorem 2.15, that is, depth(Sn,m/I(Δn,m)),sdepth(Sn,m/I(Δn,m))≥⌈diam(Δn,m)+13⌉=⌈n+13⌉. This means that this bound is far away form the actual value for large values of n.
In this section we find out the exact value of depth and Stanley depth of the cyclic module Tn,m/I(Ωn,m). For this purpose we first find depth and Stanley depth of the cyclic module S∗∗n,m/I(Δ∗∗n,m) associated to the super graph Δ∗∗n,m of Δ∗n,m. These results will be used in our main proofs.
Lemma 4.1. Let n,m≥1. Then
depth(S∗∗n,m/I(Δ∗∗n,m))=sdepth(S∗∗n,m/I(Δ∗∗n,m))={⌈n+22⌉,n≡0(mod2);⌈n+12⌉+m,n≡1(mod2). |
Proof. Let An,m and A′n,m the sets as defined in Theorem 3.1. Consider the following short exact sequence:
0⟶S∗∗n,m/(I(Δ∗∗n,m):yn+1)⋅yn+1→S∗∗n,m/I(Δ∗∗n,m)⟶S∗∗n,m/(I(Δ∗∗n,m),yn+1)⟶0. |
If n=1, then (I(Δ∗∗1,m):y2)=(A1,m) and (I(Δ∗∗1,m),y2)=(I(S2m+1),y2). We have S∗∗1,m/(I(Δ∗∗1,m):y2)≅K[y2,q1,q2,…,qm], and depth(S∗∗1,m/(I(Δ∗∗1,m):y2))=m+1. Also we have S∗∗1,m/(I(Δ∗∗1,m),y2)≅K[V(S2m+1)]/I(S2m+1)[A′1,m], so by using Theorem 2.7 and Lemma 2.13 we get depth(S∗∗1,m/(I(Δ∗∗1,m),y2))=1+m. Hence by Depth Lemma depth(S∗∗1,m/I(Δ∗∗1,m))=1+m. If n=2, then (I(Δ∗∗2,m):y3)=(I(S2m+1),A2,m) and (I(Δ∗∗2,m),y3)=(I(Δ∗∗1,m),y3), we have that S∗∗2,m/(I(Δ∗∗2,m):y3)≅K[V(S2m+1)]/I(S2m+1)[y3], and S∗∗2,m/(I(Δ∗∗2,m),y3)≅S∗∗1,m/I(Δ∗∗1,m)[A′2,m]. Thus by Lemma 2.13 and Theorem 2.7, depth(S∗∗2,m/(I(Δ∗∗2,m):y3))=1+1=2. By Lemma 2.13 and case n=1, we have depth(S∗∗2,m/(I(Δ∗∗2,m),y3))=m+1+m=2m+1. Hence by Depth Lemma depth(S∗∗2,m/I(Δ∗∗2,m))=2. Let n≥3. We have (I(Δ∗∗n,m):yn+1)=(I(Δ∗∗n−2,m),An,m) and (I(Δ∗∗n,m),yn+1)=(I(Δ∗∗n−1,m),yn+1) it is easy to see that S∗∗n,m/(I(Δ∗∗n,m):yn+1)≅(S∗∗n−2,m/(I(Δ∗∗n−2,m)))[yn+1] and S∗∗n,m/(I(Δ∗∗n,m),yn+1)≅S∗∗n−1,m/I(Δ∗∗n−1,m)[A′n,m]. Thus by Lemma 2.13 we have
depth(S∗∗n,m/(I(Δ∗∗n,m):yn+1))=depth(S∗∗n−2,m/(I(Δ∗∗n−2,m)))+1 |
and
depth(S∗∗n,m/(I(Δ∗∗n,m),yn+1))=depth(S∗∗n−1,m/(I(Δ∗∗n−1,m)))+m. |
Case 1. If n≡0(mod2). Since n−2≡0(mod2) and n−1≡1(mod2) thus by induction on n, depth(S∗∗n,m/(I(Δ∗∗n,m):yn+1))=⌈n−2+22⌉+1=⌈n+22⌉, and depth(S∗∗n,m/(I(Δ∗∗n,m),yn+1))=⌈n+12⌉+m. Applying Depth Lemma we get depth(S∗∗n,m/I(Δ∗∗n,m))=⌈n+22⌉.
Case 2. If n≡1(mod2). Since n−2≡1(mod2) and n−1≡0(mod2) thus by induction on n, depth(S∗∗n,m/(I(Δ∗∗n,m):yn+1))=⌈n−12⌉+1+m=⌈n+12⌉+m and depth(S∗∗n,m/(I(Δ∗∗n,m),yn+1))=⌈n+12⌉+m. Again by Depth Lemma depth(S∗∗n,m/I(Δ∗∗n,m))=⌈n+12⌉+m.
If n=1, then proof for Stanley depth is similar to the proof for depth. If n=2, then we use Lemma 2.8 on the short exact sequence and get sdepth(S∗∗2,m/(I(Δ∗∗2,m)))≥2. Now by using Corollary 2.11 we have sdepth(S∗∗2,m/(I(Δ∗∗2,m)))≤sdepth(S∗∗2,m/(I(Δ∗∗2,m):y3)). Using Lemma 2.13 and Theorem 2.7, we have sdepth(S∗∗n,m/(I(Δ∗∗n,m):y3))=sdepth(K[V(S2m+1)]/I(S2m+1)[y3])=1+1=2, this completes the proof for case n=2. Let n≥3.
sdepth(S∗∗n,m/(I(Δ∗∗n,m):yn+1))=sdepth(S∗∗n−2,m/I(Δ∗∗n−2,m))+1 |
and
sdepth(S∗∗n,m/(I(Δ∗∗n,m),yn+1))=sdepth(S∗∗n−1,m/I(Δ∗∗n−1,m))+m. |
Case 1. If n≡0(mod2). Since n−2≡0(mod2) and n−1≡1(mod2) thus by induction on n, sdepth(S∗∗n,m/(I(Δ∗∗n,m):yn+1))=⌈n−2+22⌉+1=⌈n+22⌉, and sdepth(S∗∗n,m/(I(Δ∗∗n,m),yn+1))=⌈n+12⌉+m. By Lemma 2.8 we get sdepth(S∗∗n,m/I(Δ∗∗n,m))≥⌈n+22⌉ and by Corollary 2.11 we have sdepth(S∗∗n,m/I(Δ∗∗n,m))≤⌈n+22⌉.
Case 2. If n≡1(mod2). Since n−2≡1(mod2) and n−1≡0(mod2) thus by induction on n, sdepth(S∗∗n,m/(I(Δ∗∗n,m):yn+1))=⌈n−12⌉+1+m=⌈n+12⌉+m and sdepth(S∗∗n,m/(I(Δ∗∗n,m),yn+1))=⌈n+12⌉+m. By Lemma 2.8 we have sdepth(S∗∗n,m/I(Δ∗∗n,m))≥⌈n+12⌉+m and by Corollary 2.11 we have sdepth(S∗∗n,m/I(Δ∗∗n,m))≤⌈n+12⌉+m.
Theorem 4.2. Let n≥3 and m≥1. Then
depth(Tn,m/I(Ωn,m))=sdepth(Tn,m/I(Ωn,m))={⌈n2⌉,n≡0(mod2);⌈n−12⌉+m,n≡1(mod2). |
Proof. Consider the short exact sequence
0⟶Tn,m/(I(Ωn,m):y1)⋅y1→Tn,m/I(Ωn,m)⟶Tn,m/(I(Ωn,m),y1)⟶0. |
Let n=3. Clearly, T3,m/(I(Ω3,m):y1)≅K[y1,u21,u22,…,u2m], and T3,m/(I(Ω3,m),y1)≅S∗∗1,m/I(Δ∗∗1,m). We have depth(T3,m/(I(Ω3,m):y1))=m+1 and by Lemma 4.1, depth(T3,m/(I(Ω3,m),y1))=m+1. Hence by Depth Lemma depth(T3,m/I(Ω3,m))=m+1=m+⌈3−12⌉. If n=4, then T4,m/(I(Ω4,m):y1)≅(K[V(S2m+1)]/I(S2m+1))[y1] and T4,m/(I(Ω4,m),y1)≅S∗∗2,m/I(Δ∗∗2,m), by Lemmas 2.13, 4.1 and Theorem 2.7 depth(T4,m/(I(Ω4,m):y1))=1+1=2 and depth(T4,m/(I(Ω4,m),y1))=2. By Depth Lemma depth(T4,m/I(Ω4,m))=2=⌈42⌉. If n≥5, then Tn,m/(I(Ωn,m):y1)≅(S∗∗n−4,m/I(Δ∗∗n−4,m))[y1] and Tn,m/(I(Ωn,m),y1)≅S∗∗n−2,m/I(Δ∗∗n−2,m) By Lemma 2.13, depth(Tn,m/(I(Ωn,m):y1))=depth(S∗∗n−4,m/(I(Δ∗∗n−4,m)))+1 and similarly depth(Tn,m/(I(Ωn,m),y1))=depth(S∗∗n−2,m/I(Δ∗∗n−2,m)).
Case 1. If n≡0(mod2). Since n−4≡0(mod2) and n−2≡0(mod2) thus by Lemma 4.1, depth(Tn,m/I(Ωn,m):y1)=⌈n−22⌉+1=⌈n2⌉ and depth(Tn,m/I(Ωn,m),y1)=⌈n2⌉. Using Depth Lemma we get depth(Tn,m/I(Ωn,m))=⌈n2⌉.
Case 2. If n≡1(mod2). Since n−4≡1(mod2) and n−2≡1(mod2) thus by Lemma 4.1, depth(Tn,m/I(Ωn,m):y1)=⌈n−12⌉+m and depth(Tn,m/I(Ωn,m),y1)=⌈n−12⌉+m. Again by Depth Lemma we get depth(Tn,m/I(Ωn,m))=⌈n−12⌉+m.
When n=3, applying Lemma 2.8 instead of Depth Lemma and Lemma 4.1 and conclude that sdepth(T3,m/(I(Ω3,m)))≥m+1. For the upper bound since y1∉I(Ω3,m) by Corollary 2.11, we get sdepth(T3,m/I(Ω3,m))≤sdepth(T3,m/(I(Ω3,m):y1)). This implies that sdepth(T3,m/I(Ω3,m))≤m+1 and the result follows. When n=4, using Lemma 2.8, Corollary 2.11, Theorem 2.7, Lemmas 2.13 and 4.1 and proceeding with the same manner, we conclude that sdepth(T4,m/I(Ω4,m))=2=⌈42⌉. If n≥5, then
sdepth(Tn,m/(I(Ωn,m):y1))=sdepth(S∗∗n−4,m/(I(Δ∗∗n−4,m)))+1. |
and
sdepth(Tn,m/(I(Ωn,m),y1))=sdepth(S∗∗n−2,m/I(Δ∗∗n−2,m)). |
Proof for Stanley depth is similar we use Corollary 2.11 and Lemma 2.8 instead of Depth Lemma.
Remark 4.3. In Theorem 4.2 we have exact values for depth and Stanley depth of Tn,m/I(Ωn,m). By Theorem 2.15, we have depth(Tn,m/I(Ωn,m)),sdepth(Tn,m/I(Ωn,m))≥⌈diam(Ωn,m)3⌉. Since diam(Ωn,m)=⌈n2⌉ so we have depth(Tn,m/I(Ωn,m)),sdepth(Tn,m/I(Ωn,m))≥⌈n+26⌉. This shows that the bound given in Theorem 2.15 is too weak in this case.
In this section, we find sharp lower bounds for the edge ideal of triangular and multi triangular snake and ouroboros snake graphs. These lower bounds are good enough to show that the Conjecture 2.11 holds in all cases.
Lemma 5.1. Let n,m≥1. Then sdepth(I(Δ∗n,m))≥sdepth(S∗n,m/I(Δ∗n,m))+1+m=⌈n+12⌉+1+m.
Proof. Let us define a set, An,m={yn,un1,un2,…,unm,u(n+1)1,u(n+2)2,…,u(n+1)m}. As yn+1∉I(Δ∗n,m), we have
I(Δ∗n,m)=I(Δ∗n,m)∩¯Sn,m⨁yn+1(I(Δ∗n,m):yn)S∗n,m,where¯Sn,m=S∗n,m/(yn+1). |
Let n=1. We have I(Δ∗1,m)∩¯S1,m=(I(Sm+1))¯S1,mand(I(Δ∗1,m):y2)S∗1,m=(A1,m)S∗1,m. Therefore
sdepth(I(Δ∗1,m))≥min{sdepth(I(Sm+1))¯S1,m,sdepth(A1,m)S∗1,m}. |
By using Lemma 2.13 and Theorem 2.10, sdepth((A1,m)S∗1,m)=⌈2m+12⌉+1=m+2. Also by Lemmas 2.16 and 2.13, we get
sdepth((I(Sm+1))¯S1,m)=sdepth((I(Sm+1))(K[V(Sm+1)]))+m=1+⌈m2⌉+m. |
Thus sdepth(I(Δ∗1,m))≥m+2=⌈1+12⌉+1+m. Let n=2. We get I(¯S2,m(Δ∗1,m))¯S2,m and (I(Δ∗2,m):y3)S∗2,m=(I(Sm+1),A2,m)¯S2,m[y3]. This implies sdepth(I(Δ∗2,m))≥min{sdepth(I(Δ∗1,m))¯S2,m,sdepth(I(Sm+1),A2,m)¯S2,m[y3]}. Now Lemma 2.13 and by [3,Theorem 1.3],
sdepth((I(Sm+1),A2,m)¯S2,m[y3])≥min{sdepth((I(Sm+1))K[V(Sm+1)])+2m+1,sdepth((A2,m)K[A2,m])+sdepth(K[V(Sm+1)]/I(Sm+1))}+1. |
Now using Lemma 2.16, Theorems 2.10 and 2.7, we have
sdepth((I(Sm+1),A2,m)¯S2,m[y3])≥min{⌈5m+42⌉,⌈2m+32⌉}+1=⌈2m+52⌉. |
Also by the case n=1 and Lemma 2.13, we get
sdepth((I(Δ∗1,m))¯S2,m)=sdepth((I(Δ∗1,m))S∗1,m)+m≥2m+2. |
Thus
sdepth(I(Δ∗2,m))≥⌈2m+52⌉=⌈2m+2+32⌉=⌈2+12⌉+1+m. |
Let n≥3. We have I(Δ∗n,m)∩¯Sn,m=(I(Δ∗n−1,m))¯Sn,m,and(I(Δ∗n,m):yn+1)S∗n,m=((I(Δ∗n−2,m),An,m)¯Sn,m[yn+1]).Thus by induction on n, Lemmas 2.14 and 2.13, we have sdepth((I(Δ∗n−2,m),An,m)¯Sn,m[yn+1])≥sdepth((S∗n−2,m/I(Δ∗n−2,m))S∗n−2,m)+sdepth((An,m)K[An,m])+1. Now by Theorem 2.10, and Proposition 3.1, we have sdepth((I(Δ∗n−2,m),An,m)¯Sn,m[yn+1])≥⌈n−12⌉+⌈2m+12⌉+1=⌈n+12⌉+⌈2m+12⌉=⌈n+12⌉+m+1. Moreover, by induction on n and Lemma 2.13, we get
sdepth((I(Δ∗n−1,m))¯Sn,m)=sdepth((I(Δ∗n−1,m))S∗n−1,m)+m≥⌈n2⌉+1+m+m>⌈n+12⌉+1+m. |
Thus
sdepth(I(Δ∗n,m))≥⌈n+12⌉+1+m. |
Theorem 5.2. If n=1 and m≥1, then sdepth(I(Δ1,m))≥sdepth(S1,m/I(Δ1,m))+⌈m2⌉=1+⌈m2⌉. And if n≥2 and m≥1, then sdepth(I(Δn,m))≥⌈n+12⌉+⌈m+12⌉≥sdepth(Sn,m/I(Δn,m))+⌈m+12⌉.
Proof. Let Bn,m={yn,un1,un2,…,unm}. As yn+1∉I(Δn,m), thus we have
I(Δn,m)=I(Δn,m)∩S′n,m⨁yn+1(I(Δn,m):yn+1)Sn,m,whereS′n,m=Sn,m/(yn+1). |
Case 1. Let n=1. We have I(Δ1,m)∩S′1,m=I(Sm+1)S′1,mand(I(Δ1,m):y2)S1,m=((B1,m)S1,m). Thus sdepth(I(Δ1,m))≥min{sdepth(I(Sm+1))S′1,m,sdepth((B1,m)S1,m)}. By Lemma 2.13, we have sdepth((B1,m)S1,m)=⌈m+12⌉+1=⌈m+32⌉. Now by Lemma 2.16, we have sdepth((I(Δ∗1,m))S1,m)=sdepth((I(Sm+1)K[V(Sm+1)]))=1+⌈m2⌉. Hence,sdepth(I(Δ1,m))≥1+⌈m2⌉.
Case 2. Let n=2. We get I(Δ2,m)∩S′2,m=(I(Δ∗1,m))S′2,m and (I(Δ2,m):y3)S2,m=((I(Sm+1),B2,m)S′2,m[y3]). Thus
sdepth(I(Δ2,m))≥min{sdepth(I(Δ∗1,m))S′2,m,sdepth((I(Sm+1),B2,m)S′2,m[y3])}. |
By Lemma 2.13 and [3,Theorem 1.3],
sdepth((I(Sm+1),B2,m)S′2,m[y3])≥min{sdepth((I(Sm+1))K[V(Sm+1)])+m+1,sdepth((B2,m)K[B2,m])+sdepth((K[V(Sm+1)]/I(Sm+1))K[V(Sm+1)])}+1. |
Now by Theorems 2.10 and 2.7, we get
sdepth((I(Sm+1),B2,m)S′2,m[y3])≥min{⌈3m+42⌉,⌈m+32⌉}+1=⌈m+52⌉. |
Now by Lemma 5.1, we have sdepth((I(Δ∗1,m))S′2,m)=sdepth((I(Δ∗1,m))S∗1,m)≥m+2. Hence
sdepth(I(Δ2,m))≥⌈m+52⌉=⌈2+12⌉+⌈m+12⌉. |
Finally, consider n≥3. We have I(Δn,m)∩S′n,m=(I(Δ∗n−1,m))S′n,mand(I(Δn,m):yn+1)Sn,m=((I(Δ∗n−2,m),Bn,m)S′n,m[yn+1]). By Lemma 5.1, Lemmas 2.14 and 2.13, we have
sdepth((I(Δ∗n−2,m),Bn,m)S′n,m[yn+1])≥sdepth((S∗n−2,m/I(Δ∗n−2,m))S∗n−2,m)+sdepth((Bn,m)K[Bn,m])+1. |
Now by Theorem 2.10 and Lemma 3.1, we obtain
sdepth((I(Δ∗n−2,m),Bn,m)S′n,m[yn+1])≥⌈n−12⌉+⌈m+12⌉+1=⌈n+12⌉+⌈m+12⌉. |
Also by Lemma 5.1, we get
sdepth((I(Δ∗n−1,m))S′n,m)=sdepth((I(Δ∗n−1,m))S∗n−1,m)≥⌈n2⌉+1+m≥⌈m+12⌉+⌈n+12⌉. |
To sum up
sdepth(I(Δn,m))≥⌈n+12⌉+⌈m+12⌉. |
Lemma 5.3. Let n=1 and m≥1, then sdepth(I(Δ∗∗1,m))≥2m+1. Let n≥2 and m≥1. If n≡0(mod2), then sdepth(I(Δ∗∗n,m))≥sdepth(S∗∗n,m/I(Δ∗∗n,m))+1+m=⌈n+22⌉+1+m. And if n≡1(mod2), then sdepth(I(Δ∗∗n,m))≥sdepth(S∗∗n,m/I(Δ∗∗n,m))+2m=⌈n+12⌉+1+2m.
Proof. Let An,m={yn,un1,un2,…,unm,u(n+1)1,u(n+1)2,…,u(n+1)m}. As yn+1∉I(Δ∗∗n,m), therefore we have
I(Δ∗∗n,m)=I(Δ∗∗n,m)∩Sn,m″ |
Case 1. Let n = 1 . We have I(\Delta^{**}_{1, m})\cap S^{''}_{1, m} = I(\mathcal{S}_{2m+1})S^{''}_{1, m} and \big(I(\Delta^{**}_{1, m}):y_{2}\big)S^{**}_{1, m} = (A_{1, m})S^{**}_{1, m}. Therefore, {{\rm{sdepth}}}(I(\Delta^{**}_{1, m}))\geq \min\{{{\rm{sdepth}}}(I(\mathcal{S}_{2m+1})S^{''}_{1, m}), {{\rm{sdepth}}}((A_{1, m})S^{**}_{1, m})\}. By Lemma 2.13 and Theorem 2.10 we have
{{\rm{sdepth}}}(A_{1,m})S^{**}_{1,m} = {{\rm{sdepth}}} ((A_{1,m})K[A_{1,m}])+m+1 = \Big\lceil\frac{2m+1}{2}\Big\rceil+m+1 = 2m+2. |
Now by Lemmas 2.16 and 2.13, we get
{{\rm{sdepth}}}(I(\mathcal{S}_{2m+1})S^{''}_{1,m}) = {{\rm{sdepth}}}(I(\mathcal{S}_{2m+1})K[V(\mathcal{S}_{2m+1})])+m = 1+\big\lceil\frac{2m}{2}\big\rceil+m = 2m+1. |
As a result {{\rm{sdepth}}}(I(\Delta^{**}_{1, m}))\geq 2m+1.
Case 2. Now we will prove this result by induction on n . Let n = 2 . I(\Delta^{**}_{2, m})\cap S^{''}_{2, m} = (I(\Delta^{**}_{1, m}))S^{''}_{2, m}\, \, {\rm{ and }} (I(\Delta^{**}_{2, m}):y_{3})S^{**}_{2, m} = (I(\mathcal{S}_{2m+1}, A_{2, m})S^{''}_{2, m}[y_3]). Consequently
{{\rm{sdepth}}}(I(\Delta^{**}_{2,m}))\geq \min\{{{\rm{sdepth}}}((I(\Delta^{**}_{1,m}))S^{''}_{2,m}),{{\rm{sdepth}}}(I(\mathcal{S}_{2m+1},A_{2,m})S^{''}_{2,m}[y_3])\}. |
By Lemma 2.13 and [3,Theorem 1.3],
\begin{eqnarray} {{\rm{sdepth}}} (I(\mathcal{S}_{2m+1},A_{2,m} )S^{''}_{2,m}[y_3])\geq \min\Big\{{{\rm{sdepth}}} ((I(\mathcal{S}_{2m+1})K[V(\mathcal{S}_{2m+1})])+2m+1,{{\rm{sdepth}}}\\((A_{2,m})K[A_{2,m} ])+{{\rm{sdepth}}}((K[V(\mathcal{S}_{2m+1})]/I(\mathcal{S}_{2m+1})K[V(\mathcal{S}_{2m+1})])\Big\}+1. \end{eqnarray} |
Now by Lemma 2.16, Theorems 2.10 and 2.7, we have
{{\rm{sdepth}}} (I(\mathcal{S}_{2m+1},A_{2,m})S^{''}_{2,m}[y_3])\geq \min\{m+1+2m+1,\big\lceil\frac{2m+1}{2}\big\rceil+1 = m+2\}+1 = m+3. |
Now by the Case 1 and Lemma 2.13, we get {{\rm{sdepth}}}((I(\Delta^{**}_{1, m}))S^{''}_{2, m}) = {{\rm{sdepth}}}((I(\Delta^{**}_{1, m}))S^{**}_{1, m})+m\geq 3m+1. {\rm{To sum up}}, \, \, \, {{\rm{sdepth}}}(I(\Delta^{**}_{2, m}))\geq m+3. In general, for n\geq3. We have
I(\Delta^{**}_{n,m})\cap S^{''}_{n,m} = (I(\Delta^{**}_{n-1,m}))S^{''}_{n,m} {\rm{ and }} \,\,\, ( I(\Delta^{**}_{n,m}):y_{n+1})S^{**}_{n,m} = ((I(\Delta^{**}_{n-2,m}),A_{n,m} )S^{''}_{n,m}[y_{n+1}]). |
By induction on n , Lemmas 2.14 and 2.13,
\begin{eqnarray} {{\rm{sdepth}}} ((I(\Delta^{**}_{n-2,m}),A_{n,m} )S^{''}_{n,m}[y_{n+1}]) \geq {{\rm{sdepth}}}((S^{**}_{n-2,m}/I(\Delta^{**}_{n-2,m}))S^{**}_{n-2,m})+ {{\rm{sdepth}}}(A_{n,m} K[A_{n,m} ])+1. \end{eqnarray} |
Case 2(a). If n\equiv 0\, (\mod 2) , then n-1\equiv 1\, (\mod 2) and n-2\equiv 0\, (\mod 2) . By Theorem 2.10 and Lemma 4.1, we have {{\rm{sdepth}}} ((I(\Delta^{**}_{n-2, m}), A_{n, m})S^{''}_{n, m}[y_{n+1}])\geq \lceil\frac{n}{2}\rceil+m+1+1 = \lceil\frac{n+2}{2}\rceil+m+1. Also by induction on n and Lemma 2.13, we get
{{\rm{sdepth}}}((I(\Delta^{**}_{n-1,m}))S^{''}_{n,m}) = {{\rm{sdepth}}}((I(\Delta^{**}_{n-1,m}))S^{**}_{n-1,m})+\\m\geq\Big\lceil\frac{n+2}{2}\Big\rceil+3m > \Big\lceil\frac{n+2}{2}\Big\rceil+m+1. |
Thus {{\rm{sdepth}}}(I(\Delta^{**}_{n, m}))\geq \Big\lceil\frac{n+2}{2}\Big\rceil+1+m.
Case 2(b). If n\equiv 1\, (\mod 2) , then n-1\equiv 0\, (\mod 2) and n-2\equiv 1\, (\mod 2) . By Theorem 2.10 and Lemma 4.1, we have {{\rm{sdepth}}} ((I(\Delta^{**}_{n-2, m}), A_{n, m})S^{''}_{n, m}[y_{n+1}])\geq \lceil\frac{n-1}{2}\rceil+m+m+1+1 = \lceil\frac{n+1}{2}\rceil+2m+1. Also by induction on n and Lemma 2.13, we get
{{\rm{sdepth}}}((I(\Delta^{**}_{n-1,m}))S^{''}_{n,m}) = {{\rm{sdepth}}}((I(\Delta^{**}_{n-1,m}))S^{**}_{n-1,m})+m\geq \Big\lceil\frac{n+1}{2}\Big\rceil+1+2m. |
Thus {{\rm{sdepth}}}(I(\Delta^{**}_{n, m})) = \lceil\frac{n+1}{2}\rceil+1+2m.
Theorem 5.4. Let n = 3 and m\geq1. Then {{\rm{sdepth}}}(I(\Omega_{3, m}))\geq {{\rm{sdepth}}}(T_{3, m}/I(\Omega_{3, m}))+m = 2m+1. Let n\geq4 and m\geq1 .
{{\rm{sdepth}}}(I(\Omega_{n,m}))\geq {{\rm{sdepth}}}(T_{n,m}/I(\Omega_{n,m}))+1+m = \left\{ \begin{array}{ll} \lceil\frac{n}{2}\rceil+1+m, & n\equiv 0\,(\mod 2) ; \\ &\\ \lceil\frac{n+1}{2}\rceil+2m, & n\equiv 1\,(\mod 2). \end{array} \right. |
Proof. Let C_{n, m} = \{y_{2}, y_{n}, u_{11}, u_{12}, \dots, u_{m}, u_{n1}, u_{n2}, \dots, u_{nm}\} . Since y_1\not\in I(\Omega_{n, m}) , so we have
I(\Omega_{n,m}) = I(\Omega_{n,m})\cap T^{'}_{n,m}\bigoplus y_1\big(I(\Omega_{n,m}):y_1\big)T_{n,m},\,\,{\rm{ where}}\,\,\, T^{'}_{n,m} = T_{n,m}/(y_{1}). |
Let n = 3 . It can be seen that I(\Omega_{3, m})\cap T^{'}_{3, m} \cong(I(\Delta^{**}_{1, m}))T^{'}_{3, m} and I(\Omega_{3, m}):y_1)T_{3, m}\cong (C_{3, m})T_{3, m}. Hence
{{\rm{sdepth}}}(I(\Omega_{3,m}))\geq \min\{{{\rm{sdepth}}}((I(\Delta^{**}_{1,m}))T^{'}_{3,m}), {{\rm{sdepth}}}((C_{3,m} )T_{3,m})\}. |
By Lemma 2.13 and by Theorem 2.10, {{\rm{sdepth}}} ((C_{3, m})T_{3, m}) = {{\rm{sdepth}}} ((C_{3, m}) K[C_{3, m}])+m+1 = 2m+1. {\rm{Also by Lemma 5.3}}, \, \, {{\rm{sdepth}}}((I(\Delta^{**}_{1, m}))T^{'}_{3, m}) = {{\rm{sdepth}}}((I(\Delta^{**}_{1, m}))S^{**}_{1, m})\geq 2m+1. {\rm{Thus}}\, \, \, {{\rm{sdepth}}} (I(\Omega_{3, m}))\geq 2m+1. Let n = 4 . we get I(\Omega_{4, m})\cap T^{'}_{4, m} = (I(\Delta^{**}_{2, m}))T^{'}_{4, m}\, \, \, {\rm{ and }}\, \, \, (I(\Omega_{4, m}):y_1)T_{4, m} = ((I(\mathcal{S}_{2m+1}), C_{4, m})T^{'}_{4, m}[y_1]). Thus
{{\rm{sdepth}}}(I(\Omega_{4,m}))\geq \min\{{{\rm{sdepth}}}((I(\Delta^{**}_{2,m}))T^{'}_{4,m}),{{\rm{sdepth}}}((I(\mathcal{S}_{2m+1}),C_{4,m} )T^{'}_{4,m}[y_1])\}. |
By Lemma 2.13 and [3,Theorem 1.3],
\begin{eqnarray} {{\rm{sdepth}}} \Big((I(\mathcal{S}_{2m+1}),C_{4,m} )T^{'}_{4,m}[y_1]\Big)\geq \min\Big\{{{\rm{sdepth}}} ((I(\mathcal{S}_{2m+1}))K[V(\mathcal{S}_{2m+1})])+2m+2,\\ {{\rm{sdepth}}}((C_{4,m} )K[C_{4,m}])+{{\rm{sdepth}}}((K[V(\mathcal{S}_{2m+1})]/I(\mathcal{S}_{2m+1}))K[V(\mathcal{S}_{2m+1})])\Big\}+1. \end{eqnarray} |
And by Lemma 2.16, Theorems 2.10 and 2.7, we have
{{\rm{sdepth}}} ((I(\mathcal{S}_{2m+1}),C_{4,m} )T^{'}_{4,m}[y_1])\geq \min\{3m+3,m+1+1\}+1 = m+3. |
Now by Lemma 5.3, we get {{\rm{sdepth}}}((I(\Delta^{**}_{2, m}))T^{'}_{4, m})\cong {{\rm{sdepth}}}((I(\Delta^{**}_{2, m}))S^{**}_{2, m})\geq m+3. Thus {{\rm{sdepth}}} (I(\Omega_{4, m}))\geq m+3. In general, for n\geq5. It is clear that
I(\Omega_{n,m})\cap T^{'}_{n,m} = (I(\Delta^{**}_{n-2,m}))T^{'}_{n,m} \,{\rm{ and }}\, ((I(\Omega_{n,m}):y_1)T_{n,m}) = ((I(\Delta^{**}_{n-4,m}),C_{n,m})T^{'}_{n,m}[y_1]). |
By Lemmas 5.3, 2.14 and 2.13, we have
\begin{eqnarray} {{\rm{sdepth}}}((I(\Delta^{**}_{n-4,m}),C_{n,m})T^{'}_{n,m}[y_1]) \geq {{\rm{sdepth}}}(( S^{**}_{n-4,m}/I(\Delta^{**}_{n-4,m}))S^{**}_{n-4,m})+ {{\rm{sdepth}}}((C_{n,m})K[C_{n,m}])+1. \end{eqnarray} |
Case 1. if n\equiv 0\, (\mod 2) , then n-2\equiv 0\, (\mod 2) and n-4\equiv 0\, (\mod 2). By Theorem 2.10 and Lemma 4.1 {{\rm{sdepth}}} ((I(\Delta^{**}_{n-4, m}), C_{n, m})T^{'}_{n, m}[y_1])\geq \Big\lceil\frac{n-2}{2}\Big\rceil+m+1+1 = \Big\lceil\frac{n}{2}\Big\rceil+m+1. Also by Lemma 5.3, {{\rm{sdepth}}}((I(\Delta^{**}_{n-2, m}))T^{'}_{n, m})\cong {{\rm{sdepth}}}((I(\Delta^{**}_{n-2, m}))S^{**}_{n-2, m})\geq \Big\lceil\frac{n}{2}\Big\rceil+1+m. Thus {{\rm{sdepth}}}(I(\Omega_{n, m}))\geq\lceil\frac{n}{2}\rceil+1+m.
Case 2. If n\equiv 1\, (\mod 2) , then n-2\equiv 1\, (\mod 2) and n-4\equiv 1\, (\mod 2). By Theorem 2.10 and Lemma 4.1 {{\rm{sdepth}}} ((I(\Delta^{**}_{n-4, m}), C_{n, m})T^{'}_{n, m}[y_1])\geq \lceil\frac{n-3}{2}\rceil+m+m+1+1 = \lceil\frac{n+1}{2}\rceil+2m. Also by Lemma 5.3, {{\rm{sdepth}}}((I(\Delta^{**}_{n-2, m}))T^{'}_{n, m})\cong {{\rm{sdepth}}}((I(\Delta^{**}_{n-2, m}))T^{*}_{n-2, m})\geq \Big\lceil\frac{n-1}{2}\Big\rceil+1+2m = \Big\lceil\frac{n+1}{2}\Big\rceil+2m. Thus {{\rm{sdepth}}}(I(\Omega_{n, m}))\geq \lceil\frac{n+1}{2}\rceil+2m.
In this paper we consider the residue class rings of the edge ideals associated to the triangular and multi triangular snake and ouroboros snake graphs. In most of the cases, we give precise values for depth and Stanley depth of these residue class rings. We also prove that Stanley depth of the edge ideal of any graph considered in this paper is an upper bounds for the Stanley depth of its residue class ring.
The authors declare that there is no conflict of interest in this paper.
[1] | O. Ahuja, S. Kumar, A. Cetinkaya, Normalized multivalent functions connected with generalized Mittag-Leffler functions, Acta Univ. Apulensis, 67 (2021), 111–123. |
[2] |
M. K. Aouf, A generalization of multivalent functions with negative coefficient, J. Korean Math. Soc., 25 (1989), 681095. http://dx.doi.org/10.1155/S0161171289000633 doi: 10.1155/S0161171289000633
![]() |
[3] |
M. K. Aouf, J. Dziok, Distortion and convolutional theorems for operators of generalized fractional calculus involving Wright function, J. Appl. Anal., 14 (2008), 183–192. https://doi.org/10.1515/JAA.2008.183 doi: 10.1515/JAA.2008.183
![]() |
[4] |
A. A. Attiya, Some applications of Mittag-Leffler function in the unit disk, Filomat, 30 (2016), 2075–2081. http://dx.doi.org/10.2298/FIL1607075A doi: 10.2298/FIL1607075A
![]() |
[5] |
D. Bansal, J. K. Prajapat, Certain geometric properties of the Mittag-Leffler functions, Complex Var. Ellip. Equ., 61 (2016), 338–350. https://doi.org/10.1080/17476933.2015.1079628 doi: 10.1080/17476933.2015.1079628
![]() |
[6] | A. Baricz, A. Prajapati, Radii of starlikeness and convexity of generalized Mittag-Leffler functions, Math. Commun., 25 (2020), 117–135. |
[7] |
E. Bas, B. Acay, The direct spectral problem via local derivative including truncated Mittag-Leffler function, Appl. Math. Comput., 367 (2020), 124787. https://doi.org/10.1016/j.amc.2019.124787 doi: 10.1016/j.amc.2019.124787
![]() |
[8] |
Y. L. Cang, J. L. Liu, A family of multivalent analytic functions associated with Srivastava-Tomovski generalization of the Mittag-Leffler function, Filomat, 32 (2018), 4619–4625. http://dx.doi.org/10.2298/FIL1813619C doi: 10.2298/FIL1813619C
![]() |
[9] | K. A. Challab, M. Darus, F. Ghanim, Some application on Hurwitz Lerch Zeta function defined by a generalization of the Srivastava Attiya operator, Kragujev. J. Math., 43 (2019), 201–217. |
[10] | E. Deniz, On p-valently close-to-convex, starlike and convex functions, Hacet. J. Math. Stat., 41 (2012), 635–642. |
[11] | P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, New York: Springer-Verlag, 1983. |
[12] |
J. Dziok, A new class of multivalent analytic functions defined by the Hadamard product, Demonstr. Math., 44 (2011), 233–251. https://doi.org/10.1515/dema-2013-0313 doi: 10.1515/dema-2013-0313
![]() |
[13] | S. Elhaddad, M. Darus, Differential subordination and superordination for a new differential operator containing Mittag-Leffler function, Kraguj. J. Math., 45 (2021), 699–708. |
[14] |
E. A. Elrifai, H. E. Darwish, A. R. Ahmed, Some applications of Srivastava-Attiya operator to p-valent starlike functions, J. Inequal. Appl., 2010 (2010), 790730. https://doi.org/10.1155/2010/790730 doi: 10.1155/2010/790730
![]() |
[15] |
P. Gochhayat, Convolution properties of p-valent functions associated with a generalization of the Srivastava-Attiya operator, J. Complex Anal., 2013 (2013), 6760275. http://dx.doi.org/10.1155/2013/676027 doi: 10.1155/2013/676027
![]() |
[16] | R. M. Goel, N. S. Sohi, Multivalent functions with negative coefficients, Indian J. Pure. Appl. Math., 12 (1981), 844–853. |
[17] |
S. Horrigue, S. M. Madian, Some inclusion relationships of meromorphic functions associated to new generalization of Mittag-Leffler function, Filomat, 34 (2020), 1545–1556. https://doi.org/10.2298/FIL2005545H doi: 10.2298/FIL2005545H
![]() |
[18] |
F. H. Jackson, On q-functions and a certain difference operator, Trans. Royal Soc. Edinburgh, 46 (1908), 253–281. https://doi.org/10.1017/S0080456800002751 doi: 10.1017/S0080456800002751
![]() |
[19] |
I. Jung, Y. Kim, H. M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl., 176 (1993), 138–147. https://doi.org/10.1006/jmaa.1993.1204 doi: 10.1006/jmaa.1993.1204
![]() |
[20] |
J. L. Liu, Sufficient conditions for strongly star-like functions involving the generalized Srivastava-Attiya operator, Integr. Transf. Spec. F., 22 (2011), 79–90. https://doi.org/10.1080/10652469.2010.498110 doi: 10.1080/10652469.2010.498110
![]() |
[21] |
A. K. Mishra, P. Gochhayat, Invariance of some subclass of multivalent functions under a differintegral operator, Complex Var. Elliptic Equ., 55 (2010), 677–689. https://doi.org/10.1080/17476930903568712 doi: 10.1080/17476930903568712
![]() |
[22] | G. M. Mittag-Leffler, Sur la nouvelle function E\alpha(x), C. R. Acad. Sci. Paris, 137 (1903), 554–558. |
[23] |
M. Nunokawa, J. Sokoł, N. Tuneski, On coefficients of some p-valent starlike functions, Filomat, 33 (2019), 2277–2284. https://doi.org/10.2298/FIL1908277N doi: 10.2298/FIL1908277N
![]() |
[24] |
R. Ozarslan, E. Bas, D. Baleanu, B. Acay, Fractional physical problems including wind-influenced projectile motion with Mittag-Leffler kernel, AIMS Math., 5 (2020), 467–481. https://doi.org/10.3934/math.2020031 doi: 10.3934/math.2020031
![]() |
[25] | T. R. Prabhakar, A singular integral equation with a generalized Mittag Leffler function in the kernel, Yokohama Math. J., 19 (1971), 2277–2284. |
[26] |
T. M. Seoudy, M. K. Aouf, Coefficient estimates of new classes of q-starlike and q-convex functions of complex order, J. Math. Inequal., 10 (2016), 135–145. https://doi.org/10.7153/jmi-10-11 doi: 10.7153/jmi-10-11
![]() |
[27] |
A. K. Shukla, J. C. Prajapati, On a generalization of Mittag-Leffler function and its properties, J. Math. Anal. Appl., 336 (2007), 797–811. https://doi.org/10.1016/j.jmaa.2007.03.018 doi: 10.1016/j.jmaa.2007.03.018
![]() |
[28] |
P. Singh, S. Jain, C. Cattani, Some unified integrals for generalized Mittag-Leffler functions, Axioms, 10 (2021), 261. https://doi.org/10.3390/axioms10040261 doi: 10.3390/axioms10040261
![]() |
[29] | H. M. Srivastava, Some families of Mittag-Leffler type functions and associated operators of fractional calculus, TWMS J. Pure Appl. Math., 7 (2016), 123–145. |
[30] |
H. M. Srivastava, A. A. Attiya, An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination, Integr. Transf. Spec. F., 18 (2007), 207–216. https://doi.org/10.1080/10652460701208577 doi: 10.1080/10652460701208577
![]() |
[31] | H. M. Srivastava, D. Bansal, Close-to-convexity of a certain family of q-Mittag-Leffer functions, J. Nonlinear Var. Anal., 1 (2017), 61–69. |
[32] |
H. M. Srivastava, Z. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernal, Appl. Math. Comput., 211 (2009), 198–210. https://doi.org/10.1016/j.amc.2009.01.055 doi: 10.1016/j.amc.2009.01.055
![]() |
[33] |
Z. G. Wang, Z. H. Liu, Y. Sun, Some properties of the generalized Srivastava-Attiya operator, Integr. Transf. Spec. F., 23 (2012), 223–236. https://doi.org/10.1080/10652469.2011.585425 doi: 10.1080/10652469.2011.585425
![]() |
[34] |
A. Wiman, Uber den fundamental satz in der theory der funktionen, Acta Math., 29 (1905), 191–201. https://doi.org/10.1007/BF02403202 doi: 10.1007/BF02403202
![]() |