In this paper, the sieve bootstrap test for multiple change points in the mean of long memory sequence is studied. Firstly, the ANOVA test statistics for change points detection is obtained. Secondly, sieve bootstrap statistics is constructed and the consistency under the Mallows measure is proved. Finally, the effectiveness of the method was illustrated by simulation and example analysis. Simulation results show that our method can not only control the empirical size well but also have reasonable good power.
Citation: Wenzhi Zhao, Dou Liu, Huiming Wang. Sieve bootstrap test for multiple change points in the mean of long memory sequence[J]. AIMS Mathematics, 2022, 7(6): 10245-10255. doi: 10.3934/math.2022570
[1] | Deyue Zhang, Yukun Guo . Some recent developments in the unique determinations in phaseless inverse acoustic scattering theory. Electronic Research Archive, 2021, 29(2): 2149-2165. doi: 10.3934/era.2020110 |
[2] | Xinlin Cao, Huaian Diao, Jinhong Li . Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29(1): 1753-1782. doi: 10.3934/era.2020090 |
[3] | Yan Chang, Yukun Guo . Simultaneous recovery of an obstacle and its excitation sources from near-field scattering data. Electronic Research Archive, 2022, 30(4): 1296-1321. doi: 10.3934/era.2022068 |
[4] | Yujie Wang, Enxi Zheng, Wenyan Wang . A hybrid method for the interior inverse scattering problem. Electronic Research Archive, 2023, 31(6): 3322-3342. doi: 10.3934/era.2023168 |
[5] | John Daugherty, Nate Kaduk, Elena Morgan, Dinh-Liem Nguyen, Peyton Snidanko, Trung Truong . On fast reconstruction of periodic structures with partial scattering data. Electronic Research Archive, 2024, 32(11): 6481-6502. doi: 10.3934/era.2024303 |
[6] | Yao Sun, Lijuan He, Bo Chen . Application of neural networks to inverse elastic scattering problems with near-field measurements. Electronic Research Archive, 2023, 31(11): 7000-7020. doi: 10.3934/era.2023355 |
[7] | Weishi Yin, Jiawei Ge, Pinchao Meng, Fuheng Qu . A neural network method for the inverse scattering problem of impenetrable cavities. Electronic Research Archive, 2020, 28(2): 1123-1142. doi: 10.3934/era.2020062 |
[8] | Hyungyeong Jung, Sunghwan Moon . Reconstruction of the initial function from the solution of the fractional wave equation measured in two geometric settings. Electronic Research Archive, 2022, 30(12): 4436-4446. doi: 10.3934/era.2022225 |
[9] | Messoud Efendiev, Vitali Vougalter . Linear and nonlinear non-Fredholm operators and their applications. Electronic Research Archive, 2022, 30(2): 515-534. doi: 10.3934/era.2022027 |
[10] | Shiqi Ma . On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, 2021, 29(3): 2391-2415. doi: 10.3934/era.2020121 |
In this paper, the sieve bootstrap test for multiple change points in the mean of long memory sequence is studied. Firstly, the ANOVA test statistics for change points detection is obtained. Secondly, sieve bootstrap statistics is constructed and the consistency under the Mallows measure is proved. Finally, the effectiveness of the method was illustrated by simulation and example analysis. Simulation results show that our method can not only control the empirical size well but also have reasonable good power.
It is prudential to say that mathematical modeling with delay differential equations have drawn clear significance because of their potential applications in diverse fields, which includes biological sciences, physical sciences, gas and fluid mechanics, signal processing, robotics and traffic system, engineering, population dynamics, medicine and the like (see for example [9,16,17]). It is now realized that the oscillation and asymptotic solutions of various classes of differential equation are an important field of investigation and its theory is a lot richer than the qualitative theory of differential equations (see for example [8,10,22]). The problem of oscillatory and nonoscillatory of solutions of various classes of second/third order differential equations with delayed and mixed arguments has been widely investigated in the literature (see for example [2,4,5,6,7,11,12,18,23,24,25,26,27,28,29,30,31,32,33,34]). Various types of techniques appeared for investigations of such equations.
The purpose of this work, we are concerned with third-order neutral differential equations with discrete and distributed delay
(a2(t)[(a1(t)z′(t))′]λ)′+q1(t)yλ(t−σ1)+q2(t)yλ(t+σ1)=0, |
and
(a2(t)[(a1(t)z′(t))′]λ)′+∫dc˜q1(t,ξ)yλ(t−ξ)dξ+∫dc˜q2(t,ξ)yλ(t+ξ)dξ=0, |
where z(t)=y(t)+p1(t)y(t−τ1)+p2(t)y(t+τ2), c<d and λ≥1. Now onwards, we assume that, ai(t),pi(t)∈C([t0,+∞)), ai(t)>0, pi(t)>0 for i=1,2 and 0≤pi(t)≤μi, μ1+μ2<1 where μi are constants, qi∈C([t0,+∞),R+), ~qi(t,ξ)∈C([t0,+∞)×[c,d], R+) for i=1,2, and not identically zero on [t∗,+∞)×[c,d], t∗≥t, constants τi≥0, for i=1,2, and the integral of (E2) is take in the sense of Riemann–Stieltjes.
Let us recall that, a solution y(t)∈C([Ty,∞),R) of (E1) (or (E2)) is a non-trivial or y(t)≠0 with Ty≥t0, if the functions z∈C1([Ty,∞),R), a1z′∈C2([Ty,∞),R) and a2[(a1z′)′]λ∈C1([Ty,∞),R) for certain Ty≥t0 which satisfies (E1) (or (E2)). Our attention is restricted to those solutions of (E1) (or (E2)) which exist on half-line [Ty,∞) and the condition sup{|y(t)|:t>T∗}>0 satisfies for any T∗≥ty. A solution of (E1) (or (E2)), which is nontrivial (proper) for all large t, is called oscillatory if it has no last zero, otherwise, termed nonoscillatory.
We define the operators,
L[0]z=z,L[1]z=z′,L[2]z=(a1L[1]z)′,L[3]z=a2[L[2]z]λ,L[4]z=(L[3]z)′. |
We shall consider the two cases,
π1[t0,t]=∫tt0a−1/λ2(s)ds,π2[t0,t]=∫tt0a−11(s)ds. |
π1[t0,t]=∞,π2[t0,t]=∞ as t→∞, | (1.1) |
and
π1[t0,t]<∞,π2[t0,t]=∞ as t→∞. | (1.2) |
Recently, Candan [24] investigated the oscillatory behavior of solutions of (E1) and (E2) by using the Riccati substitution techniques, he presented some new oscillation criteria for (E1) and (E2) by the assumption of condition (1.1). We notice that in [24], no criteria were found for (E1) (or (E2)) to be oscillatory for the assumption of condition (1.2). It would be interesting to improve and extend them in the condition (1.2).
However, the corresponding result for (E1) (or (E2)) under (1.2) is still missing. In this work, we fill up this gap, also we strengthen and extend the main results of Candan [24] under the condition (1.1) and (1.2) respectively. We present several oscillatory criteria for (E1) and (E2), by applying three Riccati substitution techniques, integral averaging techniques and comparison principles. We present two examples in order to illustrate the main results at the end.
In this section, we present some basic Lemmas for helping to prove the main results. We use throughout this paper the following notations for convenience and for shortening the equations:
L[0]σz(t)=z(t+σ),L[1]σz(t)=z′(t+σ),L[2]σz(t)=(a1(t+σ)z′(t+σ))′,L[3]σz(t)=a2(t+σ)[L[2]σz(t)]λ,L[4]σz(t)=(L[3]σz(t))′,A(t)=∫tt0π1[t0,s]a1(s)ds. |
Lemma 2.1. Let λ≥1, assume u≥0. Then
(u1+u2+u3)λ≤3λ−1(uλ1+uλ2+uλ3). | (2.1) |
Lemma 2.2. Let λ≤1, assume u≥0. Then
(u1+u2+u3)λ≤(uλ1+uλ2+uλ3). | (2.2) |
Lemma 2.3. If λ>0 and X,Y>0, then
Yv−Xvλ+1λ≤λλ(1+λ)1+λY1+λXλ. | (2.3) |
Lemma 2.4. Assume that (1.1) holds. Furthermore, assume that y is an eventually positive solution of (E1) (or (E2)). Then z for t1∈[t0,∞) satisfies, eventually of the following cases:
(C1):L[0]z(t)>0,L[1]z(t)>0,andL[2]z(t)>0;(C2):L[0]z(t)>0,L[1]z(t)<0,andL[2]z(t)>0; |
and if (1.2) holds, then also
(C3):L[0]z(t)>0,L[1]z(t)>0,andL[2]z(t)<0. |
Lemma 2.5. Assume that z satisfies (C1) for t≥t0. Then
z′(t)≥(L[3]z(t))1/λa1(t)π1[t0,t] | (2.4) |
and
z(t)≥(L[3]z(t))1/λA(t). | (2.5) |
Proof. Since L[4]z(t)≤0, L[3]z(t) is nondecreasing. Then we have
a1(t)z′(t)≥a1(t)z′(t)−a1(t0)z′(t0)=∫tt0a1/λ2(s)L[2]z(s)a1/λ2(s)ds≥a1/λ2(t)L[2]z(t)π1[t0,t]. |
Again integrate, we get
z(t)≥(L[3]z(t))1/λ∫tt0π1[t0,s]a1(s)ds=(L[3]z(t))1/λA(t). |
Lemma 2.6 (See [24]). Assume that z is a solution of (E1) which satisfies (C2) in Lemma 2.4. Furthermore,
∫∞t4a−11(v)∫∞va−1/λ2(u)(∫∞u(q1(s)+q2(s))ds)1/λdudv=∞. | (2.6) |
Then, there is limt→∞z(t)=0.
Lemma 2.7 (See [24]). Assume that z is a solution of (E2) which satisfies (C2) in Lemma 2.4. Furthermore,
∫∞t4a−11(v)∫∞va−1/λ2(u)(∫∞u∫ba(~q1(s,ξ)+~q2(s,ξ))dξds)1/λdudv=∞. | (2.7) |
Then, there is limt→∞z(t)=0.
In this section, we will establish several oscillation criteria for (E1). The following notations for convenience and for shortening the equations:
P1(t)=min{q1(t),q1(t−τ1),q1(t+τ2)},P2(t)=min{q2(t),q2(t−τ1),q2(t+τ2)},P(t)=P1(t)+P2(t),B(t)=∫tt0∫∞sdua1/λ2(u)a1(s)ds. |
Let S0={(t,s):a≤s<t<+∞}, S={(t,s):a≤s≤t<+∞} the continuous function H(t,s), H:S→R belongs to the class function ℜ
(ⅰ) H(t,t)=0 for t≥t0 and H(t,s)>0 for (t,s)∈S0,
(ⅱ) ∂H(t,s)∂s≤0, (t,s)∈S0 and some locally integrable function h(t,s) such that
−∂∂sH(t,s)−H(t,s)m′(s)m(s)=h(t,s)(H(t,s))λλ+1m(s)for all (t,s)∈S0. |
Theorem 3.1. Let (1.1) hold and σ1≥τ1. If there exists an m(t)∈C1([t0,∞),R+) such that (2.6) and
lim supt→∞1H(t,t3)∫tt3[H(t,s)m(s)P(s)3λ−1−1+μλ1+μλ2(λ+1)λ+1(|h(t,s)|a1(s−σ1)m(s)π1[t0,s−σ1])λ]ds=∞, | (3.1) |
then every solution y(t) of (E1) is either oscillatory or tends to 0.
Proof. Suppose that (E1) has a nonoscillatory solution y. Without loss of generality, we may take y(t)>0, y(t−τ1)>0, y(t+τ2)>0, y(t−σ1)>0 and y(t+σ1)>0 for t≥t1≥t0. Since y(t)>0 for all t≥t1, in view of (E1), we have
L[4]z(t)=−q1(t)yλ(t−σ1)−q2(t)yλ(t+σ1)≤0. | (3.2) |
Assumption of (1.1), by Lemma 2.4 there exists two cases (C1) and (C2). If (C2) holds, then by Lemma 2.6, limt→∞z(t)=0. If (C1) holds.
L[4]z(t)+q1(t)yλ(t−σ1)+q2(t)yλ(t+σ1)+μλ1L[4]−τ1z(t)+μλ1q1(t−τ1)yλ(t−τ1−σ1)+μλ1q2(t−τ1)yλ(t−τ1+σ1)+μλ2L[4]τ2z(t)+μλ2q1(t+τ2)yλ(t+τ2−σ1)+μλ2q2(t+τ2)yλ(t+τ2+σ1)=0. | (3.3) |
Furthermore, from Lemma 2.1, we get
q1(t)yλ(t−σ1)+μλ1q1(t−τ1)yλ(t−τ1−σ1)+μλ1q1(t+τ2)yλ(t+τ2−σ1)≥P1(t)3λ−1zλ(t−σ1). | (3.4) |
Similarly, we get
q2(t)yλ(t+σ1)+μλ2q2(t−τ1)yλ(t−τ1+σ1)+μλ2q2(t+τ2)yλ(t+τ2+σ1)≥P2(t)3λ−1zλ(t+σ1). | (3.5) |
Substituting (3.4), (3.5) into (3.3), we have
L[4]z(t)+μλ1L[4]−τ1z(t)+μλ2L[4]τ2z(t)+P1(t)3λ−1zλ(t−σ1)+P2(t)3λ−1zλ(t+σ1)≤0. | (3.6) |
Using the fact of L[1]z(t)>0, we obtain
L[4]z(t)+μλ1L[4]−τ1z(t)+μλ2L[4]τ2z(t)+P(t)3λ−1zλ(t−σ1)≤0. | (3.7) |
Define
w1(t)=m(t)L[3]z(t)zλ(t−σ1). | (3.8) |
We obtain w1(t)>0, then
w′1(t)=m′(t)L[3]z(t)zλ(t−σ1)+m(t)L[4]z(t)zλ(t−σ1)−λm(t)L[3]z(t)z′(t−σ1)zλ+1(t−σ1). | (3.9) |
By Lemma (2.5), one gets z′(t−σ1)≥a1/λ2(t)a1(t−σ1)π1[t0,t−σ1]L[2]z(t). Therefore
w′1(t)≤m′(t)L[3]z(t)zλ(t−σ1)+m(t)L[4]z(t)zλ(t−σ1)−λm(t)aλ+1λ2(t)π1[t0,t−σ1]L[2]z(t)z′(t−σ1)zλ+1(t−σ1)a1(t−σ1). | (3.10) |
Using (3.8) in (3.10), we obtain
w′1(t)≤(m′(t))+m(t)w1(t)+m(t)L[4]z(t)zλ(t−σ1)−λ(w1(t))λ+1λπ1[t0,t−σ1](m(t))1/λa1(t−σ1). | (3.11) |
Next, define
w2(t)=m(t)L[3]−τ1z(t)zλ(t−σ1). | (3.12) |
We obtain w2(t)>0, then
w′2(t)=m′(t)L[3]−τ1z(t)zλ(t−σ1)+m(t)L[4]−τ1z(t)zλ(t−σ1)−λm(t)L[3]−τ1z(t)z′(t−σ1)zλ+1(t−σ1). | (3.13) |
By Lemma (2.5), one gets z′(t−σ1)≥a1/λ2(t−τ1)a1(t−σ1)π1[t0,t−σ1]L[2]−τ1z(t) and using (3.12) in (3.13), we have
w′2(t)≤(m′(t))+m(t)w2(t)+m(t)L[4]−τ1z(t)zλ(t−σ1)−λ(w2(t))λ+1λπ1[t0,t−σ1](m(t))1/λa1(t−σ1). | (3.14) |
Finally, define
w3(t)=m(t)L[3]τ2z(t)zλ(t−σ1). | (3.15) |
We obtain w3(t)>0, then
w′3(t)=m′(t)L[3]τ2z(t)zλ(t−σ1)+m(t)L[4]τ2z(t)zλ(t−σ1)−λm(t)L[3]τ2z(t)z′(t−σ1)zλ+1(t−σ1). | (3.16) |
By Lemma 2.5, one gets z′(t−σ1)≥a1/λ2(t+τ2)a1(t−σ1)π1[t0,t−σ1]L[2]τ2z(t) and using (3.15) in (3.16), we get
w′3(t)≤(m′(t))+m(t)w3(t)+m(t)L[4]τ2z(t)zλ(t−σ1)−λ(w3(t))λ+1λπ1[t0,t−σ1](m(t))1/λa1(t−σ1). | (3.17) |
From (3.8), (3.10) and (3.15), we have
w′1(t)+μλ1w′2(t)+μλ2w′3(t)≤m(t)[L[4]z(t)+μλ1L[4]−τ1z(t)+μλ2L[4]τ2z(t)zλ(t−σ1)]+[(m′(t))+m(t)w1(t)−λ(w1(t))λ+1λπ1[t0,t−σ1](m(t))1/λa1(t−σ1)]+μλ1[(m′(t))+m(t)w2(t)−λ(w2(t))λ+1λπ1[t0,t−σ1](m(t))1/λa1(t−σ1)]+μλ2[(m′(t))+m(t)w3(t)−λ(w3(t))λ+1λπ1[t0,t−σ1](m(t))1/λa1(t−σ1)]. | (3.18) |
Using (3.7) in (3.18), we have
w′1(t)+μλ1w′2(t)+μλ2w′3(t)≤−m(t)P(t)3λ−1+[(m′(t))+m(t)w1(t)−λ(w1(t))λ+1λπ1[t0,t−σ1](m(t))1/λa1(t−σ1)]+μλ1[(m′(t))+m(t)w2(t)−λ(w2(t))λ+1λπ1[t0,t−σ1](m(t))1/λa1(t−σ1)]+μλ2[(m′(t))+m(t)w3(t)−λ(w3(t))λ+1λπ1[t0,t−σ1](m(t))1/λa1(t−σ1)], | (3.19) |
that is,
m(t)P(t)3λ−1≤−w′1(t)−μλ1w′2(t)−μλ2w′3(t)+(m′(t))+m(t)w1(t)−λπ1[t0,t−σ1](m(t))1/λa1(t−σ1)(w1(t))λ+1λ+μλ1[(m′(t))+m(t)w2(t)−λπ1[t0,t−σ1](m(t))1/λa1(t−σ1)(w2(t))λ+1λ]+μλ2[(m′(t))+m(t)w3(t)−λπ1[t0,t−σ1](m(t))1/λa1(t−σ1)(w3(t))λ+1λ]. | (3.20) |
Multiply H(t,s) and integrate (3.20) from t3 to t, one can get that
∫tt3H(t,s)m(s)P(s)3λ−1ds≤−∫tt3H(t,s)w′1(s)ds−μλ1∫tt3H(t,s)w′2(s)ds−μλ2∫tt3H(t,s)w′3(s)ds+∫tt3H(t,s)(m′(s))+m(s)w1(s)ds−∫tt3H(t,s)λπ1[t0,s−σ1](m(s))1/λa1(s−σ1)(w1(s))λ+1λds+μλ1∫tt3H(t,s)(m′(s))+m(s)w2(s)ds−μλ1∫tt3H(t,s)λπ1[t0,s−σ1](m(s))1/λa1(s−σ1)(w2(s))λ+1λds+μλ2∫tt3H(t,s)(m′(s))+m(s)w3(s)ds−μλ2∫tt3H(t,s)λπ1[t0,s−σ1](m(s))1/λa1(s−σ1)(w3(s))λ+1λds. | (3.21) |
Thus, we obtain
∫tt3H(t,s)m(s)P(s)3λ−1ds≤H(t,t3)w1(t3)+μλ1H(t,t3)w2(t3)+μλ2H(t,t3)w3(t3)−∫tt3[−∂∂sH(t,s)−H(t,s)m′(s)m(s)]w1(s)ds−∫tt3H(t,s)λπ1[t0,s−σ1](m(s))1/λa1(s−σ1)(w1(s))λ+1λds−μλ1∫tt3[−∂∂sH(t,s)−H(t,s)m′(s)m(s)]w2(s)ds−μλ1∫tt3H(t,s)λπ1[t0,s−σ1](m(s))1/λa1(s−σ1)(w2(s))λ+1λds−μλ2∫tt3[−∂∂sH(t,s)−H(t,s)m′(s)m(s)]w3(s)ds−μλ2∫tt3H(t,s)λπ1[t0,s−σ1](m(s))1/λa1(s−σ1)(w3(s))λ+1λds. | (3.22) |
Then
∫tt3H(t,s)m(s)P(s)3λ−1ds≤H(t,t3)w1(t3)+μλ1H(t,t3)w2(t3)+μλ2H(t,t3)w3(t3)+∫tt3[|h(t,s)|(H(t,s))λλ+1m(s)w1(s)−H(t,s)λπ1[t0,s−σ1](m(s))1/λa1(s−σ1)(w1(s))λ+1λ]ds+μλ1∫tt3[|h(t,s)|(H(t,s))λλ+1m(s)w2(s)−H(t,s)λπ1[t0,s−σ1](m(s))1/λa1(s−σ1)(w2(s))λ+1λ]ds+μλ2∫tt3[|h(t,s)|(H(t,s))λλ+1m(s)w3(s)−H(t,s)λπ1[t0,s−σ1](m(s))1/λa1(s−σ1)(w3(s))λ+1λ]ds. | (3.23) |
Setting Y=|h(t,s)|(H(t,s))λλ+1m(s), X=H(t,s)λπ1[t0,s−σ1](m(s))1/λa1(s−σ1) and u=wi(t) for i=1,2,3. By using the Lemma 2.3, we conclude that
1H(t,t3)∫tt3[H(t,s)m(s)P(s)3λ−1−1+μλ1+μλ2(λ+1)λ+1(|h(t,s)|a1(s−σ1)m(s)π1[t0,s−σ1])λ]ds≤w1(t3)+μλ1w2(t3)+μλ2w3(t3) | (3.24) |
which contradicts condition (3.20).
Theorem 3.2. Let (1.1) hold and τ1≥σ1. If there exists an m(t)∈C1([t0,∞),R+) such that (2.6) and
lim supt→∞1H(t,t3)∫tt3[H(t,s)m(s)P(s)3λ−1−1+μλ1+μλ2(λ+1)λ+1(|h(t,s)|a1(s−τ1)m(s)π1[t0,s−τ1])λ]ds=∞, | (3.25) |
then every solution y(t) of (E1) is either oscillatory or tends to 0.
Proof. Suppose that (E1) has a nonoscillatory solution y. Without loss of generality, we may take y(t)>0, y(t−τ1)>0, y(t+τ2)>0, y(t−σ1)>0 and y(t+σ1)>0 for t≥t1≥t0. Assumption of (1.1), by Lemma 2.4 there exists two cases (C1) and (C2). If (C2) holds, then by Lemma 2.6, limt→∞z(t)=0. We only consider (C1), by using the fact that z′(t)>0 and τ1≥σ1, we obtain that Using the fact of L[1]z(t)>0, we obtain
L[4]z(t)+μλ1L[4]−τ1z(t)+μλ2L[4]τ2z(t)+P(t)3λ−1zλ(t−τ1)≤0. | (3.26) |
Next, we categorize the functions as w1(t)=m(t)L[3]z(t)zλ(t−τ1), w2(t)=m(t)L[3]−τ1z(t)zλ(t−τ1) and w3(t)=m(t)L[3]τ2z(t)zλ(t−τ1) respectively. The rest of the proof is similar to that of Theorem 3.1, therefore, it is omitted.
Theorem 3.3. Let (1.2) hold and σ1≥τ1. If there exists an m(t)∈C1([t0,∞),R+) such that (2.6),
∫∞t3[m(s)P(s)3λ−1−(1+μλ1+μλ2)((m′(s))+(λ+1))λ+1(a1(s−σ1)m(s)π1[t0,s−σ1])λ]ds=∞, | (3.27) |
and
∫∞t3[πλ∗(s+τ2)P(s)3λ−1(∫s+σ1t2dua1(u))λ−(λ1+λ)1+λ(1+μλ1)a2(s)+μλ2a2(s+τ2+σ1)a1+1λ2(s)πλ∗(s+τ2)]ds=∞, | (3.28) |
where (m′(t))+=max{0,m′(t)}, π∗(t)=∫∞t+σ1a−1/λ2(s)ds, then every solution y(t) of (E1) is either oscillatory or tends to 0.
Proof. Suppose that (E1) has a nonoscillatory solution y. Without loss of generality, we may take y(t)>0, y(t−τ1)>0, y(t+τ2)>0, y(t−σ1)>0 and y(t+σ1)>0 for t≥t1≥t0. Since y(t)>0 for all t≥t1. Assumption of (1.2), by Lemma 2.4 there exists three cases (C1), (C2) and (C3). If case (C1) and (C2) holds, using the similar proof of ([24], Theorem 2.1) by using Lemma 2.1, we get the conclusion of Theorem 3.3.
If case (C3) holds, z′(t−σ1)<0 for t≥t1. The facts that z′(t)<0, c+d≥0 and (3.6), we obtain
L[4]z(t)+μλ1L[4]−τ1z(t)+μλ2L[4]τ2z(t)+P(t)3λ−1zλ(t+σ1)≤0. | (3.29) |
Define
w∗(t)=L[3]z(t)(a1(t+σ1)z′(t+σ1))λ. | (3.30) |
We obtain w∗(t)<0 for t≥t2. Noting that L[3]z(t) is decreasing, we obtain
a2(s)[L[2]z(s)]λ≤a2(t)[L[2]z(t)]λ | (3.31) |
for s≥t≥t2. Dividing (3.31) by a2(s) and integrating from t+σ1 to l(l≥t), we get
a1(l)z′(l)≤a1(t+σ1)z′(t+σ1)+a1/λ2(t)[L[2]z(t)]∫lt+σ1a−1/λ2(s)ds. |
letting l→∞, we get
−1≤a1/λ2(t)[L[2]z(t)]a1(t+σ1)z′(t+σ1)π∗(t), | (3.32) |
for t≥t2. From (3.30), we have
−1≤w∗(t)πλ∗(t)≤0. | (3.33) |
By (3.2) we have a1(t+σ1)z′(t+σ1)≤a1(t)z′(t). Differentiating (3.30) gives,
w′∗(t)≤(L[3]z(t))′(a1(t+σ1)z′(t+σ1))λ−λa2(t)[L[2]z(t)a1(t+σ1)z′(t+σ1)]λ+1. | (3.34) |
Using (3.30) in (3.34), we have
w′∗(t)≤L[4]z(t)(a1(t+σ1)z′(t+σ1))λ−λw1+1λ∗(t)a1/λ2(t). | (3.35) |
Again, we define
w∗∗(t)=L[3]−τ1z(t)(a1(t+σ1)z′(t+σ1))λ. | (3.36) |
We obtain w∗∗(t)<0 and w∗∗(t)≥w∗(t) for t≥t2. By (3.33), we obtain
−1≤w∗∗(t)πλ∗(t)≤0. | (3.37) |
By (3.2) we have a1(t+σ1)z′(t+σ1)≤a1(t−τ1)z′(t−τ1). Differentiating (3.36) gives,
w′∗∗(t)≤(L[3]−τ1z(t))′(a1(t+σ1)z′(t+σ1))λ−λa2(t)[L[2]−τ1z(t)a1(t+σ1)z′(t+σ1)]λ+1. | (3.38) |
Using (3.36) in (3.38), we have
w′∗∗(t)≤L[4]−τ1z(t)(a1(t+σ1)z′(t+σ1))λ−λw1+1λ∗∗(t)a1/λ2(t). | (3.39) |
Finally, we define a function
w∗∗∗(t)=L[3]τ2z(t)(a1(t+τ2+σ1)z′(t+τ2+σ1))λ. | (3.40) |
We obtain w∗∗∗(t)<0 and w∗∗∗(t)=w∗(t+τ2) for t≥t2. By (3.33), we obtain
−1≤w∗∗∗(t)πλ∗(t+τ2)≤0. | (3.41) |
By (3.2) we have a1(t+τ2+σ1)z′(t+τ2+σ1)≤a1(t+τ2)z′(t+τ2). Differentiating (3.40) gives,
w′∗∗∗(t)≤(L[3]τ2z(t))′(a1(t+σ1)z′(t+σ1))λ−λa2(t)[L[2]τ2z(t)a1(t+τ2+σ1)z′(t+τ2+σ1)]λ+1. | (3.42) |
Using (3.40) in (3.42), we have
w′∗∗∗(t)≤L[4]τ2z(t)(a1(t+σ1)z′(t+σ1))λ−λw1+1λ∗∗∗(t)a1/λ2(t). | (3.43) |
From (3.35), (3.39), (3.43) and (3.29) which implies
w′∗(t)+μλ1w′∗∗(t)+μλ2w′∗∗∗(t)≤−P(t)3λ−1zλ(t+σ1)(a1(t+σ1)z′(t+σ1))λ−λw1+1λ∗(t)a1/λ2(t)−μλ1λw1+1λ∗∗(t)a1/λ2(t)−μλ2λw1+1λ∗∗∗(t)a1/λ2(t) | (3.44) |
In case (C3), (a1(t)z′(t))′<0 we seen that
z(t)≥a1(t)z′(t)∫tt21a1(s)ds. | (3.45) |
Using (3.45) in (3.44), we get
w′∗(t)+μλ1w′∗∗(t)+μλ2w′∗∗∗(t)≤−P(t)3λ−1(∫t+σ1t2dsa1(s))λ−λw1+1λ∗(t)a1/λ2(t)−μλ1λw1+1λ∗∗(t)a1/λ2(t)−μλ2λw1+1λ∗∗∗(t)a1/λ2(t). | (3.46) |
Multiplying πλ∗(t+τ2) and integrating from t3(t3>t2) to t, yields
πλ∗(t+τ2)w∗(t)−πλ∗(t3+τ2)w∗(t3)+πλ∗(t+τ2)μλ1w∗∗(t)−πλ∗(t3+τ2)μλ1w∗∗(t3)+πλ∗(t+τ2)μλ2w∗∗∗(t)−πλ∗(t3+τ2)μλ2w∗∗∗(t3)−λ∫tt3[πλ−1∗(s+τ2)(−w∗(s))a1/λ2(s+τ2)−πλ∗(s+τ2)(−w∗(s))1+1λa1/λ2(s)]ds−λμλ1∫tt3[πλ−1∗(s+τ2)(−w∗∗(s))a1/λ2(s+τ2)−πλ∗(s+τ2)(−w∗∗(s))1+1λa1/λ2(s)]ds−λμλ2∫tt3[πλ−1∗(s+τ2)(−w∗∗∗(s))a1/λ2(s+τ2)−πλ∗(s+τ2)(−w∗∗∗(s))1+1λa1/λ2(s)]ds+∫tt3πλ∗(s+τ2)P(s)3λ−1(∫s+σ1t2dua1(u))λds≤0. | (3.47) |
Applying Lemma 2.3, we conclude that
∫tt3[πλ∗(s+τ2)P(s)3λ−1(∫s+σ1t2dua1(u))λ−(λ1+λ)1+λ(1+μλ1)a2(s)+μλ2a2(s+τ2+σ1)a1+1λ2(s)πλ∗(s+τ2)]ds≤−[πλ∗(t+τ2)w∗(t)+μλ1πλ∗(t+τ2)w∗∗(t)+μλ2πλ∗(t+τ2)w∗∗∗(t)] | (3.48) |
Using the fact of πλ∗(t+τ2)≤πλ∗(t) in (3.33), (3.37), (3.41) and (3.48) imply that
∫tt3[πλ∗(s+τ2)P(s)3λ−1(∫s+σ1t2dua1(u))λ−(λ1+λ)1+λ(1+μλ1)a2(s)+μλ2a2(s+τ2+σ1)a1+1λ2(s)πλ∗(s+τ2)]ds≤1+μλ1+μλ2. | (3.49) |
a contradiction to (3.28).
Finally, we establish new comparison theorems for (E1) under the case when (1.2) holds.
Theorem 3.4. Let (1.2), (2.6) hold and σ1>τ1, σ1>τ2. If the first-order differential inequality
ψ′(t)+P1(t)3λ−1Aλ(t−σ1)1+μλ1+μλ2ψ(t−σ1+τ1)≤0 | (3.50) |
for t≥t0, has no positive nonincreasing solution and the first-order differential inequality
ψ′(t)−P2(t)3λ−1Bλ(t+σ1)1+μλ1+μλ2ψ(t−τ2+σ1)≥0 | (3.51) |
for t≥t0, has no positive nondecreasing solution. Then Eq. (E1) oscillatory.
Proof. Suppose that (E1) has a nonoscillatory solution y. Without loss of generality, we may take y(t)>0, y(t−τ1)>0, y(t+τ2)>0, y(t−σ1)>0 and y(t+σ1)>0 for t≥t1≥t0. Since y(t)>0 for all t≥t1. Assumption of (1.2), by Lemma 2.4, there exists three cases (C1), (C2) and (C3). If case (C2) hold, the proof is follows from Lemma 2.6.
If case (C1) holds, we have L[2]z(t)>0, from (3.6), we obtain
L[4]z(t)+μλ1L[4]−τ1z(t)+μλ2L[4]τ2z(t)+P1(t)3λ−1zλ(t−σ1)≤0. | (3.52) |
By Lemma 2.5, one gets z(t−σ1)≥(L[3]−σ1z(t))1/λA(t−σ1) and using in (3.52), we have
(L[3]z(t)+μλ1L[3]−τ1z(t)+μλ2L[3]τ2z(t))′+P1(t)3λ−1L[3]−σ1z(t)Aλ(t−σ1)≤0. | (3.53) |
Now, set
ψ(t)=L[3]z(t)+μλ1L[3]−τ1z(t)+μλ2L[3]τ2z(t). |
Then ψ(t)>0 and the fact that L[3]z(t) is nonincreasing, we have
ψ(t)≤L[3]−τ1z(t)(1+μλ1+μλ2). | (3.54) |
Using (3.54) and (3.53), we see that ψ(t) is a nonincreasing positive solution of the first order differential inequality
ψ′(t)+P1(t)3λ−1Aλ(t−σ1)1+μλ1+μλ2ψ(t−σ1+τ1)≤0, | (3.55) |
which is contradiction to (3.50).
If case (C3) holds, we have L[2]z(t)<0, from (3.6), we obtain
L[4]z(t)+μλ1L[4]−τ1z(t)+μλ2L[4]τ2z(t)+P2(t)3λ−1zλ(t+σ1)≤0. | (3.56) |
Since L[3]z(t) is nondecreasing. Then we get
L[3]z(s)≤L[3]z(t) for all s≥t≥t1≥t0. |
Integrating above inequality from t to l, we get
a1(l)z′(l)≤a1(t)z′(t)+∫lta1/λ2(t)L[2]z(t)a1/λ2(s)ds≤a1(t)z′(t)+(L[3]z(s))1/λ∫ltdsa1/λ2(s). |
Letting l→∞, we get
−a1(t)z′(t)≤(L[3]z(s))1/λ∫∞tdsa1/λ2(s). |
Again integrating, we get
z(t)≥−(L[3]z(t))1/λ∫tt0∫∞tdua1/λ2(u)a1(s)ds=−(L[3]z(t))1/λB(t). | (3.57) |
From 3.57, one gets z(t+σ1)≥−(L[3]σ1z(t))1/λB(t+σ1) and using in (3.56), we have
(L[3]z(t)+μλ1L[3]−τ1z(t)+μλ2L[3]τ2z(t))′−P2(t)3λ−1L[3]σ1z(t)Bλ(t+σ1)≤0. | (3.58) |
Now, set
ψ(t)=L[3]z(t)+μλ1L[3]−τ1z(t)+μλ2L[3]τ2z(t). |
Then ψ(t)>0, ψ′(t)≥0 and the fact that L[3]z(t) is nondecreasing, we have
ψ(t)≤L[3]τ2z(t)(1+μλ1+μλ2). | (3.59) |
Using (3.59) and (3.58), we see that ψ(t) is a nonincreasing positive solution of the first order differential inequality
ψ′(t)−P2(t)3λ−1Bλ(t+σ1)1+μλ1+μλ2ψ(t−τ2+σ1)≥0 | (3.60) |
which is contradiction to (3.51).
Corollary 3.5. Let (1.2), (2.6) hold and σ1>τ1, σ1>τ2. If
lim inft→∞∫tt−σ1+τ1P1(s)Aλ(s−σ1)ds>3λ−1e(1+μλ1+μλ2) | (3.61) |
and
lim inft→∞∫tt−τ2+σ1P2(s)Bλ(s+σ1)ds>3λ−1e(1+μλ1+μλ2) | (3.62) |
hold, then Eq. (E1) oscillatory.
Proof. The proof follows from Theorem 3.4 and ([10], Theorem 2.1.1), and the details are omitted.
Example 3.6. Consider the third order differential equation
((((y(t)+e−23y(t−2)+e3y(t+1))′)′)3/2)′+3e−34(53)3/2y3/2(t−2)+3e34(53)3/2y3/2(t+2)=0. | (3.63) |
Compared with (E1), we can see that a1(t)=a2(t)=1, p1(t)=e−23, p2(t)=e13, q1(t)=3e−34(53)3/2, q2(t)=3e34(53)3/2, λ=3/2, τ1=2, τ2=1 and σ1=2. By taking m(t)=1, H(t,s)=(t−s)2, we obtain h(t,s)=(3s−t)(t−s)−1/5. It is easy to verify that all conditions of Theorem 3.1 are satisfied. Therefore, all the solutions of (3.63) is either oscillates or tends to 0 and y(t)=e−t is a such solution of (3.63).
Example 3.7. Consider the third order differential equation
[t2(y(t)+k1y(t−τ1)+k2y(t+τ2))′′]′+k3ty(t−σ1)+k4y(t+σ1)=0,t≥1. | (3.64) |
Compared with (E1), we can see that a1(t)=1, a2(t)=t2, p1(t)=k1, p2(t)=k2, q1(t)=k3t, q2(t)=k4, λ=1 and k1, k2, k3, k4 are nonnegative constants. It is easy to verify that all conditions of Corollary 3.5 are satisfied and hence all solutions of equation (3.64) are oscillatory.
In this section, we will establish several oscillation criteria for (E2). For convenience, we define,
Q1(t,ξ)=min{˜q1(t,ξ),˜q1(t−τ1,ξ),˜q1(t+τ2,ξ)},Q2(t,ξ)=min{˜q2(t,ξ),˜q2(t−τ1,ξ),˜q2(t+τ2,ξ)},Q(t,ξ)=Q1(t,ξ)+Q2(t,ξ). |
Theorem 4.1. Let (1.1) holds and c+d≥0, b≥τ1. If there exists an m(t)∈C1([t0,∞),R+) such that (2.7) and
lim supt→∞1H(t,t3)∫tt3[H(t,s)m(s)∫dcQ(s,ξ)dξ3λ−1−1+μλ1+μλ2(λ+1)λ+1(|h(t,s)|a1(s−d)m(s)π1[t0,s−d])λ]ds=∞, | (4.1) |
then every solution y(t) of (E2) is either oscillatory or tends to 0.
Proof. Suppose that (E2) has a nonoscillatory solution y. Without loss of generality, we may take y(t)>0, y(t−τ1)>0, y(t+τ2)>0, y(t−ξ)>0 and y(t+ξ)>0 for t≥t1≥t0 and ξ∈[c,d]. Since y(t)>0 for all t≥t1, in view of (E2), we have
L[4]z(t)=−∫dc˜q1(t,ξ)yλ(t−ξ)dξ−∫dc˜q2(t,ξ)yλ(t+ξ)dξ≤0. | (4.2) |
Assumption of (1.1), by Lemma 2.4 there exists two cases (C1) and (C2). If (C2) holds, then by Lemma 2.7, limt→∞z(t)=0. If (C1) holds.
L[4]z(t)+∫dc˜q1(t,ξ)yλ(t−ξ)dξ+∫dc˜q2(t,ξ)yλ(t+ξ)dξ+μλ1L[4]−τ1z(t)+μλ1∫dc˜q1(t−τ1,ξ)yλ(t−τ1−ξ)dξ+μλ1∫dc˜q2(t−τ1,ξ)yλ(t−τ1+ξ)dξ+μλ2L[4]τ2z(t)+μλ2∫dc˜q1(t+τ2,ξ)yλ(t+τ2−ξ)dξ+μλ2∫dc˜q2(t+τ2,ξ)yλ(t+τ2+ξ)dξ=0. | (4.3) |
Furthermore, from Lemma 2.1, we have
˜q1(t,ξ)yλ(t−ξ)+μλ1˜q1(t−τ1,ξ)yλ(t−τ1−ξ)+μλ1˜q1(t+τ2,ξ)yλ(t+τ2−ξ)≥Q1(t,ξ)3λ−1zλ(t−ξ). | (4.4) |
Similarly, we get
˜q2(t,ξ)yλ(t+ξ)+μλ2˜q2(t−τ1,ξ)yλ(t−τ1+ξ)+μλ2˜q2(t+τ2,ξ)yλ(t+τ2+ξ)≥Q2(t,ξ)3λ−1zλ(t+ξ). | (4.5) |
Substituting (4.4), (4.5) into (4.3), we have
L[4]z(t)+μλ1L[4]−τ1z(t)+μλ2L[4]τ2z(t)+∫dcQ1(t,ξ)dξ3λ−1zλ(t−ξ)+∫dcQ2(t,ξ)dξ3λ−1zλ(t+ξ)≤0. | (4.6) |
Using the fact of L[1]z(t)>0 and c+d≥0, we have
L[4]z(t)+μλ1L[4]−τ1z(t)+μλ2L[4]τ2z(t)+∫dcQ(t,ξ)dξ3λ−1zλ(t−d)≤0. | (4.7) |
Define a function
w1(t)=m(t)L[3]z(t)zλ(t−d). | (4.8) |
We obtain w1(t)>0, then
w′1(t)=m′(t)L[3]z(t)zλ(t−d)+m(t)L[4]z(t)zλ(t−d)−λm(t)L[3]z(t)z′(t−d)zλ+1(t−d). | (4.9) |
By Lemma (2.5), one gets z′(t−d)≥a1/λ2(t)a1(t−d)π1[t0,t−d]L[2]z(t). Therefore
w′1(t)≤m′(t)L[3]z(t)zλ(t−d)+m(t)L[4]z(t)zλ(t−d)−λm(t)aλ+1λ2(t)π1[t0,t−d]L[2]z(t)z′(t−d)zλ+1(t−d)a1(t−d). | (4.10) |
Using (4.8) in (4.10), we have
w′1(t)≤(m′(t))+m(t)w1(t)+m(t)L[4]z(t)zλ(t−d)−λ(w1(t))λ+1λπ1[t0,t−d](m(t))1/λa1(t−d). | (4.11) |
Next, define
w2(t)=m(t)L[3]−τ1z(t)zλ(t−d). | (4.12) |
We obtain w2(t)>0, then
w′2(t)=m′(t)L[3]−τ1z(t)zλ(t−d)+m(t)L[4]−τ1z(t)zλ(t−d)−λm(t)L[3]−τ1z(t)z′(t−d)zλ+1(t−d). | (4.13) |
By Lemma (2.5), one gets z′(t−d)≥a1/λ2(t−τ1)a1(t−d)π1[t0,t−d]L[2]−τ1z(t) and using (4.12) in (4.13), we have
w′2(t)≤(m′(t))+m(t)w2(t)+m(t)L[4]−τ1z(t)zλ(t−d)−λ(w2(t))λ+1λπ1[t0,t−d](m(t))1/λa1(t−d). | (4.14) |
Finally, define
w3(t)=m(t)L[3]τ2z(t)zλ(t−d). | (4.15) |
We obtain w3(t)>0, then
w′3(t)=m′(t)L[3]τ2z(t)zλ(t−d)+m(t)L[4]τ2z(t)zλ(t−d)−λm(t)L[3]τ2z(t)z′(t−d)zλ+1(t−d). | (4.16) |
By Lemma 2.5, one gets z′(t−d)≥a1/λ2(t+τ2)a1(t−d)π1[t0,t−d]L[2]τ2z(t) and using (4.15) in (4.16), we have
w′3(t)≤(m′(t))+m(t)w3(t)+m(t)L[4]τ2z(t)zλ(t−d)−λ(w3(t))λ+1λπ1[t0,t−d](m(t))1/λa1(t−d). | (4.17) |
From (4.8), (4.10) and (4.15), we have
w′1(t)+μλ1w′2(t)+μλ2w′3(t)≤m(t)[L[4]z(t)+μλ1L[4]−τ1z(t)+μλ2L[4]τ2z(t)zλ(t−d)]+[(m′(t))+m(t)w1(t)−λ(w1(t))λ+1λπ1[t0,t−d](m(t))1/λa1(t−d)]+μλ1[(m′(t))+m(t)w2(t)−λ(w2(t))λ+1λπ1[t0,t−d](m(t))1/λa1(t−d)]+μλ2[(m′(t))+m(t)w3(t)−λ(w3(t))λ+1λπ1[t0,t−d](m(t))1/λa1(t−d)]. | (4.18) |
Using (4.7) in (4.18), we have
w′1(t)+μλ1w′2(t)+μλ2w′3(t)≤−m(t)∫dcQ(t,ξ)dξ3λ−1+[(m′(t))+m(t)w1(t)−λ(w1(t))λ+1λπ1[t0,t−d](m(t))1/λa1(t−d)]+μλ1[(m′(t))+m(t)w2(t)−λ(w2(t))λ+1λπ1[t0,t−d](m(t))1/λa1(t−d)]+μλ2[(m′(t))+m(t)w3(t)−λ(w3(t))λ+1λπ1[t0,t−d](m(t))1/λa1(t−d)], | (4.19) |
that is,
m(t)∫dcQ(t,ξ)dξ3λ−1≤−w′1(t)−μλ1w′2(t)−μλ2w′3(t)+(m′(t))+m(t)w1(t)−λπ1[t0,t−d](m(t))1/λa1(t−d)(w1(t))λ+1λ+μλ1[(m′(t))+m(t)w2(t)−λπ1[t0,t−d](m(t))1/λa1(t−d)(w2(t))λ+1λ]+μλ2[(m′(t))+m(t)w3(t)−λπ1[t0,t−d](m(t))1/λa1(t−d)(w3(t))λ+1λ]. | (4.20) |
Multiply both sides H(t,s) and integrate (4.51) from t3 to t, one can get that
∫tt3H(t,s)m(s)∫dcQ(s,ξ)dξ3λ−1ds≤−∫tt3H(t,s)w′1(s)ds−μλ1∫tt3H(t,s)w′2(s)ds−μλ2∫tt3H(t,s)w′3(s)ds+∫tt3H(t,s)(m′(s))+m(s)w1(s)ds−∫tt3H(t,s)λπ1[t0,s−d](m(s))1/λa1(s−d)(w1(s))λ+1λds+μλ1∫tt3H(t,s)(m′(s))+m(s)w2(s)ds−μλ1∫tt3H(t,s)λπ1[t0,s−d](m(s))1/λa1(s−d)(w2(s))λ+1λds+μλ2∫tt3H(t,s)(m′(s))+m(s)w3(s)ds−μλ2∫tt3H(t,s)λπ1[t0,s−d](m(s))1/λa1(s−d)(w3(s))λ+1λds. | (4.21) |
Thus, we obtain
∫tt3H(t,s)m(s)∫dcQ(s,ξ)dξ3λ−1ds≤H(t,t3)w1(t3)+μλ1H(t,t3)w2(t3)+μλ2H(t,t3)w3(t3)−∫tt3[−∂∂sH(t,s)−H(t,s)m′(s)m(s)]w1(s)ds−∫tt3H(t,s)λπ1[t0,s−d](m(s))1/λa1(s−d)(w1(s))λ+1λds−μλ1∫tt3[−∂∂sH(t,s)−H(t,s)m′(s)m(s)]w2(s)ds−μλ1∫tt3H(t,s)λπ1[t0,s−d](m(s))1/λa1(s−d)(w2(s))λ+1λds−μλ2∫tt3[−∂∂sH(t,s)−H(t,s)m′(s)m(s)]w3(s)ds−μλ2∫tt3H(t,s)λπ1[t0,s−d](m(s))1/λa1(s−d)(w3(s))λ+1λds. | (4.22) |
Then
∫tt3H(t,s)m(s)∫dcQ(s,ξ)dξ3λ−1ds≤H(t,t3)w1(t3)+μλ1H(t,t3)w2(t3)+μλ2H(t,t3)w3(t3)+∫tt3[|h(t,s)|(H(t,s))λλ+1m(s)w1(s)−H(t,s)λπ1[t0,s−d](m(s))1/λa1(s−d)(w1(s))λ+1λ]ds+μλ1∫tt3[|h(t,s)|(H(t,s))λλ+1m(s)w2(s)−H(t,s)λπ1[t0,s−d](m(s))1/λa1(s−d)(w2(s))λ+1λ]ds+μλ2∫tt3[|h(t,s)|(H(t,s))λλ+1m(s)w3(s)−H(t,s)λπ1[t0,s−d](m(s))1/λa1(s−d)(w3(s))λ+1λ]ds. | (4.23) |
Setting Y=|h(t,s)|(H(t,s))λλ+1m(s), X=H(t,s)λπ1[t0,s−d](m(s))1/λa1(s−d) and u=wi(t) for i=1,2,3. By using the Lemma 2.3, we conclude that
1H(t,t3)∫tt3[H(t,s)m(s)∫dcQ(s,ξ)dξ3λ−1−1+μλ1+μλ2(λ+1)λ+1(|h(t,s)|a1(s−d)m(s)π1[t0,s−d])λ]ds≤w1(t3)+μλ1w2(t3)+μλ2w3(t3) | (4.24) |
which contradicts condition (4.51).
Theorem 4.2. Let (1.1) holds and c+d≥0, −c≥τ1. If there exists an m(t)∈C1([t0,∞),R+) such that (2.7) and
lim supt→∞1H(t,t3)∫tt3[H(t,s)m(s)∫dcQ(s,ξ)dξ3λ−1−1+μλ1+μλ2(λ+1)λ+1(|h(t,s)|a1(s+c)m(s)π1[t0,s+c])λ]ds=∞, | (4.25) |
then every solution y(t) of (E2) is either oscillatory or tends to 0.
Proof. Suppose that (E2) has a nonoscillatory solution y. Without loss of generality, we may take y(t)>0, y(t−τ1)>0, y(t+τ2)>0, y(t−ξ)>0 and y(t+ξ)>0 for t≥t1≥t0 and ξ∈[c,d]. Assumption of (1.1), by Lemma 2.4 there exists two cases (C1) and (C2). If (C2) holds, then by Lemma 2.7, limt→∞z(t)=0. We only consider (C1), by using the fact that z′(t)>0 and −c≥τ1, we obtain that Using the fact of L[1]z(t)>0, we obtain
L[4]z(t)+μλ1L[4]−τ1z(t)+μλ2L[4]τ2z(t)+∫dcQ(t,ξ)dξ3λ−1zλ(t+c)≤0. | (4.26) |
Next, we categorize the functions as w1(t)=m(t)L[3]z(t)zλ(t+c), w2(t)=m(t)L[3]−τ1z(t)zλ(t+c) and w3(t)=m(t)L[3]τ2z(t)zλ(t+c) respectively. The rest of the proof is similar to that of Theorem 4.1, therefore, it is omitted.
Theorem 4.3. Let (1.2) holds and b≥τ1 (or b≤τ1). If there exists an m(t)∈C1([t0,∞),R+) such that (2.7),
∫∞t3[m(s)∫dcQ(s,ξ)dξ3λ−1−(1+μλ1+μλ2)((m′(s))+(λ+1))λ+1(a1(s−d)m(s)π1[t0,s−d])λ]ds=∞, | (4.27) |
and
∫∞t3[πλ∗(s+τ2)∫dcQ(s,ξ)dξ3λ−1(∫s+dt2dua1(u))λ−(λ1+λ)1+λ(1+μλ1)a2(s)+μλ2a2(s+τ2+d)a1+1λ2(s)βλ(s+τ2)]ds=∞, | (4.28) |
where β(t)=∫∞t+da−1/λ2(s)ds, then every solution y(t) of (E2) is either oscillatory or tends to 0.
Proof. Suppose that (E1) has a nonoscillatory solution y. Without loss of generality, we may take y(t)>0, y(t−τ1)>0, y(t+τ2)>0, y(t−ξ)>0 and y(t+ξ)>0 for t≥t1≥t0 and ξ∈[c,d]. Since y(t)>0 for all t≥t1. Assumption of (1.2), by Lemma 2.4 there exists three cases (C1), (C2) and (C3). If case (C1) and (C2) holds, using the similar proof of ([24], Theorem 2.3) by using Lemma 2.1, we get the conclusion of Theorem 4.3
If case (C3) holds, z′(t−d)<0 for t≥t1. The facts that z′(t)<0, c+d≥0 and (4.6), we obtain
L[4]z(t)+μλ1L[4]−τ1z(t)+μλ2L[4]τ2z(t)+∫dcQ(t,ξ)dξ3λ−1zλ(t+d)≤0. | (4.29) |
Define
w∗(t)=L[3]z(t)(a1(t+d)z′(t+d))λ. | (4.30) |
We obtain w∗(t)<0 for t≥t2. Noting that L[3]z(t) is decreasing, we obtain
a2(s)[L[2]z(s)]λ≤a2(t)[L[2]z(t)]λ | (4.31) |
for s≥t≥t2. Dividing (4.31) by a2(s) and integrating from t+d to l(l≥t), we get
a1(l)z′(l)≤a1(t+d)z′(t+d)+a1/λ2(t)[L[2]z(t)]∫lt+da−1/λ2(s)ds. |
letting l→∞, we get
−1≤a1/λ2(t)[L[2]z(t)]a1(t+d)z′(t+d)π∗(t),t≥t2. | (4.32) |
From (4.30), we have
−1≤w∗(t)βλ(t)≤0. | (4.33) |
By (4.2) we have a1(t+d)z′(t+d)≤a1(t)z′(t). Differentiating (4.30) gives,
w′∗(t)≤(L[3]z(t))′(a1(t+d)z′(t+d))λ−λa2(t)[L[2]z(t)a1(t+d)z′(t+d)]λ+1. | (4.34) |
Using (4.30) in (4.34), we have
w′∗(t)≤L[4]z(t)(a1(t+d)z′(t+d))λ−λw1+1λ∗(t)a1/λ2(t). | (4.35) |
Next, we define
w∗∗(t)=L[3]−τ1z(t)(a1(t+d)z′(t+d))λ. | (4.36) |
We obtain w∗∗(t)<0 and w∗∗(t)≥w∗(t) for t≥t2. By (4.33), we obtain
−1≤w∗∗(t)βλ(t)≤0. | (4.37) |
By (3.2) we have a1(t+d)z′(t+d)≤a1(t−τ1)z′(t−τ1). Differentiating (4.36) gives,
w′∗∗(t)≤(L[3]−τ1z(t))′(a1(t+d)z′(t+d))λ−λa2(t)[L[2]−τ1z(t)a1(t+d)z′(t+d)]λ+1. | (4.38) |
Using (4.36) in (4.38), we have
w′∗∗(t)≤L[4]−τ1z(t)(a1(t+d)z′(t+d))λ−λw1+1λ∗∗(t)a1/λ2(t). | (4.39) |
Finally, We define a function
w∗∗∗(t)=L[3]τ2z(t)(a1(t+τ2+d)z′(t+τ2+d))λ. | (4.40) |
We obtain w∗∗∗(t)<0 and w∗∗∗(t)=w∗(t+τ2) for t≥t2. By (4.33), we obtain
−1≤w∗∗∗(t)βλ(t+τ2)≤0. | (4.41) |
By (4.2) we have a1(t+τ2+d)z′(t+τ2+d)≤a1(t+τ2)z′(t+τ2). Differentiating (4.40) gives,
w′∗∗∗(t)≤(L[3]τ2z(t))′(a1(t+d)z′(t+d))λ−λa2(t)[L[2]τ2z(t)a1(t+τ2+d)z′(t+τ2+d)]λ+1. | (4.42) |
Using (4.40) in (4.42), we have
w′∗∗∗(t)≤L[4]τ2z(t)(a1(t+d)z′(t+d))λ−λw1+1λ∗∗∗(t)a1/λ2(t). | (4.43) |
From (4.35), (4.39), (4.43) and (4.29) which implies
w′∗(t)+μλ1w′∗∗(t)+μλ2w′∗∗∗(t)≤−∫dcQ(t,ξ)dξ3λ−1zλ(t+d)(a1(t+d)z′(t+d))λ−λw1+1λ∗(t)a1/λ2(t)−μλ1λw1+1λ∗∗(t)a1/λ2(t)−μλ2λw1+1λ∗∗∗(t)a1/λ2(t) | (4.44) |
In case (C3), (a1(t)z′(t))′<0 we seen that
z(t)≥a1(t)z′(t)∫tt2dsa1(s). | (4.45) |
Using (4.45) in (4.44), we get
w′∗(t)+μλ1w′∗∗(t)+μλ2w′∗∗∗(t)≤−∫dcQ(t,ξ)dξ3λ−1(∫t+dt2dsa1(s))λ−λw1+1λ∗(t)a1/λ2(t)−μλ1λw1+1λ∗∗(t)a1/λ2(t)−μλ2λw1+1λ∗∗∗(t)a1/λ2(t) | (4.46) |
Multiplying βλ(t+τ2) and integrating from t3(t3>t2) to t, yields
βλ(t+τ2)w∗(t)−βλ(t3+τ2)w∗(t3)+βλ(t+τ2)μλ1w∗∗(t)−βλ(t3+τ2)μλ1w∗∗(t3)+βλ(t+τ2)μλ2w∗∗∗(t)−βλ(t3+τ2)μλ2w∗∗∗(t3)−λ∫tt3[βλ−1(s+τ2)(−w∗(s))a1/λ2(s+τ2)−βλ(s+τ2)(−w∗(s))1+1λa1/λ2(s)]ds−λμλ1∫tt3[βλ−1(s+τ2)(−w∗∗(s))a1/λ2(s+τ2)−βλ(s+τ2)(−w∗∗(s))1+1λa1/λ2(s)]ds−λμλ2∫tt3[βλ−1(s+τ2)(−w∗∗∗(s))a1/λ2(s+τ2)−βλ(s+τ2)(−w∗∗∗(s))1+1λa1/λ2(s)]ds+∫tt3βλ(s+τ2)∫dcQ(s,ξ)dξ3λ−1(∫s+dt2dua1(u))λds≤0. | (4.47) |
Applying Lemma 2.3, we conclude that
∫tt3[βλ(s+τ2)∫dcQ(s,ξ)dξ3λ−1(∫s+dt2dua1(u))λ−(λ1+λ)1+λ(1+μλ1)a2(s)+μλ2a2(s+τ2+d)a1+1λ2(s) βλ(s+τ2)]ds≤−[βλ(t+τ2)w∗(t)+μλ1βλ(t+τ2)w∗∗(t)+μλ2βλ(t+τ2)w∗∗∗(t)] | (4.48) |
Using the fact of βλ(t+τ2)≤βλ(t) in (4.33), (4.37), (4.41) and (4.48) imply that
∫tt3[βλ(s+τ2)∫dcQ(s,ξ)dξ3λ−1(∫s+dt2dua1(u))λ−(λ1+λ)1+λ(1+μλ1)a2(s)+μλ2a2(s+τ2+d)a1+1λ2(s)βλ(s+τ2)]ds≤1+μλ1+μλ2. | (4.49) |
a contradiction to (4.28).
Example 4.4. Consider a third-order differential equation
(12(y(t)+(1/3)y(t−π/4)+(2/3)y(t+π/2))′′)′+∫π0y(t−ξ)dξ+32∫π0y(t+ξ)dξ=0, | (4.50) |
Compared with (E2), we can see that c=0, d=π, a1(t)=1/2, a2(t)=1, p1(t)=13, p2(t)=23, ˜q1(t,ξ)=˜q2(t,ξ)=1, λ=1, τ1=π/4 and τ2=π/2. By taking m(t)=1, we obtain
12∫∞t4∫∞v∫∞u2πdsdudv=∞ |
and we take H(t,s)=(t−s)2 then h(t,s)=(3s−t)(t−s)−1/5 and 0<μ1+μ2<1, we see that
lim supt→∞1(t−t3)2∫tt3[2π(t−s)2−1+μ1+μ28((3s−t)(t−s)−1/5s−π−t0)λ]ds=∞. | (4.51) |
Since all the conditions of Theorem 4.1 hold, (4.50) is either oscillates or tends to 0.
In this paper, we have used Riccati substitution techniques, integral averaging technique and some new oscillation and asymptotic theorems for (E1) and (E2) under the conditions (1.1) and (1.2) have been established. Additionally, we established new comparison theorem that permit to study properties of (E1) regardless under the conditions (1.2). The results obtained indicated that it improved theorems reported by Candan [24]. Similar results can be presented under the assumption that λ≤1. In this case, using Lemma 2.2, one has to simply replace 3λ−1 by 1 and proceed as above. In literature, very few works has been paid in the research activities related to qualitative behavior of solutions of various types of stochastic differential equations, see the recent works [1,3,13,14,15,19,20,21]. The results of this paper could be extended to the stochastic differential equations with time delay in further research.
The authors would like to thank the anonymous reviewers for their valuable suggestions on improving the content of this article.
The authors declare there are no conflicts of interest.
[1] |
E. S. Page, Continuous inspection schemes, Biometrika, 41 (1954), 100–115. https://doi.org/10.1093/biomet/41.1-2.100 doi: 10.1093/biomet/41.1-2.100
![]() |
[2] |
L. Horváth, P. Kokoszka, The effect of long-range dependence on change point estimators, J. Stat. Plan. Infer., 64 (1997), 57–81. https://doi.org/10.1016/S0378-3758(96)00208-X doi: 10.1016/S0378-3758(96)00208-X
![]() |
[3] |
P. Kokoszka, R. Leipus, Change point in the mean of dependent observations, Stat. Probabil. Lett., 40 (1998), 385–393. https://doi.org/10.1016/S0167-7152(98)00145-X doi: 10.1016/S0167-7152(98)00145-X
![]() |
[4] |
C. M. Kuan, C. C. Hus, Change-point estimation of fractionally integrated process, J. Time Ser. Anal., 19 (1998), 693–708. https://doi.org/10.1111/1467-9892.00117 doi: 10.1111/1467-9892.00117
![]() |
[5] |
X. Shao, A simple test of changes in mean in the possible presence of long-range dependence, J. Time Ser. Anal., 32 (2011), 598–606. https://doi.org/10.1111/j.1467-9892.2010.00717.x doi: 10.1111/j.1467-9892.2010.00717.x
![]() |
[6] |
J. S. Bai, Estimation of a change point in multiple regression models, Rev. Econ. Stat., 79 (1997), 551–563. https://doi.org/10.1162/003465397557132 doi: 10.1162/003465397557132
![]() |
[7] |
J. S. Bai, P. Perron, Estimating and testing linear models with multiple structural changes, Econometrica, 66 (1998), 47–78. https://doi.org/10.2307/2998540 doi: 10.2307/2998540
![]() |
[8] |
J. S. Bai, P. Perron, Critical values for multiple structural change tests, Economet. J., 6 (2003), 72–78. http://dx.doi.org/10.1111/1368-423x.00102 doi: 10.1111/1368-423x.00102
![]() |
[9] |
J. S. Bai, P. Perron, Multiple structural change models: A simulation analysis, J. Appl. Economet., 18 (2003), 1–22. https://doi.org/10.1017/CBO9781139164863.010 doi: 10.1017/CBO9781139164863.010
![]() |
[10] |
J. M. Bardet, W. C. Kengne, O. Wintenberger, Detecting multiple change-points in general causal time series using penalized quasi-likelihood, Electron. J. Stat., 6 (2010), 435–477. https://doi.org/10.48550/arXiv.1008.0054 doi: 10.48550/arXiv.1008.0054
![]() |
[11] |
M. Kejriwal, P. Perron, J. Zhou, Wald tests for detecting multiple structural changes in persistence, Economet. Theor., 29 (2013), 289–323. http://dx.doi.org/10.1017/S0266466612000357 doi: 10.1017/S0266466612000357
![]() |
[12] |
L. J. Ma, J. G. Andrew, S. Georgy, Multiple change point detection and validation in autoregressive time series data, Stat. Pap., 61 (2020), 1507–1528. http://dx.doi.org/10.1007/s00362-020-01198-w doi: 10.1007/s00362-020-01198-w
![]() |
[13] |
I. B. Macnelill, V. K. Jandhyala, A. Kaul, S. B. Fotopoulos, Multiple change-point models for time series, Environmetrics, 31 (2020), 1–15. https://doi.org/10.1002/env.2593 doi: 10.1002/env.2593
![]() |
[14] |
S. Bouzebda, A. A. Ferfache, Asymptotic properties of M-estimators based on estimating equations and censored data in semi-parametric models with multiple change points, J. Math. Anal. Appl., 497 (2021), 297–318. http://dx.doi.org/10.1016/j.jmaa.2020.124883 doi: 10.1016/j.jmaa.2020.124883
![]() |
[15] |
M. A. K. Noriah, A. A. A. Emad-eldin, An ANOVA-type test for multiple change points, Stat. Pap., 55 (2014), 1159–1178. http://dx.doi.org/10.1007/s00362-013-0559-1 doi: 10.1007/s00362-013-0559-1
![]() |
[16] |
J. Hidalgo, P. M. Robinson, Testing for structural change in a long-memory environment, J. Econometrics, 70 (1996), 159–174. http://dx.doi.org/10.1016/0304-4076(94)01687-9 doi: 10.1016/0304-4076(94)01687-9
![]() |
[17] |
S. Lazarova, Testing for structural change in regression with long memory processes, J. Econometrice, 129 (2005), 329–372. http://dx.doi.org/10.1016/j.jeconom.2004.09.011 doi: 10.1016/j.jeconom.2004.09.011
![]() |
[18] |
L. Wang, Change point estimation in long memory nonparametric models with applications, Commun. Stat.-Simul. C., 37 (2008), 48–61. http://dx.doi.org/10.1080/03610910701723583 doi: 10.1080/03610910701723583
![]() |
[19] |
P. Bühlmann, Sieve bootstrap for time series, Bernoulli, 3 (1997), 123–148. https://doi.org/10.2307/3318584 doi: 10.2307/3318584
![]() |
[20] |
A. M. Alonso, D. Peña, J. Romo, Forecasting time series with sieve bootstrap, J. Stat. Plan. Infer., 100 (2002), 1–11. https://doi.org/10.1016/s0378-3758(01)00092-1 doi: 10.1016/s0378-3758(01)00092-1
![]() |
[21] |
A. M. Alonso, D. Peña, J. Romo, On sieve bootstrap prediction intervals, Stat. Probabil. Lett., 65 (2003), 13–20. https://doi.org/10.1016/S0167-7152(03)00214-1 doi: 10.1016/S0167-7152(03)00214-1
![]() |
[22] |
A. M. Alonso, D. Peña, J. Romo, Introducing model uncertainty in time series bootstrap, Stat. Sinica, 14 (2004), 155–174. https://doi.org/10.1007/s00440-003-0309-8 doi: 10.1007/s00440-003-0309-8
![]() |
[23] |
P. Mukhopadhyay, V. A. Samaranayake, Prediction intervals for time series: A modified sieve bootstrap approach, Commun. Stat.-Simul. C., 39 (2010), 517–538. https://doi.org/10.1080/03610910903506521 doi: 10.1080/03610910903506521
![]() |
[24] |
D. S. Poskitt, Properties of the sieve bootstrap for fractionally integrated and non-invertible processes, J. Time Ser. Anal., 29 (2008), 224–250. https://doi.org/10.1111/j.1467-9892.2007.00554.x doi: 10.1111/j.1467-9892.2007.00554.x
![]() |
[25] |
H. E. Hurst, Long-term storage capacity of reservoirs, Trans. Am. Soc. Civ. Eng. Tans., 116 (1951), 770–799. https://doi.org/10.1016/0013-4694(51)90043-0 doi: 10.1016/0013-4694(51)90043-0
![]() |
[26] | J. Beran, Statistics for long-memory process, New York: Chapman and Hall, 1994. http://dx.doi.org/10.2307/2983481 |
1. | Marappan Sathish Kumar, Omar Bazighifan, Alanoud Almutairi, Dimplekumar N. Chalishajar, Philos-Type Oscillation Results for Third-Order Differential Equation with Mixed Neutral Terms, 2021, 9, 2227-7390, 1021, 10.3390/math9091021 | |
2. | Sathish Kumar Marappan, Alanoud Almutairi, Loredana Florentina Iambor, Omar Bazighifan, Oscillation of Emden–Fowler-Type Differential Equations with Non-Canonical Operators and Mixed Neutral Terms, 2023, 15, 2073-8994, 553, 10.3390/sym15020553 | |
3. | M. Sathish Kumar, V. Ganesan, Oscillatory behavior of solutions of certain third-order neutral differential equation with continuously distributed delay, 2021, 1850, 1742-6588, 012091, 10.1088/1742-6596/1850/1/012091 | |
4. | M. Sathish Kumar, Omar Bazighifan, Khalifa Al-Shaqsi, Fongchan Wannalookkhee, Kamsing Nonlaopon, Symmetry and Its Role in Oscillation of Solutions of Third-Order Differential Equations, 2021, 13, 2073-8994, 1485, 10.3390/sym13081485 | |
5. | Nagamanickam Nagajothi, Vadivel Sadhasivam, Omar Bazighifan, Rami Ahmad El-Nabulsi, Existence of the Class of Nonlinear Hybrid Fractional Langevin Quantum Differential Equation with Dirichlet Boundary Conditions, 2021, 5, 2504-3110, 156, 10.3390/fractalfract5040156 | |
6. | R. Elayaraja, M. Sathish Kumar, V. Ganesan, Nonexistence of Kneser solution for third order nonlinear neutral delay differential equations, 2021, 1850, 1742-6588, 012054, 10.1088/1742-6596/1850/1/012054 | |
7. | M. Sathish Kumar, R. Elayaraja, V. Ganesan, Omar Bazighifan, Khalifa Al-Shaqsi, Kamsing Nonlaopon, Qualitative Behavior of Unbounded Solutions of Neutral Differential Equations of Third-Order, 2021, 5, 2504-3110, 95, 10.3390/fractalfract5030095 | |
8. | R. Elayaraja, V. Ganesan, Omar Bazighifan, Clemente Cesarano, Oscillation and Asymptotic Properties of Differential Equations of Third-Order, 2021, 10, 2075-1680, 192, 10.3390/axioms10030192 | |
9. | Waed Muhsin, Osama Moaaz, Sameh S. Askar, Ahmad M. Alshamrani, Elmetwally M. Elabbasy, Delay Differential Equations with Several Sublinear Neutral Terms: Investigation of Oscillatory Behavior, 2023, 15, 2073-8994, 2105, 10.3390/sym15122105 | |
10. | Rami Ahmad El-Nabulsi, Transition from circular to spiral waves and from Mexican hat to upside-down Mexican hat-solutions: The cases of local and nonlocal λ−ω reaction-diffusion-convection fractal systems with variable coefficients, 2024, 189, 09600779, 115737, 10.1016/j.chaos.2024.115737 |