Processing math: 91%
Research article

Investigation of Caputo proportional fractional integro-differential equation with mixed nonlocal conditions with respect to another function

  • Received: 27 December 2021 Revised: 26 February 2022 Accepted: 28 February 2022 Published: 14 March 2022
  • MSC : 26A33, 34A08, 34B10, 34D20

  • In this manuscript, we analyze the existence, uniqueness and Ulam's stability for Caputo proportional fractional integro-differential equation involving mixed nonlocal conditions with respect to another function. The uniqueness result is proved via Banach's fixed point theorem and the existence results are established by using the Leray-Schauder nonlinear alternative and Krasnoselskii's fixed point theorem. Furthermore, by using the nonlinear analysis techniques, we investigate appropriate conditions and results to study various different types of Ulam's stability. In addition, numerical examples are also constructed to demonstrate the application of the main results.

    Citation: Bounmy Khaminsou, Weerawat Sudsutad, Jutarat Kongson, Somsiri Nontasawatsri, Adirek Vajrapatkul, Chatthai Thaiprayoon. Investigation of Caputo proportional fractional integro-differential equation with mixed nonlocal conditions with respect to another function[J]. AIMS Mathematics, 2022, 7(6): 9549-9576. doi: 10.3934/math.2022531

    Related Papers:

    [1] Qian Lin, Yan Zhu . Unicyclic graphs with extremal exponential Randić index. Mathematical Modelling and Control, 2021, 1(3): 164-171. doi: 10.3934/mmc.2021015
    [2] Zhen Lin . On the sum of powers of the Aα-eigenvalues of graphs. Mathematical Modelling and Control, 2022, 2(2): 55-64. doi: 10.3934/mmc.2022007
    [3] Iman Malmir . Novel closed-loop controllers for fractional nonlinear quadratic systems. Mathematical Modelling and Control, 2023, 3(4): 345-354. doi: 10.3934/mmc.2023028
    [4] Zhibo Cheng, Pedro J. Torres . Periodic solutions of the Lp-Minkowski problem with indefinite weight. Mathematical Modelling and Control, 2022, 2(1): 7-12. doi: 10.3934/mmc.2022002
    [5] Mrutyunjaya Sahoo, Dhabaleswar Mohapatra, S. Chakraverty . Wave solution for time fractional geophysical KdV equation in uncertain environment. Mathematical Modelling and Control, 2025, 5(1): 61-72. doi: 10.3934/mmc.2025005
    [6] Vladimir Stojanovic . Fault-tolerant control of a hydraulic servo actuator via adaptive dynamic programming. Mathematical Modelling and Control, 2023, 3(3): 181-191. doi: 10.3934/mmc.2023016
    [7] Jiaquan Huang, Zhen Jia, Peng Zuo . Improved collaborative filtering personalized recommendation algorithm based on k-means clustering and weighted similarity on the reduced item space. Mathematical Modelling and Control, 2023, 3(1): 39-49. doi: 10.3934/mmc.2023004
    [8] Qian Wang, Xue Han . Comparing the number of ideals in quadratic number fields. Mathematical Modelling and Control, 2022, 2(4): 268-271. doi: 10.3934/mmc.2022025
    [9] Yongming Li, Shou Ma, Kunting Yu, Xingli Guo . Vehicle kinematic and dynamic modeling for three-axles heavy duty vehicle. Mathematical Modelling and Control, 2022, 2(4): 176-184. doi: 10.3934/mmc.2022018
    [10] Yanchao He, Yuzhen Bai . Finite-time stability and applications of positive switched linear delayed impulsive systems. Mathematical Modelling and Control, 2024, 4(2): 178-194. doi: 10.3934/mmc.2024016
  • In this manuscript, we analyze the existence, uniqueness and Ulam's stability for Caputo proportional fractional integro-differential equation involving mixed nonlocal conditions with respect to another function. The uniqueness result is proved via Banach's fixed point theorem and the existence results are established by using the Leray-Schauder nonlinear alternative and Krasnoselskii's fixed point theorem. Furthermore, by using the nonlinear analysis techniques, we investigate appropriate conditions and results to study various different types of Ulam's stability. In addition, numerical examples are also constructed to demonstrate the application of the main results.



    Let C denote the complex plane and Cn the n-dimensional complex Euclidean space with an inner product defined as z,w=nj=1zj¯wj. Let B(a,r)={zCn:|za|<r} be the open ball of Cn. In particular, the open unit ball is defined as B=B(0,1).

    Let H(B) denote the set of all holomorphic functions on B and S(B) the set of all holomorphic self-mappings of B. For given φS(B) and uH(B), the weighted composition operator on or between some subspaces of H(B) is defined by

    Wu,φf(z)=u(z)f(φ(z)).

    If u1, then Wu,φ is reduced to the composition operator usually denoted by Cφ. If φ(z)=z, then Wu,φ is reduced to the multiplication operator usually denoted by Mu. Since Wu,φ=MuCφ, Wu,φ can be regarded as the product of Mu and Cφ.

    If n=1, B becomes the open unit disk in C usually denoted by D. Let Dm be the mth differentiation operator on H(D), that is,

    Dmf(z)=f(m)(z),

    where f(0)=f. D1 denotes the classical differentiation operator denoted by D. As expected, there has been some considerable interest in investigating products of differentiation and other related operators. For example, the most common products DCφ and CφD were extensively studied in [1,10,11,12,13,23,25,26], and the products

    MuCφD,CφMuD,MuDCφ,CφDMu,DMuCφ,DCφMu (1.1)

    were also extensively studied in [14,18,22,27]. Following the study of the operators in (1.1), people naturally extend to study the operators (see [5,6,30])

    MuCφDm,CφMuDm,MuDmCφ,CφDmMu,DmMuCφ,DmCφMu.

    Other examples of products involving differentiation operators can be found in [7,8,19,32] and the related references.

    As studying on the unit disk becomes more mature, people begin to become interested in exploring related properties on the unit ball. One method for extending the differentiation operator to Cn is the radial derivative operator

    f(z)=nj=1zjfzj(z).

    Naturally, replacing D by in (1.1), we obtain the following operators

    MuCφ,CφMu,MuCφ,CφMu,MuCφ,CφMu. (1.2)

    Recently, these operators have been studied in [31]. Other operators involving radial derivative operators have been studied in [21,33,34].

    Interestingly, the radial derivative operator can be defined iteratively, namely, mf can be defined as mf=(m1f). Similarly, using the radial derivative operator can yield the related operators

    MuCφm,CφMum,MumCφ,CφmMu,mMuCφ,mCφMu. (1.3)

    Clearly, the operators in (1.3) are more complex than those in (1.2). Since CφMum=MuφCφm, the operator MuCφm can be regarded as the simplest one in (1.3) which was first studied and denoted as mu,φ in [24]. Recently, it has been studied again because people need to obtain more properties about spaces to characterize its properties (see [29]).

    To reconsider the operator CφmMu, people find the fact

    CφmMu=mi=0Cimi(miu)φ,φ. (1.4)

    Motivated by (1.4), people directly studied the sum operator (see [2,28])

    Smu,φ=mi=0MuiCφi,

    where uiH(B), i=¯0,m, and φS(B). Particularly, if we set u0um10 and um=u, then Smu,φ=MuCφm; if we set u0um10 and um=uφ, then Smu,φ=CφMum. In [28], Stević et al. studied the operators Smu,φ from Hardy spaces to weighted-type spaces on the unit ball and obtained the following results.

    Theorem A. Let mN, ujH(B), j=¯0,m, φS(B), and μ a weight function on B. Then, the operator Smu,φ:HpHμ is bounded and

    supzBμ(z)|uj(φ(z))||φ(z)|<+,j=¯1,m, (1.5)

    if and only if

    I0=supzBμ(z)|u0(z)|(1|φ(z)|2)np<+

    and

    Ij=supzBμ(z)|uj(z)||φ(z)|(1|φ(z)|2)np+j<+,j=¯1,m.

    Theorem B. Let mN, ujH(B), j=¯0,m, φS(B), and μ a weight function on B. Then, the operator Smu,φ:HpHμ is compact if and only if it is bounded,

    lim|φ(z)|1μ(z)|u0(z)|(1|φ(z)|2)np=0

    and

    lim|φ(z)|1μ(z)|uj(z)||φ(z)|(1|φ(z)|2)np+j=0,j=¯1,m.

    It must be mentioned that we find that the necessity of Theorem A requires (1.5) to hold. Inspired by [2,28], here we use a new method and technique without (1.5) to study the sum operator Smu,φ from logarithmic Bergman-type space to weighted-type space on the unit ball. To this end, we need to introduce the well-known Bell polynomial (see [3])

    Bm,k(x1,x2,,xmk+1)=m!mk1i=1ji!mk1i=1(xii!)ji,

    where all non-negative integer sequences j1, j2,,jmk+1 satisfy

    mk+1i=1ji=kandmk+1i=1iji=m.

    In particular, when k=0, one can get B0,0=1 and Bm,0=0 for any mN. When k=1, one can get Bi,1=xi. When m=k=i, Bi,i=xi1 holds.

    In this section, we need to introduce logarithmic Bergman-type space and weighted-type space. Here, a bounded positive continuous function on B is called a weight. For a weight μ, the weighted-type space Hμ consists of all fH(B) such that

    fHμ=supzBμ(z)|f(z)|<+.

    With the norm Hμ, Hμ becomes a Banach space. In particular, if μ(z)=(1|z|2)σ(σ>0), the space Hμ is called classical weighted-type space usually denoted by Hσ. If μ1, then space Hμ becomes the bounded holomorphic function space usually denoted by H.

    Next, we need to present the logarithmic Bergman-type space on B (see [4] for the unit disk case). Let dv be the standardized Lebesgue measure on B. The logarithmic Bergman-type space Apwγ,δ consists of all fH(B) such that

    fpApwγ,δ=B|f(z)|pwγ,δ(z)dv(z)<+,

    where 1<γ<+, δ0, 0<p<+ and wγ,δ(z) is defined by

    wγ,δ(z)=(log1|z|)γ[log(11log|z|)]δ.

    When p1, Apwγ,δ is a Banach space. While 0<p<1, it is a Fréchet space with the translation invariant metric ρ(f,g)=fgpApωγ,δ.

    Let φS(B), 0r<1, 0γ<, δ0, and aB{φ(0)}. The generalized counting functions are defined as

    Nφ,γ,δ(r,a)=zj(a)φ1(a)wγ,δ(zj(a)r)

    where |zj(a)|<r, counting multiplicities, and

    Nφ,γ,δ(a)=Nφ,γ,δ(1,a)=zj(a)φ1(a)wγ,δ(zj(a)).

    If φS(D), then the function Nφ,γ,δ has the integral expression: For 1γ<+ and δ0, there is a positive function F(t) satisfying

    Nφ,γ,δ(r,u)=r0F(t)Nφ,1(t,u)dt,r(0,1),uφ(0).

    When φS(D) and δ=0, the generalized counting functions become the common counting functions. Namely,

    Nφ,γ(r,a)=zφ1(a),|z|<r(logr|z|)γ,

    and

    Nφ,γ(a)=Nφ,γ(1,a)=zφ1(a)(log1|z|)γ.

    In [17], Shapiro used the function Nφ,γ(1,a) to characterize the compact composition operators on the weighted Bergman space.

    Let X and Y be two topological spaces induced by the translation invariant metrics dX and dY, respectively. A linear operator T:XY is called bounded if there is a positive number K such that

    dY(Tf,0)KdX(f,0)

    for all fX. The operator T:XY is called compact if it maps bounded sets into relatively compact sets.

    In this paper, j=¯k,l is used to represent j=k,...,l, where k,lN0 and kl. Positive numbers are denoted by C, and they may vary in different situations. The notation ab (resp. ab) means that there is a positive number C such that aCb (resp. aCb). When ab and ba, we write ab.

    In this section, we obtain some properties on the logarithmic Bergman-type space. First, we have the following point-evaluation estimate for the functions in the space.

    Theorem 3.1. Let 1<γ<+, δ0, 0<p<+ and 0<r<1. Then, there exists a positive number C=C(γ,δ,p,r) independent of zK={zB:|z|>r} and fApwγ,δ such that

    |f(z)|C(1|z|2)γ+n+1p[log(11log|z|)]δpfApwγ,δ. (3.1)

    Proof. Let zB. By applying the subharmonicity of the function |f|p to Euclidean ball B(z,r) and using Lemma 1.23 in [35], we have

    |f(z)|p1v(B(z,r))B(z,r)|f(w)|pdv(w)C1,r(1|z|2)n+1B(z,r)|f(w)|pdv(w). (3.2)

    Since r<|z|<1 and 1|w|21|z|2, we have

    log1|w|1|w|1|z|log1|z| (3.3)

    and

    log(1log1|w|)log(1log1|z|). (3.4)

    From (3.3) and (3.4), it follows that there is a positive constant C2,r such that wγ,δ(z)C2,rwγ,δ(w) for all wB(z,r). From this and (3.2), we have

    |f(z)|pC1,rC2,r(1|z|2)n+1wγ,δ(z)B(z,r)|f(w)|pwγ,δ(w)dv(w)C1,rC2,r(1|z|2)n+1wγ,δ(z)fpApwγ,δ. (3.5)

    From (3.5) and the fact log1|z|1|z|1|z|2, the following inequality is right with a fixed constant C3,r

    |f(z)|pC1,rC2,rC3,r(1|z|2)n+1+γ[log(11log|z|)]δfpApwγ,δ.

    Let C=C1,rC2,rC3,rp. Then the proof is end.

    Theorem 3.2. Let mN, 1<γ<+, δ0, 0<p<+ and 0<r<1. Then, there exists a positive constant Cm=C(γ,δ,p,r,m) independent of zK and fApwγ,δ such that

    |mf(z)zi1zi2zim|Cm(1|z|2)γ+n+1p+m[log(11log|z|)]δpfApwγ,δ. (3.6)

    Proof. First, we prove the case of m=1. By the definition of the gradient and the Cauchy's inequality, we get

    |f(z)zi||f(z)|˜C1supwB(z,q(1|z|))|f(w)|1|z|, (3.7)

    where i=¯1,n. By using the relations

    1|z|1|z|22(1|z|),
    (1q)(1|z|)1|w|(q+1)(1|z|),

    and

    log(11log|z|)log(11log|w|),

    we obtain the following formula

    |f(w)|˘C1(1|z|2)γ+n+1p[log(11log|z|)]δpfApwγ,δ

    for any wB(z,q(1|z|)). Then,

    supwB(z,q(1|z|))|f(w)|˘C1(1|z|2)γ+n+1p[log(11log|z|)]δpfApwγ,δ.

    From (3.1) and (3.2), it follows that

    |f(z)zi|ˆC1(1|z|2)γ+n+1p+1[log(11log|z|)]δpfApwγ,δ. (3.8)

    Hence, the proof is completed for the case of m=1.

    We will use the mathematical induction to complete the proof. Assume that (3.6) holds for m<a. For convenience, let g(z)=a1f(z)zi1zi2zia1. By applying (3.7) to the function g, we obtain

    |g(z)zi|˜C1supwB(z,q(1|z|))|g(w)|1|z|. (3.9)

    According to the assumption, the function g satisfies

    |g(z)|ˆCa1(1|z|2)γ+n+1p+a1[log(11log|z|)]δpfApwγ,δ.

    By using (3.8), the following formula is also obtained

    |g(z)zi|ˆCa(1|z|2)γ+n+1p+a[log(11log|z|)]δpfApwγ,δ.

    This shows that (3.6) holds for m=a. The proof is end.

    As an application of Theorems 3.1 and 3.2, we give the estimate in z=0 for the functions in Apωγ,δ.

    Corollary 3.1. Let 1<γ<+, δ0, 0<p<+, and 0<r<2/3. Then, for all fApwγ,δ, it follows that

    |f(0)|C(1r2)γ+n+1p[log(11logr)]δpfApwγ,δ, (3.10)

    and

    |mf(0)zl1zlm|Cm(1r2)γ+n+1p+m[log(11logr)]δpfApwγ,δ, (3.11)

    where constants C and Cm are defined in Theorems 3.1 and 3.2, respectively.

    Proof. For fApwγ,δ, from Theorem 3.1 and the maximum module theorem, we have

    |f(0)|max|z|=r|f(z)|C(1r2)γ+n+1p[log(11logr)]δpfApwγ,δ,

    which implies that (3.10) holds. By using the similar method, we also have that (3.11) holds.

    Next, we give an equivalent norm in Apwγ,δ, which extends Lemma 3.2 in [4] to B.

    Theorem 3.3. Let r0[0,1). Then, for every fApwγ,δ, it follows that

    fpApwγ,δBr0B|f(z)|pwγ,δ(z)dv(z). (3.12)

    Proof. If r0=0, then it is obvious. So, we assume that r0(0,1). Integration in polar coordinates, we have

    fpApwγ,δ=2n10wγ,δ(r)r2n1drS|f(rζ)|pdσ(ζ).

    Put

    A(r)=wγ,δ(r)r2n1andM(r,f)=S|f(rζ)|pdσ(ζ).

    Then it is represented that

    fpApwγ,δr00+1r0M(r,f)A(r)dr. (3.13)

    Since M(r,f) is increasing, A(r) is positive and continuous in r on (0,1) and

    limr0A(r)=limx+xγ[log(1+1x)]δe(2n1)x=limx+xγδe(2n1)x=0,

    that is, there is a constant ε>0(ε<r0) such that A(r)<A(ε) for r(0,ε). Then we have

    r00M(r,f)A(r)dr2r01r0maxεrr0A(r)1+r02r0M(r,f)dr2r01r0maxεrr0A(r)minr0r1+r02A(r)1+r02r0M(r,f)A(r)dr1r0M(r,f)A(r)dr. (3.14)

    From (3.13) and (3.14), we obtain the inequality

    fpApwγ,δ1r0M(r,f)A(r)dr.

    The inequality reverse to this is obvious. The asymptotic relationship (3.12) follows, as desired.

    The following integral estimate is an extension of Lemma 3.4 in [4]. The proof is similar, but we still present it for completeness.

    Lemma 3.1. Let 1<γ<+, δ0, β>γδ and 0<r<1. Then, for each fixed wB with |w|>r,

    Bωγ,δ(z)|1z,w|n+β+1dv(z)1(1|w|)βγ[log(11log|w|)]δ.

    Proof. Fix |w| with |w|>r0 (0<r0<1). It is easy to see that

    log1r1rforr0r<1. (3.15)

    By applying Theorem 3.3 with

    fw(z)=1(1z,w)n+β+1

    and using (3.15), the formula of integration in polar coordinates gives

    B1|1z,w|n+β+1ωγ,δ(z)dv(z)1r0M(r,fw)(1r)γ[log(11logr)]δr2n1dr. (3.16)

    By Proposition 1.4.10 in [15], we have

    M(r,fw)1(1r2|w|2)β+1. (3.17)

    From (3.16) and (3.17), we have

    B1|1z,w|β+2nωγ,δ(z)dv(z)1r01(1r2|w|2)β+1(1r)γ[log(11logr)]δr2n1dr1r01(1r|w|)β+1(1r)γ[log(11logr)]δr2n1dr|w|r01(1r|w|)β+1(1r)γ[log(11logr)]δr2n1dr+1|w|1(1r|w|)β+1(1r)γ[log(11logr)]δr2n1dr=I1+I2.

    Since [log(11logr)]δ is decreasing in r on [|w|,1], we have

    I2=1|w|1(1r|w|)β+1(1r)γ[log(11logr)]δr2n1dr1(1|w|)β+1[log(11log|w|)]δ1|w|(1r)γdr1(1|w|)βγ[log(11log|w|)]δ. (3.18)

    On the other hand, we obtain

    I1=|w|r01(1r|w|)β+1(1r)γ[log(11logr)]δr2n1dr|w|r0(1r)γβ1(log21r)δdr.

    If δ=0 and β>γ, then we have

    I1(0)(1|w|)γβ.

    If δ0, then integration by parts gives

    I1(δ)=1γβ(1|w|)γβ(log21|w|)δ+1γβ(1r0)γβ(log21r0)δ+δγβI1(δ1).

    Since δ<0, γβ<0 and

    (log21r)δ1(log21r)δforr0<r<|w|<1,

    we have

    I1(δ)1γβ(1|w|)γβ(log21|w|)δ+δγβI1(δ)

    and from this follows

    I1(δ)(1|w|)γβ(log21|w|)δ(1|w|)γβ[log(11log|w|)]δ

    provided γβδ<0. The proof is finished.

    The following gives an important test function in Apwγ,δ.

    Theorem 3.4. Let 1<γ<+, δ0, 0<p<+ and 0<r<1. Then, for each t0 and wB with |w|>r, the following function is in Apwγ,δ

    fw,t(z)=[log(11log|w|)]δp(1|w|2)δp+t+1(1z,w)γδ+n+1p+t+1.

    Moreover,

    sup{wB:|w|>r}fw,tApwγ,δ1.

    Proof. By Lemma 3.1 and a direct calculation, we have

    fw,tpApwγ,δ=B|[log(11log|w|)]δp(1|w|2)δp+t+1(1z,w)γδ+n+1p+t+1|pwγ,δ(z)dA(z)=(1|w|2)p(t+1)δ[log(11log|w|)]δ×B1|1z,w|γδ+p(t+1)+n+1wγ,δ(z)dA(z)1.

    The proof is finished.

    In this section, for simplicity, we define

    Bi,j(φ(z))=Bi,j(φ(z),φ(z),,φ(z)).

    In order to characterize the compactness of the operator Smu,φ:Apwγ,δHμ, we need the following lemma. It can be proved similar to that in [16], so we omit here.

    Lemma 4.1. Let 1<γ<+, δ0, 0<p<+, mN, ujH(B), j=¯0,m, and φS(B). Then, the bounded operator Smu,φ:Apwγ,δHμ is compact if and only if for every bounded sequence {fk}kN in Apwγ,δ such that fk0 uniformly on any compact subset of B as k, it follows that

    limkSmu,φfkHμ=0.

    The following result was obtained in [24].

    Lemma 4.2. Let s0, wB and

    gw,s(z)=1(1z,w)s,zB.

    Then,

    kgw,s(z)=sPk(z,w)(1z,w)s+k,

    where Pk(w)=sk1wk+p(k)k1(s)wk1+...+p(k)2(s)w2+w, and p(k)j(s), j=¯2,k1, are nonnegative polynomials for s.

    We also need the following result obtained in [20].

    Lemma 4.3. Let s>0, wB and

    gw,s(z)=1(1z,w)s,zB.

    Then,

    kgw,s(z)=kt=1a(k)t(t1j=0(s+j))z,wt(1z,w)s+t,

    where the sequences (a(k)t)t¯1,k, kN, are defined by the relations

    a(k)k=a(k)1=1

    for kN and

    a(k)t=ta(k1)t+a(k1)t1

    for 2tk1,k3.

    The final lemma of this section was obtained in [24].

    Lemma 4.4. If a>0, then

    Dn(a)=|111aa+1a+n1a(a+1)(a+1)(a+2)(a+n1)(a+n)n2k=0(a+k)n2k=0(a+k+1)n2k=0(a+k+n1)|=n1k=1k!.

    Theorem 4.1. Let 1<γ<+, δ0, 0<p<+, mN, ujH(B), j=¯0,m, and φS(B). Then, the operator Smu,φ:Apwγ,δHμ is bounded if and only if

    M0:=supzBμ(z)|u0(z)|(1|φ(z)|2)γ+n+1p[log(11log|φ(z)|)]δp<+ (4.1)

    and

    Mj:=supzBμ(z)|mi=jui(z)Bi,j(φ(z))|(1|φ(z)|2)γ+n+1p+j[log(11log|φ(z)|)]δp<+ (4.2)

    for j=¯1,m.

    Moreover, if the operator Smu,φ:Apwγ,δHμ is bounded, then

    Smu,φApwγ,δHμmj=0Mj. (4.3)

    Proof. Suppose that (4.1) and (4.2) hold. From Theorem 3.1, Theorem 3.2, and some easy calculations, it follows that

    μ(z)|mi=0ui(z)if(φ(z))|μ(z)mi=0|ui(z)||if(φ(z))|=μ(z)|u0(z)||f(φ(z))|+μ(z)|mi=1ij=1(ui(z)nl1=1nlj=1(jfzl1zl2zlj(φ(z))k1,,kjC(i)k1,,kjjt=1φlt(z)))|=μ(z)|u0(z)f(φ(z))|+μ(z)|mj=1mi=j(ui(z)nl1=1nlj=1(jfzl1zl2zlj(φ(z))k1,,kjC(i)k1,,kjjt=1φlt(z)))|μ(z)|u0(z)|(1|φ(z)|2)γ+n+1p[log(11log|φ(z)|)]δpfApwγ,δ+mj=1μ(z)|mi=jui(z)Bi,j(φ(z))|(1|φ(z)|2)γ+n+1p+j[log(11log|φ(z)|)]δpfApwγ,δ=M0fApwγ,δ+mj=1MjfApwγ,δ. (4.4)

    By taking the supremum in inequality (4.4) over the unit ball in the space Apwγ,δ, and using (4.1) and (4.2), we obtain that the operator Smu,φ:Apwγ,δHμ is bounded. Moreover, we have

    Smu,φApwγ,δHμCmj=0Mj, (4.5)

    where C is a positive constant.

    Assume that the operator Smu,φ:Apwγ,δHμ is bounded. Then there exists a positive constant C such that

    Smu,φfHμCfApwγ,δ (4.6)

    for any fApwγ,δ. First, we can take f(z)=1Apwγ,δ, then one has that

    supzBμ(z)|u0(z)|<+. (4.7)

    Similarly, take fk(z)=zjkApwγ,δ, k=¯1,n and j=¯1,m, by (4.7), then

    μ(z)|u0(z)φk(z)j+mi=j(ui(z)Bi,j(φk(z))))|<+ (4.8)

    for any j{1,2,,m}. Since φ(z)B, we have |φ(z)|1. So, one can use the triangle inequality (4.7) and (4.8), the following inequality is true

    supzBμ(z)|mi=jui(z)Bi,j(φ(z))|<+. (4.9)

    Let wB and dk=γ+n+1p+k. For any j{1,2,,m} and constants ck=c(j)k, k=¯0,m, let

    h(j)w(z)=mk=0c(j)kfw,k(z), (4.10)

    where fw,k is defined in Theorem 3.4. Then, by Theorem 3.4, we have

    Lj=supwBh(j)wApwγ,δ<+. (4.11)

    From (4.6), (4.11), and some easy calculations, it follows that

    LjSmu,φApwγ,δHμSmu,φh(j)φ(w)Hμ=supzBμ(z)|mi=0u0(z)h(j)φ(w)(φ(z))|μ(w)|u0(w)h(j)φ(w)(φ(w))+mi=1(ui(w)ih(j)φ(w)(φ(w)))|=μ(w)|u0(w)h(j)φ(w)(φ(w))+mi=1ui(w)mk=0c(j)kfφ(w),k(φ(w))|=μ(w)|u0(w)c0+c1++cm(1|φ(z)|2)γ+n+1p+mi=1ui(w)Bi,1(φ(w)),φ(w)(d0c0++dmcm)(1|φ(w)|2)γ+n+1p+1++mi=jui(w)Bi,j(φ(w)),φ(w)j(d0dj1c0++dmdm+j1cm)(1|φ(w)|2)γ+n+1p+j++um(w)Bm,m(φ(w)),φ(w)m(d0dm1c0++dmd2m1cm)(1|φ(w)|2)γ+n+1p+m|[log(11log|φ(w)|)]δp. (4.12)

    Since dk>0, k=¯0,m, by Lemma 4.4, we have the following linear equations

    (111d0d1dmj1k=0dkj1k=0dk+mj1k=0dk+mm1k=0dkm1k=0dk+mm1k=0dk+m)(c0c1cjcm)=(0010). (4.13)

    From (4.12) and (4.13), we have

    LjSlu,φApwγ,δHμsup|φ(z)|>1/2μ(z)|mi=jui(z)Bi,j(φ(z))||φ(z)|j(1|φ(z)|2)γ+n+1p+j[log(11log|φ(z)|)]δpsup|φ(z)|>1/2μ(z)|mi=jui(z)Bi,j(φ(z))|(1|φ(z)|2)γ+n+1p+j[log(11log|φ(z)|)]δp. (4.14)

    On the other hand, from (4.9), we have

    sup|φ(z)|1/2μ(z)|mi=jui(z)Bi,j(φ(z))|(1|φ(z)|2)γ+n+1p+j[log(11log|φ(z)|)]δpsupzB(43)γ+n+1p+j[log(11log12)]δpμ(z)|mi=jui(z)Bi,j(φ(z))|<+. (4.15)

    From (4.14) and (4.15), we get that (4.2) holds for j=¯1,m.

    For constants ck=c(0)k, k=¯0,m, let

    h(0)w(z)=mk=0c(0)kfw,k(z). (4.16)

    By Theorem 3.4, we know that L0=supwBh(0)wApwγ,δ<+. From this, (4.12), (4.13) and Lemma 4.4, we get

    L0Smu,φApwγ,δHμμ(z)|u0(z)|(1|φ(z)|2)γ+n+1p[log(11log|φ(z)|)]δp.

    So, we have M0<+. Moreover, we have

    Smu,φApwγ,δHμmj=0Mj. (4.17)

    From (4.5) and (4.17), we obtain (4.3). The proof is completed.

    From Theorem 4.1 and (1.4), we obtain the following result.

    Corollary 4.1. Let mN, uH(B), φS(B) and μ is a weight function on B. Then, the operator CφmMu:Apwγ,δHμ is bounded if and only if

    I0:=supzBμ(z)|muφ(z)|(1|φ(z)|2)γ+n+1p[log(11log|φ(z)|)]δp<+

    and

    Ij:=supzBμ(z)|mi=jmiuφ(z)Bi,j(φ(z))|(1|φ(z)|2)γ+n+1p+j[log(11log|φ(z)|)]δp<+

    for j=¯1,m.

    Moreover, if the operator CφmMu:Apwγ,δHμ is bounded, then

    CφmMuApwγ,δHμmj=0Ij.

    Theorem 4.2. Let 1<γ<+, δ0, 0<p<+, mN, ujH(B), j=¯0,m, and φS(B). Then, the operator Smu,φ:Apwγ,δHμ is compact if and only if the operator Smu,φ:Apwγ,δHμ is bounded,

    lim|φ(z)|1μ(z)|mi=j(ui(z)Bi,j(φ(z))|(1|φ(z)|2)γ+n+1p+j[log(11log|φ(z)|)]δp=0 (4.18)

    for j=¯1,m, and

    lim|φ(z)|1μ(z)|u0(z)|(1|φ(z)|2)γ+n+1p[log(11log|φ(z)|)]δp=0. (4.19)

    Proof. Assume that the operator Smu,φ:Apwγ,δHμ is compact. It is obvious that the operator Smu,φ:Apwγ,δHμ is bounded.

    If φ<1, then it is clear that (4.18) and (4.19) are true. So, we suppose that φ=1. Let {zk} be a sequence in B such that

    limk1|μ(zk)|1andh(j)k=h(j)φ(zk),

    where h(j)w are defined in (4.10) for a fixed j{1,2,,l}. Then, it follows that h(j)k0 uniformly on any compact subset of B as k. Hence, by Lemma 4.1, we have

    limkSmu,φhkHμ=0.

    Then, we can find sufficiently large k such that

    μ(zk)|mi=j(ui(zk)Bi,j(φ(zk))|(1|φ(zk)|2)γ+n+1p+j[log(11log|φ(zk)|)]δpLkSmu,φh(j)kHμ. (4.20)

    If k, then (4.20) is true.

    Now, we discuss the case of j=0. Let h(0)k=h(0)φ(zk), where h(0)w is defined in (4.16). Then, we also have that h(0)kApwγ,δ<+ and h(0)k0 uniformly on any compact subset of B as k. Hence, by Lemma 4.1, one has that

    limkSmu,φh(0)kHμ(B)=0. (4.21)

    Then, by (4.21), we know that (4.18) is true.

    Now, assume that Smu,φ:Apwγ,δHμ is bounded, (4.18) and (4.19) are true. One has that

    μ(z)|u0(z)|C<+ (4.22)

    and

    μ(z)|mi=j(ui(z)Bi,j(φ(z)))|C<+ (4.23)

    for any zB. By (4.18) and (4.19), for arbitrary ε>0, there is a r(0,1), for any zK such that

    μ(z)|u0(z)|(1|φ(z)|2)γ+n+1p[log(11log|φ(z)|)]δp<ε. (4.24)

    and

    μ(z)|mi=j(ui(z)Bi,j(φ(z)))|(1|φ(z)|2)γ+n+1p+j[log(11log|φ(z)|)]δp<ε. (4.25)

    Assume that {fs} is a sequence such that supsNfsApwγ,δM<+ and fs0 uniformly on any compact subset of B as s. Then by Theorem 3.1, Theorem 3.2 and (4.22)–(4.25), one has that

    Smu,φfsHμ(B)=supzBμ(z)|u0(z)f(φ(z))+mi=1ui(z)if(φ(z))|=supzKμ(z)|u0(z)f(φ(z))+mi=1ui(z)if(φ(z))|+supzBKμ(z)|u0(z)f(φ(z))+mi=1ui(z)if(φ(z))|supzKμ(z)|u0(z)|(1|φ(z)|2)γ+n+1p[log(11log|φ(z)|)]δpfsApwγ,δ+supzKμ(z)|mi=j(ui(z)Bi,j(φ(z)))|(1|φ(z)|2)γ+n+1p+j[log(11log|φ(z)|)]δpfsApwγ,δ+supzBKμ(z)|u0(z)||fs(φ(z))|+supzBKmj=1μ(z)|mi=j(ui(z)Bi,j(φ(z)))|max{l1,l2,,lj}|jfszl1zl2zlj(φ(z))|Mε+Csup|w|δmj=0max{l1,l2,,lj}|jfszl1zl2zlj(w)|. (4.26)

    Since f_{s}\rightarrow0 uniformly on any compact subset of \mathbb{B} as s\rightarrow \infty . By Cauchy's estimates, we also have that \frac{\partial^{j} f_{s}}{\partial z_{l_{1}}\partial z_{l_{2}}\cdots\partial z_{l_{j}}}\rightarrow 0 uniformly on any compact subset of \mathbb{B} as s\rightarrow \infty . From this and using the fact that \{w\in{\mathbb{B}}:|w|\leq\delta\} is a compact subset of \mathbb{B} , by letting s\rightarrow \infty in inequality (4.26), one get that

    \begin{align*} \limsup_{s\rightarrow \infty}\|\mathfrak{S}^m_{\vec{u},{\varphi}} f_{s}\|_{H_{\mu}^{\infty}}\lesssim \varepsilon. \end{align*}

    Since \varepsilon is an arbitrary positive number, it follows that

    \begin{align*} \lim_{s\rightarrow \infty}\|\mathfrak{S}^m_{\vec{u},{\varphi}} f_{s}\|_{H_{\mu}^{\infty}} = 0. \end{align*}

    By Lemma 4.1, the operator \mathfrak{S}^m_{\vec{u}, {\varphi}}:A^p_{w_{\gamma, \delta}}\rightarrow H_\mu^\infty is compact.

    As before, we also have the following result.

    Corollary 4.2. Let m\in\mathbb{N} , u\in H(\mathbb{B}) , \varphi\in S(\mathbb{B}) and \mu is a weight function on \mathbb{B} . Then, the operators C_{{\varphi}}\Re^{m}M_{u}:A^p_{w_{\gamma, \delta}}\rightarrow H_\mu^\infty is compact if and only if the operator C_{{\varphi}}\Re^{m}M_{u}:A^p_{w_{\gamma, \delta}}\rightarrow H_\mu^\infty is bounded,

    \begin{align*} \lim_{|\varphi(z)|\rightarrow1}\frac{\mu(z)|\Re^mu \circ {\varphi}(z)| }{(1-|\varphi(z)|^2)^{\frac{\gamma+n+1}{p}}}\Big[\log\Big(1-\frac{1}{\log|\varphi (z)|}\Big)\Big]^{-\frac{\delta}{p}} = 0 \end{align*}

    and

    \begin{align*} \lim_{|\varphi(z)|\rightarrow1}\frac{\mu(z)|\sum_{i = j}^{m}(\Re^{m-i}u \circ {\varphi}(z)B_{i,j}(\varphi(z))| }{\Big(1-|\varphi(z)|^2)^{\frac{\gamma +n+1}{p}+j}}\Big[\log(1-\frac{1}{\log|\varphi (z)|}\Big)\Big]^{-\frac{\delta}{p}} = 0 \end{align*}

    for j = \overline{1, m} .

    In this paper, we study and obtain some properties about the logarithmic Bergman-type space on the unit ball. As some applications, we completely characterized the boundedness and compactness of the operator

    \begin{align*} \mathfrak{S}^m_{\vec{u},{\varphi}} = \sum_{i = 0}^{m}M_{u_i}C_{\varphi}\Re^{i} \end{align*}

    from the logarithmic Bergman-type space to the weighted-type space on the unit ball. Here, one thing should be pointed out is that we use a new method and technique to characterize the boundedness of such operators without the condition (1.5), which perhaps is the special flavour in this paper.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported by Sichuan Science and Technology Program (2022ZYD0010) and the Graduate Student Innovation Foundation (Y2022193).

    The authors declare that they have no competing interests.



    [1] I. Podlubny, Fractional differential equations, New York: Academic Press, 1998.
    [2] R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000.
    [3] A. Kilbas, H. Srivastava, J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier Science, 2006.
    [4] R. Magin, Fractional calculus in bioengineering, Connecticut: Begell House Publishers, 2006.
    [5] R. Caponetto, G. Dongola, L. Fortuna, I. Petras, Fractional order systems: modeling and control applications, Singapore: World Scientific, 2010.
    [6] K. Diethelm, The analysis of fractional differential equations: an application-oriented exposition using differential operators of caputo type, Berlin: Springer-Verlag, 2010. http://dx.doi.org/10.1007/978-3-642-14574-2
    [7] U. Katugampola, New fractional integral unifying six existing fractional integrals, arXiv: 1612.08596.
    [8] F. Jarad, E. Ugurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017), 247. http://dx.doi.org/10.1186/s13662-017-1306-z doi: 10.1186/s13662-017-1306-z
    [9] T. Khan, M. Khan, Generalized conformable fractional operators, J. Comput. Appl. Math., 346 (2019), 378–389. http://dx.doi.org/10.1016/j.cam.2018.07.018 doi: 10.1016/j.cam.2018.07.018
    [10] F. Jarad, T. Abdeljawad, J. Alzabut, Generalized fractional derivatives generated by a class of local proportional derivatives, Eur. Phys. J. Spec. Top., 226 (2017), 3457–3471. http://dx.doi.org/10.1140/epjst/e2018-00021-7 doi: 10.1140/epjst/e2018-00021-7
    [11] D. Baleanu, A. Fernandez, A. Akgül, On a fractional operator combining proportional and classical differintegrals, Mathematics, 8 (2020), 360. http://dx.doi.org/10.3390/math8030360 doi: 10.3390/math8030360
    [12] A. Akgül, D. Baleanu, Analysis and applications of the proportional Caputo derivative, Adv. Differ. Equ., 2021 (2021), 136. http://dx.doi.org/10.1186/s13662-021-03304-0 doi: 10.1186/s13662-021-03304-0
    [13] F. Jarad, M. Alqudah, T. Abdeljawad, On more generalized form of proportional fractional operators, Open Math., 18 (2020), 167–176. http://dx.doi.org/10.1515/math-2020-0014 doi: 10.1515/math-2020-0014
    [14] F. Jarad, T. Abdeljawad, S. Rashid, Z. Hammouch, More properties of the proportional fractional integrals and derivatives of a function with respect to another function, Adv. Differ. Equ., 2020 (2020), 303. http://dx.doi.org/10.1186/s13662-020-02767-x doi: 10.1186/s13662-020-02767-x
    [15] E. Set, B. Çelik, E. Alan, A. Akdemir, Some new integral inequalities associated with generalized proportional fractional operators, Numer. Meth. Part. Differ. Equ., in press. http://dx.doi.org/10.1002/num.22717
    [16] G. Rahman, T. Abdeljawad, F. Jarad, K. Nisar, Bounds of generalized proportional fractional integrals in general form via convex functions and their applications, Mathematics, 8 (2020), 113. http://dx.doi.org/10.3390/math8010113 doi: 10.3390/math8010113
    [17] T. Abdeljawad, S. Rashid, A. El-Deeb, Z. Hammouch, Y. Chu, Certain new weighted estimates proposing generalized proportional fractional operator in another sense, Adv. Differ. Equ., 2020 (2020), 463. http://dx.doi.org/10.1186/s13662-020-02935-z doi: 10.1186/s13662-020-02935-z
    [18] S. Zhou, S. Rashid, A. Rauf, F. Jarad, Y. Hamed, K. Abualnaja, Efficient computations for weighted generalized proportional fractional operators with respect to a monotone function, AIMS Mathematics, 6 (2021), 8001–8029. http://dx.doi.org/10.3934/math.2021465 doi: 10.3934/math.2021465
    [19] M. Abbas, Non-instantaneous impulsive fractional integro-differential equations with proportional fractional derivatives with respect to another function, Math. Method. Appl. Sci., 44 (2021), 10432–10447. http://dx.doi.org/10.1002/mma.7419 doi: 10.1002/mma.7419
    [20] C. Tearnbucha, W. Sudsutad, Stability analysis of boundary value problems for Caputo proportional fractional derivative of a function with respect to another function via impulsive Langevin equation, AIMS Mathematics, 6 (2021), 6647–6686. http://dx.doi.org/10.3934/math.2021391 doi: 10.3934/math.2021391
    [21] M. Abbas, M. Ragusa, On the hybrid fractional differential equations with fractional proportional derivatives of a function with respect to a certain function, Symmetry, 13 (2021), 264. http://dx.doi.org/10.3390/sym13020264 doi: 10.3390/sym13020264
    [22] S. Rashid, F. Jarad, M. Noor, H. Kalsoom, Y. Chu, Inequalities by means of generalized proportional fractional integral operators with respect to another function, Mathematics, 7 (2019), 1225. http://dx.doi.org/10.3390/math7121225 doi: 10.3390/math7121225
    [23] S. Zhou, S. Rashid, S. Praveen, A. Akdemir, Z. Hammouch, New computations for extended weighted functionals within the Hilfer generalized proportional fractional integral operators, AIMS Mathematics, 6 (2021), 4507–4525. http://dx.doi.org/10.3934/math.2021267 doi: 10.3934/math.2021267
    [24] S. Rashid, Z. Hammouch, F. Jarad, Y. Chu, New estimates of integral inequalities via generalized proportional fractional integral operator with respect to another function, Fractals, 28 (2020), 20400277. http://dx.doi.org/10.1142/S0218348X20400277 doi: 10.1142/S0218348X20400277
    [25] S. Rashid, F. Jarad, Y. Chu, A note on reverse minkowski inequality via generalized proportional fractional integral operator with respect to another function, Math. Probl. Eng., 2020 (2020), 7630260. http://dx.doi.org/10.1155/2020/7630260 doi: 10.1155/2020/7630260
    [26] J. Sousa, E. Capelas de Oliveira, Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation, Appl. Math. Lett., 81 (2018), 50–56. http://dx.doi.org/10.1016/j.aml.2018.01.016 doi: 10.1016/j.aml.2018.01.016
    [27] J. Sousa, E. Capelas de Oliveira, On the Ulam-Hyers-Rassias stability for nonlinear fractional differential equations using the \phi-Hilfer operator, J. Fixed Point Theory Appl., 20 (2018), 96. http://dx.doi.org/10.1007/s11784-018-0587-5 doi: 10.1007/s11784-018-0587-5
    [28] X. Hao, H. Sun, L. Liu, Existence results for fractional integral boundary value problem involving fractional derivatives on an infinite interval, Math. Method. Appl. Sci., 41 (2018), 6984–6996. http://dx.doi.org/10.1002/mma.5210 doi: 10.1002/mma.5210
    [29] R. Shah, A. Zada, A fixed point approach to the stability of a nonlinear volterra integrodiferential equation with delay, Hacet. J. Math. Stat., 47 (2018), 615–623. http://dx.doi.org/10.15672/HJMS.2017.467 doi: 10.15672/HJMS.2017.467
    [30] G. Wang, K. Pei, R. Agarwal, L. Zhang, B. Ahmad, Nonlocal Hadamard fractional boundary value problem with Hadamard integral and discrete boundary conditions on a half-line, J. Comput. Appl. Math., 343 (2018), 230–239. http://dx.doi.org/10.1016/j.cam.2018.04.062 doi: 10.1016/j.cam.2018.04.062
    [31] S. Aydogan, D. Baleanu, A. Mousalou, S. Rezapour, On high order fractional integro-differential equations including the Caputo-Fabrizio derivative, Bound. Value Probl., 2018 (2018), 90. http://dx.doi.org/10.1186/s13661-018-1008-9 doi: 10.1186/s13661-018-1008-9
    [32] A. Zada, W. Ali, C. Park, Ulam's type stability of higher order nonlinear delay differential equations via integral inequality of Grönwall-Bellman-Bihari's type, Appl. Math. Comput., 350 (2018), 60–65. http://dx.doi.org/10.1016/j.amc.2019.01.014 doi: 10.1016/j.amc.2019.01.014
    [33] P. Borisut, P. Kumam, I. Ahmed, K. Sitthithakerngkiet, Nonlinear Caputo fractional derivative with nonlocal Riemann-Liouville fractional integral condition via fixed point theorems, Symmetry, 11 (2019), 829. http://dx.doi.org/10.3390/sym11060829 doi: 10.3390/sym11060829
    [34] J. Sousa, F. Rodrigues, E. Capelas de Oliveira, Stability of the fractional Volterra integro-differential equation by means of \psi-Hilfer operator, Math. Method. Appl. Sci., 42 (2019), 3033–3043. http://dx.doi.org/10.1002/mma.5563 doi: 10.1002/mma.5563
    [35] D. Baleanu, S. Rezapour, Z. Saberpour, On fractional integro-differential inclusions via the extended fractional Caputo-Fabrizio derivation, Bound. Value Probl., 2019 (2019), 79. http://dx.doi.org/10.1186/s13661-019-1194-0 doi: 10.1186/s13661-019-1194-0
    [36] I. Ahmed, P. Kuman, K. Shah, P. Borisut, K. Sitthithakerngkiet, M. Demba, Stability results for implicit fractional pantograph differential equations via \phi-Hilfer fractional derivative with a nonlocal Riemann-Liouville fractional integral condition, Mathematics, 8 (2020), 94. http://dx.doi.org/10.3390/math8010094 doi: 10.3390/math8010094
    [37] S. Ben-Chikh, A. Amara, S. Etemad, S. Rezapour, On Ulam-Hyers-Rassias stability of a generalized Caputo type multi-order boundary value problem with four-point mixed integro-derivative conditions, Adv. Differ. Equ., 2020 (2020), 680. http://dx.doi.org/10.1186/s13662-020-03139-1 doi: 10.1186/s13662-020-03139-1
    [38] P. Borisut, P. Kumam, I. Ahmed, W. Jirakitpuwapat, Existence and uniqueness for \psi-Hilfer fractional differential equation with nonlocal multi-point condition, Math. Method. Appl. Sci., 44 (2020), 2506–2520. http://dx.doi.org/10.1002/mma.6092 doi: 10.1002/mma.6092
    [39] I. Ahmed, P. Kumam, F. Jarad, P. Borisut, K. Sitthithakerngkiet, A. Ibrahim, Stability analysis for boundary value problems with generalized nonlocal condition via Hilfer-Katugampola fractional derivative, Adv. Differ. Equ., 2020 (2020), 225. http://dx.doi.org/10.1186/s13662-020-02681-2 doi: 10.1186/s13662-020-02681-2
    [40] C. Thaiprayoon, W. Sudsutad, S. Ntouyas, Mixed nonlocal boundary value problem for implicit fractional integro-differential equations via \psi-Hilfer fractional derivative, Adv. Differ. Equ., 2021 (2021), 50. http://dx.doi.org/10.1186/s13662-021-03214-1 doi: 10.1186/s13662-021-03214-1
    [41] M. Abdo, T. Abdeljawad, K. Kucche, M. Alqudah, S. Ali, M. Jeelani, On nonlinear pantograph fractional differential equations with Atangana-Baleanu-Caputo derivative, Adv. Differ. Equ., 2021 (2021), 65. http://dx.doi.org/10.1186/s13662-021-03229-8 doi: 10.1186/s13662-021-03229-8
    [42] C. Thaiprayoon, W. Sudsutad, J. Alzabut, S. Etemad, S. Rezapour, On the qualitative analysis of the fractional boundary value problem describing thermostat control model via \psi-Hilfer fractional operator, Adv. Differ. Equ., 2021 (2021), 201. http://dx.doi.org/10.1186/s13662-021-03359-z doi: 10.1186/s13662-021-03359-z
    [43] B. Khaminsou, W. Sudsutad, C. Thaiprayoon, J. Alzabut, S. Pleumpreedaporn, Analysis of impulsive boundary value pantograph problems via Caputo proportional fractional derivative under Mittag-Leffler functions, Fractal Fract., 5 (2021), 251. http://dx.doi.org/10.3390/fractalfract5040251 doi: 10.3390/fractalfract5040251
    [44] J. Ockendon, A. Tayler, The dynamics of acurrent collection system for an electric locomotive, Proc. R. Soc. Lond. A, 332 (1971), 447–468. http://dx.doi.org/10.1098/rspa.1971.0078 doi: 10.1098/rspa.1971.0078
    [45] D. Li, M. Liu, Runge-Kutta methods for the multi-pantograph delay equation, Appl. Math. Comput., 163 (2005), 383–395. http://dx.doi.org/10.1016/j.amc.2004.02.013 doi: 10.1016/j.amc.2004.02.013
    [46] M. Sezer, S. Yalçinbaş, N. Şahin, Approximate solution of multi-pantograph equation with variable coefficients, J. Comput. Appl. Math., 214 (2008), 406–416. http://dx.doi.org/10.1016/j.cam.2007.03.024 doi: 10.1016/j.cam.2007.03.024
    [47] Z. Yu, Variational iteration method for solving the multi-pantograph delay equation, Phys. Lett. A, 372 (2008), 6475–6479. http://dx.doi.org/10.1016/j.physleta.2008.09.013 doi: 10.1016/j.physleta.2008.09.013
    [48] S. Karimi-Vanani, J. Sedighi-Hafshejani, F. Soleymani, M. Khan, On the numerical solution of generalized pantograph equation, World Appl. Sci. J., 13 (2011), 2531–2535.
    [49] C. Pappalardo, M. De Simone, D. Guida, Multibody modeling and nonlinear control of the pantograph/catenary system, Arch. Appl. Mech., 89 (2019), 1589–1626. http://dx.doi.org/10.1007/s00419-019-01530-3 doi: 10.1007/s00419-019-01530-3
    [50] M. Chamekh, T. Elzaki, N. Brik, Semianalytical solution for some proportional delay differential equations, SN Appl. Sci., 1 (2019), 148. http://dx.doi.org/10.1007/s42452-018-0130-8 doi: 10.1007/s42452-018-0130-8
    [51] D. Li, C. Zhang, Long time numerical behaviors of fractional pantograph equations, Math. Comput. Simulat., 172 (2020), 244–257. http://dx.doi.org/10.1016/j.matcom.2019.12.004 doi: 10.1016/j.matcom.2019.12.004
    [52] K. Balachandran, S. Kiruthika, J. Trujillo, Existence of solutions of nonlinear fractional pantograph equations, Acta Math. Sci., 33 (2013), 712–720. http://dx.doi.org/10.1016/S0252-9602(13)60032-6 doi: 10.1016/S0252-9602(13)60032-6
    [53] S. Harikrishman, E. Elsayed, K. Kanagarajan, Existence and uniqueness results for fractional pantograph equations involving \psi-Hilfer fractional derivative, Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis, 25 (2018), 319–328.
    [54] S. Asawasamrit, W. Nithiarayaphaks, S. Ntouyas, J. Tariboon, Existence and stability analysis for fractional differential equations with mixed nonlocal conditions, Mathematics, 7 (2019), 117. http://dx.doi.org/10.3390/math7020117 doi: 10.3390/math7020117
    [55] D. Boucenna, D. Baleanu, A. Makhlouf, A. Nagy, Analysis and numerical solution of the generalized proportional fractional Cauchy problem, Appl. Numer. Math., 167 (2021), 173–186. http://dx.doi.org/10.1016/j.apnum.2021.04.015 doi: 10.1016/j.apnum.2021.04.015
    [56] A. Yang, Y. Han, Y. Zhang, L. Wang, D. Zhang, X. Yang, On local fractional Volterra integro-differential equations in fractal steady heat transfer, Therm. Sci., 20 (2016), 789–793. http://dx.doi.org/10.2298/TSCI16S3789Y doi: 10.2298/TSCI16S3789Y
    [57] V. Tarasov, Fractional integro-differential equations for electromagnetic waves in dielectric media, Theor. Math. Phys., 158 (2009), 355–359. http://dx.doi.org/10.1007/s11232-009-0029-z doi: 10.1007/s11232-009-0029-z
    [58] C. Bucur, E. Valdinoci, Nonlocal diffusion and applications, Switzerland: Springer, 2016. http://dx.doi.org/10.1007/978-3-319-28739-3
    [59] A. Granas, J. Dugundji, Fixed point theory, New York: Springer, 2003. http://dx.doi.org/10.1007/978-0-387-21593-8
    [60] M. Krasnoselskii, Two remarks on the method of successive approximations, Uspekhi Mat. Nauk, 10 (1955), 123–127.
  • This article has been cited by:

    1. Hafiz Muhammad Fraz, Kashif Ali, Muhammad Faisal Nadeem, Entropy measures of silicon nanotubes using degree based topological indices, 2025, 100, 0031-8949, 015202, 10.1088/1402-4896/ad94b4
    2. Pranavi Jaina, K. Anil Kumar, J. Vijayasekhar, Application of Zagreb Index Models in Predicting the Physicochemical Properties of Unsaturated Fatty Acids, 2025, 41, 22315039, 201, 10.13005/ojc/410124
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2088) PDF downloads(186) Cited by(2)

Figures and Tables

Figures(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog