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1. Introduction

In the present work, we discuss discontinuous Galerkin (DG) approximations to a nonlinear optimal
control problem (OCP) of ordinary differential equations (ODEs). More precisely, we consider the
following optimal control problem:

Minimize J(u, x) :=
∫ T

0
g(t, x(t), u(t)) dt, (1.1)

subject to 
x′(t) = f (t, x(t), u(t)), a.e. on [0,T ],
x(0) = x0,

u ∈ Uad, a.e. on [0,T ].
(1.2)
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Here u(t) ∈ Rm is the control, and x(t) ∈ Rd is the state of the system at time t ∈ [0,T ]. Further,
g : [0,T ] × Rd × Rm → R and f : [0,T ] × Rd × Rm → Rd are given, and the set of admissible controls
Uad ⊂ U := L∞(0,T ;Rm) is given by

Uad := {u(t) ∈ Rm : u` ≤ u(t) ≤ uu}

for some u`, uu ∈ R
m. Here the inequality is understood in the component-wise sense.

There have been a lot of study on the numerical computation for the above problem. The numerical
schemes need a discretization of the ODEs, for example, the Euler discretization for the OCPs of
ODEs are well studied for sufficiently smooth optimal controls based on strong second-order optimality
conditions [2,13,14]. For optimal control problems with control appearing linearly, the optimal control
may be discontinuous, for an instance, bang-bang controller, and such conditions may not be satisfied.
In that respect, there have been many studies to develop new second-order optimality conditions for the
optimal control problems with control appearing linearly [3,21,31,32]. The second-order Runge-Kutta
approximations for the OPCs was studied in [15]. Recently, works [16, 17] developed a novel stability
technique to obtain new error estimates for the Euler discretization of OCPs.

The Pseudo-spectral method is also popularly used for the discretization due to its capability of
high-order accuracy for smooth solutions to the OCPs [20, 33]. However, the high-order accuracy
of the Pseudo-spectral method is known to be often lost for bang-bang OCPs, where the solutions
may not be smooth enough. To handle this issue, Henriques et al. [24] proposed a mesh refinement
method based on a high-order DG method for the OCPs of ODEs. The DG method discretizes the
time interval in small time subintervals, in which the weak formulation is employed. The test functions
are usually taken as piecewise polynomials which can be discontinuous at boundaries of the time
interval, see Section 2 for more detailed discussion. We refer to [7, 19, 34] and references therein
for DG methods for ODEs. It is also worth to refer to papers for the analysis of the discretization
of optimal control problems of PDEs, for example, the elliptic problems [1, 23, 35] and the parabolic
problems [9, 12,25–29]. In addition, the recent works [22, 30] studied the discretization of the optimal
control for fractional diffusion problems.

In this paper, we provide a rigorous analysis for the DG discretization applied to the nonlinear
OCPs (1.1) and (1.2) with arbitrary order r ∈ N ∪ {0} for general functions f and g with suitable
smoothness. Motivated from a recent work by Neitzel and Vexler [29], we impose the non-degeneracy
condition (2.4) on an optimal control ū of the OCPs (1.1) and (1.2). We obtain the existence and
convergence results for the semi-discretized case and the fully discretized case. The rates of the
convergence results depend on the regularity of the optimal solution ū and its adjoint state with the
degree of piecewise polynomials mentioned above, see Section 2 for details.

It is worth noticing that the control is not required to be linear in the state Eq (1.2), and the control
spaceUad allows to take into account discontinuous controls. The constraints for controls are defined
by lower and upper bounds. Moreover, the cost functional is also given in a general form, not limited
to be quadratic. We mention that the DG discretization of zeroth order was used in [29] for the optimal
control problem for the semi-linear parabolic equation where the control is linearly applied to the
system.

For notational simplicity, we denote by I := (0,T ), X := L2(I;Rd), and (v,w)I = (v,w)L2(I;Rd). We
also use simplified notations:

‖ · ‖Lp(I) := ‖ · ‖Lp(I;Rd) and ‖ · ‖W p,∞(I) := ‖ · ‖W p,∞(I;Rd)
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for 1 ≤ p ≤ ∞. Throughout this paper, for any compact set K ⊂ Rm, we assume that
f , g ∈ C([0,T ]; W3,∞(Rd × K)) satisfy

sup
0≤t≤T

(‖ f (t, ·, ·)‖W3,∞ + ‖g(t, ·, ·)‖W3,∞) ≤ M (1.3)

for some M > 0.
We next introduce the control-to-state mapping G : U → X ∩ L∞(I;Rd), G(u) = x, with x

solving (1.2). It induces the cost functional j : U → R+, u 7→ J(u,G(u)). This makes the optimal
control problems (1.1) and (1.2) equivalent to

Minimize j(u) subject to u ∈ Uad. (1.4)

Definition 1.1. A control ū ∈ Uad is a local solution of (1.4) if there exists a constant ε > 0 such that
j(u) ≥ j(ū) holds for all u ∈ Uad with ‖ū − u‖L2(I) ≤ ε.

In the proof of the existence and convergence results, the main task is to show that the strong
convexity of j induced by the second-order optimality condition (2.4) is preserved near the optimal
control ū and also for its DG discretized version jh. It is achieved using the second-order analysis
in Section 4. As a preliminary, we also justify that j and jh are twice differentiable, by showing the
differentiability of the control-to-state mapping G and its discretized version Gh in the appendix.

In Section 2, we explain the DG discretization of the ODEs and the OCP. Then we present the
main results for the semi-discretized case and provide some preliminary results. In Section 3, the
adjoint problems are studied. Section 4 is devoted to study the second order analysis of the cost
functionals j and jh. In Section 5, we prove the existence of the local solution and obtain the
convergence rate for the semi-discretized case. Section 6 is devoted to establish the existence and
convergence results for the fully discretized case. Finally, in Section 7, we perform several numerical
experiments for linear and nonlinear OCPs. In Appendix A, we obtain first and second order
derivatives of the control-to-state mapping G. Appendix B is devoted to prove a Grönwall-type
inequality for the discretization of the ODEs (1.2) involving the control variable. It is used in
Appendix C to establish the differentiability of the discrete control-to-state mapping Gh and obtain the
derivatives. In Appendix D, we prove Lemmas 3.3 and 3.5, which reformulate the first derivatives of
the cost functionals in terms of the adjoint states. In Appendix E, we derive the formulas on the
second order derivatives of the cost functionals.

2. DG formulation

In this section, we describe the approximation of the OCPs (1.1) and (1.2) with the DG method, and
then we state the main results on the semi-discrete case. First, we illustrate the discretization of the
ordinary differential equations {

x′(t) = F(t, x(t)), t ∈ (0,T ),
x(0) = x0,

(2.1)

where x : [0,T ]→ Rd, F : (0,T ) × Rd → Rd is uniformly Lipschitz continuous with respect to x, i.e.,

‖F(t, u) − F(t, v)‖ ≤ L‖u − v‖, u, v ∈ Rd, t ∈ (0,T ),
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with a constant L > 0. By the Cauchy Lipschitz theorem, we have the existence and uniqueness of
classical solution x of (2.1).

Given an integer N ∈ N, we consider a partition of I into N-intervals {In}
N
n=1 given by In = (tn−1, tn)

with nodes 0 =: t0 < t1 < · · · < tN−1 < tN := T . Let hn be the length of In, i.e., hn = tn − tn−1, and we set
h := max1≤n≤N hn. For a piecewise continuous function ϕ : [0,T ]→ Rd, we also define

ϕ+
n := lim

t→0+
ϕ(tn + t), 0 ≤ n ≤ N − 1, ϕ−n := lim

t→0+
ϕ(tn − t), 1 ≤ n ≤ N.

The jumps across the nodes is denoted by [ϕ]n := ϕ+
n −ϕ

−
n for 1 ≤ n ≤ N −1. For r ∈ N∪{0}, we define

Xr
h := {ϕh ∈ X : ϕh|In ∈ Pr(In), 1 ≤ n ≤ N},

where Pr(In) represents the set of all polynomials of t up to order r defined on In with coefficients in
Rd. Then the DG approximate solution xh of (2.1) is given as

N∑
n=1

(
x′(t) − F(t, x(t)), ϕ(t)

)
In

+

N∑
n=2

([x]n−1, ϕ
+
n−1) + (x+

0 , ϕ
+
0 ) = (x0, ϕ

+
0 ) (2.2)

for all ϕ ∈ Xr
h. Here (·, ·) denotes the inner product in Rd, and

(A(t), B(t))In =

∫
In

(A(t), B(t)) dt

for integrable functions A, B : In → R
d.

We recall the error estimate for the DG approximation of (2.1) from [34, Corollary 3.15 &
Theorem 2.6].

Theorem 2.1. Let x(t) be the solution of (2.1) such that x ∈ Wk,∞(I;Rd) for some k ≥ 1. Suppose that
hL < 1. Then there exists a unique DG approximate solution xh ∈ Xr

h to (2.2) of order r ∈ N ∪ {0}.
Furthermore, we have

sup
0≤t≤T

|xh(t) − x(t)| ≤ Chmin{r+1,k}‖x‖Wk,∞(I;Rd),

where C > 0 is determined by L, T , and r.

Now, for given u ∈ U, we consider the approximate solution x ∈ Xr
h of the control problem (1.2)

satisfying
N∑

n=1

(
x′(t) − f (t, x(t), u(t)), ϕ(t)

)
In

+

N∑
n=2

([x]n−1, ϕ
+
n−1) + (x+

0 , ϕ
+
0 ) = (x0, ϕ

+
0 ) (2.3)

for all ϕ ∈ Xr
h.

Throughout the paper, we will consider local solutions ū to (1.4) satisfying the following non-
degeneracy condition.
Assumption 1. Let ū ∈ Uad be the local solution of (1.1). We assume that it satisfies

j′′(ū)(v, v) ≥ γ‖v‖2L2(I), ∀ v ∈ U (2.4)

for some γ > 0.
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The differentiability of the cost functional j(u) = J(u,G(u)) with respect to u ∈ U is induced
by the differentiability of the solution mapping G(u) justified in Appendix A (see also the proofs of
Lemmas 3.3 and E.1). Note that the above second-order optimality condition holds under suitable
regularity assumptions on the function f , g, and solutions, see Remark E.2 for a detailed discussion.
We refer to [4,5] for further discussion on the second-order condition and also [8,10,11] for the optimal
control problem of PDEs.

In addition, we assume that ū ∈ Uad has bounded total variation, i.e., V(ū) ≤ R/2 for a fixed value
R > 0. Here the total variation V( f ) for f ∈ L∞(0,T ) is defined as

V( f ) := sup
P

n∑
j=0

| f (x j) − f (x j+1)|,

where P is any partition P = {0 = x0 < x1 < x2 < · · · < xn < xn+1 = T }.
Considering a discrete control-to-state mapping Gh : U → Xr

h, u 7→ Gh(u), where Gh(u) is the
solution of (2.3), we introduce the discrete cost functional jh : U → R+, u 7→ J(u,Gh(u)). Let us
consider the following discretized version of (1.1):

min
u∈Uad∩VR

jh(u), (2.5)

where
VR = {u ∈ U : V(u) ≤ R}.

We now define the local solution to (2.5) as follows.

Definition 2.2. A control ūh ∈ Uad ∩VR is called a local solution of (2.5) if there exists an δ > 0 such
that jh(u) ≥ jh(ūh) holds for all u ∈ Uad ∩VR with ‖u − ūh‖L2(I) ≤ δ.

In the first main result, we prove the existence of the local solution to the approximate problem (2.5).

Theorem 2.3. Let ū ∈ Uad ∩VR/2 be a local solution of (1.1) satisfying Assumption 1. Then, there are
constants ε > 0 and h0 > 0 such that for h ∈ (0, h0) the approximate problem (2.5) has a local solution
ūh ∈ Uad ∩VR satisfying ‖ūh − ū‖L2(I) < ε.

The second main result is the following convergence estimate of the approximate solutions.

Theorem 2.4. Let ū ∈ Uad ∩ VR/2 be a local solution of (1.4) satisfying Assumption 1, let ūh be the
approximate solution found in Theorem 2.3, and let λ(ū) be the adjoint state defined in Definition 3.1
below. Assume that the state x̄ = G(ū) belongs to Wk1,∞(I;Rd) and the adjoint state λ(ū) belongs to
Wk2,∞(I;Rd) for some k1, k2 ≥ 1. Then we have

‖ū − ūh‖L2(I) = O(hmin{r+1,k1,k2}).

The required regularity of solutions x̄ and λ(ū) can be obtained under suitable smoothness
assumptions on f , g, and ū, see Remark 3.2 below. The above result establishes the error estimate
concerning the discretization of the ODEs in the OCPs. We will give the proofs of Theorems 2.3
and 2.4 in Section 5. On the other hand, to implement a numerical computation to the OCP (1.4), one
needs also to consider an approximation of the control space with a finite dimensional space. In
Section 6, we will see that the proof of Theorem 2.4 can be extended to the error analysis
incorporating the discretization of the control space.
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3. Adjoint states

This section is devoted to study the adjoint states to the OCP (1.1) and its discretized version (2.5).
We introduce a bilinear form b(·, ·) for x ∈ W1,∞(0,T ) and ϕ ∈ X by

b(x, ϕ) :=
∫ T

0
x′(t) · ϕ(t) dt. (3.1)

Then, for a fixed control u ∈ U and initial data x0 ∈ R
d, a weak formulation of (1.2) can be written as

b(x, ϕ) =

∫ T

0
f (t, x(t), u(t)) · ϕ(t) dt (3.2)

for all ϕ ∈ X with x(0) = x0.

Definition 3.1. For a control u ∈ U, we define the adjoint state λ = λ(u) ∈ W1,∞(0,T ) as the solution
to

λ′(t) = −∂x f (t, x(t), u(t))λ(t) + ∂xg(t, x(t), u(t)), (3.3)

with λ(T ) = 0. It satisfies the weak formulation

b(ϕ, λ) = (ϕ, ∂x f (·, x, u)λ − ∂xg(·, x, u))L2(I) (3.4)

for all ϕ ∈ X with λ(T ) = 0.

Remark 3.2. It follows from the Eqs (1.2) and (3.3) that if

f ∈ Cα
b (R+ × R

d × Rd), g ∈ Cβ
b(R+ × R

d × Rd) and u ∈ Cγ
b([0,T ]),

we have
x ∈ Cmin{α,γ}+1

b ([0,T ]) and λ ∈ Cmin{α,β,γ+1}
b ([0,T ]).

For u, v ∈ U, the derivative of j at u in the direction v is defined by

j′(u)v := lim
t→0+

j(u + tv) − j(u)
t

.

It is well-known that the derivative of the cost functional can be calculated with the adjoint state, as
described below.

Lemma 3.3. We have
j′(u)(v) = (∂ug(·, x, u) − ∂u f (·, x, u)λ(u), v)I (3.5)

for all v ∈ Uad, where x = G(u).

Proof. For the completeness of the paper, we give the proof in Appendix D.

Next we describe the adjoint problem for the approximate problem (2.5). For x, ϕ ∈ Xr
h, we define

B(x, ϕ) :=
N∑

n=1

(x′, ϕ)In +

N∑
n=2

([x]n−1, ϕ
+
n−1) + (x+

0 , ϕ
+
0 ). (3.6)

For approximate solution xh = Gh(u) ∈ Xr
h, the Eq (2.3) with control u ∈ U can be written as

B(xh, ϕ) = ( f (·, xh, u), ϕ)I + (x0, ϕ
+
0 ), ∀ϕ ∈ Xr

h. (3.7)

Now we define the adjoint equation for the approximate problem (2.5).
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Definition 3.4. The adjoint state λh = λh(u) ∈ Xr
h is defined as the solution of the following discrete

adjoint equation:
B(ϕ, λh) = (ϕ, ∂x f (·, xh, u)λh − ∂xg(·, xh, u))I , ∀ϕ ∈ Xr

h. (3.8)

In Appendix D, we briefly explain how the adjoint Eq (3.8) can be derived from the Lagrangian
related to (2.5). We also have an analogous result to Lemma 3.3.

Lemma 3.5. We have

j′h(u)(v) = (∂ug(·, xh, u) − ∂u f (·, xh, u)λh, v)I , ∀ v ∈ Uad, (3.9)

where xh = Gh(u).

Proof. The proof is given in Appendix D.

In order to prove the main results in Section 2, we shall use the following lemma.

Lemma 3.6. Let u ∈ U. Suppose that x = G(u) ∈ Wk1,∞(I;Rd) and λ = λ(u) ∈ Wk2,∞(I;Rd) for some
k1, k2 ≥ 1. Then we have

‖λ(u) − λh(u)‖L2(I) = O(hmin{k1,k2,r+1}). (3.10)

Proof. We recall from (3.4) and (3.8) that λ = λ(u) solves

b(ϕ, λ) − (ϕ, ∂x f (·, x, u)λ)L2(I) = −(ϕ, ∂xg(·, x, u))I , (3.11)

and λh = λh(u) solves

B(ϕ, λh) − (ϕ, ∂x f (·, x, u)λh)L2(I)

= −(ϕ, ∂xg(·, xh, u))L2(I) + (ϕ, (∂x f (·, xh, u) − ∂x f (·, x, u))λh)L2(I), ∀ϕ ∈ Xr
h.

(3.12)

Here x ∈ G(u) ∈ X and xh = Gh(u) ∈ Xh. The estimate of x − xh is induced from Theorem 2.1 as
follows:

‖x − xh‖L∞(I) = O(hmin{k1,r+1})‖x‖Wk1 ,∞(I). (3.13)

As an auxiliary function, we consider ζh ∈ Xh solving

B(ϕ, ζh) − (ϕ, ∂x f (·, x, u)ζh)I = −(ϕ, ∂xg(·, x, u))I , ∀ϕ ∈ Xr
h, (3.14)

which is the DG discretization of (3.11) in a backward way (see Lemma 3.7 below). Then, by
Theorem 2.1, we have

‖ζh − λ‖L∞(I) = O(hmin{k2,r+1})‖λ‖Wk2 ,∞(I). (3.15)

By (3.13), we obtain
∂xg(·, x, u) − ∂xg(·, xh, u) = O(hmin{k1,r+1})

and
(∂x f (·, xh, u) − ∂x f (·, x, u))λh(u) = O(hmin{k1,r+1}).

Combining these estimates with (3.12) and (3.14) gives

B(ϕ, λh − ζh) = (ϕ, ∂x f (·, x, u)(λh − ζh))I + (ϕ,R(t))I , ∀ϕ ∈ Xr
h,
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where R : I → Rd is given by

R(t) = (∂x f (·, xh, u) − ∂x f (·, x, u))λh(u) + ∂xg(·, x, u) − ∂xg(·, xh, u),

and it satisfies ‖R(t)‖ = O(hmin{k1,r+1}). This, together with Lemma B.4, yields

‖λh − ζh‖L∞(I) = O(hmin{k1,r+1}).

Combining this estimate with (3.15),

‖λh − λ‖L∞(I) = O(hmin{k1,k2,r+1}),

which completes the proof.

With abusing a notation for simplicity, let us define J as the interval I given a partition 0 = s0 <

s1 < · · · < sN−1 < sN = T with s j = tN− j. Also we set Xr
h,J as the DG space Xr

h with the new partition.
Then we have the following lemma.

Lemma 3.7. Assume that λ ∈ Xr
h is a solution to

B(φ, λ) = (φ, F(t, λ))I , ∀ φ ∈ Xr
h.

Then W : I → Rd defined by W(t) = λ(T − t) for t ∈ I = [0,T ] satisfies

B(W, ψ) = (F(t,W), ψ)I , ∀ ψ ∈ Xr
h,J.

Proof. By an integration by parts,

B(φ, λ) =

N∑
n=1

(φ′, λ)In +

N∑
n=2

([φ]n−1, λ
+
n−1) + (φ+

0 , λ
+
0 )

= −

N∑
n=1

(φ, λ′)In −

N−1∑
n=1

(φ−n , [λ]n) + (φ−N , λ
−
N),

which leads to

−

N∑
n=1

(φ, λ′)In −

N−1∑
n=1

(φ−n , [λ]n) + (φ−N , λ
−
N) = (φ, F(t, λ))I , ∀ φ ∈ Xr

h. (3.16)

We now observe that W(t) = λ(T − t) satisfies W ′(t) = −λ′(T − t) and [W]N−n = −[λ]n. We also
set ψ(t) = φ(T − t). Then ψ ∈ Xr

h,J and we have φ−n = ψ+
N−n. Considering Jn := (sn−1, sn), it holds that

Jn = IN+1−n for 1 ≤ n ≤ N. Using these notations, we write (3.16) as

N∑
n=1

(ψ,W ′)JN+1−n +

N−1∑
n=1

(ψ+
N−n, [W]N−n) + (ψ+

0 ,W
+
0 ) = (ψ, F(t,W))I , ∀ ψ ∈ Xr

h,J.

Rearranging this, we get

N∑
n=1

(W ′, ψ)Jn +

N−1∑
n=1

([W]n, ψ
+
n ) + (W+

0 , ψ
+
0 ) = (F(t,W), ψ)I , ∀ ψ ∈ Xr

h,J,

which is the desired equation B(W, ψ) = (F(t,W), ψ)I . The proof is finished.
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4. Second order analysis

In this section, we analyze the second order condition of the functions j and jh, which are essential
in the existence and convergence estimates in the next sections.

4.1. Second order condition for j

We defined the solution mapping G : U → X ∩ L∞(I;Rd) in the previous section. Here we present
Lipschitz estimates for the solution mapping G, its derivative G′, and the solution to the adjoint
Eq (3.4).

Lemma 4.1. There there exists C > 0 such that for all u, û ∈ Uad and v ∈ U we have

‖G(u) −G(û)‖L∞(I) ≤ C‖u − û‖L2(I), ‖G′(u)v −G′(û)v‖L∞(I) ≤ C‖u − û‖L2(I)‖v‖L2(I),

and
‖λ(u) − λ(û)‖L∞(I) ≤ C‖u − û‖L2(I).

Proof. Let us denote by x = G(u) and x̂ = G(û). Then it follows from (3.2) that

(x − x̂)′(t) = f (t, x(t), u(t)) − f (t, x̂(t), û(t)). (4.1)

By (1.3), there exists a constant C > 0 such that

| f (t, x(t), u(t)) − f (t, x̂(t), û(t))| ≤ C|x̂(t) − x(t)| + C|û(t) − u(t)|.

Using this estimate and applying the Grönwall inequality in (4.1), we get the inequality

‖x − x̂‖L∞(I) ≤ C‖u − û‖L1(I) ≤ C‖u − û‖L2(I).

This gives the first inequality. For the second one, if we set y = G′(u)v and ŷ = G′(û)v, then it follows
from Lemma A.1 that

(y − ŷ)′(t) = ∂x f (t, x(t), u(t))(y − ŷ)(t) + (∂x f (t, x, u) − ∂x f (t, x̂, û))ŷ(t)
+ (∂u f (t, x, u) − ∂u f (t, x̂, û))v(t).

This together with the first assertion above yields

‖y − ŷ‖L∞(I) ≤ C‖(∂x f (·, x, u) − ∂x f (·, x̂, û))ŷ‖L1(I)

+ C‖(∂u f (·, x, u) − ∂u f (·, x̂, û))v‖L1(I)

≤ C
(
‖x − x̂‖L2(I) + ‖u − û‖L2(I)

)
‖v‖L2(I)

≤ C‖u − û‖L2(I)‖v‖L2(I).

For notational simplicity, we denote by λ = λ(u) and λ̂ = λ(û). Then we get

−(λ − λ̂)′(t) = ∂x f (·, x, u)(λ − λ̂)(t) + (∂x f (·, x, u) − ∂x f (·, x̂, û))λ̂(t)
− (∂xg(·, x, u) − ∂xg(·, x̂, û))(t), t ∈ (0,T ),
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with (λ − λ̂)(T ) = 0. By applying the Grönwall inequality in a backward way, we obtain

‖λ − λ̂‖L∞(I) ≤ C‖(∂x f (·, x, u) − ∂x f (·, x̂, û))λ̂‖L1(I)

+ C‖∂xg(·, x, u) − ∂xg(·, x̂, û)‖L1(I)

≤ C(‖λ̂‖L∞(I) + 1)
(
‖x − x̂‖L∞(I) + ‖u − û‖L2(I)

)
≤ C‖u − û‖L2(I),

where we used
‖λ̂‖L∞(I) ≤ C‖∂xg‖L∞(I)

due to (3.3) and λ̂(T ) = 0. This completes the proof.

We now show that the second order condition of j holds near the optimal local solution ū ∈ Uad.

Lemma 4.2. Suppose that ū ∈ Uad satisfies Assumption 1. Then there exists ε > 0 such that

j′′(u)(v, v) ≥
γ

2
‖v‖2L2(I)

holds for all v ∈ U and all u ∈ Uad with ‖u − ū‖L2(I) ≤ 2ε. Here γ > 0 is given in (2.4).

Proof. Let y(t) = G′(u)v and y(ū)(t) = G′(ū)v. By using Lemma E.1, we find

j′′(u)(v, v) − j′′(ū)(v, v)

= −

∫ T

0
λ(t)

(
∂2 f

(∂x)2 (t, x, u)y2(t) + 2
∂2 f
∂x∂u

(t, x, u)y(t)v(t) +
∂2 f

(∂u)2 (t, x, u)v2(t)
)

dt

+

∫ T

0

∂2g
(∂x)2 (t, x, u)y2(t) + 2

∂2g
∂x∂u

(t, x, u)y(t)v(t) +
∂2g

(∂u)2 (t, x, u)v2(t) dt

+

∫ T

0
λ̄(t)

(
∂2 f

(∂x)2 (t, x̄, u)ȳ2(t) + 2
∂2 f
∂x∂u

(t, x̄, u)ȳ(t)v(t) +
∂2 f

(∂u)2 (t, x̄, u)v2(t)
)

dt

−

∫ T

0

∂2g
(∂x)2 (t, x̄, u)ȳ2(t) + 2

∂2g
∂x∂u

(t, x̄, u)ȳ(t)v(t) +
∂2g

(∂u)2 (t, x̄, u)v2(t) dt,

where we denoted by λ(t) := λ(u)(t), x(t) := G(u)(t), λ̄(t) := λ(ū)(t), and x̄(t) := G(ū)(t). On the other
hand, it follows from Lemma 4.1 that

‖x − x̄‖L∞(I) ≤ C‖u − ū‖L2(I), ‖y − ȳ‖L∞(I) ≤ C‖u − ū‖L2(I)‖v‖L2(I),

‖y‖L∞(I) ≤ C‖v‖L2(I), ‖λ‖L∞(I) + ‖λ̄‖L∞(I) ≤ C‖∂xg‖L∞(I), and
‖λ − λ̄‖L∞(I) ≤ C‖u − ū‖L2(I).

(4.2)

This together with the following estimate∫ T

0
|y2(t) − ȳ2(t)| dt ≤

∫ T

0
|y(t) + ȳ(t)||y(t) − ȳ(t)| dt

≤ ‖y − ȳ‖L2(I)

(
‖y‖L2(I) + ‖ȳ‖L2(I)

)
≤ C‖u − ū‖L2(I)‖v‖2L2(I),
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yields
|( j′′(u)(v, v) − j′′(ū)(v, v))| ≤ C‖u − ū‖L2(I)‖v‖2L2(I).

Combining this with (2.4) we have

j′′(u)(v, v) = j′′(ū)(v, v) + ( j′′(u)(v, v) − j′′(ū)(v, v))
≥ γ‖v‖2L2(I) −C‖u − ū‖L2(I)‖v‖2L2(I).

By choosing ε =
γ

4C > 0 here, we obtain the desired result.

As a consequence of this lemma, we have the following result.

Theorem 4.3. Let ū ∈ Uad satisfy the first optimality condition and Assumption 1. Then, there exist a
constant ε > 0 such that

j(u) ≥ j(ū) +
γ

2
‖u − ū‖2L2(I)

for any u ∈ Uad with ‖u − ū‖L2(I) ≤ 2ε.

Proof. Choose ε > 0 as in Lemma 4.2. By Taylor’s theorem, we get

j(u) = j(ū) + j′(ū)(u − ū) +
1
2

j′′(ūs)(u − ū, u − ū),

where ūs = ū + s(u − ū) for some s ∈ [0, 1]. On the other hand, the first optimality condition implies

j′(ū)(u − ū) ≥ 0, ∀ u ∈ Uad. (4.3)

Moreover, we also find
‖ū − ūs‖L2(I) ≤ s‖u − ū‖L2(I) ≤ 2ε.

Using these observations and Lemma 4.2, we conclude

j(u) ≥ j(ū) +
γ

2
‖u − ū‖2L2(I).

The proof is finished.

4.2. Second order condition for jh

In this part, we investigate the second order condition for the discrete cost functional jh. Similarly
as in the previous subsection, we first provide the Lipschitz estimates for Gh and the discrete adjoint
state.

Lemma 4.4. Let u, û ∈ Uad and v ∈ U be given. Then, there exists C > 0, independent of h ∈ (0, 1),
such that

‖Gh(u) −Gh(û)‖L∞(I) ≤ C‖u − û‖L2(I),

‖G′h(u)v −G′h(û)v‖L2(I) ≤ C‖u − û‖L2(I)‖v‖L2(I),

and
‖λh(u) − λh(û)‖L∞(I) ≤ C‖u − û‖L2(I).
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Proof. The first and the third assertions are proved in Lemma B.5. The second estimate is proved in
Lemma C.2.

Lemma 4.5. For u ∈ Uad, let x = G(u) be given by the solution of the state Eq (1.2), and let y = G′(u)v
for v ∈ U. Let xh = Gh(u) be the solution of the discrete state Eq (3.7), and let yh = G′h(u)v. Then we
have

‖yh − y‖L∞(I) ≤ Ch‖v‖L2(I).

Proof. Define ỹ : [0,T ]→ Rd by the solution to

ỹ′(t) = ∂x f (·, xh, u)ỹ(t) + ∂u f (·, xh, u)v(t), ỹ(0) = 0. (4.4)

Recall from Lemma A.1 that y satisfies

y′(t) = ∂x f (·, x, u)y + ∂u f (·, x, u)v, y(0) = 0.

Combining these two equations, we get

(ỹ − y)′(t) = ∂x f (t, xh, u)(ỹ − y)(t) + (∂x f (t, xh, u) − ∂x f (t, x, u)) y(t)
+ (∂u f (t, xh, u) − ∂u f (t, x, u)v(t).

Using the Grönwall inequality here with (4.2) and (3.13), we find that

‖ỹ − y‖L∞(I) ≤ C‖xh − x‖L∞(I)

(
‖y‖L2(I) + ‖v‖L2(I)

)
≤ C‖xh − x‖L∞(I)‖v‖L2(I)

≤ Ch‖v‖L2(I).

(4.5)

On the other hand, yh satisfies

B(yh, ϕ) = (∂x f (·, xh, u)yh + ∂u f (·, xh, u)v, ϕ)I , ∀ϕ ∈ Xr
h,

which is the DG discretization of (4.4) in a backward way in view of Lemma 3.7. Thus, we may use
Theorem 2.1 to obtain the following error estimate:

‖ỹ − yh‖L∞(I) ≤ Ch‖v‖L2(I).

This, together with (4.5) gives us the estimate

‖yh − y‖L∞(I) ≤ ‖ỹ − y‖L∞(I) + ‖ỹ − yh‖L∞(I) ≤ Ch‖v‖L2(I).

The proof is finished.

Lemma 4.6. For ε > 0 given in Lemma 4.2, there exists h0 > 0 such that for h ∈ (0, h0) we have the
following inequality

j′′h (u)(v, v) ≥
γ

4
‖v‖2L2(I), v ∈ U

for any u ∈ Uad satisfying ‖u − ū‖L2(I) ≤ ε.
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Proof. We first claim that
| j′′(u)(v, v) − j′′h (u)(v, v)| ≤ Ch‖v‖2L2(I) (4.6)

for h > 0 small enough, where C > 0 is independent of h. Let x(t) = G(u)(t), λ(t) = λ(u)(t),
xh(t) = Gh(u)(t), and λh(t) = λh(u)(t). Also we let y = G′(u)v and yh = Gh

′(u)v. It follows from
Lemmas E.1 and E.3 that

j′′(u)(v, v) − j′′h (u)(v, v)

= −

∫ T

0
λ(t)

(
∂2 f

(∂x)2 (t, x, u)y2(t) + 2
∂2 f
∂x∂u

(t, x, u)y(t)v(t) +
∂2 f

(∂u)2 (t, x, u)v2(t)
)

dt

+

∫ T

0

∂2g
(∂x)2 (t, x, u)y2(t) + 2

∂2g
∂x∂u

(t, x, u)y(t)v(t) +
∂2g

(∂u)2 (t, x, u)v2(t) dt

+

∫ T

0
λh(t)

(
∂2 f

(∂x)2 (t, xh, u)y2
h(t) + 2

∂2 f
∂x∂u

(t, xh, u)yh(t)v(t) +
∂2 f

(∂u)2 (t, xh, u)v2(t)
)

dt

−

∫ T

0

∂2g
(∂x)2 (t, xh, u)y2

h(t) + 2
∂2g
∂x∂u

(t, xh, u)yh(t)v(t) +
∂2g

(∂u)2 (t, xh, u)v2(t) dt.

In order to show (4.6), by using a similar argument as in the proof of Lemma 4.2, it suffices to show
that there exists C > 0, independent of h, such that

‖x − xh‖L∞(I) ≤ Ch, ‖y − yh‖L∞(I) ≤ Ch‖v‖L2(I), ‖yh‖L2(I) ≤ C‖v‖L2(I), (4.7)

‖λh‖L∞(I) ≤ C, ‖λ − λh‖L∞(I) ≤ Ch, (4.8)

and ∫ T

0
|y2(t) − y2

h(t)| dt ≤ Ch‖v‖2L2(I).

The first and second inequalites in (4.7) hold due to Theorem 2.1 and Lemma 4.5. For the third one
in (4.7) is proved in (C.2). By Lemma 3.6, the second inequality in (4.8) holds. We also find

‖λh‖L∞(I) ≤ ‖λ − λh‖L∞(I) + ‖λ‖L∞(I) ≤ Ch + C ≤ C,

which asserts the first inequality in (4.8). Finally, we obtain∫ T

0
|y2(t) − y2

h(t)| dt ≤
∫ T

0
|y(t) + yh(t)||y(t) − yh(t)| dt

≤ ‖y(t) − yh(t)‖L2(I)

(
‖y‖L2(I) + ‖yh‖L2(I)

)
≤ Ch‖v‖2L2(I),

due to (4.7). All of the above estimates enable us to prove the claim (4.6). This together with
Lemma 4.2 yields

j′′h (u)(v, v) ≥ j′′(u)(v, v) − | j′′h (u)(v, v) − j′′(u)(v, v)|

≥
γ

2
‖v‖2L2(I) −Ch‖v‖2L2(I)

≥
γ

4
‖v‖2L2(I)

for 0 < h < h0 := γ/(4C). The proof is finished.
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5. Existence and convergence results for the semi-discrete case

We first prove the existence of the local solution to the approximate problem (2.5).

Proof of Theorem 2.3. Choose ε > 0 as in Theorem 4.3. We consider the following set

B2ε(ū) = {u ∈ Uad : ‖u − ū‖L2(I) ≤ 2ε},

and recall from Section 2 the spaceVR = {u ∈ U : V(u) ≤ R}. We will find a minimizer v̄ of jh in the
space Wε,R := B2ε(ū) ∩ VR, and then show that ‖v̄ − ū‖L2(I) < ε. It will imply that v̄ is a local solution
to (2.5).

Since jh is lower bounded on Wε,R, there exists a sequence {vk}k∈N ⊂ Bε(ū) ∩VR such that

lim
k→∞

jh(vk) = inf
v∈Wε,R

jh(v). (5.1)

Moreover, since Wε,R is compactly embedded in Lp(I) for any p ∈ [1,∞), up to a subsequence, there
exists a function v̄ ∈ Wε,R such that {vk} converges to v̄ in L2(I) and converges a.e. to v̄. By definition,
the function zk := Gh(vk) ∈ Xr

h satisfies

N∑
n=1

(
zk
′(t) − f (t, zk(t), vk(t)), ϕ(t)

)
In

+

N∑
n=2

([zk]n−1, ϕ
+
n−1) + (zk

+
0 , ϕ

+
0 ) = (zk0, ϕ

+
0 ) (5.2)

for all ϕ ∈ Xr
h. Note that {zk}k∈N is a bounded set in the finite dimensional space Xr

h by Theorem 2.4 (see
also Lemma B.4). Therefore we can find a subsequence such that zk converges uniformly to a function
z̄ ∈ Xr

h. We claim that z̄ = Gh(v̄). Indeed, since vk(t) converges a.e. to v̄(t) for t ∈ I and f is Lipschitz
continuous, we may take a limit k to infinity in (5.2) to deduce

N∑
n=1

(
z̄′(t) − f (t, z̄(t), v̄(t)), ϕ(t)

)
In

+

N∑
n=2

([z̄]n−1, ϕ
+
n−1) + (z̄+

0 , ϕ
+
0 ) = (z̄0, ϕ

+
0 )

for all ϕ ∈ Xr
h. This yields that z̄ = Gh(v̄), which enables us to derive

lim
k→∞

jh(vk) = lim
k→∞

∫ T

0
g(t, zk(t), vk(t))dt

=

∫ T

0
lim
k→∞

g(t, zk(t), vk(t)) dt

=

∫ T

0
g(t, z̄(t), v̄(t)) dt

=

∫ T

0
g(t,Gh(v̄)(t), v̄(t)) dt

= jh(v̄).

This together with (5.1) implies that v̄ ∈ Wε,R satisfies

jh(v̄) = inf
v∈Wε,R

jh(v).

AIMS Mathematics Volume 7, Issue 5, 9117–9155.



9131

It remains to show that the minimizer v̄ ∈ Wε,R is achieved in the interior of Bε(ū) = {u ∈ Uad :
‖u − ū‖L2(I) < ε}. To show this, we recall that

j(u) = J(u,G(u)) =

∫ T

0
g(t,G(u)(t), u(t)) dt

and

jh(u) = J(u,Gh(u)) =

∫ T

0
g(t,Gh(u)(t), u(t)) dt.

Since ‖G(u)‖W1,∞(I) ≤ C for all u ∈ Uad, we see from Theorem 2.1 that

‖Gh(u) −G(u)‖L∞(I) ≤ Ch‖G(u)‖W1,∞(I) ≤ Ch,

where C > 0 is independent of h. Combining this with the Lipschitz continuity of G yields that

| j(u) − jh(u)| ≤ Ch, ∀ u ∈ Uad.

Taking h0 = γε2/(8C). Using this and the estimate

j(u) ≥ j(ū) +
γ

2
ε2, ∀ u ∈ Uad with ε ≤ ‖u − ū‖L2(I) ≤ 2ε

from Theorem 4.3, it follows that for h ∈ (0, h0) we have

jh(u) ≥ jh(ū) +
γ

4
ε2, ∀ u ∈ Uad with ε ≤ ‖u − ū‖L2(I) ≤ 2ε. (5.3)

Thus, the minimizer v̄ is achieved in Bε(ū). It gives that jh(u) ≥ jh(v̄) for all u ∈ VR with ‖u−v̄‖L2 ≤ ε.

We now provide the details of the convergence estimate of the approximate solutions.

Proof of Theorem 2.4. Analogous to (4.3), the discrete first order necessary optimality condition for
ūh ∈ Uad reads

j′h(ūh)(u − ūh) ≥ 0, ∀ u ∈ Bε(ūh) ∩VR.

Inserting here u = ū and summing it with (4.3), we get

0 ≤ ( j′(ū) − j′h(ūh))(ūh − ū)
= ( j′(ū) − j′h(ū))(ūh − ū) + ( j′h(ū) − j′h(ūh))(ūh − ū).

(5.4)

Now, by applying the mean value theorem with a value t ∈ (0, 1), we have

C‖ūh − ū‖2L2(I) ≤ j′′h (ū − t(ū − ūh))(ūh − ū, ūh − ū)

= ( j′h(ūh) − jh
′(ū))(ūh − ū)

≤ ( j′(ū) − jh
′(ū))(ūh − ū),

(5.5)

where we used Lemma 4.6 in the first inequality and (5.4) in the second inequality. For our aim, it only
remains to estimate the right hand side. Let us express it using the adjoint states. From (3.5), we have

j′(ū)(ūh − ū) = (∂ug(·, x̄, ū) − ∂u f (·, x̄, ū)λ(ū), ūh − ū)I , (5.6)
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and it follows from (3.9) that

j′h(ū)(ūh − ū) = (∂ug(·, x̄h, ū) − ∂u f (·, x̄h, ū)λh(ū), ūh − ū)I . (5.7)

Here we remind that x̄h ∈ Xr
h denotes the solution to (2.3) with control ū and initial data x0.

Combining (5.6) and (5.7) we find

( j′(ū) − j′h(ū))(ūh − ū) =
(
∂ug(·, x̄, ū) − ∂ug(·, x̄h, ū), ūh − ū

)
I

−
(
∂u f (·, x̄, ū)λ(ū) − ∂u f (·, x̄h, ū)λh(ū), ūh − ū

)
I
.

Applying Hölder’s inequality here and using (1.3), we deduce

( j′(ū) − j′h(ū))(ūh − ū)
≤ ‖∂u∂xg‖L∞‖x̄ − x̄h‖L2(I)‖ūh − ū‖L2(I)

+ ‖λ(ū)‖L∞(I)‖∂u f (·, x̄, ū) − ∂u f (·, x̄h, ū)‖L2(I)‖ūh − ū‖L2(I)

+ ‖∂u f (·, x̄h, ū)‖L∞‖λ(ū) − λh(ū)‖L2(I)‖ūh − ū‖L2(I)

≤ C
(
‖x̄ − x̄h‖L2(I) + ‖λ(ū) − λh(ū)‖L2(I)

)
‖ūh − ū‖L2(I).

(5.8)

Now we apply (3.10) and (3.13) to get

( j′(ū) − jh
′(ū))(ūh − ū) ≤ Chmin{k1,k2,r+1}‖ūh − ū‖L2(I). (5.9)

Combining this with (5.5), we finally obtain

‖ūh − ū‖L2(I) ≤ Chmin{k1,k2,r+1}.

This completes the proof.

6. Existence and convergence results for the fully discrete case

This section is devoted to the existence and convergence results for the fully discrete case. We
consider a finite dimensional spaceUh which discretizes the control spaceUad, for example, the space
of step functions

Uh = {u ∈ Uad | u : piecewise constant on Ik = [tk−1, tk]},

or the high-order DG spaceUh = Xr
h ∩Uad with r ∈ N.

We say that ūh ∈ Uh is a local solution to

min
u∈Uh

jh(u), (6.1)

if there is a value ε > 0 such that jh(u) ≥ jh(ūh) for all u ∈ Uh with ‖u − ūh‖L2 ≤ ε.

The existence result of local solution is provided in the following theorem.

Theorem 6.1. Choose ε > 0 as in Theorem 4.3. Let ū ∈ Uad be a local solution of (1.4) satisfying
Assumption 1. Fix any ε > 0. Then there exists h0 > 0 such that for h ∈ (0, h0) problem (6.1) has a
local solution ūh ∈ Uh such that ‖ū − ūh‖L2 ≤ ε.
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Proof. By compactness and continuity, jh has a minimizer ūh in

B2ε(ū) = {u ∈ Uh : ‖u − ū‖L2(I) ≤ 2ε},

sinceUh is finite dimensional. Next we aim to show that the minimizer ūh satisfies

‖ūh − ū‖L2(I) ≤ ε.

To show this, we recall from (5.3) that there is a value h0 > 0 such that for h ∈ (0, h0) we have

jh(u) ≥ jh(ū) +
γ

4
ε2, ∀ u ∈ Uad with ε ≤ ‖u − ū‖L2(I) ≤ 2ε.

Combining this with the minimality of ūh for jh in B2ε(ū), we find that ‖ūh − ū‖L2(I) ≤ ε. It then yields
that

jh(u) ≥ jh(ūh), ∀ u ∈ Uh with ‖u − ūh‖L2 ≤ ε.

Thus ūh is a local solution of (6.1).

We establish the convergence result in the following theorem.

Theorem 6.2. Assume the same statements for ū ∈ Uad and λ(ū) in Theorem 2.4. In addition, suppose
that there exists a projection operator Ph : U → Uh and a value a > 0 such that

‖Phū − ū‖L2(I) = O(ha) for h ∈ (0, 1).

Let ūh ∈ Uh be a local solution to (6.1) constructed in Theorem 6.1. Then the following estimate holds:

‖ūh − ū‖L2(I) = O(hmin{r+1,k1,k2,a/2}).

If we further assume that j′(ū) = 0, then the above estimate can be improved to

‖ūh − ū‖L2(I) = O(hmin{r+1,k1,k2,a}).

Proof. In this case, by the first optimality conditions on ū and ūh, we have

j′(ū)(ūh − ū) ≥ 0 and jh
′(ūh)(Phū − ūh) ≥ 0.

The latter condition can be written as

0 ≤ j′h(ūh)(ū − ūh) + j′h(ūh)(Phū − ū) = j′h(ūh)(ū − ūh) + Rh,

where Rh := jh
′(ūh)(Phū − ū). Summing up the above two inequalities provides

0 ≤ ( j′(ū) − jh
′(ūh))(ūh − ū) + Rh

= ( j′(ū) − j′h(ū))(ūh − ū) + ( j′h(ū) − j′h(ūh))(ūh − ū) + Rh,

i.e.,
( j′h(ūh) − j′h(ū))(ūh − ū) ≤ ( j′(ū) − j′h(ū))(ūh − ū) + Rh. (6.2)
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By the assumption of the theorem,

‖Rh‖L2(I) = O(ha). (6.3)

On the other hand, by applying the mean value theorem and Lemma 4.6, we obtain

( j′h(ūh) − j′h(ū))(ūh − ū) = j′′h (ū + t(ū − ūh))(ūh − ū, ūh − ū) ≥ C‖ūh − ū‖2L2(I).

Combining this with (6.2) yields

‖ūh − ū‖2L2(I) ≤ C( j′(ū) − j′h(ū))(ūh − ū) + CRh.

Applying here the estimate (5.9) in the previous proof, we have

‖ūh − ū‖2L2(I) ≤ Chmin{k1,k2,r+1}‖ūh − ū‖L2(I) + CRh, (6.4)

which together with (6.3) gives the desired estimate

‖ūh − ū‖L2(I) = O(hmin{r+1,k1,k2,a/2}).

When we further assume j′(ū) = 0, it follows that

jh
′(ūh) = ( jh

′(ūh) − jh
′(ū)) + ( jh

′(ū) − j′(ū)).

Using this and the estimates in (5.8), we find

|Rh| = | jh
′(ūh)(Phū − ū)| ≤ C

(
‖ūh − ū‖L2(I) + hmin{k1,k2,r+1}

)
‖Phū − ū‖L2(I)

≤ Cha
(
‖ūh − ū‖L2(I) + hmin{k1,k2,r+1}

)
.

Inserting this into (6.4) yields

‖ūh − ū‖2L2(I) ≤ Chmin{k1,k2,r+1}‖ūh − ū‖L2(I)

+ Cha(‖ūh − ū‖L2(I) + hmin{k1,k2,r+1}).

It gives the desired estimate

‖ūh − ū‖L2(I) = O(hmin{r+1,k1,k2,a}).

The proof is done.

7. Numerical experiments

In this section, we present several numerical experiments which validate our theoretical results. The
forward-backward DG methods [18] is employed to solve the examples of the OCPs.
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7.1. Linear problem

Let us consider the following simple one dimensional OCP, which has been used as an example [36],
that consists of maximizing the functional

J =
1
2

∫ 1

0
x2(t) + u2(t) dt

subject to the state equation
x′(t) = −x(t) + u(t), x(0) = 1, (7.1)

and U = L2([0, 1]). Using a similar idea as in Section 3 based on the maximum principle, we can
derive the adjoint equation to the above optimal control problem:

λ′(t) = λ(t) − x(t), λ(1) = 0.

Furthermore, we also find that the optimal solutions ū = −λ and x̄ satisfies (7.2). Thus we have the
solution

x̄(t) =

√
2 cosh(

√
2(t − 1)) − sinh(

√
2(t − 1))

√
2 cosh(

√
2) + sinh(

√
2)

and

ū(t) =
sinh(

√
2(t − 1)

√
2 cosh(

√
2) + sinh(

√
2)
.

Table 1. Discrete L2 error: ‖x̄ − x̄h‖L2(I) and ‖ū − ūh‖L2(I).

h ‖x̄ − x̄h‖L2(I) ‖ū − ūh‖L2(I) log2
‖x̄−x̄2h‖

‖x̄−x̄h‖
log2

‖ū−ū2h‖

‖ū−ūh‖

(0.1) × 20 1.9455e-03 6.2543e-04
(0.1) × 2−1 4.8861e-04 1.6088e-04 2.00 1.96
(0.1) × 2−2 1.2240e-04 4.0780e-05 2.00 1.98

r = 1 (0.1) × 2−3 3.0629e-05 1.0264e-05 2.00 1.99
(0.1) × 2−4 7.6607e-06 2.5748e-06 2.00 2.00
(0.1) × 2−5 1.9156e-06 6.4477e-07 2.00 2.00
(0.1) × 20 2.6708e-05 1.3269e-05
(0.1) × 2−1 3.3523e-06 1.6837e-06 2.99 2.98
(0.1) × 2−2 4.1979e-07 2.1202e-07 3.00 2.99

r = 2 (0.1) × 2−3 5.2518e-08 2.6599e-08 3.00 3.00
(0.1) × 2−4 6.5673e-09 3.3308e-09 3.00 3.00
(0.1) × 2−5 8.2108e-10 4.1672e-10 3.00 3.00
(0.1) × 20 2.8964e-07 9.5564e-08
(0.1) × 2−1 1.8172e-08 6.0617e-09 4.00 3.98
(0.1) × 2−2 1.1377e-09 3.8151e-10 4.00 3.99

r = 3 (0.1) × 2−3 7.1152e-11 2.3918e-11 4.00 4.00
(0.1) × 2−4 4.4370e-12 1.4871e-12 4.00 4.01
(0.1) × 2−5 2.7555e-13 8.4657e-14 4.01 4.13
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For fixed r ∈ N, we use Xr
h for the approximate space of U. In Table 1, we report the discrete L2

error between optimal solutions and its approximations for the above optimal control problem. Here
r + 1 is the number of grid points on each time interval In, and we used the equidistant points for our
numerical computations. The numerical result confirms that the error is of order hr+1 as proved in
Theorem 2.4.

7.2. Nonlinear problem

In this part, we consider the following nonlinear optimal control problem:

J =
1
2

∫ 1/5

0
x2(t) + u2(t) dt

subject to the state equation
x′(t) = x2(t) + u(t), x(0) = 2. (7.2)

In this case, the corresponding adjoint equation and optimal control are given as follows.

λ′(t) = −x(t)(1 + 2λ(t)) and ū(t) = −λ(t),

and thus the optimal solution x̄ solves

x′(t) = x2(t) − λ(t), x(0) = 2.

Table 2. Discrete L2 error: ‖x̄ − x̄h‖L2(I) and ‖ū − ūh‖L2(I).

h ‖x̄ − x̄h‖L2(I) ‖ū − ūh‖L2(I) log2
‖x̄−x̄2h‖

‖x̄−x̄h‖
log2

‖ū−ū2h‖

‖ū−ūh‖

0.1 1.3006e-02 2.6587e-03
(0.1) × 2−1 4.5715e-03 6.8872e-04 1.51 1.95
(0.1) × 2−2 1.3286e-03 1.7024e-04 1.78 2.02

r = 1 (0.1) × 2−3 3.5677e-04 4.2187e-05 1.90 2.01
(0.1) × 2−4 9.2305e-05 1.0492e-05 1.95 2.01
(0.1) × 2−5 2.3420e-05 2.6101e-06 1.98 2.01

0.1 7.9288e-04 7.1751e-05
(0.1) × 2−1 1.6928e-04 6.8412e-06 2.23 3.40
(0.1) × 2−2 2.7566e-05 7.2059e-07 2.62 3.25

r = 2 (0.1) × 2−3 3.9391e-06 8.4373e-08 2.81 3.10
(0.1) × 2−4 5.2676e-07 1.0332e-08 2.90 3.03
(0.1) × 2−5 6.8107e-08 1.2833e-09 2.95 3.01

0.1 4.8978e-05 2.3326e-06
(0.1) × 2−1 5.8217e-06 2.0158e-07 3.07 3.53
(0.1) × 2−2 5.0236e-07 1.3655e-08 3.53 3.88

r = 3 (0.1) × 2−3 3.6929e-08 8.7619e-10 3.77 3.96
(0.1) × 2−4 2.5037e-09 5.5551e-11 3.88 3.98
(0.1) × 2−5 1.6329e-10 3.6858e-12 3.94 3.91
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In this case, since we have no explicit form of the actual solutions, we take the reference solutions
x̄h (resp., ūh) with h = (0.1) × 2−9 instead of x̄ (resp., ū). In Table 2, we arrange the discrete L2 error
between reference solutions and its approximations.

Next we consider a two dimensional problem given by

J =
1
2

∫ 1/5

0

(
x2(t) + y2(t) + u2(t)

)
dt,

subject to the state equation

x′(t) = x2(t) + y(t), x(0) = 2,
y′(y) = −3y(t) + u(t), y(0) = 1.

(7.3)

In this case, the corresponding adjoint equation and optimal control are given as follows.

λ′1(t) = −x(t)(1 + 2λ(t)) and ū(t) = −λ2(t),
λ′2(t) = −y(t) − λ1(t) + 3λ2(t).

(7.4)

This case also has no explicit form of the actual solutions and so we take the reference solutions x̄h

(resp., ūh) with h = (0.1)×2−9 instead of x̄ (resp., ū). The discrete L2 error between reference solutions
and its approximations are arranged in Table 3.

Table 3. Discrete L2 error: ‖x̄ − x̄h‖L2(I) and ‖ū − ūh‖L2(I).

h ‖x̄ − x̄h‖L2(I) ‖ū − ūh‖L2(I) log2
‖x̄−x̄2h‖

‖x̄−x̄h‖
log2

‖ū−ū2h‖

‖ū−ūh‖

0.1 5.6850e-03 3.6402e-03
(0.1) × 2−1 1.6706e-03 1.1148e-03 1.48 1.71
(0.1) × 2−2 4.5109e-04 2.9952e-04 1.77 1.90

r = 1 (0.1) × 2−3 1.1702e-04 7.7189e-05 1.89 1.96
(0.1) × 2−4 2.9736e-05 1.9566e-05 1.95 1.98
(0.1) × 2−5 7.4372e-06 4.9221e-06 1.98 1.99

0.1 1.1860e-03 2.9482e-05
(0.1) × 2−1 2.5679e-04 2.6302e-06 2.21 3.49
(0.1) × 2−2 4.2605e-05 3.5132e-07 2.59 2.90

r = 2 (0.1) × 2−3 6.1623e-06 4.8266e-08 2.79 2.86
(0.1) × 2−4 8.2960e-07 6.3722e-09 2.89 2.92
(0.1) × 2−5 1.0764e-07 8.1940e-10 2.95 2.96

0.1 7.3645e-05 1.0438e-06
(0.1) × 2−1 9.4018e-06 6.7811e-08 2.97 3.94
(0.1) × 2−2 8.4549e-07 4.1743e-09 3.48 4.02

r = 3 (0.1) × 2−3 6.3517e-08 2.5778e-10 3.73 4.02
(0.1) × 2−4 4.3534e-09 1.6014e-11 3.87 4.01
(0.1) × 2−5 2.8493e-10 9.9925e-13 3.93 4.00

AIMS Mathematics Volume 7, Issue 5, 9117–9155.



9138

8. Conclusions

In this paper, we established the analysis for the DG discretization applied to the nonlinear OCP with
arbitrary degree of piecewise polynomials r for nonlinear functions f and g with suitable smoothness
assumptions. Under the non-degeneracy condition on an optimal control of the OCP, we obtained
the existence of the local solution to the approximate problem and the sharp L2-error estimates of the
approximated solutions. These results was extended to the fully discrete case, in which the control
space is also discretized. Finally, we showed numerical experiments validating our theoretical results.
Based on the results of this paper, it would be interesting to analyze the mesh refinement method for
the discontinuous galerkin method of the optimal control problems. We would like to investigate this
problem in the future.
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Appendix

A. Differentiability of the control-to-state mapping

In this section, we show that the control-to-state mapping G is twice differentiable, and obtain the
derivatives.

Lemma A.1. Let xs = G(u + sv) and y : [0,T ]→ Rd be the solution of

y′(t) =
∂ f
∂x

(t, x(t), u(t))y(t) +
∂ f
∂u

(t, x(t), u(t))v(t), t ∈ (0,T ), y(0) = 0. (A.1)

Then we have
d
ds

G(u + sv)|s=0 = y.

Proof. Recall that xs and x satisfy

(xs)′(t) = f (t, xs(t), u(t) + sv(t)) and x′(t) = f (t, x(t), u(t)),

respectively. Using this, we find that r(t) := xs(t) − x(t) − sy(t) satisfies

(xs(t) − x(t) − sy(t))′(t)

= f (t, xs, u + sv) − f (t, x, u) − s
(
∂ f
∂x

(t, x, u)y(t) +
∂ f
∂u

(t, x, u)v(t)
)

=:
∂ f
∂x

(t, x, u)(xs(t) − x(t) − sy(t)) + A1(t) + A2(t),

(A.2)

where

A1(t) := f (t, xs, u) − f (t, x, u) −
∂ f
∂x

(t, x, u)(xs(t) − x(t)),

and

A2(t) := f (t, xs, u + sv) − f (t, xs, u) − s
∂ f
∂u

(t, x, u)v(t).

Given that |xs(t)− x(t)| ≤ Cs and (1.3), an elementary calculus shows that |A1| ≤ Cs2 and |A2| ≤ Cs2.
With these bounds, we may apply the Grönwall’s lemma for (C.3) to deduce |r(t)| ≤ Cs2 for t ∈ [0,T ].
From this we find

lim
s→0

xs(t) − x(t) − sy(t)
s

= 0,

which yields that
d
ds

xs(t) = y(t).

Next we show the twice differentiablity of the mapping s→ G(u + sv) at s = 0.

AIMS Mathematics Volume 7, Issue 5, 9117–9155.



9142

Lemma A.2. Let z : [0,T ]→ Rd be the solution of

z′(t) =
∂2 f

(∂x)2 (t, x(t), u(t))y2(t) + 2
∂2 f
∂x∂u

(t, x(t), u(t))y(t)v(t) +
∂2 f

(∂u)2 (t, x(t), u(t))v2(t)

+
∂ f
∂x

(t, x(t), u(t))z(t), z(0) = 0.

Then we have
d2

(ds)2 G(u + sv)|s=0 = z(t).

Proof. Let

ys(t) =
d
ds

G(u + sv) and y(t) =
d
ds

G(u + sv)|s=0.

Then we get

(ys)′(t) − y′(t) − sz′(t)

=
∂ f
∂x

(t, xs, u + sv)ys(t) +
∂ f
∂u

(t, xs, u + sv)v(t) −
∂ f
∂x

(t, x, u)y(t) −
∂ f
∂u

(t, x, u)v(t)

− s
[
∂2 f

(∂x)2 (t, x(t), u)y2(t) + 2
∂2 f
∂x∂u

(t, x(t), u)y(t)v(t)

+
∂2 f

(∂u)2 (t, x(t), u)v2(t) +
∂ f
∂x

(t, x(t), u)z(t)
]

=:
∂ f
∂x

(t, x(t), u)(ys(t) − y(t) − sz(t)) + A1(t) + A2(t),

(A.3)

where

A1(t) :=
[
∂ f
∂x

(t, xs, u + sv) −
∂ f
∂x

(t, x, u)
]

ys(t) − s
[
∂2 f

(∂x)2 (t, x, u)y(t) +
∂2 f
∂x∂u

(t, x, u)v(t)
]

y(t)

and

A2(t) :=
[
∂ f
∂u

(t, xs, u + sv) −
∂ f
∂u

(t, x(t), u)
]

v(t) − s
[
∂2 f

(∂u)2 (t, x, u)v(t) +
∂2 f
∂x∂u

(t, x, u)y(t)
]

v(t).

By Lemma 4.1, we have |ys(t) − y(t)| ≤ Cs. Given this estimate and that

d
ds

xs(t)|s=0 = y(t)

from Lemma A.1, an elementary calculus shows that |A1(t)| ≤ Cs2 and |A2(t)| ≤ Cs2. Inserting this
estimate into (C.5) and applying the Grönwall’s lemma, we find

ys(t) − y(t) − sz(t) = O(s2).

It proves that
d
ds

ys(t)|s=0 = z(t).
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This implies that
d2

(ds)2 G(u + sv)|s=0 = z(t)

since
ys(t) =

d
ds

G(u + sv).

This completes the proof.

B. Grönwall-type inequality for the DG discretization of ODEs

In this section, we provide a Grönwall-type inequality for the DG discretization of ODEs with
inputs. It will be used in Section C to establish the differentiability of the discrete control-to-state
mapping Gh.

We begin with recalling from [34, Lemma 2.4] the following lemma.

Lemma B.1. Let I = (a, b) and k = b − a > 0. Then we have∫ b

a
|φ(t)|2 dt ≤

1
k

d∑
i=1

(∫ b

a
φi(t) dt

)2

+
1
2

∫ b

a
(b − t)(t − a)|φ′(t)|2 dt

for all φ(t) = (φ1(t), · · · , φd(t)) ∈ Pr((a, b);Rd), r ∈ N0, where

Pr((a, b);Rd) = {(p1, · · · , pd) : pk : (a, b)→ R is a polynomial of order ≤ r}.

The next result is from [34, Lemma 3.1].

Lemma B.2. For I = (a, b) and r ∈ N0, we have

‖φ‖2L∞(I) ≤ C log(r + 1)
∫ b

a
|φ′(t)|2(t − a) dt + C|φ(b)|2

for all φ(t) = (φ1(t), · · · , φd(t)) ∈ Pr((a, b);Rd). Here C > 0 is independent of r, a, b, and d.

We shall use the following Grönwall inequality.

Lemma B.3. Let {an}
N
n=1 and {bn}

N
n=1 be sequences of non-negative numbers satisfying b1 ≤ b2 ≤ · · · ≤

bN and b1 = 0. Assume that for a value h ∈ (0, 1/2) we have

(1 − h)bn+1 ≤ bn + an

for n ∈ N. Then there exists a constant Q > 0 independent of h ∈ (0, 1/2) and N ∈ N such that

bn ≤ eQ(nh)
n∑

k=1

ak

for any n ∈ N with n ≤ N/h.

Proof. The proof can be obtained by induction.
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Now we obtain the Grönwall-type inequality.

Lemma B.4. Suppose that

|B(x, ϕ)| ≤ C
N∑

n=1

(
|(x(t), ϕ(t))In | + |(u(t), ϕ(t))In |

)
(B.1)

for all ϕ ∈ Xr
h. Then there exists a constant C > 0 independent of h > 0 such that

‖x‖L∞(I) ≤ C‖u‖L2(I)

for all u1, u2 ∈ Uad and h > 0 small enough.

Proof. From the condition (B.1) we have∣∣∣∣∣∣∣
N∑

n=1

(x′(t), ϕ(t))In +

N∑
n=2

([x]n−1, ϕ
+
n−1)In + (x+

0 , ϕ
+
0 )I1

∣∣∣∣∣∣∣
≤ C

N∑
n=1

|(x(t), ϕ(t))In | + |(u(t), ϕ(t))In |

for all ϕ ∈ Xr
h. To obtain the desired estimates, for each n ∈ {1, · · · ,N} we shall take the following test

functions ϕ ∈ Xr
h supported on In given as

ϕ(t) = (x1 − x2)(t)1In(t),
ϕ(t) = (t − tn−1)(x1 − x2)′(t)1In(t), and
ϕ(t) = (t − tn−1)1In(t),

where 1In : I → {0, 1} denotes the indicator function, that is, 1In(t) = 1 for t ∈ In and 1In(t) = 0 for
t ∈ I \ In. First we take ϕ(t) = x(t)1In(t) for n = 1, 2, · · · ,N. Then,

(x′(t), x(t))In +
(
[x]n−1, x+

n−1
)
≤ C|(x(t), x(t))In | + |(u(t), x(t))In |, (B.2)

where for n = 1 we abuse a notation [x]0 to mean x+
0 . Notice that

([x]n−1, x+
n−1) = (x+

n−1)2 − (x−n−1, x
+
n−1),

where for n = 1 the above is understood as ([x]0, x+
0 ) = (x+

0 )2. Using this in (B.2), we find

1
2
|x−n |

2 −
1
2
|x+

n−1|
2 + |x+

n−1|
2 ≤ (x−n−1, x

+
n−1) + C|(x(t), x(t))In | + |(u(t), x(t))In |.

By applying Cauchy-Schwarz inequality, we obtain

1
2
|x−n |

2 ≤
1
2
|x−n−1|

2 + C‖x(t)‖2L2(In) + C‖u(t)‖2L2(In). (B.3)

Secondly, we take ϕ(t) = (t − tn−1)x′(t)1In(t) to have

(x′(t), (t − tn−1)x′(t))In ≤
(
x(t), (t − tn−1)x′(t)

)
In

+
(
u(t), (t − tn−1)x′(t)

)
In
.
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By using Hölder’s inequality, we get∫
In

(t − tn−1)|x′(t)|2 dt ≤
∫

In

|t − tn−1|(|x(t)|2 + |u(t)|2) dt. (B.4)

Notice that (
x′(t), (t − tn−1)

)
In

= −

∫
In

x(t) dt + x(tn)(tn − tn−1).

Thus, choosing ϕ(t) = (t − tn−1)1In(t) gives∣∣∣∣∣∣
∫

In

x(t) dt + x(tn)(tn − tn−1)

∣∣∣∣∣∣ ≤ C
∫

In

|x(t)|(t − tn−1) dt + C
∫

In

|u(t)|(t − tn−1) dt,

and subsequently, this yields∣∣∣∣∣∣
∫

In

x(t) dt

∣∣∣∣∣∣2 ≤ 2h2
n|x
−
n |

2 + 2
∫

In

(x(t)2 + u(t)2) dt
∫

In

(tn−1 − t)2 dt

≤ 2h2
n|x
−
n |

2 + Ch3
n

∫
In

(x(t)2 + u(t)2) dt,

where hn = tn − tn−1. This together with Lemma A.1 asserts∣∣∣∣∣∣
∫

In

x(t) dt

∣∣∣∣∣∣2 ≤ 2h2
n|x
−
n |

2 + Ch4
n

∫
In

(t − tn−1)|x′(t)|2 dt + Ch3
n

∫
In

|u(t)|2 dt (B.5)

for h > 0 small enough. Combining (B.3) and (B.4), we find∫
In

(t − tn−1)|x′(t)|2 dt + |x−n |
2

≤ C‖x‖2L2(In) + C
∫

In

|u(t)|2 dt + |x−n−1|
2

≤
C
hn

∣∣∣∣∣∣
∫

In

x(t) dt

∣∣∣∣∣∣2 + Chn

∫
In

(t − tn−1)|x′(t)|2 dt + |x−n−1|
2 + C

∫
In

|u(t)|2 dt,

where we applied Lemma B.1 in the second inequality. This, together with (B.5), we obtain

1
2

∫
In

(t − tn−1)|x′(t)|2 dt + |x−n |
2 ≤ Chn|x−n |

2 + |x−n−1|
2 + C

∫
In

|u(t)|2 dt (B.6)

for h > 0 small enough, where for n = 1 one has |x−0 | = 0. This inequality trivially gives

|x−n |
2 ≤ Chn|x−n |

2 + |x−n−1|
2 + C

∫
In

|u(t)|2 dt

for n = 1, · · · ,N. Now, by applying Lemma B.3 to find an estimate of |x−1
n |

2 and inserting it into (B.6),
we achieve

1
2

∫
In

(t − tn−1)|x′(t)|2 dt + |x−n |
2 ≤ C

∫ T

0
|u(t)|2 dt.

Finally, by applying Lemma B.2 to the above, we obtain the desired estimate.

AIMS Mathematics Volume 7, Issue 5, 9117–9155.



9146

As a corollary, we have the following Lipschitz estimates.

Lemma B.5. For u, v ∈ Uad we have

‖Gh(u) −Gh(v)‖L∞(I) ≤ C‖u − v‖L2(I)

and
‖λh(u) − λh(v)‖L∞(I) ≤ C‖u − v‖L2(I).

Proof. Let us denote by x = Gh(u) and x̂ = Gh(v). Then it follows from (2.3) that

B((x − x̂), ϕ) =
(

f (t, x(t), u(t)) − f (t, x̂(t), û(t)), ϕ
)
, ∀ϕ ∈ Xr

h.

By (1.3), there exists a constant C > 0 such that

| f (t, x(t), u(t)) − f (t, x̂(t), û(t))| ≤ C|x̂(t) − x(t)| + C|û(t) − u(t)|.

By applying Lemma B.4, we get the inequality

‖x − x̂‖L∞(I) ≤ C‖u − û‖L2(I).

This gives the first inequality. For the second one, we denote by λ = λh(u) and λ̂ = λh(v). Then, we see
from Lemma 3.8 that

B(ϕ, (λ − λ̂)) =
(
ϕ, ∂x f (·, x, u)(λ − λ̂)(t) + (∂x f (·, x, u) − ∂x f (·, x̂, û))(t)

− (∂xg(·, x, u) − ∂xg(·, x̂, û))
)

I
, ∀ϕ ∈ Xr

h.

By applying Lemma B.4 again in a backward way (see Lemma 3.7), we obtain

‖λ − λ̂‖L∞(I) ≤ C‖(∂x f (·, x, u) − ∂x f (·, x̂, û))λ̂‖L2(I)

+ C‖∂xg(·, x, u) − ∂xg(·, x̂, û)‖L2(I)

≤ C(‖λ̂‖L∞(I) + 1)
(
‖x − x̂‖L∞(I) + ‖u − û‖L2(I)

)
≤ C‖u − û‖L2(I),

where we used
‖λ̂‖L∞(I) ≤ C‖∂xg‖L∞(I),

due to Lemma B.4. This completes the proof.

C. Differentiability of discrete control-to-state mapping

This section is devoted to prove that the discrete control-to-state mapping Gh is twice differentiable.
We also obtain the first and second derivatives of Gh.

Theorem C.1. We denote xs
h = Gh(u + sv) and set yh ∈ Xr

h be the solution of the following discretized
equation:

B(yh, ϕ) =

(
∂ f
∂x

(t, xh, u)yh(t) +
∂ f
∂u

(t, xh, u)v(t), ϕ(t)
)

I
, ∀ϕ ∈ Xr

h, (C.1)

where xh = Gh(u). Then we have d
ds xs

h(t) = yh(t).
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Proof. By Theorem 2.1 there exists a solution yh ∈ Xr
h to

B(yh, ϕ) =

(
∂ f
∂x

(t, xh, u)yh(t) +
∂ f
∂u

(t, xh, u)v(t), ϕ(t)
)

I
, ∀ϕ ∈ Xr

h.

By Lemma B.4 we get
‖yh‖L∞(I) ≤ C‖v‖L2(I). (C.2)

Recall that xs and x satisfy

B(xs
h, ϕ) =

(
f (t, xs, u + sv), ϕ(t)

)
I

and B(xh(t), ϕ) =
(

f (t, x, u), ϕ(t)
)

I
.

Using this, we find that r(t) := xs
h(t) − xh(t) − syh(t) satisfies

B
(
(xs

h − xh − syh), ϕ
)

=

(
f (t, xs

h, u + sv) − f (t, xh, u) − s
(
∂ f
∂x

(t, xh, u)y(t) +
∂ f
∂u

(t, xh, u)v(t)
)
, ϕ(t)

)
=

(
∂ f
∂x

(t, xh, u)(xs
h(t) − xh(t) − syh(t)) + A1 + A2, ϕ(t)

) (C.3)

for all ϕ ∈ Xr
h, where

A1 = f (t, xs
h, u) − f (t, xh, u) −

∂ f
∂x

(t, xh, u)(xs
h(t) − xh(t))

and

A2 = f (t, xs
h, u + sv) − f (t, xs

h, u) − s
∂ f
∂u

(t, xh, u)v(t).

Given that |xs
h(t)−xh(t)| ≤ Cs and (1.3), an elementary calculus shows that |A1| ≤ Cs2 and |A2| ≤ Cs2.

With these bounds, we may apply Lemma B.4 to deduce |r(t)| ≤ Cs2 for t ∈ [0,T ]. From this we find
that

lim
s→0

xs
h(t) − xh(t) − syh(t)

s
= 0,

which yields that
d
ds

xs
h(t) = yh(t).

This completes the proof.

Lemma C.2. The following holds.

‖Gh
′(u1)v −Gh

′(u2)v‖L∞(I) ≤ C‖u1 − u2‖L2(I)‖v‖L∞(I).

Proof. Let yh = Gh
′(u1)v ∈ Xr

h and zh = Gh
′(u2)v ∈ Xr

h. Then we obtain

B(yh, ϕ) =

(
∂ f
∂x

(t,Gh(u1), u1)yh(t) +
∂ f
∂u

(t,Gh(u1), u1)v(t), ϕ(t)
)

I

AIMS Mathematics Volume 7, Issue 5, 9117–9155.



9148

and

B(zh, ϕ) =

(
∂ f
∂x

(t,Gh(u2), u2)zh(t) +
∂ f
∂u

(t,Gh(u2), u2)v(t), ϕ(t)
)

I

for all ϕ ∈ Xr
h. Combining these equalities, we have

B(yh − zh, ϕ) =

(
∂ f
∂x

(t,Gh(u1), u1)(yh − zh)(t), ϕ(t)
)

I

+

((
∂ f
∂x

(t,Gh(u1), u1) −
∂ f
∂x

(t,Gh(u2), u2)
)

zh(t), ϕ(t)
)

I

+

((
∂ f
∂u

(t,Gh(u1), u1) −
∂ f
∂u

(t,Gh(u2), u2)
)

v(t), ϕ(t)
)

I

(C.4)

for all ϕ ∈ Xr
h. On the other hand, the following two inequalities hold:∣∣∣∣∣∣

(
∂ f
∂x

(t,Gh(u1), u1) −
∂ f
∂x

(t,Gh(u2), u2)
)

zh(t)

∣∣∣∣∣∣ ≤ C(|u1 − u2| + |Gh(u1) −Gh(u2)|)|zh(t)|

and ∣∣∣∣∣∣
(
∂ f
∂u

(t,Gh(u1), u1) −
∂ f
∂u

(t,Gh(u2), u2)
)

v(t)

∣∣∣∣∣∣ ≤ C(|u1 − u2| + |Gh(u1) −Gh(u2)|)|v(t)|.

Given these estimates, by applying Lemma B.4 to (C.4), we obtain

‖yh − zh‖L∞(I) ≤ C
∥∥∥(|u1 − u2| + |Gh(u1) −Gh(u2)|)|zh(t)|

∥∥∥
L2(I)

+ C
∥∥∥(|u1 − u2| + |Gh(u1) −Gh(u2)|)|v(t)|

∥∥∥
L2(I)

≤ C‖u1 − u2‖L2(I)‖v‖L∞(I),

where we used Lemma B.5 in the second inequality.

Lemma C.3. Let zh ∈ Xr
h be the solution of the following discretized equation:

B(zh, ϕ)

=

∫ T

0

(
∂2 f

(∂x)2 (t, xh, u)y2
h(t) + 2

∂2 f
∂x∂u

(t, xh, u)yh(t)v(t) +
∂2 f

(∂u)2 (t, xh, u)v2(t)
)
ϕ(t) dt

+

∫ T

0

∂ f
∂x

(t, xh, u)zh(t)ϕ(t) dt

for any ϕ ∈ Xr
h, where yh ∈ Xr

h is the solution of (C.1). Then we have

d2

(ds)2 Gh(u + sv)|s=0 = zh(t).

Proof. Let

ys
h(t) =

d
ds

Gh(u + sv) and yh(t) =
d
ds

Gh(u + sv)|s=0.
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It then follows that

B
(
(ys

h)(t) − yh(t) − szh(t), ϕ(t)
)

=:
(∂ f
∂x

(t, xh(t), u)(ys
h(t) − yh(t) − szh(t)) + A1(t) + A2(t), ϕ(t)

)
,

(C.5)

where

A1(t) :=
[
∂ f
∂x

(t, xs
h, u + sv) −

∂ f
∂x

(t, xh, u)
]

ys
h(t)

− s
[
∂2 f

(∂x)2 (t, xh, u)yh(t) +
∂2 f
∂x∂u

(t, xh, u)v(t)
]

yh(t)

and

A2(t) :=
[
∂ f
∂u

(t, xs
h, u + sv) −

∂ f
∂u

(t, xh, u)
]

v(t)

− s
[
∂2 f

(∂u)2 (t, xh, u)v(t) +
∂2 f
∂x∂u

(t, xh, u)yh(t)
]

v(t).

We obtain from Lemma C.2 the estimate |ys
h(t)−yh(t)| ≤ Cs. Upon this estimate and that d

ds xs
h(t)|s=0 =

yh(t) from Lemma C.1, an elementary calculus reveals that |A1(t)| ≤ Cs2 and |A2(t)| ≤ Cs2. Putting this
estimate into (C.5) and using Lemma B.4, we find

ys(t) − y(t) − sz(t) = O(s2).

This yields that
d
ds

ys
h(t)|s=0 = zh(t),

and so we have
d2

(ds)2 Gh(u + sv)|s=0 = zh(t)

since
ys

h(t) =
d
ds

Gh(u + sv).

The proof is done.

D. Derivations of the first order derivative of cost functionals

In this part, we give the proofs of Lemmas 3.3 and 3.5. Before presenting it, we shall explain how
to derive the discrete adjoint Eq (3.8) from the Lagrangian associated to (2.5).

Let us first write the Lagrangian of the problems (1.1) and (3.7) as follows:

Lh(xh, u, λh) :=
∫ T

0
g(t, xh(t), u(t)) dt + B(xh, λh) − ( f (·, xh, u), λh)I − (x0, λ

+
h,0) (D.1)
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for λh ∈ Xr
h, where the bilinear operator B(·, ·) is given by (3.7). If we compute the functional derivatives

of the above Lagrangian (D.1) with respect to the adjoint state λh, then δLh/δλh = 0 leads (3.7). We
now derive the equation of discrete adjoint state. Using the integration by parts, we find

B(xh, λh) = −

N∑
n=1

(xh, λ
′
h)In −

N−1∑
n=1

(x−h,n, [λh]n) + (x−h,N , λ
−
h,N).

This enables us to rewrite the Lagrangian (D.1) as

Lh(xh, u, λh) =

∫ T

0
g(t, xh(t), u(t)) dt −

N∑
n=1

(xh, λ
′
h)In − ( f (·, xh, u), λh)I

−

N−1∑
n=1

(x−h,n, [λh]n) + (x−h,N , λ
−
h,N) − (x0, λ

+
h,0),

and this further implies

0 =
δLh(xh, u, λh)

δxh
(ψh)

=

∫ T

0

∂g
∂x

(t, xh(t), u(t))ψh(t) dt −
N∑

n=1

(ψh, λ
′
h)In −

(
∂ f
∂x

(·, xh, u)ψh, λh

)
I

−

N−1∑
n=1

(ψ−h,n, [λh]n) + (ψ−h,N , λ
−
h,N)

=

∫ T

0

∂g
∂x

(t, xh(t), u(t))ψh(t) dt −
(
∂ f
∂x

(·, xh, u)ψh, λh

)
I
+ B(ψh, λh)

(D.2)

for all ψh ∈ Xr
h, where we applied the integration by parts for (ψh, λh

′)In to derive the second equality.
The above equality corresponds to the adjoint Eq (3.8).

Proof of Lemma 3.3. In order to compute the functional derivative of j with respect to u, we consider
j(u + sv) = J(u + sv,G(u + sv)) with v ∈ U and s ∈ R+. If we set xs(t) := G(u(t) + sv(t)) it follows
from Lemma A.1 that y = d

ds xs(t)|s=0 satisfies

y′(t) =
∂ f
∂x

(t, x, u)y(t) +
∂ f
∂u

(t, x, u)v(t), (D.3)

with the initial condition y(0) = 0. Recall from (3.4) that the adjoint state λ(t) = λ(u)(t) satisfies

λ′(t) =
∂g
∂x

(t, x, u) − λ(t)
∂ f
∂x

(t, x, u). (D.4)

Since xs(t) is differentiable with respect to s, the cost j(u + sv) is differentiable with respect to s and it
is computed as

j′(u)v =
d
ds

j(u + sv)
∣∣∣∣∣
s=0

=

∫ T

0

∂g
∂u

(t, x(t), u(t))v(t) dt +

∫ T

0

∂g
∂x

(t, x(t), u(t))y(t) dt

=

∫ T

0

(
∂g
∂u

(t, x(t), u(t)) − λ(t)
∂ f
∂u

(t, x(t), u(t))
)

v(t) dt,
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where we used ∫ T

0

∂g
∂x

(t, x(t), u(t))y(t) dt =

∫ T

0

(
λ′(t) + λ(t)

∂ f
∂x

(t, x(t), u(t))
)

y(t) dt

= −

∫ T

0
λ(t)

∂ f
∂u

(t, x(t), u(t))v(t) dt,

due to (D.3), (D.4), y(0) = 0, and λ(T ) = 0.

Proof of Lemma 3.5. The proof is very similar to Lemma 3.3. We consider jh(u+ sv) = J(u+ sv,Gh(u+

sv)) with v ∈ U and s ∈ R+. We recall from Lemma C.1 that the function xs
h := Gh(u + sv) is

differentiable at s = 0 with
d
ds

xs
h|s=0 = yh,

where yh ∈ Xr
h satisfies the following equation:

B(yh, ϕ) =

(
∂ f
∂x

(·, xh, u)yh +
∂ f
∂u

(·, xh, u)v, ϕ
)

I
, ∀ϕ ∈ Xr

h. (D.5)

Using this, we obtain

j′h(u)v =
d
ds

jh(u + sv)
∣∣∣∣∣
s=0

=

∫ T

0

∂g
∂u

(t, xh(t), u(t))v(t) dt +

∫ T

0

∂g
∂x

(t, xh(t), u(t))yh(t) dt.
(D.6)

We then take ψh = yh in (D.2) to get∫ T

0

∂g
∂x

(t, xh(t), u(t))yh(t) dt

=

N∑
n=1

(yh, λ
′
h)In +

(
∂ f
∂x

(·, xh, u)yh, λh

)
I
+

N−1∑
n=1

(y−h,n, [λh]n) − (y−h,N , λ
−
k,N).

On the other hand, by using the integration by parts, we find

N∑
n=1

(yh, λ
′
h)In +

N−1∑
n=1

(y−h,n, [λh]n) − (y−h,N , λ
−
h,N)

= −

N∑
n=1

(y′h, λh)In −

N∑
n=2

([yh]n−1, λ
+
h,n−1) − (y+

h,0, λ
+
h,0)

= −B(wh, λh),

where B(·, ·) is appeared in (3.6). This yields∫ T

0

∂g
∂x

(t, xh(t), u(t))yh(t) dt = −B(yh, λh) +

(
∂ f
∂x

(·, xh, u)yh, λh

)
I

= −

(
∂ f
∂u

(·, xh, u)v, λh

)
I
,
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due to (D.5). This together with (D.6) concludes

j′h(u)v =

∫ T

0

(
∂g
∂u

(t, xh(t), u(t)) −
∂ f
∂u

(t, xh(t), u(t))λh(t)
)

v(t) dt,

where v ∈ U.

E. Derivations of the second order derivative of cost functionals

In this appendix, we provide details of the derivation of the second order derivative of cost functional
j and its discrete version jh.

Lemma E.1. Let j be the cost functional for the optimal control problems (1.1) and (1.2). Then, for
u ∈ Uad and v ∈ U, we have

j′′(u)(v, v) = −

∫ T

0
λ(t)

(
∂2 f

(∂x)2 (t, x(t), u(t))y2(t) + 2
∂2 f
∂x∂u

(t, x(t), u(t))y(t)v(t)
)

dt

−

∫ T

0
λ(t)

∂2 f
(∂u)2 (t, x(t), u(t))v2(t) dt +

∫ T

0

∂2g
(∂x)2 (t, x(t), u(t))y2(t) dt

+

∫ T

0
2
∂2g
∂x∂u

(t, x, u)y(t)v(t) dt +

∫ T

0

∂2g
(∂u)2 (t, x(t), u(t))v2(t) dt.

Proof. Similarly as in Appendix D, we consider j(u + sv) = J(u + sv,G(u + sv)) with v ∈ U and s ∈ R+

and set xs(t) := G(u(t) + sv(t)). By Lemmas A.1 and A.2, it follows that

d
ds

xs|s=0 = y and
d2

(ds)2 xs|s=0 = z,

where y ∈ X is given as in (D.3) and z ∈ X is the solution to

z′(t) =
∂2 f

(∂x)2 (t, x(t), u(t))y2(t) + 2
∂2 f
∂x∂u

(t, x(t), u(t))y(t)v(t) +
∂2 f

(∂u)2 (t, x(t), u(t))v2(t)

+
∂ f
∂x

(t, x(t), u(t))z(t),

with the initial condition z(0) = 0. Then we obtain

j′′(u)(v, v) =
d2

ds2 j(u + sv)
∣∣∣∣∣
s=0

=
d2

ds2

∫ T

0
g(t, xs(t), u(t) + sv(t)) dt

∣∣∣∣∣
s=0

=

∫ T

0

∂g
∂x

(t, x(t), u(t))z(t) dt +

∫ T

0

∂2g
(∂x)2 (t, x(t), u(t))y2(t) dt

+

∫ T

0
2
∂2g
∂x∂u

(t, x, u)y(t)v(t) dt +

∫ T

0

∂2g
(∂u)2 (t, x(t), u(t))v2(t) dt.

(E.1)
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On the other hand, we use (D.4) to get∫ T

0

∂g
∂x

(t, x(t), u(t))z(t) dt

=

∫ T

0
λ′(t)z(t) dt +

∫ T

0

∂ f
∂x

(t, x(t), u(t))λ(t)z(t) dt

= −

∫ T

0
λ(t)z′(t) dt +

∫ T

0

∂ f
∂x

(t, x(t), u(t))λ(t)z(t) dt

= −

∫ T

0
λ(t)

(
∂2 f

(∂x)2 (t, x(t), u(t))y2(t) + 2
∂2 f
∂x∂u

(t, x(t), u(t))y(t)v(t)
)

dt

−

∫ T

0
λ(t)

∂2 f
(∂u)2 (t, x(t), u(t))v2(t) dt,

where we used λ(T ) = 0 and z(0) = 0. By combining the above with (E.1), we have

j′′(u)(v, v) = −

∫ T

0
λ(t)

(
∂2 f

(∂x)2 (t, x(t), u(t))y2(t) + 2
∂2 f
∂x∂u

(t, x(t), u(t))y(t)v(t)
)

dt

−

∫ T

0
λ(t)

∂2 f
(∂u)2 (t, x(t), u(t))v2(t)dt +

∫ T

0

∂2g
(∂x)2 (t, x(t), u(t))y2(t) dt

+

∫ T

0
2
∂2g
∂x∂u

(t, x, u)y(t)v(t) dt +

∫ T

0

∂2g
(∂u)2 (t, x(t), u(t))v2(t) dt.

(E.2)

This completes the proof.

Remark E.2. Solving the differential Eq (A.1) gives

y(t) =

∫ t

0

∂ f
∂u

(s, x(s), u(s))v(s) exp
(∫ t

s

∂ f
∂x

(τ, x(τ), u(τ)) dτ
)

ds,

and thus

|y(t)| ≤ C
∫ t

0
|v(s)| ds,

where C > 0 depends only on ‖ f ‖L∞(0,T ;W1,∞) and T > 0. This estimate for y enables to bound the first
four integrals on the right hand side of (E.2) by

C‖v‖2L2(I),

where C > 0 depends only on ‖λ‖L∞(I), T , ‖ f ‖L∞(0,T ;W2,∞), and ‖g‖L∞(0,T ;W2,∞). This implies that if g is
given by

g(t, x, u) = g̃(t, x) + γ|u|2,

then we have
j′′(u)(v, v) ≥ (2γ −C)‖v‖2L2(I),

which satisfies (2.4) if γ > C/2. It would be interesting to develop a numerical method to check (2.4)
for general case.
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Next we proceed the similar calculation for the approximate solution.

Lemma E.3. Let jh be the discrete cost functional for the optimal control problems (1.1) and (1.2).
Then, for u ∈ Uad and v ∈ U, we have

j′′h (u)(v, v)

= −

∫ T

0

(
∂2 f

(∂x)2 (t, xh, u)y2
h(t) + 2

∂2 f
∂x∂u

(t, xh, u)yh(t)v(t) +
∂2 f

(∂u)2 (t, xh, u)v2(t)
)
λh(t) dt

+

∫ T

0

(
∂2g

(∂x)2 (t, xh, u)y2
h(t) + 2

∂2g
∂x∂u

(t, xh, u)yh(t)v(t) +
∂2g

(∂u)2 (t, xh, u)v2(t)
)

dt.

Proof. Similarly as in the proof of Lemma 3.5, we consider jh(u + sv) = J(u + sv,Gh(u + sv)) with
v ∈ U and s ∈ R+ and set xs

h := Gh(u + sv). We recall from Theorem C.1 and Theorem C.3 that

d
ds

xs
h|s=0 = yh and

d2

(ds)2 xs
h|s=0 = zh,

where zh ∈ Xr
h satisfies

B(zh, ϕ)

=

∫ T

0

(
∂2 f

(∂x)2 (t, xh, u)y2
h(t) + 2

∂2 f
∂x∂u

(t, xh, u)yh(t)v(t) +
∂2 f

(∂u)2 (t, xh, u)v2(t)
)
ϕ(t) dt

+

∫ T

0

∂ f
∂x

(t, xh, u)zh(t)ϕ(t) dt.

Now a straightforward computation gives

j′′h (u)(v, v) =
d2

ds2

∫ T

0
g(t, xs

h(t), u(t) + sv(t)) dt
∣∣∣∣∣
s=0

=

∫ T

0

∂g
∂x

(t, xh(t), u(t))zh(t) dt +

∫ T

0

∂2g
(∂x)2 (t, xh(t), u(t))y2

h(t) dt

+

∫ T

0
2
∂2g
∂x∂u

(t, xh(t), u(t))yh(t)v(t) dt +

∫ T

0

∂2g
(∂u)2 (t, xh(t), u(t))v2(t) dt.

Note that the discrete adjoint state λh(t) = λh(u)(t) satisfies

−B(ψ, λh) +

(
∂ f
∂x

(t, xh, u)λh, ψ

)
I

=

(
∂g
∂x

(t, xh, u), ψ
)

I

for all ψ ∈ Xr
h. Thus by considering ψ = zh ∈ Xr

h, we find(
∂g
∂x

(t, xh, u), zh

)
I

= −B(zh, λh) +

(
∂ f
∂x

(t, xh, u)λh, zh

)
I

= −

∫ T

0

(
∂2 f

(∂x)2 (t, xh, u)y2
h(t) + 2

∂2 f
∂x∂u

(t, xh, u)yh(t)v(t) +
∂2 f

(∂u)2 (t, xh, u)v2(t)
)
λh(t) dt.
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Combining the above equalities, we have

j′′h (u)(v, v)

= −

∫ T

0

(
∂2 f

(∂x)2 (t, xh, u)y2
h(t) + 2

∂2 f
∂x∂u

(t, xh, u)yh(t)v(t) +
∂2 f

(∂u)2 (t, xh, u)v2(t)
)
λh(t) dt

+

∫ T

0

(
∂2g

(∂x)2 (t, xh, u)y2
h(t) + 2

∂2g
∂x∂u

(t, xh, u)yh(t)v(t) +
∂2g

(∂u)2 (t, xh, u)v2(t)
)

dt.

This completes the proof.
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