Processing math: 51%
Research article

A sharp error analysis for the DG method of optimal control problems

  • Received: 07 September 2021 Revised: 28 February 2022 Accepted: 02 March 2022 Published: 09 March 2022
  • MSC : 49J15, 49M25, 65L05, 65L60

  • In this paper, we are concerned with a nonlinear optimal control problem of ordinary differential equations. We consider a discretization of the problem with the discontinuous Galerkin method with arbitrary order rN{0}. Under suitable regularity assumptions on the cost functional and solutions of the state equations, we first show the existence of a local solution to the discretized problem. We then provide sharp estimates for the L2-error of the approximate solutions. The convergence rate of the error depends on the regularity of the optimal solution ˉu and its adjoint state with the degree of piecewise polynomials. Numerical experiments are presented supporting the theoretical results.

    Citation: Woocheol Choi, Young-Pil Choi. A sharp error analysis for the DG method of optimal control problems[J]. AIMS Mathematics, 2022, 7(5): 9117-9155. doi: 10.3934/math.2022506

    Related Papers:

    [1] Sung Woo Choi . Explicit characteristic equations for integral operators arising from well-posed boundary value problems of finite beam deflection on elastic foundation. AIMS Mathematics, 2021, 6(10): 10652-10678. doi: 10.3934/math.2021619
    [2] Moh. Alakhrass . A note on positive partial transpose blocks. AIMS Mathematics, 2023, 8(10): 23747-23755. doi: 10.3934/math.20231208
    [3] Xinfeng Liang, Mengya Zhang . Triangular algebras with nonlinear higher Lie n-derivation by local actions. AIMS Mathematics, 2024, 9(2): 2549-2583. doi: 10.3934/math.2024126
    [4] Cui-Xia Li, Long-Quan Yong . Modified BAS iteration method for absolute value equation. AIMS Mathematics, 2022, 7(1): 606-616. doi: 10.3934/math.2022038
    [5] Sara Smail, Chafika Belabbaci . A characterization of Wolf and Schechter essential pseudospectra. AIMS Mathematics, 2024, 9(7): 17146-17153. doi: 10.3934/math.2024832
    [6] Yuna Zhao . Construction of blocked designs with multi block variables. AIMS Mathematics, 2021, 6(6): 6293-6308. doi: 10.3934/math.2021369
    [7] Wen-Ning Sun, Mei Qin . On maximum residual block Kaczmarz method for solving large consistent linear systems. AIMS Mathematics, 2024, 9(12): 33843-33860. doi: 10.3934/math.20241614
    [8] Shakir Ali, Amal S. Alali, Atif Ahmad Khan, Indah Emilia Wijayanti, Kok Bin Wong . XOR count and block circulant MDS matrices over finite commutative rings. AIMS Mathematics, 2024, 9(11): 30529-30547. doi: 10.3934/math.20241474
    [9] James Daniel, Kayode Ayinde, Adewale F. Lukman, Olayan Albalawi, Jeza Allohibi, Abdulmajeed Atiah Alharbi . Optimised block bootstrap: an efficient variant of circular block bootstrap method with application to South African economic time series data. AIMS Mathematics, 2024, 9(11): 30781-30815. doi: 10.3934/math.20241487
    [10] Ziqiang Wang, Qin Liu, Junying Cao . A higher-order numerical scheme for system of two-dimensional nonlinear fractional Volterra integral equations with uniform accuracy. AIMS Mathematics, 2023, 8(6): 13096-13122. doi: 10.3934/math.2023661
  • In this paper, we are concerned with a nonlinear optimal control problem of ordinary differential equations. We consider a discretization of the problem with the discontinuous Galerkin method with arbitrary order rN{0}. Under suitable regularity assumptions on the cost functional and solutions of the state equations, we first show the existence of a local solution to the discretized problem. We then provide sharp estimates for the L2-error of the approximate solutions. The convergence rate of the error depends on the regularity of the optimal solution ˉu and its adjoint state with the degree of piecewise polynomials. Numerical experiments are presented supporting the theoretical results.



    It is widely acknowledged that the study of the nonlinear equations characterized as f(˜u)=0 can be used to investigate a broader range of problems that occur in physical sciences. Because of its significance, many scientists have investigated numerous different order multistep methods to explore the solutions of the nonlinear equations using diversified approaches; such as variational iterative methods, homotopy perturbation method, homotopy analysis method, and the decomposition techniques, for details see [1,2,3,4,5,6,7,8,9]. These developed approaches are of varying order of convergence. Firstly, Traub [16] has initiated the study of repetitious schemes for solving nonlinear equations who developed a central quadratic convergent Newton iterative method which has much importance in literature.

    ˜uk+1=˜ukf(˜uk)f(˜uk),k=1,2,3,,f(˜uk)0. (1.1)

    Later on, to increase the practical usefulness and efficiency index of Newton's method, its various rectifications have been presented by many researchers (see [17,18,19,20]). Daftardar-Gejji and Jafari [21] have proposed a straightforward approach that does not necessitate the derivative evaluation of the Adomian polynomial by making different modifications in the Adomian decomposition method [1]. Moreover, this technique helps us to write the nonlinear equation as a combination of both linear and nonlinear components, and plays a remarkable role in developing different iterative schemes to estimate the solution of the nonlinear equations. Saqib and Iqbal [22] have determined the fourth and fifth-order convergent iterative methods for computing roots of the nonlinear equations by using a modified decomposition approach and presented some test examples to check the efficacy and performance of the newly established iterative methods. Ali et al. [23] have established a new class of the iterative methods by implementing the technique [21] and testified the validity of these schemes by considering some mathematical models. Alharbi et al. [2] have introduced some new and efficient iterative methods and implemented a decomposition technique along with an auxiliary function. Variational iteration method (VIM) is another effective tool that is employed to develop effective iterative methods for getting approximate, converging solutions of the nonlinear equations. Based on VIM, Naseem et al. [17] have investigated a new class of iterative methods that are superior in convergence and efficient as compared to other methods. They also elaborated the behavior and dynamical aspects of the suggested iterative schemes by using polynomiographs. The qcalculus is materialized as the composition of Physics and Mathematics in the last twenty-five years of the XX century (see [24,25,26,27,43]). Many researchers have been designated considerable thought due to its diversified choice of the utilization in mathematical spheres; such as mechanics, theory of relativity, basic hypergeometric function, quantum, and number theory. Firstly, the qanalogue of derivative and the qTaylor's formula were introduced by Jackson [29]. Then, by using the differentiation technique in the qcalculus, Jing and Fan [30] have presented some modifications in Taylor's formula together with its remainder in the sphere of the qcalculus. They compared the q-Taylor's formula and the ordinary Taylor's formula and found signified results on the qremainder.

    Ernst [31] has investigated some novel modifications in the qTaylor's formula with the help of q integration by parts and developed its varient formulations. Firstly, some novel recursive schemes under the qanalysis were suggested and analyzed by Singh et al. [32] and introduced some varied forms of the qiterative schemes by opting several values of the qparameter. The stability and reliability of the qiterative methods are checked by presenting comparative analysis of several nonlinear algebraic equations with some classical methods. The qdifference equation plays a vital role in the realm of the qcalculus. For solving the partial differential equations in the qcalculus, Jafari et al. [33] have applied an iterative method called the Daftardar-Jafari decomposition method. It is demonstrated that the proposed procedure's computational outcome converges to the true solution of the qdifference equations subject to specific constraints. The study of qintegro differential equation with three criteria was investigated by Abdeljawad and Samei [12] and checked its solution existence by applying the qcalculus. Sadik and Orie [11] have introduced a convenient and efficient method based on qcalculus known as q-differential transform method for solving partial q-differential equations. The solution obtained by this method is expressed in terms of convergent power series and the validity of this method is checked by computing several examples. Liang and Samei [13] have determined the existence of solutions for non-linear problems regular and singular fractional qdifferential equation subject to certain constraints. They have presented some results with the support of numerical examples and by applying definitions of the fractional q-derivative of Riemann–Liouville & Caputo type. Many real-life problems can be modeled in the form of qfuzzy differential equations. Noeiaghdam et al. [15] have introduced two fuzzy numerical methods based on the generalized Hukuhara qdifferentiability named as the fuzzy qEuler's and the local qTaylor's expansion method for solving qfuzzy initial value differential equations. In an attempt of transformation of the classical results towards the qcalculus considered by Srivastava et al. [45], the two subclasses of normalized analytic functions are investigated by using various operators of qcalculus and fractional qcalculus in the complex zplane. Sana et al. [10] have transformed the classical iterative methods over the qiterative methods and presented a comparative analysis of these methods with the classical methods. They also presented the generalized formulation of new methods and test their reliability, effectiveness & convergence speed via various numerical examples.

    Motivated and inspired by the research going on in this direction, we have restructured some new multistep iterative methods for computing zeros of the nonlinear equations in the context of the qcalculus. First, we find some new qanalogues of the iterative methods initiated and advanced by Shah and Noor [9]. Then, to obtain the needed results, we rephrase the supposed nonlinear equation accompanied by an auxiliary function and apply the qTaylor's formula. For the best implementation of the results and the derivations of recursive schemes, we utilize the decomposition methodology [21] under the qparadigm. It is essential to mention that the new suggested algorithms can reduce the number of computing costs compared to conventional iterative methods while good numerical accuracy is maintained by appropriately choosing the parameter q[0,1]. Now, we recollect some of the basic ideas in the qanalysis [34] that are prerequisites and reinforce the construction of our novel qiterative schemes for computing solutions of the nonlinear equations. Let the qinteger, for q (0, 1) is described such as:

    [m]q=1+q+q2++qm1=1qm1qform=1,2,, (1.2)
    [m]q=mforq=1. (1.3)

    For 0pm, the qfactorial and the qbinomials are defined as:

    [m]q!=[m]q[m1]q[1]q[0]q!=1,[mp]q=[m]q![p]q![mp]q!. (1.4)

    Definition 1 (see [34]). A qanalogue of classical exponential function e˜uq is defined as

    k=0˜uk[k]!. (1.5)

    The derivative of the classical exponential function remains unchanged under differentiation. The qanalogue of exponential function also remains the same in the qcalculus such as:

    Dqe˜uq=k=0Dq˜uk[k]!=k=1[k]˜uk1[k]!=k=1˜uk1[k1]!=k=0˜uk[k]!=e˜uq. (1.6)

    Definition 2 (see [34]). Let f(˜u) is a real valued continuous function and its qderivative is prescribed as follows:

    Dqf(˜u)=(dd˜u)qf(u)=f(q˜u)f(˜u)q˜u˜u,q1. (1.7)

    where (Dqf)(˜u) represents qderivative is known as Jackson derivative. It reduces to the standard derivative when q approaches to one. The qderivative with higher-order for the function f(˜u) is prescribed as:

    D0qf=f,Dmqf=Dq(Dm1q)f,form=1,2,3. (1.8)

    Definition 3 (see [34]). The qderivative of product and quotient of function f(˜u) and g(˜u) is defined as follows:

    Dq(f(˜u)g(˜u))=g(˜u)Dqf(˜u)+f(q˜u)Dqg(˜u)=g(q˜u)Dqf(˜u)+f(˜u)Dqg(˜u),Dq(f(˜u)g(˜u))=g(˜u)Dqh(˜u)f(˜u)Dqg(˜u)g(q˜u)g(˜u)suchthatg(˜u)g(q˜u)0.

    Definition 4 (see [29,30,31]). Let f(˜u) is a continuous function defined on an interval (k,l) and c [k,l]. Then, the qTaylor's formula for the function f(˜u) instigated by Jackson is explained as:

    f(˜u)=m=1Dmq(˜uc)k[k]!(˜u(k,l)), (1.9)

    where

    (˜uc)0=1,(˜uc)k=m1i=0(˜ucq)i,mN, (1.10)

    Dq,D2q, are all qderivatives, where 0<q<1.

    This section deals with the construction of some novel iterative schemes by employing Taylor's formula and Daftardar-Jafari decomposition technique [21] in the paradigm of the quantum calculus.

    We consider the nonlinear algebraic equation of the general form:

    f(˜u)=0,˜uR. (2.1)

    Let g(˜u) be an auxiliary function. Suppose κ is an initial guess in the neighbourhood of β which is the simple root of nonlinear equation (2.1).

    f(˜u)g(˜u)=0,˜uR. (2.2)

    Using qTaylor's series about κ and the technique of He [28], we rewrite the nonlinear equation (2.2) as a parallel coupled system of the equation :

    f(κ)g(κ)+(˜uκ){Dqf(κ)g(κ)+Dqg(v)f(qκ)}+G(˜u)=0, (2.3)
    G(˜u)=f(˜u)g(κ)f(κ)g(κ)(˜uκ){Dqf(κ)g(κ)+Dqg(κ)f(qκ)}. (2.4)

    Eq (2.4) can be rewritten as:

    ˜u=κf(κ)g(κ)Dqf(κ)g(κ)+Dqg(κ)f(qκ)G(˜u)Dqf(κ)g(κ)+Dqg(κ)f(qκ), (2.5)
    ˜u=c+Nq(˜u), (2.6)

    where

    c:=κf(κ)g(κ)Dqf(κ)g(κ)+Dqg(κ)f(qκ), (2.7)

    and

    Nq(˜u):=G(˜u)Dqf(κ)g(κ)+Dqg(κ)f(qκ). (2.8)

    The term Nq(˜u) is treated as nonlinear and c as a constant.

    Let ˜u0 be an initial guess then from relation (2.4), we can easily compute a key equation that is helpful in the development of new qiterative methods :

    G(˜u0)=f(˜u0)g(κ). (2.9)

    We now carry out a decomposition technique primarily due to Daftardar-Gejji and Jafari [21], known as the Daftardar-Jafari decomposition technique, to set up arrangements of higher-order iterative methods. The central idea behind using this methodology is to seek the solution of the qbasic equation (2.6) in the series form.

    ˜u=k=0˜uk. (2.10)

    Now, we deteriorate the nonlinear operator Nq(˜u) which is defined in (2.8) such as:

    Nq(˜u)=Nq(˜u0)+k=1{Nq(kl=0˜ul)Nq(k1l=0˜ul)}. (2.11)

    From the equations (2.6), (2.10) and (2.11), we have

    k=0˜uk=c+Nq(˜u0)+k=1{Nq(kl=0˜ul)Nq(k1l=0˜ul)}, (2.12)

    finally, we obtain the following iterative procedure:

    {˜u0=c,˜u1=Nq(˜u0),˜u2=Nq(˜u0+˜u1)Nq(˜u0),un+1=Nq(nl=0˜ul)Nq(n1l=0˜ul),n=1,2,. (2.13)

    It follows that

    ˜u1+˜u2++˜un+1=Nq(˜u0+˜u1+˜u2++˜un),

    and

    ˜u=c+k=1˜uk. (2.14)

    Note that ˜u is approximated by

    ˜un=˜u0+˜u1+˜u2++˜un,

    and thus limx˜un=˜u.

    Theorem 2.1 (see [33]). If Nq is a contraction, then the series specified in (2.10) is absolutely convergent.

    Proof. Let Nq is a contraction mapping, then by definition we can write:

    Nq(˜u)Nq(v)β˜uv0<β<1, (2.15)

    then in view of (2.13), we have

    un+1=Nq(˜u1+˜u2+...+˜un)Nq(˜u1+˜u2+...+˜un1)β˜unβn˜u0n=0,1,2,,

    then the series ˜u = k=0˜uk is uniformly and absolutely convergent to an answer of the equation (2.6) (see [36]).

    This completes the proof.

    Now, we construct the following iterative schemes to find the solution of the nonlinear algebraic equation (2.1)

    Algorithm A: From (2.13), we have for n=0:

    x˜U0=˜u0=c=κf(κ)g(κ)Dqf(κ)g(κ)+Dqg(κ)f(qκ). (2.16)

    This composition permits us to put forward the subsequent recursive approach for solving the nonlinear equation (2.1), and the iterative schema computes the approximate solution ˜un+1 for a given starting guess ˜u0:

    un+1=˜unf(˜un)g(˜un)Dqf(˜un)g(˜un)+Dqg(˜un)f(q˜un),n=0,1,. (2.17)

    This represents main qanalogue of iterative scheme which is prospected by He [28] and Shah [9]. This main iterative scheme helps us to generate different qalgorithms for solving the nonlinear equation (2.1). Now, with the help of (2.4) and (2.13), we get:

    ˜u1=Nq(˜u0)=G(˜u0)Dqf(κ)g(κ)+Dqg(κ)f(qκ)=f(˜u0)g(κ)Dqf(κ)g(κ)+Dqg(κ)f(qκ). (2.18)

    Algorithm B: From (2.13), we have for n=1:

    ˜u˜U1=˜u0+˜u1=˜u0+Nq(˜u0). (2.19)

    By using (2.16) and (2.18), we have

    ˜u=κf(κ)g(κ)Dqf(κ)g(κ)+Dqg(κ)f(qκ)f(˜u0)g(κ)Dqf(κ)g(κ)+Dqg(κ)f(qκ). (2.20)

    This composition permits us to put forward the subsequent iterative approach for solving the nonlinear equation (2.1), and the iterative schema computes the approximate solution ˜un+1 for a given starting guess ˜u0:

    ˜vn=˜unf(˜un)g(˜un)Dqf(˜un)g(˜un)+Dqg(˜un)f(q˜un), (2.21)
    ˜un+1=˜vnf(˜vn)g(˜un)Dqf(˜un)g(˜un)+Dqg(˜un)f(q˜un),n=0,1,2,. (2.22)

    This is qanalogue of Algorithm 2.2 which is investigated by [9] and the error equation of Algorithm B is determined in Theorem 3.1.

    By using (2.4), (2.13) and (2.18), we can obtain

    ˜u1+˜u2=Nq(˜u0+˜u1)=G(˜u0+˜u1)Dqf(κ)g(κ)+Dqg(κ)f(qκ), (2.23)
    =f(˜u0+˜u1)g(κ)f(κ)g(κ)(˜u0+˜u1κ){Dqf(κ)g(κ)+Dqg(κ)f(qκ)}Dqf(κ)g(κ)+Dqg(κ)f(qκ),=f(˜u0+˜u1)g(κ)Dqf(κ)g(κ)+Dqg(κ)f(qκ)f(˜u0)g(κ)Dqf(κ)g(κ)+Dqg(κ)f(qκ). (2.24)

    Algorithm C: Now, considering from (2.13), we have for n=2:

    x˜U2=˜u0+˜u1+˜u2=˜u0+Nq(˜u0)+Nq(˜u0+˜u1)Nq(˜u0)=˜uo+Nq(˜u0+˜u1). (2.25)

    By using (2.16) and (2.23), we get

    ˜u=κf(κ)g(κ)Dqf(κ)g(κ)+Dqg(κ)f(qκ)f(˜u0)g(κ)Dqf(κ)g(κ)+Dqg(κ)f(qκ)f(˜u0+˜u1)g(κ)Dqf(κ)g(κ)+Dqg(κ)f(qκ). (2.26)

    This composition permits us to put forward the subsequent iterative approach for solving the nonlinear equation (2.1), and the iterative schema computes the approximate solution ˜un+1 for a given starting guess ˜u0:

    ˜vn=˜unf(˜un)g(˜un)Dqf(˜un)g(˜un)+Dqg(˜un)f(q˜un), (2.27)
    ˜wn=˜vnf(˜vn)g(˜un)Dqf(˜un)g(˜un)+Dqg(˜un)f(q˜un), (2.28)
    ˜un+1=˜wnf(˜wn)g(˜un)Dqf(˜un)g(˜un)+Dqg(˜un)f(q˜un),n=0,1,2,. (2.29)

    This is qanalogue of Algorithm 2.3 which is investigated by [9] and the error equation of Algorithm C is determined in Theorem 3.1.

    Algorithm A, Algorithm B, Algorithm C are the main and general iterative schemes that are used to generate some new algorithms by considering different choices of auxiliary functions that are the main attractiveness of modification of this technique. To convey the idea, we consider the following auxiliary functions.

    Case: Let g(˜un)=eβ˜un and Dqg(˜un)=βeβ˜un. Using these values we obtain the following iterative methods for the solving nonlinear equations.

    Algorithm D: For a given ˜u0 (initial guess), approximate solution ˜un+1 is computed by the following iterative scheme:

    un+1=˜unf(˜un)Dqf(˜un)βf(q˜un),n=0,1,. (2.30)

    Algorithm E: For a given ˜u0 (initial guess), approximate solution ˜un+1 is computed by the following iterative scheme:

    ˜vn=˜unf(˜un)Dqf(˜un)βf(q˜un), (2.31)
    ˜un+1=˜vnf(˜vn)Dqf(˜un)βf(q˜un),n=0,1,2,. (2.32)

    Algorithm F: For a given ˜u0 (initial guess), approximate solution ˜un+1 is computed by the following iterative scheme:

    ˜vn=˜unf(˜un)Dqf(˜un)βf(q˜un), (2.33)
    ˜wn=˜vnf(˜vn)Dqf(˜un)βf(q˜un), (2.34)
    ˜un+1=˜wnf(˜wn)g(˜un)Dqf(˜un)βf(q˜un),n=0,1,2,. (2.35)

    To the best of our knowledge, the new schemes Algorithm D, Algorithm E, Algorithm F appear to be new ones.

    In this part, the order of convergence of the primary qiterative methods made out by Algorithm A, Algorithm B, and  Algorithm C is investigated. In the same approach, the rest of the iterative procedures can be established.

    Theorem 3.1. Let f:ER R be a differentiable function, where E is an open interval in R. If ˜u0 is sufficiently close to βE which is the root of f(˜u)=0 then the iterative methods Algorithm A, Algorithm B and Algorithm C are convergent algorithms of order at least 2,3,4 respectively and we format it as follows: [2;q], [3;q] and [4;q], where parameter q corresponds to the quantum calculus. Error equations for these newly established algorithms are given as:

    en+1={qDqg(β)g(β)+c2}e2n+O(e3n),en+1={3qc2Dqg(β)g(β)+q2Dqg(β)2g(β)2+2c22}e3n+O(e4n),en+1={5q2c2Dqg(β)2g(β)2+8qc22Dqg(β)g(β)+q3(Dqg(β))3g(β)3+4c32}e4n+O(e5n).

    Proof. Let f is adequately differentiable function and β is root of f(˜u). Now, expanding f(˜un) and Dqf(˜un) in the qTaylor's series about β we obtain

    f(˜un)=Dqf(β)en+1[2]!D2qf(β)e2n+1[3]!D3qf(β)e3n+, (3.1)
    f(˜un)=Dqf(β){en+b2e2n+b3e3n+b4e4n+}, (3.2)
    Dqf(˜un)=Dqf(β){1+2b2en+3b3e2n+4b4e3n+}, (3.3)

    By expanding g(˜un), Dqg(˜un) in the qTaylor's series, we obtain

    g(˜un)=g(β)+Dqg(β)en+e2n[2]!D2qg(β)+e3n[3]!D3qg(β)+..., (3.4)
    Dqg(˜un)=Dqg(β)+D2qg(β)en+e2n[2]!D3qg(β)+e3n[3]!D(iv)qg(β)+...., (3.5)

    where

    bk=Dkqf(β)[k]!Dqf(β),fork=2,3,anden=˜unβ (3.6)

    By expanding f(˜un)g(˜un), f(˜un)Dqg(˜un), Dqf(˜un)g(˜un), in the qTaylors series about β, we obtain

    f(˜un)g(˜un)=Dqf(β){g(β)en+(Dqg(β)+c2g(β))e2n+(D2qg(β)q+1+c2Dqg(β)+c3g(β))e3n+O(e4n)}, (3.7)
    Dqf(˜un)g(˜un)=Dqf(β){g(β)+(Dqg(β)+2c2g(β))en+(D2qg(β)+2c2Dqg(β)+3c3g(β)q+1)e2n+O(e3n)}. (3.8)
    f(q˜un)Dqg(˜un)=Dqf(β){qDqg(β)en+(qD2qg(β)+qc2Dqg(β))e2n+(qD3qg(β)q+1+qc2D2qg(β)+qc3Dqg(β))e3n+O(e4n)}, (3.9)

    From (3.7), (3.9), (3.8), we get

    f(˜un)g(˜un)Dqf(˜un)g(˜un)+Dqg(˜un)f(q˜un)=en(qDqg(β)g(β)+c2)e2n+{2c2Dqg(β)g(β)+c3qD2qg(β)g(β)+2qc2Dqg(β)g(β)2qc2Dqg(β)(q+1)g(β)2c2Dqg(β)(q+1)g(β)+2c22qDqg(β)2g(β)2+q2Dqg(β)2g(β)23c3}e3n+O(e4n). (3.10)

    Now, using (3.10) into (2.17), we get the error term of the Algorithm A:

    ˜un+1=β+(qDqg(β)g(β)+c2)e2n{2c2Dqg(β)g(β)c3+qD2qg(β)g(β)2qc2Dqg(β)g(β)+2qc2Dqg(β)(q+1)g(β)+2c2Dqg(β)(q+1)g(β)2c22qDqg(β)2g(β)2q2Dqg(β)2g(β)2+3c3}e3n+O(e4n), (3.11)
    ˜en+1=(qDqg(β)g(β)+c2)e2n{2c2Dqg(β)g(β)c3+qD2qg(β)g(β)2qc2Dqg(β)g(β)+2qc2Dqg(β)(q+1)g(β)+2c2Dqg(β)(q+1)g(β)2c22qDqg(β)2g(β)2q2Dqg(β)2g(β)2+3c3}e3n+O(e4n). (3.12)

    Choosing (3.12), we have

    ˜vn=˜unf(˜un)g(˜un)Dqg(˜un)f(q˜un)+Dqf(˜un)g(˜un), (3.13)
    =β+(qDqg(β)g(β)+c2)e2n{2c2Dqg(β)g(β)c3+qD2qg(β)g(β)2qc2Dqg(β)g(β)+2qc2Dqg(β)(q+1)g(β)+2c2Dqg(β)(q+1)g(β)2c22qDqg(β)2g(β)2q2Dqg(β)2g(β)2+3c3}e3n+O(e4n). (3.14)

    By expanding f(˜vn) in the qTaylor's series about β and using (3.14), we have

    f(˜vn)=(qDqg(β)g(β)+c2)e2n+{2c2Dqg(β)g(β)c3+qD2qg(β)g(β)2qc2Dqg(β)g(β)+2qc2Dqg(β)(q+1)g(β)+2c2Dqg(β)(q+1)g(β)2c22qDqg(β)2g(β)2q2Dqg(β)2g(β)2+3c3}e3n+O(e4n). (3.15)

    From (3.4), (3.9), (3.8) and (3.15) we have

    f(˜vn)g(˜un)Dqf(˜un)g(˜un)+Dqg(˜un)f(q˜un)=(qDqg(β)g(β)+c2)e2n+{2c2Dqg(β)g(β)qD2qg(β)g(β)2+qD2qg(β)g(β)5qc2Dqg(β)g(β)+2qc2Dqg(β)(q+1)g(β)+2c2Dqg(β)(q+1)g(β)4c222q2Dqg(β)2g(β)2+2c3}e3n+O(e4n). (3.16)

    Using (3.14), (3.16) into (2.22), we obtain the error term for the Algorithm B

    ˜un+1=β+{3qc2Dqg(β)g(β)+q2Dqg(β)2g(β)2+2c22}e3n+O(e4n),en+1={3qc2Dqg(β)g(β)+q2Dqg(β))2)g(β)2+2c22}e3n+O(e4n). (3.17)

    By expanding ˜wn, f(˜wn) in terms of the qTaylor's series about β

    ˜wn={β+3qc2Dqg(β)g(β)+q2Dqg(β)2g(β)2+2c22}e3n+O(e4n), (3.18)
    f(˜wn)=Dqf(β){(3qc2Dqg(β)g(β)+q2Dqg(β)2g(β)2+2c22)e3n+O(e4n)}. (3.19)

    From (3.4), (3.9), (3.8) and (3.19) we have

    f(˜wn)g(˜un)Dqf(˜un)g(˜un)+Dqg(˜un)f(q˜un)={3qc2Dqg(β)g(β)+q2Dqg(β)2g(β)2+2c22}e3n+O(e4n). (3.20)

    Using (3.18) and (3.20) into (3.12), we obtain the error equation for the Algorithm C:

    ˜un+1=˜wnf(˜wn)g(˜un)Dqf(˜un)g(˜un)+Dqg(˜un)f(q˜un), (3.21)
    =β+(5q2c2Dqg(β)2g(β)2+8qc22Dqg(β)g(β)+q3(Dqg(β))3g(β)3+4c32)e4n+O(e5n), (3.22)
    en+1=(5q2c2Dqg(β)2g(β)2+8qc22Dqg(β)g(β)+q3(Dqg(β))3g(β)3+4c32)e4n+O(e5n). (3.23)

    Equation (3.20) shows the error equation for the Algorithm C and has at least fourth-order convergence. It is noted that Algorithm C is the main iterative scheme and all other schemes investigated from this scheme are at least fourth-order convergent.

    Remark 3.1. Based on the study of convergence analysis of proposed iterative methods, it can be easily observed that various order iterative methods can be developed by choosing appropriately multiple choices of the auxiliary function in Algorithm A, Algorithm B and, Algorithm C respectively.

    Ifg(˜un)Dqg(˜un)=D2qf(˜un)2Dqf(q˜un), (3.24)

    then Algorithm A generates the following iterative method with the initial guess ˜u0.

    Algorithm G: For a given initial guess ˜uo, approximate solution ˜un+1 is computed by the following iterative scheme:

    ˜un+1=˜un2f(˜un)Dqf(˜un)2(Dqf(˜un))2D2qf(˜un)f(q˜un),n=0,1,2,. (3.25)

    This is qanalogue of well known Halley method [32] which has cubic convergence i.e. [3, q], where q represents the qcalculus. Now, again using the above stated specified value of an auxiliary function then Algorithm B and Algorithm C reduces to the following iterative procedures.

    Algorithm H: For a given initial guess ˜uo, approximate solution ˜un+1 is computed by the following iterative scheme:

    ˜vn=˜un2f(˜un)Dqf(˜un)2(Dqf(˜un))2D2qf(˜un)f(q˜un), (3.26)
    ˜un+1=˜vn2f(˜vn)Dqf(˜un)2(Dqf(˜un))2D2qf(˜un)f(q˜un),n=0,1,2,. (3.27)

    This method is fourth-order convergent for solving nonlinear equations and appears to be a novel one.

    Algorithm I: For a given initial guess ˜uo, approximate solution ˜un+1 is computed by the following iterative scheme:

    ˜vn=˜un2f(˜un)Dqf(˜un)2(Dqf(˜un))2D2qf(˜un)f(q˜un), (3.28)
    ˜wn=˜vn2f(˜vn)Dqf(˜un)2(Dqf(˜un))2D2qf(˜un)f(q˜un), (3.29)
    ˜un+1=˜un2f(˜wn)Dqf(˜un)2(Dqf(˜un))2D2qf(˜un)f(q˜un),n=0,1,2,. (3.30)

    This method emerges as a new method that has fifth-order of convergence.

    This completes the proof.

    This section discusses some nonlinear equations. With the support of these examples, we elaborate on the efficacy and performance of newly established methods initiated in this paper. The general algorithm for finding the estimated solution of the given nonlinear function is given as: in Algorithm A, Algorithm B, Algorithm C, we consider ε=10100 as tolerance. We obtain an approximate solution relatively than the exact lean on the computational accuracy ε. We adopt the following stopping criterium for computational performance:

    |˜un+1˜un|<εand|f(˜un+1)|<ε. (4.1)

    For convergence criteria, it is prerequisite that the space of two successive estimations for the zero must be less than 10100. We make use of abbreviations QG & CG for the qiterative methods and traditional iterative methods respectively. We symbolize Algorithm D, Algorithm E and Algorithm F by QG1, QG2 and QG3 respectively and phrase div served as the divergence of methods. We develop a comparative analysis between the standard Newton's method (NM) [35], Chun method (CM) [4], Noor method (NR)[8], CG1, CG2 and CG3 [9] and our newly proposed qiterative methods QG1, QG2 and QG3. The computational results of comparative analysis are presented in Tables (4, 8, 12, 14). We exhibit the number of iterations, the final estimated solution and the corresponding functional value by the symbols IT, ˜un and f(˜un), whereas, the distance in the middle of two successive estimates is shown by Δ. It is necessary to mention that for the best implementation of results, we choose the value of q=0.9999. We use Maple software to perform all the numerical computations.

    Table .  Algorithms D, E, F : General roots' finding Algorithm.
    Input: f R–nonlinear function, l–maximal number of iterations, I- recursive method, ε accuracy
       Output : Approximate root of given nonlinear function
            for ˜u0 A do
              j=0
             while i l do
              ˜un+1=I(˜un)
           if ˜un+1˜un ε then
             break
            j=j+1
        ˜un+1 is the required solution

     | Show Table
    DownLoad: CSV

    Now, we recollect the classical Algorithm 2.1 (CG1) in [9], elucidated as:

    ˜un+1=˜vnf(˜un)g(˜un)f(˜un)g(˜un)+f(˜un)g(˜un),n=0,1,2,,

    and the classical Algorithm 2.2 (CG2) in [9], described as:

    ˜vn=˜unf(˜un)g(˜un)f(˜un)g(˜un)+f(˜un)g(˜un),˜un+1=˜vnf(˜vn)g(˜un)f(˜un)g(˜un)+f(˜un)g(˜un),n=0,1,2,,

    and the classical Algorithm 2.3 (CG3) in [9], described as:

    ˜vn=˜unf(˜un)g(˜un)f(˜un)g(˜un)+f(˜un)g(˜un),˜wn=˜vnf(˜vn)g(˜un)f(˜un)g(˜un)+f(˜un)g(˜un),˜un+1=˜wnf(˜wn)g(˜un)f(˜un)g(˜un)+f(˜un)g(˜un),n=0,1,2,.

    We present some examples of nonlinear equations (4.1–4.4) to illustrate the efficiency of the newly developed one-step, two-step and three-step iterative methods in this article. Firstly, for the sake of simplicity, we investigate the efficacy and credibility of the qrecursive schemes for multiple values of q up to three iterations that can be extended to any number of iterations until we achieve the desired accuracy. The results in the Tables (13, 57, 911) demonstrate the calculations of ˜ui and f(˜ui), i=1,2,3 by employing QG1, QG2, QG3 for multiple values of q and β=0.5. We choose β=0.5 for both q and ordinary iterative methods.

    Table 1.  The Computational results of Example 4.1 by adopting QG1.
    q ˜u1 f(˜u1) ˜u2 f(˜u2) ˜u3 f(˜u3)
    1.02 1.8254771289 4.781399e+01 1.6446487615 2.080730e+01 1.4682546352 8.360155e+00
    1.01 1.8156706474 4.573200e+01 1.6261034309 1.904589e+01 1.4443944595 7.240303e+00
    0.9999 1.8054350705 4.365516e+01 1.6069907813 1.736630e+01 1.4205163424 6.213934e+00
    0.99 1.7950820546 4.164963e+01 1.5879197232 1.581610e+01 1.3974602186 5.303635e+00
    0.98 1.7843060898 3.965867e+01 1.5683557800 1.434521e+01 1.3746624563 4.474026e+00
    0.97 1.7732141094 3.770686e+01 1.5485309680 1.296746e+01 1.3525035647 3.728577e+00
    0.96 1.7618106322 3.579794e+01 1.5284887126 1.167998e+01 1.3311324428 3.061376e+00
    0.95 1.7501006871 3.393522e+01 1.5082747516 1.047945e+01 1.3106997348 2.466872e+00
    0.9 1.6871602987 2.540046e+01 1.4063812618 5.646958e+00 1.2277744500 4.214155e-01
    0.8 1.5421515802 1.254661e+01 1.2218238894 2.941270e-01 1.2001853197 1.498622e-01
    0.7 1.3778702120 4.586773e+00 1.1228243978 1.525686e+00 1.3085797228 2.407471e+00
    0.6 1.2006929046 1.397745e-01 1.2169781309 1.921632e-01 1.1956606924 2.391136e-01
    0.5 1.0148075743 3.019833e+00 1.7800282582 3.889448e+01 0.9416817610 3.825826e+00
    0.4 0.8224202727 4.886877e+00 4.4574589961 1.896962e+09 1.7829836172 3.942087e+01

     | Show Table
    DownLoad: CSV
    Table 2.  The Computational results of Example 4.1 by adopting QG2.
    q ˜u1 f(˜u1) ˜u2 f(˜u2) ˜u3 f(˜u3)
    1.02 1.7469553241 3.345101e+01 1.4893603323 9.437637e+00 1.2844368858 1.759383e+00
    1.01 1.7363479211 3.186639e+01 1.4712261908 8.506726e+00 1.2700675438 1.397061e+00
    0.9999 1.7255099828 3.032134e+01 1.4531277997 7.638732e+00 1.2571115985 1.084323e+00
    0.99 1.7147712370 2.886049e+01 1.4356424131 6.853672e+00 1.2459611644 8.252116e-01
    0.98 1.7038129312 2.743800e+01 1.4182786930 6.122244e+00 1.2362606318 6.070097e-01
    0.97 1.6927468246 2.606789e+01 1.4012566043 5.448403e+00 1.2281101471 4.286657e-01
    0.96 1.6815757292 2.474896e+01 1.3846176710 4.828114e+00 1.2214623281 2.864671e-01
    0.95 1.6703014629 2.347984e+01 1.3684031128 4.257621e+00 1.2162424779 1.768145e-01
    0.9 1.6123870154 1.782725e+01 1.2951373881 2.040329e+00 1.2071607634 9.883772e-03
    0.8 1.4880971668 9.370703e+00 1.2044936727 6.375050e-02 1.2066023590 2.119746e-02
    0.7 1.3510185483 3.680628e+00 1.2153042458 1.572886e-01 1.2134104384 1.180445e-01
    0.6 1.2017441996 1.188325e-01 1.1966948659 2.188195e-01 1.1861260408 4.233182e-01
    0.5 1.0428029928 2.671572e+00 3.4921751247 6.909446e+05 1.7457947641 4.029002e+01
    0.4 0.8765710506 4.438584e+00 1.2449990477 div div div

     | Show Table
    DownLoad: CSV
    Table 3.  The Computational results of Example 4.1 by adopting QG3.
    q ˜u1 f(˜u1) ˜u2 f(˜u2) ˜u3 f(˜u3)
    1.02 1.6920209048 2.598026e+01 1.3904466751 5.041269e+00 1.2220019413 2.979023e-01
    1.01 1.6810752657 2.469133e+01 1.3743118157 4.461778e+00 1.2172669454 1.981985e-01
    0.9999 1.6699968307 2.344638e+01 1.3586170942 3.928572e+00 1.2137094253 1.242253e-01
    0.99 1.6591210592 2.227959e+01 1.3438575823 3.452797e+00 1.2112346261 7.323293e-02
    0.98 1.6481234444 2.115270e+01 1.3296114931 3.015709e+00 1.2095622688 3.898944e-02
    0.97 1.6371173589 2.007559e+01 1.3160631511 2.619025e+00 1.2085336032 1.801178e-02
    0.96 1.6261052018 1.904605e+01 1.3032414482 2.259727e+00 1.2079714068 6.574262e-03
    0.95 1.6150882454 1.806184e+01 1.2911720932 1.935078e+00 1.2077179285 1.423727e-03
    0.9 1.5826834407 1.541101e+01 1.2612508796 1.182847e+00 1.2076472774 1.116271e-05
    0.8 1.4477254852 7.390755e+00 1.2057826949 3.777015e-02 1.2079930144 7.013497e-03
    0.7 1.3294715959 3.011520e+00 1.2030867033 9.199385e-02 1.2113502472 7.560679e-02
    0.6 1.2026379824 1.009764e-01 1.2197934625 2.512202e-01 1.1838911341 4.657518e-01
    0.4 div div div div div div

     | Show Table
    DownLoad: CSV
    Table 4.  Numerical comparison between different algorithms for Example 4.1.
    Methods IT ˜un f(˜un) Δ=|˜un˜un1|
    NM 10 1.2076478271309189 3.809499e-81 1.117513e-41
    CM 8 1.2076478271309189 4.147459e-71 8.245079e-37
    NR 7 1.2076478271309189 1.200000e-126 1.022315e-58
    CG1 9 1.2076478271309189 4.046035e-27 9.975651e-15
    QG1 9 1.2076478271309189 6.544364e-18 1.333068e-15
    CG2 7 1.2076478271309189 2.982998e-73 1.279292e-25
    QG2 6 1.2076478271309189 2.272051e-15 1.913599e-09
    CG3 5 1.2076478271309189 5.783684e-28 3.280697e-08
    QG3 5 1.2076478271309189 8.839817e-18 3.082412e-08

     | Show Table
    DownLoad: CSV
    Table 5.  The Computational results of Example 4.2 by adopting QG1.
    q ˜u1 f(˜u1) ˜u2 f(˜u2) ˜u3 f(˜u3)
    1.02 2.5340549915 4.622803e-01 2.2528091052 1.161487e-01 2.0933289950 3.253619e-02
    1.01 2.5290275614 4.532706e-01 2.2438490358 1.096752e-01 2.0824083686 2.896476e-02
    0.9999 2.5235741872 4.436290e-01 2.2342561950 1.030037e-01 2.0707413296 2.540698e-02
    0.99 2.5178563392 4.336656e-01 2.2243016758 9.635846e-02 2.0586445350 2.198946e-02
    0.98 2.5116994726 4.231029e-01 2.2136678014 8.956571e-02 2.0457159746 1.863062e-02
    0.97 2.5051516759 4.120566e-01 2.2024251150 8.272013e-02 2.0320216583 1.538982e-02
    0.95 2.4908481079 3.885886e-01 2.1779892318 6.899282e-02 2.0020810008 9.367367e-03
    0.9 2.4475472929 3.229283e-01 2.1036636192 3.613794e-02 1.9082525748 1.630351e-03
    0.8 2.3226246157 1.750738e-01 1.8703556778 3.482644e-03 1.9400668627 9.395422e-04
    0.7 2.1317302609 4.706104e-02 1.7178745235 4.011128e-03 1.7281465614 4.064557e-03
    0.6 1.8631678821 3.710240e-03 1.8713066952 3.449857e-03 1.8790717075 3.157722e-03
    0.5 1.5622231117 9.473970e-03 1.5681956056 8.906252e-03 1.5738756949 8.402240e-03
    0.4 1.4186354467 3.806147e-02 1.4327916708 3.372384e-02 1.4455832111 3.012982e-02

     | Show Table
    DownLoad: CSV
    Table 6.  The Computational results of Example 4.2 by adopting QG2.
    q ˜u1 f(˜u1) ˜u2 f(˜u2) ˜u3 f(˜u3)
    1.02 2.4251903536 2.920793e-01 2.1308490583 4.669183e-02 1.9922592160 7.688946e-03
    1.01 2.4213364441 2.869646e-01 2.1240891505 4.391721e-02 1.9852268979 6.571938e-03
    0.9999 2.4171671144 2.814977e-01 2.1169241975 4.108624e-02 1.9779347493 5.485842e-03
    0.99 2.4128072440 2.758540e-01 2.1095606065 3.829240e-02 1.9706241156 4.468488e-03
    0.98 2.4081250695 2.698760e-01 2.1017669619 3.546045e-02 1.9631069315 3.494608e-03
    0.97 2.4031586932 2.636282e-01 2.0935999939 3.262785e-02 1.9555001549 2.581114e-03
    0.96 2.3979027738 2.571197e-01 2.0850408423 2.980403e-02 1.9478660869 1.734541e-03
    0.95 2.3923511342 2.503596e-01 2.0760670068 2.699855e-02 1.9402941069 9.617326e-04
    0.9 2.3598750013 2.131229e-01 2.0238013481 1.359491e-02 1.9112433539 1.431686e-03
    0.8 2.2659929856 1.261078e-01 1.8466091935 4.108333e-03 1.9343586970 4.008515e-04
    0.7 2.1127690921 3.949548e-02 1.7868081653 4.456338e-03 1.8181365605 4.447281e-03
    0.6 1.8650773832 3.653196e-03 1.8806096583 3.094552e-03 1.8942169581 2.454490e-03
    0.5 1.5682853436 8.898020e-03 1.5793160860 7.951302e-03 1.5894190131 7.193169e-03
    0.4 1.4452644311 3.021574e-02 1.4674207779 2.467175e-02 1.4861946088 2.062246e-02

     | Show Table
    DownLoad: CSV
    Table 7.  The Computational results of Example 4.2 by adopting QG3.
    q˜u1f(˜u1)˜u2f(˜u2)˜u3f(˜u3)
    1.022.35640718232.093746e-012.06487203202.371495e-021.95241467212.230633e-03
    1.012.35315742762.059011e-012.05933944412.217848e-021.94817887221.767879e-03
    0.99992.34964820722.021924e-012.05352292342.062325e-021.94404991371.336893e-03
    0.992.34598566681.983682e-012.04759407151.910018e-021.94022429689.549095e-04
    0.982.34206017701.943218e-012.04137089411.756771e-021.93667931626.155390e-04
    0.972.33790496971.900973e-012.03490474301.604574e-021.93357639023.297944e-04
    0.962.33351676071.857008e-012.02818618771.453859e-021.93106440991.060731e-04
    0.952.32889156561.811387e-012.02120309681.305038e-021.92931654214.563520e-05
    0.92.30201394611.560553e-011.98156422506.017371e-031.92708469552.346839e-04
    0.82.22520051559.694703e-021.84239344074.183986e-031.92816404531.439076e-04
    0.72.09685613213.374084e-021.85983443453.804075e-031.90675275681.726845e-03
    0.61.86695752623.594636e-031.88901646612.716754e-031.90608893271.768893e-03
    0.51.57397903498.393388e-031.58938591377.195490e-031.60311154656.320746e-03
    0.41.46640429882.490755e-021.49359383931.918070e-021.51564932671.536937e-02

     | Show Table
    DownLoad: CSV
    Table 8.  Numerical comparison between different algorithms for Example 4.2.
    Methods IT ˜un f(˜un) Δ=|˜un˜un1|
    NM 12 1.9298462428478622 3.825655e-94 2.693071e-47
    CM 10 1.9298462428478621 2.211000e-123 4.575337e-62
    NR 8 1.9298462428478621 0.000000e+00 3.271773e-50
    CG1 10 1.9298462428478622 4.822492e-43 9.979122e-22
    QG1 9 1.9298462428478622 9.050718e-14 9.687156e-10
    CG2 8 1.9298462428478622 0.000000e+00 1.931199e-44
    QG2 6 1.9298462428500578 1.897669e-13 1.934517e-06
    CG3 7 1.9298462428478622 0.000000e+00 4.553643e-61
    QG3 6 1.9298462428478622 1.538805e-24 1.404977e-14

     | Show Table
    DownLoad: CSV
    Table 9.  The Computational results of Example 4.3 by adopting QG1.
    q ˜u1 f(˜u1) ˜u2 f(˜u2) ˜u3 f(˜u3)
    1.02 0.9065128305 1.616621e-01 0.6859962729 5.790018e-02 0.5274350537 1.951191e-02
    1.01 0.9022072708 1.589572e-01 0.6796900041 5.586816e-02 0.5207645246 1.841821e-02
    0.9999 0.8977867194 1.562110e-01 0.6732521632 5.384093e-02 0.5140013161 1.734706e-02
    0.99 0.8933824398 1.535059e-01 0.6668750915 5.187932e-02 0.5073486578 1.632989e-02
    0.98 0.8888609318 1.507608e-01 0.6603667093 4.992446e-02 0.5006073854 1.533546e-02
    0.97 0.8842651916 1.480036e-01 0.6537912994 4.799729e-02 0.4938467857 1.437425e-02
    0.96 0.8795940823 1.452351e-01 0.6471491186 4.609874e-02 0.4870691826 1.344626e-02
    0.95 0.8748464608 1.424560e-01 0.6404404782 4.422978e-02 0.4802770278 1.255145e-02
    0.9 0.8499203175 1.284323e-01 0.6059153687 3.536070e-02 0.4461937277 8.570721e-03
    0.8 0.7936638954 1.001489e-01 0.5322413798 2.032320e-02 0.3788240897 2.954718e-03
    0.7 0.7279286364 7.261236e-02 0.4534401666 9.348131e-03 0.3172501829 6.321333e-06
    0.6 0.6517336303 4.740399e-02 0.3716641373 2.514365e-03 0.2772158130 1.020750e-03
    0.5 0.5644679828 2.628337e-02 0.2905129641 7.469249e-04 0.5808625814 2.967734e-02
    0.4 0.4661770270 1.080358e-02 0.2165534440 1.571177e-03 0.0187870402 3.509276e-05

     | Show Table
    DownLoad: CSV
    Table 10.  The Computational results of Example 4.3 by adopting QG2.
    q ˜u1 f(˜u1) ˜u2 f(˜u2) ˜u3 f(˜u3)
    1.02 0.7949363458 1.007389e-01 0.5385637930 2.142047e-02 0.3925179431 3.875559e-03
    1.01 0.7908881643 9.886946e-02 0.5336993039 2.057318e-02 0.3886467585 3.604555e-03
    0.9999 0.7867668819 9.698942e-02 0.5287819917 1.973729e-02 0.3847856611 3.342707e-03
    0.99 0.7826952165 9.515481e-02 0.5239585461 1.893725e-02 0.3810508358 3.097343e-03
    0.98 0.7785500695 9.331024e-02 0.5190834160 1.814844e-02 0.3773306922 2.860583e-03
    0.97 0.7743721845 9.147458e-02 0.5142058577 1.737890e-02 0.3736656864 2.634686e-03
    0.96 0.7701613148 8.964812e-02 0.5093264091 1.662854e-02 0.3700584295 2.419381e-03
    0.95 0.6987569142 6.215397e-02 0.4352652464 1.589720e-02 0.3665116849 2.214397e-03
    0.9 0.7441859116 7.889838e-02 0.4800380977 1.252061e-02 0.3497954433 1.335162e-03
    0.8 0.6979650499 6.188441e-02 0.4313667873 7.090723e-03 0.3232085729 2.140527e-04
    0.7 0.6473177836 4.614636e-02 0.3831116469 3.231774e-03 0.3127824804 1.395601e-04
    0.6 0.5906138511 3.181675e-02 0.3355451322 6.937306e-04 0.3362806048 7.245007e-04
    0.5 0.5251859689 1.913898e-02 0.2900837107 7.567601e-04 0.3462805049 1.202954e+05
    0.4 0.4475332296 8.711707e-03 0.2556391450 1.338072e-03 0.1755724416 5.061970e-03

     | Show Table
    DownLoad: CSV
    Table 11.  The Computational results of Example 4.3 by adopting QG3.
    q ˜u1 f(˜u1) ˜u2 f(˜u2) ˜u3 f(˜u3)
    1.02 0.7254080389 7.166750e-02 0.4618314256 1.029406e-02 0.3424316921 9.916910e-04
    1.01 0.7216490394 7.027308e-02 0.4579839931 9.854191e-03 0.3403446327 8.990485e-04
    0.9999 0.7178361000 6.887648e-02 0.4541148102 9.422356e-03 0.3383104763 8.107219e-04
    0.99 0.7140827415 6.751913e-02 0.4503391251 9.011018e-03 0.3363907757 7.291314e-04
    0.98 0.7102754718 6.615984e-02 0.4465428329 8.607347e-03 0.3345285298 6.516081e-04
    0.97 0.7064521071 6.481249e-02 0.4427647200 8.215368e-03 0.3327458730 5.788853e-04
    0.96 0.7026126091 6.347717e-02 0.4390053417 7.834888e-03 0.3310452218 5.108533e-04
    0.95 0.6987569142 6.215397e-02 0.4352652464 7.465713e-03 0.3294290354 4.474085e-04
    0.9 0.6792312557 1.541101e+01 1.2612508796 1.182847e+00 1.2076472774 1.116271e-05
    0.8 0.6388304107 4.378843e-02 0.3818321602 3.148034e-03 0.3167479623 1.049548e-05
    0.7 0.5960882517 3.305817e-02 0.3495601149 1.323780e-03 0.3161012452 3.199394e-05
    0.6 0.5495912988 2.341752e-02 0.3209432007 1.332764e-04 0.2952352918 6.341935e-04
    0.4 0.4324993915 7.198641e-03 0.2993416515 5.293015e-04 div div

     | Show Table
    DownLoad: CSV

    Example 4.1 (see [4]). We assume the folllowing nonlinear equation:

    f1(˜u)=˜ue˜u2sin2˜u+3cos˜u+5. (4.2)

    We take ˜u0=2 as an initial guess for computational evaluations. The quantifiable outcomes for the equation (4.2) are calculated in Tables (13) by using QG1, QG2, QG3 for multiple values of q and β=0.5. Following the steps of the Tables (13), we get the required solution of equation (4.2) i.e. ˜u=1.2076478271.

    The results from the Table 1, elaborate that precise values of ˜uis are achieved subject to the constraint q approaces to one and the parallel functional values f(˜ui) tend to zero, where i = 1, 2, 3. It is also noted that the values of f(˜u1)=4.365516e+01,f(˜u2)=1.736630e+01,f(˜u3)=6.213934e+00 computed by QG1 at q=0.9999 are nearer to zero in comparison with the values f(˜u1)=4.367558e+01,f(˜u2)=1.738244e+01,f(˜u3)=6.223602e+00 calculated by CG1. And by choosing q=0.9999 and β = 0.5 the equation (4.2) converges to the root ˜u8=1.2076478271 and corresponding functional value is attained as f(˜u8)=1.268198e10.

    Columns in Table 2 display the more precise values of ˜u1,˜u2,˜u3 with the constraint that q approaches one and for which f(˜u1),f(˜u2),f(˜u3) tend to zero. Furthermore, it is also noted that the values of f(˜u1)=3.032134e+01,f(˜u2)=7.638732e+00,f(˜u3)=1.084323e+00 at q=0.9999 calculated by QG2 exist closely in the neighbourhood of zero in contrast to the values of f(˜u1)=3.033637e+01,f(˜u2)=7.646987e+00,f(˜u3)=1.087173e+00 calculated by CG2. Following the steps of Table 2 and by taking values q=0.9999, β=0.5, the equation (4.2) converges to the root ˜u6=1.2076478271 and corresponding function value is attained as f(˜u6)=1.389449e15.

    Table 3 illustrates the accuracy and precision of results for ˜ui, i=1,2,3 whenever q one. One can also figure out that for q=0.9999 computed values of f(˜u1)=2.344843e+01, f(˜u2)=3.928572e+00, f(˜u3)=1.242253e01 by QG3 give results nearer to zero in comparison to f(˜u1)=2.345843e+01,f(˜u2)=3.933608e+00,f(˜u3)=1.248415e01 calculated by CG3. Following the steps of Table 3 the equation (4.2) converges to the root ˜u5=1.2076478271 and f(˜u5)=3.785784e18, for q=0.9999 & β = 0.5.

    In Table 4, we compare our new qiterative methods (QG1, QG2, QG3) with some other methods to examine the reliability and effectiveness of the methods. The second column (IT) in Table 4 exhibits the comparison of different iterative methods with newly established methods concerning to the number of iterations. It is clear from the computational results that proposed methods require less number of iterations compared to other methods to meet the stopping criteria (4.1) or number of iterations are the same in some cases when comparing with (CG1, CG3).

    Example 4.2 (Van der Waal's Equation see [37]).

    We consider the Van der Waal's equation representing the real and ideal behaviour of gass is prescribed as:

    (P+a1m2V2)(Vmb1)=mRT. (4.3)

    Eq (4.3) can be transformed to following nonlinear form:

    PV3(mb1P+mRT)V2+a1m2Va1m3b1. (4.4)

    After appropriately choosing the needed parameters and unknown constants we can find the following nonlinear function:

    0.986˜u35.181˜u2+9.067˜u5.289=0, (4.5)

    where the variable ˜u shows the volume of the gas. We take ˜u0=3.10 as an initial guess for computational evaluations. The mathematical computations for the equation (4.5) are calculated in Tables 57, for multiple values of q and β = 0.5. Following the steps of the Tables 57, we get the required solution for equation (4.5) i.e. ˜u=1.9298462428.

    Continuing step by step and evaluating values, Table 5 illustrates the accuracy and precision of results for ˜ui, i=1,2,3 whenever q one. One can also figure out that for q=0.9999 computed values of f(˜u1) = 4.436290e-01, f(˜u2)=1.030037e01, f(˜u3)=2.540698e02 by adopting QG1 give results more near to zero in comparison to f(˜u1)=4.437270e01, f(˜u2)=1.030704e01, f(˜u3)=2.544189e02 calculated by CG1. And for q=0.9999 & β = 0.5, equation (4.5) converges to the root ˜u9=1.929846242847 and f(˜u9)=9.996931e14.

    Table 6 investigate the precision and accuracy of the values of ˜u1,˜u2,˜u3 when the parameter q one parallel functional values f(˜u1),f(˜u2),f(˜u3) tend to zero. Moreover, one can also figure out that for q=0.9999 enumerated values of f(˜u1)=2.814977e01,f(˜u2)=4.108624e02,f(˜u3)=5.485842e03 at q=0.9999 by adopting QG2, are more near to zero in comparison with f(˜u1)=2.815532e01,f(˜u2)=4.111438e02,f(˜u3)=5.496367e03 computed by CG2. Also, following the steps of Table 6 and for q=0.9999 the equation (4.5) converges towards the root ˜u7=1.929846242847 and f(˜u7)=3.089402e19.

    We calculate the values ˜ui,f(˜ui), where i = 1, 2, 3, in the Table 7 that illustrates the accuracy of values ˜ui subject to constraint q approaches one. Moreover, it is apparently observed that the values of f(˜u1)=2.021924e01,f(˜u2)=2.062325e02,f(˜u3)=1.336893e03 at q=0.9999 computed by QG3, are near to zero in comparison with f(˜u1)=2.022301e01,f(˜u2)=2.063865e02,f(˜u3)=1.340965e03 determined by CG3. Also, the equation (4.5) converges to root ˜u6=1.929846242847 for q=0.9999 and corresponding functional value is attained as f(˜u6)=2.935505e21.

    Table 8 presents the comparative analysis of our new qiterative methods (QG1, QG2, QG3) with some other classical methods. In Table 8 the efficiency of methods is displayed with respect to number of iterations using the stopping criterium (4.1). It is observed that new methods are comparable with other methods and need less number of iterations required by the other methods of the same order.

    Example 4.3 (Motion of particle on an inclined plane see [35]). We consider the nonlinear model created due to the motion of a particle on an inclined plane whose inclination angle θ remodeled at a steady rate d(θ)dt=γ<0.

    ˜u(t)=h2γ2(eγteγt2sinγt). (4.6)

    We take ˜uo=1.2 as an initial guess for computational evaluation. The numerical findings for equation (4.6) are calculated in the Tables (8–10) by using QG1, QG2, QG3 for multiple values of q and β=0.5.

    The numeric values in Table 9, illustrate that one can obtain more precise values of ˜ui with the constraint q one and f(˜ui) attain zero value, where 1i3. It is also noted that the values of f(˜u1)=1.562110e01,f(˜u2)=5.384093e02,f(˜u3)=1.734706e02 computed by QG1 at q=0.9999 exist in the neighbourhood of zero more nearly in comparison to the values f(˜u1)=1.562383e01,f(˜u2)=5.386087e02,f(˜u3)=1.735750e02 calculated by CG1. Following the steps of the Table 9, the equation (4.6) converges towards the root ˜u9=0.3170617745 and f(˜u9)=8.400168e13, for q=0.9999.

    The results in Table 10, elaborate that one can obtain more precise values of ˜ui with the constraint q one and f(˜ui) attain zero value, where 1i3. By choosing q = 0.9999, it is also noted that the values of f(˜u1)=9.698942e02,f(˜u2)=1.973729e02,f(˜u3)=3.342707e03 computed by QG2 are nearer to zero in comparison to the values f(˜u1)=9.700799e02,f(˜u2)=1.974547e02,f(˜u3)=3.345242e03 calculated by CG2. Continuing the iterative procedure as presented in Table 10, the equation (4.6) converges to the root ˜u6=0.3170617746 for q=0.9999 and f(˜u6)=4.953192e14.

    Columns in the Table 11 demonstrate that one can obtain more precise values of ˜ui with the constraint that q 1 and f(˜ui) attain value zero, where 1i3. It is also noted that the values of f(˜u1)=6.887648e02,f(˜u2)=9.422356e03,f(˜u3)=8.107219e04 computed by QG3 at q=0.9999 are more adjacent to zero in comparison to the values f(˜u1)=6.889025e02,f(˜u2)=9.426571e03,f(˜u3)=8.115710e04 calculated by CG3. Following the steps of Table 11 and for q=0.9999, β = 0.5, the equation (4.6) converges to the root ˜u5=0.3170617746 and parallel functional values are obtained asf(˜u5)=4.850310e15.

    The second column (IT) in Table 12 illustrates the comparsion of different iterative methods with proposed methods in terms of number of iterations. It is clear from the computational results that new methods need less number of iterations as compared to other methods (NM, CM, NR, CG1) to meet the stopping criteria (4.1) or same in some cases when comparing with (CG2, CG3).

    Table 12.  Numerical comparison between different algorithms for Example 4.3.
    MethodsIT˜unf(˜un)Δ=|˜un˜un1|
    NM110.31706177457295714.956350e-751.531188e-37
    CM90.31706177457295711.243498e-775.423193e-39
    NR80.31706177457295711.000000e-1283.237049e-78
    CG1100.31706177457295715.694906e-271.579893e-13
    QG190.31706177454789058.400168e-131.165570e-07
    CG270.31706177457295711.689005e-338.264048e-12
    QG270.31706177457295712.308791e-211.478062e-12
    CG360.31706177457295711.996559e-492.670559e-13
    QG360.31706177457295714.881111e-261.447361e-13

     | Show Table
    DownLoad: CSV

    Remark 4.1. It is worthy to mention that when we evaluate the errors for the qiterative schemes then it oscillate for various values of q. The error reduces when q tends to the highest values uniting 0 and 1. Therefore, in Table 13 error for equations [(4.2), (4.5), (4.6)] are computed by using q = 0.9999 and β = 0.5 which will estimate the classical methods.

    Table 13.  Computational error of multistep qiterative methods for q = 0.9999, β = 0.5.
    Algorithm D (QG1)
    Equation Exact Solution Estimated solution Error
    (4.2) 1.20764782713091892701 1.20764782713091892669 2.415296e+00
    (4.5) 1.92984624284786221849 1.92984624284786221971 1.223749e-18
    (4.6) 0.31706177457295709503 0.31706177457295709503 1.524710e+00
    Algorithm E (QG2)
    Equation Exact Solution Estimated solution Error
    (4.2) 1.20764782713091892701 1.20764782713091903889 2.415296e+00
    (4.5) 1.92984624284786221849 1.92984624284786221849 2.469561e-21
    (4.6) 0.31706177457295709503 0.31706177457295709503 1.524710e+00
    Algorithm F (QG3)
    Equation Exact Solution Estimated solution Error
    (4.2) 1.20764782713091892701 1.20764782713091892701 2.415296e+00
    (4.5) 1.92984624284786221849 1.92984624284784816872 7.221984e-01
    (4.6) 0.31706177457295709503 0.31706177457295709503 1.524710e+00

     | Show Table
    DownLoad: CSV

    Example 4.4. (Algebraic and Transedental equations). This example comprises of a few nonlinear equations which help us to examine the reliability and effectiveness of our new qiterative methods.

    f2(˜u)=˜u3+4˜u210,f3(˜u)=˜u2e˜u3˜u+2,f4˜u)=˜u2(1˜u)5,f5(˜u)=(˜u39˜u2+24˜u20)1/3+e˜u/2,f6(˜u)=3˜u33˜u2+log(˜u+1),f7(˜u)=1000000e˜u+435000(e˜u1˜u)1564000,f8(˜u)=˜u˜u1ln[0.4(1˜u)0.40.5˜u]5+4.45977,f9(˜u)=˜u4+11.50˜u3+47.49˜u2+83.06325˜u+51.23266875.

    Some of these nonlinear equations are used by Chun[4] & Singh et al.[32] to validate the theoretical results. The last three numerical equations namely; f7(˜u), f8(˜u), f9(˜u) represent some real-world applications of nonlinear equations. These nonlinear equations are the transformations of some mathematical models that appeared in science and engineering. The first one nonlinear equation f7 is generated as a solution of mathematical modeling of the growth of population over short periods of time that can be written as in the form of differential equation:

    ddt(M(˜t))=λM(˜t)+ν, (4.7)

    where λ denotes the constant birth rate of population and M(˜t) denotes the number in the population at time ˜t, for details (see [35]). The second nonlinear equation f8 represents the physical constraint problem of fractional modification in a chemical reactor. The variable ˜u illustrates a fractional conversion of certain kind in a chemical reactor problem (see [39]). The value of ˜u is chosen between [0, 1] because for negative values of ˜u the equation f8 has no physical meaning. Therefore, within the limited reigion we have to select the initial guess carefully to find the real root of f8. The third nonlinear equation f9 is originated from the problem of the fraction conversion of nitrogen-hydrogen to ammonia which was investigated by [38]. The problem has the following form:

    f(˜u)=0.1868˜u2(˜u4)2(˜u2)3. (4.8)

    The values of temperature and pressure have been considered as 500℃ and 250 atm respectively which can be easily reduced to the equation f9.

    The Table 14 reflects the comparable outcomes of classical and qiterative methods by implementing the stoping criterium (4.1). From Table 14, it is also noted that we obtain identical results for both qanalogue of iterative methods (QG1, QG2 and QG3) and conventional classical iterative methods (CG1, CG2 and CG3). We consider two functions that are non-differentiable at points ˜u = 2, 3. When, we choose ˜u=2,3 as an initial guesses for f7(˜u) & f8(˜u) consectively then novel schemes QG1, QG2 and QG3 are appropriately implemented and offer quick concurrent solutions whereas, the classical methods crash for these functions which is a major advantage of using qiterative methods over the classical methods.

    Table 14.  Numerical comparison between different algorithms for test problems f2f9.
    MethodsIT˜un f(\tilde u_n) \Delta = |\tilde u_n-\tilde u_{n-1}|
    f_2(\tilde u) = \tilde u^3+4\tilde u^2-10 , \; \tilde u_0 = 1
    \mathsf{NM} 71.36523001341409684.708251e-872.411587e-44
    \mathsf{CM} 411.36523001341409682.134949e-223.631214e-12
    \mathsf{NR} 41.36523001341409689.105291e-556.121730e-19
    \mathsf{CG}1 51.36523001341409684.372042e-665.210944e-33
    \mathsf{QG}1 41.36523001341409687.767335e-183.542734e-13
    \mathsf{CG}2 31.36523001341409682.978405e-357.274667e-12
    \mathsf{QG}2 31.36523001341409682.360238e-228.108213e-12
    \mathsf{CG}3 31.36523001341409683.921312e-701.383883e-10
    \mathsf{QG}3 31.36523001341409681.894670e-344.902389e-18
    f_3(\tilde u) = \tilde u^2-e^ {\tilde u}-3 \tilde u+2 , \tilde u_0 = 2
    \mathsf{NM} 70.25753028543986082.117415e-1117.743422e-56
    \mathsf{CM} 80.25753028543986080.000000e+002.446258e-81
    \mathsf{NR} 50.25753028543986086.000000e-1278.934699e-54
    \mathsf{CG}1 80.25753028543986088.465472e-436.144157e-22
    \mathsf{QG}1 80.25753028543986081.286482e-192.227650e-15
    \mathsf{CG}2 70.25753028543986080.000000e+003.075530e-85
    \mathsf{QG}2 50.25753028543986085.065368e-195.739453e-10
    \mathsf{CG}3 50.25753028543986080.000000e+003.707751e-57
    \mathsf{QG}3 40.25753028543986081.679693e-281.245252e-14
    f_4(\tilde u) = \tilde u^2-(1-\tilde u)^5 , \tilde u _0 = 0.9
    \mathsf{NM} 80.34595481584824200.000000e+004.544036e-66
    \mathsf{CM} 80.34595481584824201.480844e-852.029382e-43
    \mathsf{CG}1 80.34595481584824200.000000e+002.610406e-88
    \mathsf{QG}1 60.34595481584824206.630895e-197.367776e-15
    \mathsf{NR} 50.34595481584824209.285837e-1103.587286e-37
    \mathsf{CG}2 50.34595481584824200.000000e+001.403062e-54
    \mathsf{QG}2 40.34595481584824208.037173e-241.594632e-15
    \mathsf{CG}3 40.34595481584824200.000000e+001.331388e-45
    \mathsf{QG}3 30.34595481584824201.013570e-243.590701e-12
    f_5(\tilde u) = \left(\tilde u^3-9\tilde u^2+24u-20\right)^{1/3}+e^{\tilde u/2} , \tilde u_0 = 2
    \mathsf{NM} Fail
    \mathsf{CM} Fail
    \mathsf{CG}1 Fail
    \mathsf{QG}1 70.96942644858323141.547311e-191.547311e-19
    \mathsf{CG}2 Fail
    \mathsf{QG}2 40.96942644858323142.510288e-181.084761e-09
    \mathsf{CG}3 Fail
    \mathsf{QG}3 40.96942644858323141.619641e-292.055797e-16
    f_6(\tilde u) = \sqrt[3]{\tilde u^3-3\tilde u^2}+\log(\tilde u+1) , \tilde u_0 = 3
    \mathsf{NM} Fail
    \mathsf{CM} Fail
    \mathsf{CG}1 Fail
    \mathsf{QG}1 92.69251767626217178.421577e-182.635399e-14
    \mathsf{CG}2 Fail
    \mathsf{QG}2 62.69251767626217179.040507e-201.206573e-12
    \mathsf{CG}3 Fail
    \mathsf{QG}3 52.69251767626217171.206573e-125.006635e-08
    f_7(\tilde u) = 1000000 e^ {\tilde u}+435000\Big(\frac{e^ {\tilde u}-1}{\tilde u}\Big)-1564000 , \tilde u_0 = 1.5
    \mathsf{NM} 70.10099792968574987.697779e-311.104193e-18
    \mathsf{NR} 50.10099792968574981.334042e-631.648664e-23
    \mathsf{CM} 60.10099792968574982.569791e-334.511244e-20
    \mathsf{CG}1 60.10099792968574988.119920e-734.614246e-39
    \mathsf{QG}1 50.10099792968574984.279781e-161.111148e-15
    \mathsf{CG}2 40.10099792968574981.016248e-491.818599e-18
    \mathsf{QG}2 30.10099792968574986.240159e-125.241915e-06
    \mathsf{CG}3 40.10099792968574980.000000e+001.034516e-33
    \mathsf{QG}3 30.10099792968574986.206248e-222.073657e-08
    f_{8}(\tilde u) = \frac{\tilde u}{\tilde u-1}-ln\Big(\frac{0.4(1-\tilde u)}{0.4-0.5\tilde u}\Big)^5+4.45977 , \tilde u_0 = 0.78
    \mathsf{NM} 100.72938180900586833.001866e-531.135988e-28
    \mathsf{CG}1 100.10099792968574981.331673e-542.417731e-29
    \mathsf{QG}1 100.72938180900586849.516168e-155.735822e-14
    \mathsf{NR} 70.72938180900586834.165525e-1139.043351e-40
    CM80.72938180900586836.074152e-371.142630e-20
    \mathsf{CG}2 70.72938180900586838.629663e-634.291582e-23
    \mathsf{QG}2 70.72938180900586837.870433e-192.737598e-15
    \mathsf{CG}3 60.72938180900586831.251705e-882.211567e-24
    \mathsf{QG}3 50.72938180900586803.053887e-146.166940e-08
    f_{9}(\tilde u) = \tilde u^4-7.79075\tilde u^3+14.7445 \tilde u^2+2.511 \tilde u-1.674 , \tilde u_0 = 0.1
    \mathsf{NM} 70.27775954284172071.147712e-783.628854e-4
    \mathsf{CM} 6divdivdiv
    \mathsf{NR} 50.27775954284172071.000000e-1271.985139e-50
    \mathsf{CG}1 60.27775954284172074.565893e-561.039764e-28
    \mathsf{QG}1 60.27775954284172070.000000e+008.647520e-46
    \mathsf{CG}2 50.27775954284172070.000000e+008.647520e-46
    \mathsf{QG}2 40.27775954284172079.989903e-246.521164e-15
    \mathsf{CG}3 30.27775954284172076.614501e-311.657701e-08
    \mathsf{QG}3 30.27775954284172073.291692e-221.652542e-08

     | Show Table
    DownLoad: CSV

    Remark 4.2 (see [16]). The efficiency index is calculated as \rho^\frac{1}{k} where k determines the required number of estimations per iteration imperatively applied to a step of a recursive method and \rho symbolizes the convergence order of the method.

    Efficiency index of \mathsf{CG}1 is 2^\frac{1}{4} = 1.89207 .

    Efficiency index of \mathsf{CG}2 is 3^\frac{1}{5} = 1.245731 .

    Efficiency index of \mathsf{CG}3 is 4^\frac{1}{6} = 1.259921 .

    Efficiency index of \mathsf{QG}1 is 2^\frac{1}{4} = 1.89207 .

    Efficiency index of \mathsf{QG}2 is 3^\frac{1}{5} = 1.245731 .

    Efficiency index of \mathsf{QG}3 is 4^\frac{1}{6} = 1.259921 .

    Finally, we come to an end that the efficiency indexes evaluated by \mathsf{QG}1 , \mathsf{QG}2 , \mathsf{QG}3 and \mathsf{CG}1 , \mathsf{CG}2 , \mathsf{CG}3 give identical outcomes.

    General formulation of the q -iterative schemes

    This section consists of some previous results which are used for the derivation of the generality of the q- iterative methods. Now, combining the entries u_k s' (\forall\; k = 1, 2, 3, \ldots, n) in (2.13), we acquire

    \begin{align*} \tilde u_1+\tilde u_2+\cdots+\tilde u_n = \tilde u_0+N_q\bigl(\tilde u_0+\tilde u_1+\cdots+\tilde u_{n-1}\bigr). \end{align*}

    From (2.16), we have

    \begin{align*} &\tilde u_0 = \kappa-\frac{f(\kappa)g(\kappa)}{D_qf(\kappa)g(\kappa)+D_q g(\kappa)f(q\kappa)}, \end{align*}

    and

    \begin{align*} &\tilde u_0+\tilde u_1 = \tilde u_0-\frac{f(\tilde u_0)g(\kappa)}{D_qf(\kappa)g(\kappa)+D_q g(\kappa)f(q\kappa)} = \tilde u_0+N_q(\tilde u_0), \\ & \tilde u = \tilde u_0+\tilde u_1+\tilde u_2 = \tilde u_0+\tilde u_1-\frac{f(\tilde u_0+\tilde u_1)g(\kappa)}{D_qf(\kappa)g(\kappa)+D_q g(\kappa)f(q\kappa)} = \tilde u_0+N_q(\tilde u_0+\tilde u_1). \end{align*}

    Now, if \tilde u is approximated by

    \begin{align} &\tilde u = \tilde u_0+\tilde u_1+\cdots+\tilde u_n = \tilde u_0+N_q(\tilde u_0+\tilde u_1+\cdots+\tilde u_{n-1}), \\ &\tilde u = \tilde u_0+\tilde u_1+\cdots+\tilde u_{n-1}-\frac{f(\tilde u_0+\tilde u_1+\cdots+\tilde u_{n-1})g(\kappa)}{D_qf(\kappa)g(\kappa)+D_q g(\kappa)f(q\kappa)}, \\ &\tilde u = \tilde u_0+\tilde u_1+\cdots+\tilde u_n = \tilde u_0+\tilde u_1+\cdots+\tilde u_{n-1}-\frac{f(\tilde u_0+\tilde u_1+\cdots+\tilde u_{n-1})g(\kappa)}{D_qf(\kappa)g(\kappa)+D_q g(\kappa)f(q\kappa)}, \end{align} (4.9)
    \begin{align} &\tilde u_n = -\frac{f(\tilde u_0+\tilde u_1+\cdots+\tilde u_{n-1})g(\kappa)}{D_qf(\kappa)g(\kappa)+D_q g(\kappa)f(q\kappa)}\qquad (\forall\; n = 1, 2, 3, \ldots). \end{align} (4.10)

    Therefore, (4.9) gives the following iterative scheme

    \begin{align} \begin{cases} &\tilde u_0 = \kappa-\frac{f(\kappa)g(\kappa)}{D_qf(\kappa)g(\kappa)+D_q g(\kappa)f(q\kappa)}, \notag\\ &\tilde u_0+\tilde u_1 = \tilde u_0-\frac{f(\tilde u_0)g(\kappa)}{D_qf(\kappa)g(\kappa)+D_q g(\kappa)f(q\kappa)}, \notag\\ &\tilde u_0+\tilde u_1+\tilde u_2 = \tilde u_0+\tilde u_1-\frac{f(\tilde u_0+\tilde u_1)g(\kappa)}{D_qf(\kappa)g(\kappa)+D_q g(\kappa)f(q\kappa)}, \notag\\ &\vdots \notag\\ &\tilde u_0+\tilde u_1+\tilde u_2+...+\tilde u_{n-1}+\tilde u_n = \tilde u_0+\tilde u_1+\tilde u_2+...+\tilde u_{n-1}-\frac{f(\tilde u_0+\tilde u_1+\tilde u_2+...+\tilde u_{n-1})g(\kappa)}{D_qf(\kappa)g(\kappa)+D_q g(\kappa)f(q\kappa)}. \end{cases} \end{align}

    This relation enables and allows us to propose the subsequent iterative method.

    \begin{align} \begin{cases} &\tilde v_0 = \tilde u_m, \\ &\tilde v_1 = y_0-\frac{f(\tilde v_0)g(\tilde u_n)}{D_qf( \tilde v_o)g(\tilde u_n)+f(q \tilde v_o)D_q g(\tilde u_n)}, \\ &\tilde v_2 = y_1-\frac{f(\tilde v_1)g(\tilde u_n)}{D_qf(\tilde v_o)g(\tilde u_n)+f(q \tilde v_o)D_q g(\tilde u_n)}, \\ &\tilde v_3 = y_2-\frac{f(\tilde v_2)g(\tilde u_n)}{D_qf(\tilde v_o)g(\tilde u_n)+f(q \tilde v_o)D_q g(\tilde u_n)}, \\ &\vdots \\ &\tilde v_{n+1} = \tilde v_n-\frac{f(\tilde v_n)g(\tilde u_n)}{D_qf(\tilde v_o)g(\tilde u_n)+f(q \tilde v_o)D_q g(\tilde u_n)}, \\ &\tilde u_{m+1} = \tilde v_{n+1}. \end{cases} \end{align} (4.11)

    This is convergent generalized q- iterative scheme which has order of convergence n+2 for n = 0, 1, 2, \ldots proof is simple and starightforward.

    Remark 4.3. System of nonlinear equations emerges when several scientific and technological challenges are involved. Many integral equations, boundary value problems, minimization problems, and variational problems may also be reduced to the system of nonlinear equations (see [40,41,44]). We consider the system of nonlinear equations of the form:

    \begin{align*} f_1(\tilde u_1, \tilde u_2, ..., \tilde u_n)& = 0, \\ f_2(\tilde u_1, \tilde u_2, ..., \tilde u_n)& = 0, \\ f_3(\tilde u_1, \tilde u_2, ..., \tilde u_n)& = 0, \\ &\vdots\\ f_n(\tilde u_1, \tilde u_2, ..., \tilde u_n)& = 0, \end{align*}

    where each function f_j , j = 1, 2, \dots, n maps a vector \tilde U = (\tilde u_1, \tilde u_2, ..., \tilde u_n) of the n -dimensional space R^{n} to the real line R . The above system of n nonlinear equations in n -unknowns can also be represented as:

    \begin{align} F(\tilde U) = (f_1(\tilde U), f_2(\tilde U), \dots, f_n(\tilde U))^t = 0. \end{align} (4.12)

    Where F:R^n\rightarrow R^n be nonlinear mapping from n -dimensional real linear space R^n into itself. The components f_j, j = 1, 2, ..., n , are the coordinate functions of F . The solution of the nonlinear system of equations in (4.12) may be defined as the process of finding a vector U^* = (u_1^*, u_2^* \dots, u_n^*)^t such that F(U^*) = 0 . We feel it worthwhile to mention that considering the methodology and idea of this article, one can present and analyze higher-order multistep iterative methods for solving a system of nonlinear equations (4.12). It is an open problem to broaden the concept and ideas of this study for solving the boundary value problems and associated issues. This is another recommendation for prospective research.

    Study and formulation of numerical results in quantum calculus induce interest due to the high demand in mathematics and easy implementation. This manuscript introduces some novel iterative schemes to find the estimated solution of nonlinear equations with success in quantum calculus. The key motivation of proposing q- iterative schemes is to overcome differentiability and convergence issues while getting solutions of algebraic equations. These new iterative schemes are applicable for different choices of an auxiliary function and derived by considering the valuable Daftardar-Jafari decomposition technique. We develop the comparative analysis of newly proposed methods with the traditional iterative methods to demonstrate the performance and efficiency of q- iterative schemes. Moreover, it is shown that the numerical results obtained for both conventional and q- iterative methods remain identical. Also, the errors connected with the suggested schemes are relatively marginal by selecting the value of q approaches to one. Hence, it is evident that the transformation of iterative methods in the q- calculus framework which we referred to as q- analogue of iterative schemes, is better than classical methods, and in limited cases when the parameter q\rightarrow 1, these methods reduces to the classical iterative methods. The significant challenge of dealing with these schemes which necessitate more exploration is that to get results with high accuracy, we must estimate the value of q in (0, 1).

    Our utilization here of the q- calculus in the development of the iterative methods are supposed to promote and motivate major future breakthroughs in Mathematical analysis. It is noticed that in (p, q) analysis the extra parameter p is clearly redundant, Srivastava (see [42,p. 340] and [43,pp. 1511-1512]; see also the related recent works [45,46]) revealed that the so-called (p, q) variations of the suggested q- results which are obtained by inconsequentially and trivially adding a redundant parameter p as quite simple and insignificant modification of the standard q- calculus. Along these lines, while we reinforce and revitalize the q- results introduced in this paper, together with potential q- extensions of other similar developments in physical and engineering sciences, we do not encourage and support the so-called (p, q) -variations of the suggested q- results which are obtained by inconsequentially and trivially adding a redundant or superfluous parameter p .

    The authors would like to thank the Rector, COMSATS University Islamabad, Islamabad Pakistan, for providing excellent research and academic environments.

    The authors agree with the contents of the manuscript and there is no conflict of interest among the authors.



    [1] N. Arada, E. Casas, F. Tröltzsch, Error estimates for the numerical approximation of a semilinear elliptic control problem, Comput. Optim. Appl., 23 (2002), 201–229. https://doi.org/10.1023/A:1020576801966 doi: 10.1023/A:1020576801966
    [2] W. Alt, On the approximation of infinite optimization problems with an application to optimal control problems, Appl. Math. Optim., 12 (1984), 15–27. https://doi.org/10.1007/BF01449031 doi: 10.1007/BF01449031
    [3] W. Alt, U. Felgenhauer, M. Seydenschwanz, Euler discretization for a class of nonlinear optimal control problems with control appearing linearly, Comput. Optim. Appl., 69 (2018), 825–856. https://doi.org/10.1007/s10589-017-9969-7 doi: 10.1007/s10589-017-9969-7
    [4] J. Bonnans, N. Osmolovskiĭ, Second-order analysis of optimal control problems with control and initial-final state constraints, J. Convex Anal., 17 (2010), 885–913.
    [5] J. Bonnans, X. Dupuis, L. Pffiffer, Second-order sufficient conditions for strong solutions to optimal control problems, ESAIM: COCV., 20 (2014), 704–724. https://doi.org/10.1051/cocv/2013080 doi: 10.1051/cocv/2013080
    [6] L. Bonifacius, K. Pieper, Konstantin, B. Vexler, A priori error estimates for space-time finite element discretization of parabolic time-optimal control problems, SIAM J. Control Optim., 57 (2019), 129–162. https://doi.org/10.1137/18M1166948 doi: 10.1137/18M1166948
    [7] M. Baccouch, Analysis of a posteriori error estimates of the discontinuous Galerkin method for nonlinear ordinary differential equations, Appl. Numer. Math., 106 (2016), 129–153. https://doi.org/10.1016/j.apnum.2016.03.008 doi: 10.1016/j.apnum.2016.03.008
    [8] T. Bayen, F. Silva, Second order analysis for strong solutions in the optimal control of parabolic equations, SIAM J. Control Optim., 54 (2016), 819–844. https://doi.org/10.1137/141000415 doi: 10.1137/141000415
    [9] C. Christof, B. Vexler, New regularity results and finite element error estimates for a class of parabolic optimal control problems with pointwise state constraints, ESAIM: COCV., 27 (2021), 4. https://doi.org/10.1051/cocv/2020059 doi: 10.1051/cocv/2020059
    [10] E. Casas, F. Tröltzsch, Second-order optimality conditions for weak and strong local solutions of parabolic optimal control problems, Vietnam J. Math., 44 (2016), 181–202. https://doi.org/10.1007/s10013-015-0175-6 doi: 10.1007/s10013-015-0175-6
    [11] E. Casas, F. Tröltzsch, Second order analysis for optimal control problems: improving results expected from abstract theory, SIAM J. Optim., 22 (2012), 261–279. https://doi.org/10.1137/110840406 doi: 10.1137/110840406
    [12] K. Chrysafinos, Convergence of discontinuous Galerkin approximations of an optimal control problem associated to semilinear parabolic PDE's, ESAIM Math. Model. Num., 44 (2010), 189–206. https://doi.org/10.1051/m2an/2009046 doi: 10.1051/m2an/2009046
    [13] A. L. Dontchev, W. W. Hager, Lipschitzian stability in nonlinear control and optimization, SIAM J. Control Optim., 31 (1993), 569–603. https://doi.org/10.1137/0331026 doi: 10.1137/0331026
    [14] A. L. Dontchev, W. W. Hager, The Euler approximation in state constrained optimal control, Math. Comp., 70 (2000), 173–203. https://doi.org/10.1090/S0025-5718-00-01184-4 doi: 10.1090/S0025-5718-00-01184-4
    [15] A. L. Dontchev, W. W. Hager, V. M. Veliov, Second-order Runge-Kutta approximations in control constrained optimal control, SIAM J. Numer. Anal., 38 (2000), 202–226. https://doi.org/10.1137/S0036142999351765 doi: 10.1137/S0036142999351765
    [16] A. L. Dontchev, M. I. Krastanov, I. V. Kolmanovsky, M. M. Nicotra, V. M. Veliov, Lipschitz Stability in Discretized Optimal Control with Application to SQP, SIAM J. Control Optim., 57 (2019), 468–489. https://doi.org/10.1137/18M1188483 doi: 10.1137/18M1188483
    [17] A. L. Dontchev, I. V. Kolmanovsky, M. I. Krastanov, V. M. Veliov, P. T. Vuong, Approximating optimal finite horizon feedback by model predictive control, Syst. Control Lett., 139 (2020), 104666. https://doi.org/10.1016/j.sysconle.2020.104666 doi: 10.1016/j.sysconle.2020.104666
    [18] M. Delfour, W. W. Hager, F. Trochu, Discontinuous Galerkin methods for ordinary differential equations, Math. Comp., 36 (1981), 455–473. https://doi.org/10.1090/S0025-5718-1981-0606506-0 doi: 10.1090/S0025-5718-1981-0606506-0
    [19] D. Estep, A posteriori error bounds and global error control for approximation of ordinary differential equations, SIAM J. Numer. Anal., 32 (1995), 1–48. https://doi.org/10.1137/0732001 doi: 10.1137/0732001
    [20] G. Elnagar, M. A. Kazemi, M. Razzaghi, The pseudospectral Legendre method for discretizing optimal control problems, IEEE T. Automat. Contr., 40 (1995), 1793–1796. https://doi.org/10.1109/9.467672 doi: 10.1109/9.467672
    [21] U. Felgenhauer, On stability of bang-bang type controls, SIAM J. Control Optim., 41 (2003), 1843–1867. https://doi.org/10.1137/S0363012901399271 doi: 10.1137/S0363012901399271
    [22] C. Glusa, E. Otárola, Error estimates for the optimal control of a parabolic fractional PDE, SIAM J. Numer. Anal., 59 (2021), 1140–1165. https://doi.org/10.1137/19M1267581 doi: 10.1137/19M1267581
    [23] D. Hafemeyer, F. Mannel, I. Neitzel, B. Vexler, Finite element error estimates for one-dimensional elliptic optimal control by BV-functions, Math. Control Relat. F., 10 (2020), 333–363. https://doi.org/10.3934/mcrf.2019041 doi: 10.3934/mcrf.2019041
    [24] J. Henriques, J. Lemos, J. Eça, L. Gato, A. Falcão, A high-order discontinuous Galerkin method with mesh refinement for optimal control, Automatica, 85 (2017), 70–82. https://doi.org/10.1016/j.automatica.2017.07.029 doi: 10.1016/j.automatica.2017.07.029
    [25] D. Meidner, B. Vexler, A priori error estimates for space-time finite element discretization of parabolic optimal control problems. Part I: Problems without control constraints, SIAM J. Control Optim., 47 (2008), 1150–1177. https://doi.org/10.1137/070694016 doi: 10.1137/070694016
    [26] D. Meidner, B. Vexler, A priori error estimates for space-time finite element discretization of parabolic optimal control problems. Part II: problems with control constraints, SIAM J. Control Optim., 47 (2008), 1301–1329. https://doi.org/10.1137/070694028 doi: 10.1137/070694028
    [27] D. Meidner, B. Vexler, Optimal error estimates for fully discrete Galerkin approximations of semilinear parabolic equations, ESAIM Math. Model. Num., 52 (2018), 2307–2325. https://doi.org/10.1051/m2an/2018040 doi: 10.1051/m2an/2018040
    [28] R. Manohar, R. K. Sinha, Space-time a posteriori error analysis of finite element approximation for parabolic optimal control problems: A reconstruction approach, Optim. Contr. Appl. Met., 41 (2020), 1543–1567. https://doi.org/10.1002/oca.2618 doi: 10.1002/oca.2618
    [29] I. Neitzel, B. Vexler, A priori error estimates for space-time finite element discretization of semilinear parabolic optimal control problems, Numer. Math., 120 (2012), 345–386. https://doi.org/10.1007/s00211-011-0409-9 doi: 10.1007/s00211-011-0409-9
    [30] E. Otárola, An adaptive finite element method for the sparse optimal control of fractional diffusion, Numer. Meth. Part. D. E., 36 (2020), 302–328. https://doi.org/10.1002/num.22429 doi: 10.1002/num.22429
    [31] N. P. Osmolovskii, H. Maurer, Equivalence of second order optimality conditions for bang-bang control problems. Part 1: Main results, Control Cybern., 34 (2005), 927–950.
    [32] N. P. Osmolovskii and H. Maurer, Equivalence of second order optimality conditions for bang-bang control problems. Part 2: Proofs, variational derivatives and representations, Control Cybern., 36 (2007), 5–45.
    [33] I. M. Ross, M. Karpenko, A review of pseudospectral optimal control: From theory to flight, Annu. Rev. Control, 36 (2012), 182–197. https://doi.org/10.1016/j.arcontrol.2012.09.002 doi: 10.1016/j.arcontrol.2012.09.002
    [34] D. Schötzau, C. Schwab, An hp a priori error analysis of the DG time-stepping method for initial value problems, Calcolo, 37 (2000), 207–232. https://doi.org/10.1007/s100920070002 doi: 10.1007/s100920070002
    [35] B. Vexler, Finite element approximation of elliptic Dirichlet optimal control problems, Numer. Func. Anal. Opt., 28 (2007), 957–973. https://doi.org/10.1080/01630560701493305 doi: 10.1080/01630560701493305
    [36] J. Vlassenbroeck, R. Van Dooren, A Chebyshev technique for solving nonlinear optimal control problems, IEEE T. Automat. Contr., 33 (1988), 333–349. https://doi.org/10.1109/9.192187 doi: 10.1109/9.192187
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2032) PDF downloads(97) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog