Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Dynamical behavior of tumor-immune system with fractal-fractional operator

  • Received: 17 October 2021 Revised: 10 January 2022 Accepted: 08 February 2022 Published: 03 March 2022
  • MSC : 37C75, 93B05, 65L07

  • In this paper, the dynamical behavior of the fractional-order cancer model has been analyzed with the fractal-fractional operator, which discretized the conformable cancer model. The fractional-order model consists of the system of nonlinear fractional differential equations. Also, we discuss the fractional-order model to check the relationship between the immune system and cancer cells by mixing IL-12 cytokine and anti-PD-L1 inhibitor. The tumor-immune model has been studied qualitatively as well as quantitatively via Atangana-Baleanu fractal-fractional operator. The nonlinear analysis is used to check the Ulam-Hyres stability of the proposed model. Moreover, the dynamical behavior for the fractional-order model has been checked by using a fractal-fractional operator with a generalized Mittag-Leffler Kernel and verifying the effect of fractional parameters. Finally, the obtained solutions are interpreted biologically, and simulations are carried out to illustrate cancer disease and support theoretical results, which will be helpful for further analysis and to control the effect of cancer in the community.

    Citation: Muhammad Farman, Aqeel Ahmad, Ali Akgül, Muhammad Umer Saleem, Kottakkaran Sooppy Nisar, Velusamy Vijayakumar. Dynamical behavior of tumor-immune system with fractal-fractional operator[J]. AIMS Mathematics, 2022, 7(5): 8751-8773. doi: 10.3934/math.2022489

    Related Papers:

    [1] Kandhasamy Tamilvanan, Jung Rye Lee, Choonkil Park . Ulam stability of a functional equation deriving from quadratic and additive mappings in random normed spaces. AIMS Mathematics, 2021, 6(1): 908-924. doi: 10.3934/math.2021054
    [2] Murali Ramdoss, Divyakumari Pachaiyappan, Inho Hwang, Choonkil Park . Stability of an n-variable mixed type functional equation in probabilistic modular spaces. AIMS Mathematics, 2020, 5(6): 5903-5915. doi: 10.3934/math.2020378
    [3] K. Tamilvanan, Jung Rye Lee, Choonkil Park . Hyers-Ulam stability of a finite variable mixed type quadratic-additive functional equation in quasi-Banach spaces. AIMS Mathematics, 2020, 5(6): 5993-6005. doi: 10.3934/math.2020383
    [4] Maysaa Al-Qurashi, Mohammed Shehu Shagari, Saima Rashid, Y. S. Hamed, Mohamed S. Mohamed . Stability of intuitionistic fuzzy set-valued maps and solutions of integral inclusions. AIMS Mathematics, 2022, 7(1): 315-333. doi: 10.3934/math.2022022
    [5] Lingxiao Lu, Jianrong Wu . Hyers-Ulam-Rassias stability of cubic functional equations in fuzzy normed spaces. AIMS Mathematics, 2022, 7(5): 8574-8587. doi: 10.3934/math.2022478
    [6] Nazek Alessa, K. Tamilvanan, G. Balasubramanian, K. Loganathan . Stability results of the functional equation deriving from quadratic function in random normed spaces. AIMS Mathematics, 2021, 6(3): 2385-2397. doi: 10.3934/math.2021145
    [7] Zhihua Wang . Approximate mixed type quadratic-cubic functional equation. AIMS Mathematics, 2021, 6(4): 3546-3561. doi: 10.3934/math.2021211
    [8] Nour Abed Alhaleem, Abd Ghafur Ahmad . Intuitionistic fuzzy normed prime and maximal ideals. AIMS Mathematics, 2021, 6(10): 10565-10580. doi: 10.3934/math.2021613
    [9] Sizhao Li, Xinyu Han, Dapeng Lang, Songsong Dai . On the stability of two functional equations for (S,N)-implications. AIMS Mathematics, 2021, 6(2): 1822-1832. doi: 10.3934/math.2021110
    [10] Zhihua Wang, Choonkil Park, Dong Yun Shin . Additive ρ-functional inequalities in non-Archimedean 2-normed spaces. AIMS Mathematics, 2021, 6(2): 1905-1919. doi: 10.3934/math.2021116
  • In this paper, the dynamical behavior of the fractional-order cancer model has been analyzed with the fractal-fractional operator, which discretized the conformable cancer model. The fractional-order model consists of the system of nonlinear fractional differential equations. Also, we discuss the fractional-order model to check the relationship between the immune system and cancer cells by mixing IL-12 cytokine and anti-PD-L1 inhibitor. The tumor-immune model has been studied qualitatively as well as quantitatively via Atangana-Baleanu fractal-fractional operator. The nonlinear analysis is used to check the Ulam-Hyres stability of the proposed model. Moreover, the dynamical behavior for the fractional-order model has been checked by using a fractal-fractional operator with a generalized Mittag-Leffler Kernel and verifying the effect of fractional parameters. Finally, the obtained solutions are interpreted biologically, and simulations are carried out to illustrate cancer disease and support theoretical results, which will be helpful for further analysis and to control the effect of cancer in the community.



    In 1940, Ulam [24] posed the stability problem concerning group homomorphisms. For Banach spaces, the problem was solved by Hyers [7] in the case of approximate additive mappings. And then Hyers' result was extended by Aoki [1] and Rassias [18] for additive mappings and linear mappings, respectively. In 1994, another further generalization, the so-called generalized Hyer-Ulam stability, was obtained by Gavruta [6]. Later, the stability of several functional equations has been extensively discussed by many mathematicians and there are many interesting results concerning this problem (see [2,8,9,10,19,20] and references therein); also, some stability results of different functional equations and inequalities were studied and generalized [5,11,12,15,16,17,26] in various matrix normed spaces like matrix fuzzy normed spaces, matrix paranormed spaces and matrix non-Archimedean random normed spaces.

    In 2017, Wang and Xu [25] introduced the following functional equation

    2k[f(x+ky)+f(kx+y)]=k(1s+k+ks+2k2)f(x+y)+k(1s3k+ks+2k2)f(xy)+2kf(kx)+2k(s+kks2k2)f(x)+2(1ks)f(ky)+2ksf(y) (1.1)

    where s is a parameter, k>1 and s12k. It is easy to verify that f(x)=ax+bx2(xR) satisfies the functional Eq (1.1), where a,b are arbitrary constants. They considered the general solution of the functional Eq (1.1), and then determined the generalized Hyers-Ulam stability of the functional Eq (1.1) in quasi-Banach spaces by applying the direct method.

    The main purpose of this paper is to employ the direct and fixed point methods to establish the Hyers-Ulam stability of the functional Eq (1.1) in matrix intuitionistic fuzzy normed spaces. The paper is organized as follows: In Sections 1 and 2, we present a brief introduction and introduce related basic definitions and preliminary results, respectively. In Section 3, we prove the Hyers-Ulam stability of the functional Eq (1.1) in matrix intuitionistic fuzzy normed spaces by applying the direct method. In Section 4, we prove the Hyers-Ulam stability of the functional Eq (1.1) in matrix intuitionistic fuzzy normed spaces by applying the fixed point method. Our results may be viewed as a continuation of the previous contribution of the authors in the setting of fuzzy stability (see [14,17]).

    For the sake of completeness, in this section, we present some basic definitions and preliminary results, which will be useful to investigate the Hyers-Ulam stability results in matrix intuitionistic fuzzy normed spaces. The notions of continuous t-norm and continuous t-conorm can be found in [14,22]. Using these, an intuitionistic fuzzy normed space (for short, IFNS) is defined as follows:

    Definition 2.1. ([14,21]) The five-tuple (X,μ,ν,,) is said to be an IFNS if X is a vector space, is a continuous t-norm, is a continuous t-conorm, and μ,ν are fuzzy sets on X×(0,) satisfy the following conditions. For every x,yX and s,t>0,

    (i) μ(x,t)+ν(x,t)1;

    (ii) μ(x,t)>0, (iii) μ(x,t)=1 if and only if x=0;

    (iii) μ(αx,t)=μ(x,t|α|) for each α0, (v) μ(x,t)μ(y,s)μ(x+y,t+s);

    (iv) μ(x,):(0,)[0,1] is continuous;

    (v) limtμ(x,t)=1 and limt0μ(x,t)=0;

    (vi) ν(x,t)<1, (ix) ν(x,t)=0 if and only if x=0;

    (vii) ν(αx,t)=ν(x,t|α|) for each α0, (xi) ν(x,t)ν(y,s)ν(x+y,t+s);

    (xiii) ν(x,):(0,)[0,1] is continuous;

    (ix) limtν(x,t)=0 and limt0ν(x,t)=1.

    In this case, (μ,ν) is called an intuitionistic fuzzy norm.

    The following concepts of convergence and Cauchy sequences are considered in [14,21]:

    Let (X,μ,ν,,) be an IFNS. Then, a sequence {xk} is said to be intuitionistic fuzzy convergent to xX if for every ε>0 and t>0, there exists k0N such that

    μ(xkx,t)>1ε

    and

    ν(xkx,t)<ε

    for all kk0. In this case we write

    (μ,ν)limxk=x.

    The sequence {xk} is said to be an intuitionistic fuzzy Cauchy sequence if for every ε>0 and t>0, there exists k0N such that

    μ(xkx,t)>1ε

    and

    ν(xkx,t)<ε

    for all k,k0. (X,μ,ν,,) is said to be complete if every intuitionistic fuzzy Cauchy sequence in (X,μ,ν,,) is intuitionistic fuzzy convergent in (X,μ,ν,,).

    Following [11,12], we will also use the following notations: The set of all m×n-matrices in X will be denoted by Mm,n(X). When m=n, the matrix Mm,n(X) will be written as Mn(X). The symbols ejM1,n(C) will denote the row vector whose jth component is 1 and the other components are 0. Similarly, EijMn(C) will denote the n×n matrix whose (i,j)-component is 1 and the other components are 0. The n×n matrix whose (i,j)-component is x and the other components are 0 will be denoted by EijxMn(X).

    Let (X,) be a normed space. Note that (X,{n}) is a matrix normed space if and only if (Mn(X),n) is a normed space for each positive integer n and

    AxBkABxn

    holds for AMk,n, x=[xij]Mn(X) and BMn,k, and that (X,{n}) is a matrix Banach space if and only if X is a Banach space and (X,{n}) is a matrix normed space.

    Following [23], we introduce the concept of a matrix intuitionistic fuzzy normed space as follows:

    Definition 2.2. ([23]) Let (X,μ,ν,,) be an intuitionistic fuzzy normed space, and the symbol θ for a rectangular matrix of zero elements over X. Then:

    (1) (X,{μn},{νn},,) is called a matrix intuitionistic fuzzy normed space (briefly, MIFNS) if for each positive integer n, (Mn(X),μn,νn,,) is an intuitionistic fuzzy normed space, μn and νn satisfy the following conditions:

    (i) μn+m(θ+x,t)=μn(x,t),νn+m(θ+x,t)=νn(x,t) for all t>0, x=[xij]Mn(X), θMn(X);

    (ii) μk(AxB,t)μn(x,tAB), νk(AxB,t)νn(x,tAB) for all t>0, AMk,n(R), x=[xij]Mn(X) and BMn,k(R) with AB0.

    (2) (X,{μn},{νn},,) is called a matrix intuitionistic fuzzy Banach space if (X,μ,ν,,) is an intuitionistic fuzzy Banach space and (X,{μn},{νn},,) is a matrix intuitionistic fuzzy normed space.

    The following Lemma 2.3 was found in [23].

    Lemma 2.3. ([23]) Let (X,{μn},{νn},,) be a matrix intuitionistic fuzzy normed space. Then,

    (1) μn(Eklx,t)=μ(x,t), νn(Eklx,t)=ν(x,t) for all t>0 and xX.

    (2) For all [xij]Mn(X) and t=ni,j=1tij>0,

    μ(xkl,t)μn([xij],t)min{μ(xij,tij):i,j=1,2,,n},μ(xkl,t)μn([xij],t)min{μ(xij,tn2):i,j=1,2,,n},

    and

    ν(xkl,t)νn([xij],t)max{ν(xij,tij):i,j=1,2,,n},ν(xkl,t)νn([xij],t)max{ν(xij,tn2):i,j=1,2,,n}.

    (3) limmxm=x if and only if limmxijm=xij for xm=[xijm],x=[xij]Mn(X).

    For explicit later use, we also recall the following Lemma 2.4 is due to Diaz and Margolis [4], which will play an important role in proving our stability results in this paper.

    Lemma 2.4. (The fixed point alternative theorem [4]) Let (E,d) be a complete generalized metric space and J: EE be a strictly contractive mapping with Lipschitz constant L<1. Then for each fixed element xE, either

    d(Jnx,Jn+1x)=,n0,

    or

    d(Jnx,Jn+1x)<,nn0,

    for some natural number n0. Moreover, if the second alternative holds then:

    (i) The sequence {Jnx} is convergent to a fixed point y of J.

    (ii)y is the unique fixed point of J in the set E:={yEd(Jn0x,y)<+} and d(y,y)11Ld(y,Jy),x,yE.

    From now on, let (X,{μn},{νn},,) be a matrix intuitionistic fuzzy normed space and (Y,{μn},{νn},,) be a matrix intuitionistic fuzzy Banach space. In this section, we will prove the Hyers-Ulam stability of the functional Eq (1.1) in matrix intuitionistic fuzzy normed spaces by using the direct method. For the sake of convenience, given mapping f: XY, we define the difference operators Df: X2Y and Dfn: Mn(X2)Mn(Y) of the functional Eq (1.1) by

    Df(a,b):=2k[f(a+kb)+f(ka+b)]k(1s+k+ks+2k2)f(a+b)k(1s3k+ks+2k2)f(ab)2kf(ka)2k(s+kks2k2)f(a)2(1ks)f(kb)2ksf(b),Dfn([xij],[yij]):=2k[fn([xij]+k[yij])+fn(k[xij]+[yij])]k(1s+k+ks+2k2)fn([xij]+[yij])k(1s3k+ks+2k2)fn([xij][yij])2kfn(k[xij])2k(s+kks2k2)fn([xij])2(1ks)fn(k[yij])2ksfn([yij])

    for all a,bX and all x=[xij],y=[yij]Mn(X).

    We start with the following lemmas which will be used in this paper.

    Lemma 3.1. ([25]) Let V and W be real vector spaces. If an odd mapping f: VW satisfies the functional Eq (1.1), then f is additive.

    Lemma 3.2. ([25]) Let V and W be real vector spaces. If an even mapping f: VW satisfies the functional Eq (1.1), then f is quadratic.

    Theorem 3.3. Let φo: X2[0,) be a function such that for some real number α with 0<α<k,

    φo(ka,kb)=αφo(a,b) (3.1)

    for all a,bX. Suppose that an odd mapping f: XY satisfies the inequality

    {μn(Dfn([xij],[yij]),t)tt+ni,j=1φo(xij,yij),νn(Dfn([xij],[yij]),t)ni,j=1φo(xij,yij)t+ni,j=1φo(xij,yij) (3.2)

    for all x=[xij],y=[yij]Mn(X) and all t>0. Then there exists a unique additive mapping A: XY such that

    {μn(fn([xij])An([xij]),t)(kα)(2k+s1)t(kα)(2k+s1)t+n2ni,j=1φo(0,xij),νn(fn([xij])An([xij]),t)n2ni,j=1φo(0,xij)(kα)(2k+s1)t+n2ni,j=1φo(0,xij) (3.3)

    for all x=[xij]Mn(X) and all t>0.

    Proof. When n=1, (3.2) is equivalent to

    μ(Df(a,b),t)tt+φo(a,b)andν(Df(a,b),t)φo(a,b)t+φo(a,b) (3.4)

    for all a,bX and all t>0. Putting a=0 in (3.4), we have

    {μ(2(2k+s1)f(kb)2(2k+s1)kf(b),t)tt+φo(0,b),ν(2(2k+s1)f(kb)2(2k+s1)kf(b),t)φo(0,b)t+φo(0,b) (3.5)

    for all bX and all t>0. Replacing a by kpa in (3.5) and using (3.1), we get

    {μ(f(kp+1a)kp+1f(kpa)kp,t2k(2k+s1)kp)tt+αpφo(0,a),ν(f(kp+1a)kp+1f(kpa)kp,t2k(2k+s1)kp)αpφo(0,a)t+αpφo(0,a) (3.6)

    for all aX and all t>0. It follows from (3.6) that

    {μ(f(kp+1a)kp+1f(kpa)kp,αpt2k(2k+s1)kp)tt+φo(0,a),ν(f(kp+1a)kp+1f(kpa)kp,αpt2k(2k+s1)kp)φo(0,a)t+φo(0,a) (3.7)

    for all aX and all t>0. It follows from

    f(kpa)kpf(a)=p1=0(f(k+1a)k+1f(ka)k)

    and (3.7) that

    {μ(f(kpa)kpf(a),p1=0αt2k(2k+s1)k)p1=0μ(f(k+1a)k+1f(ka)k,αt2k(2k+s1)k)tt+φo(0,a),ν(f(kpa)kpf(a),p1=0αt2k(2k+s1)k)p1=0ν(f(k+1a)k+1f(ka)k,αt2k(2k+s1)k)φo(0,a)t+φo(0,a) (3.8)

    for all aX and all t>0, where

    pj=0aj=a1a2ap,   pj=0aj=a1a2ap.

    By replacing a with kqa in (3.8), we have

    {μ(f(kp+qa)kp+qf(kqa)kq,p1=0αt2k(2k+s1)k+q)tt+αqφo(0,a),ν(f(kp+qa)kp+qf(kqa)kq,p1=0αt2k(2k+s1)k+q)αqφo(0,a)t+αqφo(0,a) (3.9)

    for all aX, t>0, p>0 and q>0. Thus

    {μ(f(kp+qa)kp+qf(kqa)kq,p+q1=qαt2k(2k+s1)k)tt+φo(0,a),ν(f(kp+qa)kp+qf(kqa)kq,p+q1=qαt2k(2k+s1)k)φo(0,a)t+φo(0,a) (3.10)

    for all aX, t>0, p>0 and q>0. Hence

    {μ(f(kp+qa)kp+qf(kqa)kq,t)tt+p+q1=qα2k(2k+s1)kφo(0,a),ν(f(kp+qa)kp+qf(kqa)kq,t)p+q1=qα2k(2k+s1)kφo(0,a)t+p+q1=qα2k(2k+s1)kφo(0,a) (3.11)

    for all aX, t>0, p>0 and q>0. Since 0<α<k and

    =0α2k(2k+s1)k<,

    the Cauchy criterion for convergence in IFNS shows that {f(kpa)kp} is a Cauchy sequence in (Y,μ,ν,,). Since (Y,μ,ν,,) is an intuitionistic fuzzy Banach space, this sequence converges to some point A(a)Y. So one can define the mapping A: XY such that

    A(a):=(μ,ν)limpf(kpa)kp.

    Moreover, if we put q=0 in (3.11), we get

    {μ(f(kpa)kpf(a),t)tt+p1=0α2k(2k+s1)kφo(0,a),ν(f(kpa)kpf(a),t)p1=0α2k(2k+s1)kφo(0,a)t+p1=0α2k(2k+s1)kφo(0,a) (3.12)

    for all aX, t>0 and p>0. Thus, we obtain

    {μ(f(a)A(a),t)μ(f(a)f(kpa)kp,t2)μ(f(kpa)kpA(a),t2)tt+p1=0αk(2k+s1)kφo(0,a),ν(f(a)A(a),t)ν(f(a)f(kpa)kp,t2)ν(f(kpa)kpA(a),t2)p1=0αk(2k+s1)kφo(0,a)t+p1=0αk(2k+s1)kφo(0,a) (3.13)

    for every aX, t>0 and large p. Taking the limit as p and using the definition of IFNS, we get

    {μ(f(a)A(a),t)(kα)(2k+s1)t(kα)(2k+s1)t+φo(0,a),ν(f(a)A(a),t)φo(0,a)(kα)(2k+s1)t+φo(0,a). (3.14)

    Replacing a and b by kpa and kpb in (3.4), respectively, and using (3.1), we obtain

    μ(1kpDf(kpa,kpb),t)tt+(αk)pφo(a,b)andν(1kpDf(kpa,kpb),t)(αk)pφo(a,b)t+(αk)pφo(a,b) (3.15)

    for all a,bX and all t>0. Letting p in (3.15), we obtain

    μ(DA(a,b),t)=1andν(DA(a,b),t)=0 (3.16)

    for all a,bX and all t>0. This means that A satisfies the functional Eq (1.1). Since f: XY is an odd mapping, and using the definition A, we have A(a)=A(a) for all aX. Thus by Lemma 3.1, the mapping A: XY is additive. To prove the uniqueness of A, let A: XY be another additive mapping satisfying (3.14). Let n=1. Then we have

    {μ(A(a)A(a),t)=μ(A(kpa)kpA(kpa)kp,t)μ(A(kpa)kpf(kpa)kp,t2)μ(f(kpa)kpA(kpa)kp,t2)(kα)(2k+s1)t(kα)(2k+s1)t+2(αk)pφo(0,a),ν(A(a)A(a),t)=ν(A(kpa)kpA(kpa)kp,t)ν(A(kpa)kpf(kpa)kp,t2)ν(f(kpa)kpA(kpa)kp,t2)2(αk)pφo(0,a)(kα)(2k+s1)t+2(αk)pφo(0,a) (3.17)

    for all aX, t>0 and p>0. Letting p in (3.17), we get

    μ(A(a)A(a),t)=1andν(A(a)A(a),t)=0

    for all aX and t>0. Hence we get A(a)=A(a) for all aX. Thus the mapping A: XY is a unique additive mapping.

    By Lemma 2.3 and (3.14), we get

    {μn(fn([xij])An([xij]),t)min{μ(f(xij)A(xij),tn2):i,j=1,,n} (kα)(2k+s1)t(kα)(2k+s1)t+n2ni,j=1φo(0,xij),νn(fn([xij])An([xij]),t)max{ν(f(xij)A(xij),tn2):i,j=1,,n} n2ni,j=1φo(0,xij)(kα)(2k+s1)t+n2ni,j=1φo(0,xij)

    for all x=[xij]Mn(X) and all t>0. Thus A: XY is a unique additive mapping satisfying (3.3), as desired. This completes the proof of the theorem.

    Theorem 3.4. Let φe: X2[0,) be a function such that for some real number α with 0<α<k2,

    φe(ka,kb)=αφe(a,b) (3.18)

    for all a,bX. Suppose that an even mapping f: XY with f(0)=0 satisfies the inequality

    {μn(Dfn([xij],[yij]),t)tt+ni,j=1φe(xij,yij),νn(Dfn([xij],[yij]),t)ni,j=1φe(xij,yij)t+ni,j=1φe(xij,yij) (3.19)

    for all x=[xij], y=[yij]Mn(X) and all t>0. Then there exists a unique quadratic mapping Q: XY such that

    {μn(fn([xij])Qn([xij]),t)(k2α)(2k+s1)t(k2α)(2k+s1)t+n2ni,j=1φe(0,xij),νn(fn([xij])Qn([xij]),t)n2ni,j=1φe(0,xij)(k2α)(2k+s1)t+n2ni,j=1φe(0,xij) (3.20)

    for all x=[xij]Mn(X) and all t>0.

    Proof. When n=1, (3.19) is equivalent to

    μ(Df(a,b),t)tt+φe(a,b)andν(Df(a,b),t)φe(a,b)t+φe(a,b) (3.21)

    for all a,bX and all t>0. Letting a=0 in (3.21), we obtain

    {μ(2(2k+s1)f(kb)2(2k+s1)k2f(b),t)tt+φe(0,b),ν(2(2k+s1)f(kb)2(2k+s1)k2f(b),t)φe(0,b)t+φe(0,b) (3.22)

    for all bX and all t>0. Replacing a by kpa in (3.22) and using (3.18), we get

    {μ(f(kp+1a)k2(p+1)f(kpa)k2p,t2k2(2k+s1)k2p)tt+αpφe(0,a),ν(f(kp+1a)k2(p+1)f(kpa)k2p,t2k2(2k+s1)k2p)αpφe(0,a)t+αpφe(0,a) (3.23)

    for all aX and all t>0. It follows from (3.23) that

    {μ(f(kp+1a)k2(p+1)f(kpa)k2p,αpt2k2(2k+s1)k2p)tt+φe(0,a),ν(f(kp+1a)k2(p+1)f(kpa)k2p,αpt2k2(2k+s1)k2p)φe(0,a)t+φe(0,a) (3.24)

    for all aX and all t>0. It follows from

    f(kpa)k2pf(a)=p1=0(f(k+1a)k2(+1)f(ka)k2)

    and (3.24) that

    {μ(f(kpa)k2pf(a),p1=0αt2k2(2k+s1)k2)p1=0μ(f(k+1a)k2(+1)f(ka)k2,αt2k2(2k+s1)k2)tt+φe(0,a),ν(f(kpa)k2pf(a),p1=0αt2k2(2k+s1)k2)p1=0ν(f(k+1a)k2(+1)f(ka)k2,αt2k2(2k+s1)k2)φe(0,a)t+φe(0,a) (3.25)

    for all aX and all t>0, where

    pj=0aj=a1a2ap,   pj=0aj=a1a2ap.

    By replacing a with kqa in (3.25), we have

    {μ(f(kp+qa)k2(p+q)f(kqa)k2q,p1=0αt2k2(2k+s1)k2(+q))tt+αqφe(0,a),ν(f(kp+qa)k2(p+q)f(kqa)k2q,p1=0αt2k2(2k+s1)k2(+q))αqφe(0,a)t+αqφe(0,a) (3.26)

    for all aX, t>0, p>0 and q>0. Thus

    {μ(f(kp+qa)k2(p+q)f(kqa)k2q,p+q1=qαt2k2(2k+s1)k2)tt+φe(0,a),ν(f(kp+qa)k2(p+q)f(kqa)k2q,p+q1=qαt2k2(2k+s1)k2)φe(0,a)t+φe(0,a) (3.27)

    for all aX, t>0, p>0 and q>0. Hence

    {μ(f(kp+qa)k2(p+q)f(kqa)k2q,t)tt+p+q1=qα2k2(2k+s1)k2φe(0,a),ν(f(kp+qa)k2(p+q)f(kqa)k2q,t)p+q1=qα2k2(2k+s1)k2φe(0,a)t+p+q1=qα2k2(2k+s1)k2φe(0,a) (3.28)

    for all aX, t>0, p>0 and q>0. Since 0<α<k2 and

    =0α2k2(2k+s1)k2<,

    the Cauchy criterion for convergence in IFNS shows that {f(kpa)k2p} is a Cauchy sequence in (Y,μ,ν,,). Since (Y,μ,ν,,) is an intuitionistic fuzzy Banach space, this sequence converges to some point Q(a)Y. So one can define the mapping Q: XY such that

    Q(a):=(μ,ν)limpf(kpa)k2p.

    Moreover, if we put q=0 in (3.28), we get

    {μ(f(kpa)k2pf(a),t)tt+p1=0α2k2(2k+s1)k2φe(0,a),ν(f(kpa)k2pf(a),t)p1=0α2k2(2k+s1)k2φe(0,a)t+p1=0α2k2(2k+s1)k2φe(0,a) (3.29)

    for all aX, t>0 and p>0. Thus, we obtain

    {μ(f(a)Q(a),t)μ(f(a)f(kpa)k2p,t2)μ(f(kpa)k2pQ(a),t2)tt+p1=0αk2(2k+s1)k2φe(0,a),ν(f(a)Q(a),t)ν(f(a)f(kpa)k2p,t2)ν(f(kpa)k2pQ(a),t2)p1=0αk2(2k+s1)k2φe(0,a)t+p1=0αk2(2k+s1)k2φe(0,a) (3.30)

    for every aX, t>0 and large p. Taking the limit as p and using the definition of IFNS, we get

    {μ(f(a)Q(a),t)(k2α)(2k+s1)t(k2α)(2k+s1)t+φe(0,a),ν(f(a)Q(a),t)φe(0,a)(k2α)(2k+s1)t+φe(0,a). (3.31)

    Replacing a and b by kpa and kpb in (3.21), respectively, and using (3.18), we obtain

    μ(1k2pDf(kpa,kpb),t)tt+(αk2)pφe(a,b),ν(1k2pDf(kpa,kpb),t)(αk2)pφe(a,b)t+(αk2)pφe(a,b) (3.32)

    for all a,bX and all t>0. Letting p in (3.32), we obtain

    μ(DQ(a,b),t)=1andν(DQ(a,b),t)=0 (3.33)

    for all a,bX and all t>0. This means that Q satisfies the functional Eq (1.1). Since f: XY is an even mapping, and using the definition Q, we have Q(a)=Q(a) for all aX. Thus by Lemma 3.2, the mapping Q: XY is quadratic. To prove the uniqueness of Q, let Q: XY be another quadratic mapping satisfying (3.31). Let n=1. Then we have

    {μ(Q(a)Q(a),t)=μ(Q(kpa)k2pQ(kpa)k2p,t)  μ(Q(kpa)k2pf(kpa)k2p,t2)μ(f(kpa)k2pQ(kpa)k2p,t2)  (k2α)(2k+s1)t(k2α)(2k+s1)t+2(αk2)pφe(0,a),ν(Q(a)Q(a),t)=ν(Q(kpa)k2pQ(kpa)k2p,t)  ν(Q(kpa)k2pf(kpa)k2p,t2)ν(f(kpa)kpQ(kpa)k2p,t2)  2(αk2)pφe(0,a)(k2α)(2k+s1)t+2(αk2)pφe(0,a) (3.34)

    for all aX, t>0 and p>0. Letting p in (3.34), we get

    μ(Q(a)Q(a),t)=1andν(Q(a)Q(a),t)=0

    for all aX and t>0. Hence we get Q(a)=Q(a) for all aX. Thus the mapping Q: XY is a unique quadratic mapping.

    By Lemma 2.3 and (3.31), we get

    {μn(fn([xij])Qn([xij]),t)min{μ(f(xij)Q(xij),tn2):i,j=1,,n}(k2α)(2k+s1)t(k2α)(2k+s1)t+n2ni,j=1φe(0,xij),νn(fn([xij])Qn([xij]),t)max{ν(f(xij)Q(xij),tn2):i,j=1,,n}n2ni,j=1φe(0,xij)(k2α)(2k+s1)t+n2ni,j=1φe(0,xij)

    for all x=[xij]Mn(X) and all t>0. Thus Q: XY is a unique quadratic mapping satisfying (3.20), as desired. This completes the proof of the theorem.

    Theorem 3.5. Let φ: X2[0,) be a function such that for some real number α with 0<α<k,

    φ(ka,kb)=αφ(a,b) (3.35)

    for all a,bX. Suppose that a mapping f: XY with f(0)=0 satisfies the inequality

    {μn(Dfn([xij],[yij]),t)tt+ni,j=1φ(xij,yij),νn(Dfn([xij],[yij]),t)ni,j=1φ(xij,yij)t+ni,j=1φ(xij,yij) (3.36)

    for all x=[xij],y=[yij]Mn(X) and all t>0. Then there exist a unique quadratic mapping Q: XY and a unique additive mapping A: XY such that

    {μn(fn([xij])Qn([xij])An([xij]),t)(kα)(2k+s1)t(kα)(2k+s1)t+2n2ni,j=1˜φ(0,xij),νn(fn([xij])Qn([xij])An([xij]),t)2n2ni,j=1˜φ(0,xij)(kα)(2k+s1)t+2n2ni,j=1˜φ(0,xij) (3.37)

    for all x=[xij]Mn(X) and all t>0, ˜φ(a,b)=φ(a,b)+φ(a,b) for all a,bX.

    Proof. When n=1, (3.36) is equivalent to

    μ(Df(a,b),t)tt+φ(a,b)andν(Df(a,b),t)φ(a,b)t+φ(a,b) (3.38)

    for all a,bX and all t>0. Let

    fe(a)=f(a)+f(a)2

    for all all aX. Then fe(0)=0,fe(a)=fe(a). And we have

    {μ(Dfe(a,b),t)=μ(12Df(a,b)+12Df(a,b),t)=μ(Df(a,b)+Df(a,b),2t)μ(Df(a,b),t)μ(Df(a,b),t)min{μ(Df(a,b),t),μ(Df(a,b),t)}tt+˜φ(a,b),ν(Dfe(a,b),t)=ν(12Df(a,b)+12Df(a,b),t)=ν(Df(a,b)+Df(a,b),2t)ν(Df(a,b),t)ν(Df(a,b),t)max{ν(Df(a,b),t),ν(Df(a,b),t)}˜φ(a,b)t+˜φ(a,b) (3.39)

    for all aX and all t>0. Let

    fo(a)=f(a)f(a)2

    for all all aX. Then f0(0)=0,fo(a)=fo(a). And we obtain

    {μ(Dfo(a,b),t)=μ(12Df(a,b)12Df(a,b),t)=μ(Df(a,b)Df(a,b),2t)μ(Df(a,b),t)μ(Df(a,b),t)=min{μ(Df(a,b),t),μ(Df(a,b),t)}tt+˜φ(a,b),ν(Dfo(a,b),t)=ν(12Df(a,b)12Df(a,b),t)=ν(Df(a,b)Df(a,b),2t)ν(Df(a,b),t)ν(Df(a,b),t)=max{ν(Df(a,b),t),ν(Df(a,b),t)}˜φ(a,b)t+˜φ(a,b) (3.40)

    for all aX and all t>0. It follows that the definition of ˜φ that ˜φ(ka,kb)=α˜φ(a,b) for all a,bX. It is easy to check that the condition of Theorems 3.3 and 3.4 are satisfying. Then applying the proofs of Theorems 3.3 and 3.4, we know that there exists a unique quadratic mapping Q: XY and a unique additive mapping A: XY satisfying

    {μ(fe(a)Q(a),t)(k2α)(2k+s1)t(k2α)(2k+s1)t+˜φ(0,a),ν(fe(a)Q(a),t)˜φ(0,a)(k2α)(2k+s1)t+˜φ(0,a) (3.41)

    and

    {μ(fo(a)A(a),t)(kα)(2k+s1)t(kα)(2k+s1)t+˜φ(0,a),ν(fo(a)A(a),t)˜φ(0,a)(kα)(2k+s1)t+˜φ(0,a) (3.42)

    for all aX and all t>0. Therefore

    {μ(f(a)Q(a)A(a),t)=μ(fe(a)Q(a)+fo(a)A(a),t)μ(fe(a)Q(a),t2)μ(fo(a)A(a),t2)=min{μ(fe(a)Q(a),t2),μ(fo(a)A(a),t2)}min{(k2α)(2k+s1)t(k2α)(2k+s1)t+2˜φ(0,a),(kα)(2k+s1)t(kα)(2k+s1)t+2˜φ(0,a)}=(kα)(2k+s1)t(kα)(2k+s1)t+2˜φ(0,a),ν(f(a)Q(a)A(a),t)=ν(fe(a)Q(a)+fo(a)A(a),t)ν(fe(a)Q(a),t2)ν(fo(a)A(a),t2)=max{ν(fe(a)Q(a),t2),ν(fo(a)A(a),t2)}max{2˜φ(0,a)(k2α)(2k+s1)t+2˜φ(0,a),2˜φ(0,a)(kα)(2k+s1)t+2˜φ(0,a)}=2˜φ(0,a)(kα)(2k+s1)t+2˜φ(0,a). (3.43)

    By Lemma 2.3 and (3.43), we have

    {μn(fn([xij])Qn([xij])An([xij]),t)min{μ(f(xij)Q(xij)A(xij),tn2):i,j=1,,n}(kα)(2k+s1)t(kα)(2k+s1)t+2n2ni,j=1˜φ(0,xij),νn(fn([xij])Qn([xij])An([xij]),t)max{ν(f(xij)Q(xij)A(xij),tn2):i,j=1,,n}2n2ni,j=1˜φ(0,xij)(kα)(2k+s1)t+2n2ni,j=1˜φ(0,xij)

    for all x=[xij]Mn(X) and all t>0. Thus Q: XY is a unique quadratic mapping and a unique additive mapping A: XY satisfying (3.37), as desired. This completes the proof of the theorem.

    Corollary 3.6. Let r,θ be positive real numbers with r<1. Suppose that a mapping f: XY with f(0)=0 satisfies the inequality

    {μn(Dfn([xij],[yij]),t)tt+ni,j=1θ(xijr+yijr),νn(Dfn([xij],[yij]),t)ni,j=1θ(xijr+yijr)t+ni,j=1θ(xijr+yijr) (3.44)

    for all x=[xij],y=[yij]Mn(X) and all t>0. Then there exist a unique quadratic mapping Q: XY and a unique additive mapping A: XY such that

    {μn(fn([xij])Qn([xij])An([xij]),t)(kkr)(2k+s1)t(kkr)(2k+s1)t+4n2ni,j=1θxijr,νn(fn([xij])Qn([xij])An([xij]),t)4n2ni,j=1θxijr(kkr)(2k+s1)t+4n2ni,j=1θxijr (3.45)

    for all x=[xij]Mn(X) and all t>0.

    Proof. The proof follows from Theorem 3.5 by taking φ(a,b)=θ(ar+br) for all a,bX, we obtain the desired result.

    In this section, we will prove the Hyers-Ulam stability of the functional Eq (1.1) in matrix intuitionistic fuzzy normed spaces by applying the fixed point method.

    Theorem 4.1. Let φo: X2[0,) be a function such that for some real number ρ with 0<ρ<1 and

    φo(a,b)=ρkφo(ka,kb) (4.1)

    for all a,bX. Suppose that an odd mapping f: XY satisfies the inequality

    {μn(Dfn([xij],[yij]),t)tt+ni,j=1φo(xij,yij),νn(Dfn([xij],[yij]),t)ni,j=1φo(xij,yij)t+ni,j=1φo(xij,yij) (4.2)

    for all x=[xij],y=[yij]Mn(X) and all t>0. Then there exists a unique additive mapping A: XY such that

    {μn(fn([xij])An([xij]),t)2k(2k+s1)(1ρ)t2k(2k+s1)(1ρ)t+ρn2ni,j=1φo(0,xij),νn(fn([xij])An([xij]),t)ρn2ni,j=1φo(0,xij)2k(2k+s1)(1ρ)t+ρn2ni,j=1φo(0,xij) (4.3)

    for all x=[xij]Mn(X) and all t>0.

    Proof. When n=1, similar to the proof of Theorem 3.3, we have

    {μ(2(2k+s1)f(ka)2(2k+s1)kf(a),t)tt+φo(0,a),ν(2(2k+s1)f(ka)2(2k+s1)kf(a),t)φo(0,a)t+φo(0,a) (4.4)

    for all aX and all t>0.

    Let S1={g1:XY}, and introduce a generalized metric d1 on S1 as follows:

    d1(g1,h1):=inf{λR+|{μ(g1(a)h1(a),λt)tt+φo(0,a),ν(g1(a)h1(a),λt)φo(0,a)t+φo(0,a),aX,t>0}.

    It is easy to prove that (S1,d1) is a complete generalized metric space ([3,13]). Now, we define the mapping J1: S1S1 by

    J1g1(a):=kg1(ak),for allg1S1andaX. (4.5)

    Let g1,h1S1 and let λR+ be an arbitrary constant with d1(g1,h1)λ. From the definition of d1, we get

    {μ(g1(a)h1(a),λt)tt+φo(0,a),ν(g1(a)h1(a),λt)φo(0,a)t+φo(0,a)

    for all aX and t>0. Therefore, using (4.1), we get

    {μ(J1g1(a)J1h1(a),λρt)=μ(kg1(ak)kh1(ak),λρt)=μ(g1(ak)h1(ak),λρtk)ρktρkt+ρkφo(0,a)=tt+φo(0,a),ν(J1g1(a)J1h1(a),λρt)=ν(kg1(ak)kh1(ak),λρt)=ν(g1(ak)h1(ak),λρtk)ρkφo(0,a)ρkt+ρkφo(0,a)=φo(0,a)t+φo(0,a) (4.6)

    for some ρ<1, all aX and all t>0. Hence, it holds that d1(J1g1,J1h1)λρ, that is, d1(J1g1,J1h1)ρd1(g1,h1) for all g1,h1S1.

    Furthermore, by (4.1) and (4.4), we obtain the inequality

    d(f,J1f)ρ2k(2k+s1).

    It follows from Lemma 2.4 that the sequence Jp1f converges to a fixed point A of J1, that is, for all aX and all t>0,

    A:XY,A(a):=(μ,ν)limpkpf(akp) (4.7)

    and

    A(ka)=kA(a). (4.8)

    Meanwhile, A is the unique fixed point of J1 in the set

    S1={g1S1:d1(f,g1)<}.

    Thus, there exists a λR+ such that

    {μ(f(a)A(a),λt)tt+φo(0,a),ν(f(a)A(a),λt)φo(0,a)t+φo(0,a)

    for all aX and all t>0. Also,

    d1(f,A)11ρd(f,J1f)ρ2k(1ρ)(2k+s1).

    This means that the following inequality

    {μ(f(a)A(a),t)2k(2k+s1)(1ρ)t2k(2k+s1)(1ρ)t+ρφo(0,a),ν(f(a)A(a),t)ρφo(0,a)2k(2k+s1)(1ρ)t+ρφo(0,a) (4.9)

    holds for all aX and all t>0. It follows from (3.4) and (4.1) that

    μ(kpDf(akp,bkp),t)tt+ρpφo(a,b),ν(kpDf(akp,bkp),t)ρpφo(a,b)t+ρpφo(a,b) (4.10)

    for all a,bX and all t>0. Letting p in (4.10), we obtain

    μ(DA(a,b),t)=1andν(DA(a,b),t)=0 (4.11)

    for all a,bX and all t>0. This means that A satisfies the functional Eq (1.1). Since f: XY is an odd mapping, and using the definition A, we have A(a)=A(a) for all aX. Thus by Lemma 3.1, the mapping A: XY is additive.

    By Lemma 2.3 and (4.9), we get

    {μn(fn([xij])An([xij]),t)min{μ(f(xij)A(xij),tn2):i,j=1,,n}2k(2k+s1)(1ρ)t2k(2k+s1)(1ρ)t+ρn2ni,j=1φo(0,xij),νn(fn([xij])An([xij]),t)max{ν(f(xij)A(xij),tn2):i,j=1,,n}ρn2ni,j=1φo(0,xij)2k(2k+s1)(1ρ)t+ρn2ni,j=1φo(0,xij)

    for all x=[xij]Mn(X) and all t>0. Thus A: XY is a unique additive mapping satisfying (4.3), as desired. This completes the proof of the theorem.

    Theorem 4.2. Let φe: X2[0,) be a function such that for some real number ρ with 0<ρ<1 and

    φe(a,b)=ρk2φe(ka,kb) (4.12)

    for all a,bX. Suppose that an even mapping f: XY satisfies the inequality

    {μn(Dfn([xij],[yij]),t)tt+ni,j=1φe(xij,yij),νn(Dfn([xij],[yij]),t)ni,j=1φe(xij,yij)t+ni,j=1φe(xij,yij) (4.13)

    for all x=[xij],y=[yij]Mn(X) and all t>0. Then there exists a unique quadratic mapping Q: XY such that

    {μn(fn([xij])Qn([xij]),t)2k2(2k+s1)(1ρ)t2k2(2k+s1)(1ρ)t+ρn2ni,j=1φe(0,xij),νn(fn([xij])Qn([xij]),t)ρn2ni,j=1φe(0,xij)2k2(2k+s1)(1ρ)t+ρn2ni,j=1φe(0,xij) (4.14)

    for all x=[xij]Mn(X) and all t>0.

    Proof. When n=1, similar to the proof of Theorem 3.4, we obtain

    {μ(2(2k+s1)f(ka)2(2k+s1)k2f(a),t)tt+φe(0,a),ν(2(2k+s1)f(ka)2(2k+s1)k2f(a),t)φe(0,a)t+φe(0,a) (4.15)

    for all aX and all t>0.

    Let S2:={g2:XY}, and introduce a generalized metric d2 on S2 as follows:

    d2(g2,h2):=inf{λR+|{μ(g2(a)h2(a),λt)tt+φe(0,a),ν(g2(a)h2(a),λt)φe(0,a)t+φe(0,a),aX,t>0}.

    It is easy to prove that (S2,d2) is a complete generalized metric space ([3,13]). Now, we define the mapping J2: S2S2 by

    J2g2(a):=k2g2(ak),for allg2S2andaX. (4.16)

    Let g2,h2S2 and let λR+ be an arbitrary constant with d2(g2,h2)λ. From the definition of d2, we get

    {μ(g2(a)h2(a),λt)tt+φe(0,a),ν(g2(a)h2(a),λt)φe(0,a)t+φe(0,a)

    for all aX and t>0. Therefore, using (4.12), we get

    {μ(J2g2(a)J2h2(a),λρt)=μ(k2g2(ak)k2h2(ak),λρt)=μ(g2(ak)h2(ak),λρtk2)ρk2tρk2t+ρk2φe(0,a)=tt+φe(0,a),ν(J2g2(a)J2h2(a),λρt)=ν(k2g2(ak)k2h2(ak),λρt)=ν(g2(ak)h2(ak),λρtk2)ρk2φe(0,a)ρk2t+ρk2φe(0,a)=φe(0,a)t+φe(0,a) (4.17)

    for some ρ<1, all aX and all t>0. Hence, it holds that d2(J2g2,J2h2)λρ, that is, d2(J2g2,J2h2)ρd2(g2,h2) for all g2,h2S2.

    Furthermore, by (4.12) and (4.15), we obtain the inequality

    d(f,J2f)ρ2k2(2k+s1).

    It follows from Lemma 2.4 that the sequence Jp2f converges to a fixed point Q of J2, that is, for all aX and all t>0,

    Q:XY,Q(a):=(μ,ν)limpk2pf(akp) (4.18)

    and

    Q(ka)=k2Q(a). (4.19)

    Meanwhile, Q is the unique fixed point of J2 in the set

    S2={g2S2:d2(f,g2)<}.

    Thus there exists a λR+ such that

    {μ(f(a)Q(a),λt)tt+φe(0,a),ν(f(a)Q(a),λt)φe(0,a)t+φe(0,a)

    for all aX and all t>0. Also,

    d2(f,Q)11ρd(f,J2f)ρ2k2(1ρ)(2k+s1).

    This means that the following inequality

    {μ(f(a)Q(a),t)2k2(2k+s1)(1ρ)t2k2(2k+s1)(1ρ)t+ρφe(0,a),ν(f(a)Q(a),t)ρφe(0,a)2k2(2k+s1)(1ρ)t+ρφe(0,a) (4.20)

    holds for all aX and all t>0. The rest of the proof is similar to the proof of Theorem 4.1. This completes the proof of the theorem.

    Theorem 4.3. Let φ: X2[0,) be a function such that for some real number ρ with 0<ρ<k,

    φ(a,b)=ρk2φ(ka,kb) (4.21)

    for all a,bX. Suppose that a mapping f: XY with f(0)=0 satisfies the inequality

    {μn(Dfn([xij],[yij]),t)tt+ni,j=1φ(xij,yij),νn(Dfn([xij],[yij]),t)ni,j=1φ(xij,yij)t+ni,j=1φ(xij,yij) (4.22)

    for all x=[xij],y=[yij]Mn(X) and all t>0. Then there exist a unique quadratic mapping Q: XY and a unique additive mapping A: XY such that

    {μn(fn([xij])Qn([xij])An([xij]),t)k(2k+s1)(1ρ)tk(2k+s1)(1ρ)t+ρn2ni,j=1˜φ(0,xij),νn(fn([xij])Qn([xij])An([xij]),t)ρn2ni,j=1˜φ(0,xij)k(2k+s1)(1ρ)t+ρn2ni,j=1˜φ(0,xij) (4.23)

    for all x=[xij]Mn(X) and all t>0, ˜φ(a,b)=φ(a,b)+φ(a,b) for all a,bX.

    Proof. The proof follows from Theorems 4.1 and 4.2, and a method similar to Theorem 3.5. This completes the proof of the theorem.

    Corollary 4.4. Let r,θ be positive real numbers with r>2. Suppose that a mapping f: XY with f(0)=0 satisfies the inequality

    {μn(Dfn([xij],[yij]),t)tt+ni,j=1θ(xijr+yijr),νn(Dfn([xij],[yij]),t)ni,j=1θ(xijr+yijr)t+ni,j=1θ(xijr+yijr) (4.24)

    for all x=[xij],y=[yij]Mn(X) and all t>0. Then there exist a unique quadratic mapping Q: XY and a unique additive mapping A: XY such that

    {μn(fn([xij])Qn([xij])An([xij]),t)(2k+s1)(krk2)t(2k+s1)(krk2)t+2kn2ni,j=1θxijr,νn(fn([xij])Qn([xij])An([xij]),t)2kn2ni,j=1θxijr(2k+s1)(krk2)t+2kn2ni,j=1θxijr (4.25)

    for all x=[xij]Mn(X) and all t>0.

    Proof. Taking φ(a,b)=θ(ar+br) for all a,bX and ρ=k2r in Theorem 4.3, we get the desired result.

    We use the direct and fixed point methods to investigate the Hyers-Ulam stability of the functional Eq (1.1) in the framework of matrix intuitionistic fuzzy normed spaces. We therefore provide a link two various discipline: matrix intuitionistic fuzzy normed spaces and functional equations. We generalized the Hyers-Ulam stability results of the functional Eq (1.1) from quasi-Banach spaces to matrix intuitionistic fuzzy normed spaces. These circumstances can be applied to other significant functional equations.

    The author declare he has not used Artificial Intelligence (AI) tools in the creation of this article.

    The author is grateful to the referees for their helpful comments and suggestions that help to improve the quality of the manuscript.

    The author declares no conflict of interest in this paper.



    [1] C. S. Chou, A. Friedman, Introduction to mathematical biology, Springer undergraduate texts in mathematics and technology, Springer International Publishing, 1 (2016), 1–10.
    [2] E. K. Yeargers, R. W. Shonkwiler, J. V. Herod, An introduction to the mathematics of biology: With computer algebra models-Chapter 1: Biology, mathematics and a mathematical biology laboratory, Springer Science and Business Media, 2013, 1–8.
    [3] M. A. Medina, Mathematical modeling of cancer metabolism, Crit. Rev. Oncol. Hemat., 124 (2018), 37–40. https://doi.org/10.1016/j.critrevonc.2018.02.004 doi: 10.1016/j.critrevonc.2018.02.004
    [4] N. Bellomo, A. Bellouquid, M. Delitala, Mathematical topics on the modeling of multicellular systems in competition between tumor and immune cells, Math. Mod. Meth. Appl. S., 2004, 1683–1733.
    [5] T. Roose, S. J. Chapman, P. K. Maini, Mathematical models of avascular tumor growth, SIAM Rev., 49 (2007), 179–208. https://doi.org/10.1137/S0036144504446291 doi: 10.1137/S0036144504446291
    [6] N. Bellomo, L. Preziosi, Modelling and mathematical problems related to tumor evolution and its interactions with the immune system, Math. Comput. Model., 32 (2000), 413–452. https://doi.org/10.1016/S0895-7177(00)00143-6 doi: 10.1016/S0895-7177(00)00143-6
    [7] H. M. Byrne, T. Alarcon, M. R. Owen, S. D. Webb, P. K. Maini, Modeling aspects of cancer dynamics: A review, Philos. T. R. Soc. A, 364 (2006), 1563–1578.
    [8] F. Castiglione, B. Piccoli, Cancer immunotherapy, mathematical modeling and optimal control, J. Theor. Biol., 247 (2007), 723–732.
    [9] F. A. Rihan, S. Lakshmanan, A. H. Hashish, R. Rakkiyappan, E. Ahmed, Fractional order delayed predator-prey systems with Holling type-Ⅱ functional response, Nonlinear Dynam., 1 (2015). https://doi.org/10.1007/s11071-015-1905-8 doi: 10.1007/s11071-015-1905-8
    [10] G. M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport, Phys. Rep., 91 (2018), 403–420.
    [11] Y. Wang, J. Cao, X. Li, A. Alsaedi, Edge-based epidemic dynamics with multiple routes of transmission on random networks, Nonlinear Dynam., 91 (2018), 1683–1733. https://doi.org/10.1007/s11071-017-3877-3 doi: 10.1007/s11071-017-3877-3
    [12] H. W. Berhe, O. D. Makinde, D. M. Theuri, Modelling the dynamics of direct and pathogens induced dysentery diarrhea epidemic with controls, J. Biol. Dyn., 13 (2019), 192–217.
    [13] A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Chaos Soliton. Fract., 102 (2017), 396–406. https://doi.org/10.1016/j.chaos.2017.04.027 doi: 10.1016/j.chaos.2017.04.027
    [14] Z. Li, Z. Liu, M. A. Khan, Fractional investigation of bank data with fractal-fractional Caputo derivatives, Chaos Soliton. Fract., 131 (2019), 1–12. https://doi.org/10.1016/j.chaos.2019.109528 doi: 10.1016/j.chaos.2019.109528
    [15] S. Qureshi, A. Atangana, Fractal-fractional differentiation for the modeling and mathematical analysis of nonlinear diarrhea transmission dynamics under the use of real data, Chaos Soliton. Fract., 136 (2020), 1–14. https://doi.org/10.1016/j.chaos.2020.109812 doi: 10.1016/j.chaos.2020.109812
    [16] M. Farman, M. U. Saleem, A. Ahmad, S. Imtiaz, M. O. Ahmad, A control of glucose level in insulin therapies for the development of artificial pancreas by Atangana Baleanu fractional derivative, Alex. Eng. J., 59 (2020), 2639–2648.
    [17] M. Farman, A. Akgul, A. Ahmad, D. Baleanue, M. U. Saleem, Dynamical transmission of coronavirus model with analysis and simulation, CMES-Comp. Model. Eng., 127 (2021), 753–769. https://doi.org/10.32604/cmes.2021.014882 doi: 10.32604/cmes.2021.014882
    [18] M. U. Saleem, M. Farman, A. Ahmad, H. Ehsan, M. O. Ahmad, A Caputo Fabrizio fractional order model for control of glucose in insulintherapies for diabetes, Ain Shams Eng. J., 11 (2020), 1309–1316.
    [19] M. Farman, A. Ahmad, A. Akgul, M. U. Saleem, M. Naeem, D. Baleanue, Epidemiological analysis of the coronavirus disease outbreak with random effects, CMC-Comput. Mater. Con., 67 (2021), 3215–3227. https://doi.org/10.32604/cmc.2021.014006 doi: 10.32604/cmc.2021.014006
    [20] M. Aslam, M. Farman, A. Akgul, M. Sun, Modeling and simulation of fractional order COVID-19 model with quarantined-isolated people, Math. Meth. Appl. Sci., 2021. https://doi.org/10.1002/mma.7191 doi: 10.1002/mma.7191
    [21] A. Alshabanat, M. Jleli, S. Kumar, B. Samet, Generalization of Caputo-Fabrizio fractional derivative and applications to electrical circuits, Front. Phys., 8 (2020), 1–20. https://doi.org/10.3389/fphy.2020.00064 doi: 10.3389/fphy.2020.00064
    [22] R. Kanno, Representation of random walk-in fractal space-time, Phys. A, 248 (1998), 165–175. https://doi.org/10.1016/S0378-4371(97)00422-6 doi: 10.1016/S0378-4371(97)00422-6
    [23] S. Ahmad, A. Ullah, T. Abdeljawad, A. Akgül, N. Mlaiki, Analysis of fractal-fractional model of tumor-immune interaction, Results Phys., 25 (2021), 104178. https://doi.org/10.1016/j.rinp.2021.104178 doi: 10.1016/j.rinp.2021.104178
    [24] J. F. Gómez, L. Torres, R. F. Escobar, Fractional derivatives with Mittag-Leffler kernel: Trends and applications in science and engineering, Springer Nature Switzerland, 2019.
    [25] T. Abdeljawad, D. Baleanu, Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel, J. Nonlinear Sci. Appl., 10 (2017), 1098–1107. https://doi.org/10.22436/jnsa.010.03.20 doi: 10.22436/jnsa.010.03.20
    [26] A. Atangana, D. Baleanu, New fractional derivative with non-local and non-singular kernel, Therm. Sci., 20 (2016), 757–763.
    [27] E. Ucara, N. Ozdemir, A fractional model of cancer-immune system with Caputo and Caputo-Fabrizio derivatives, Eur. Phys. J. Plus., 2021.
    [28] X. Lai, A. Friedman, Combination therapy for melanoma with BRAF/MEK inhibitor and immune checkpoint inhibitor: A mathematical model, BMC Syst. Biol., 11 (2017), 70. https://doi.org/10.1186/s12918-017-0446-9 doi: 10.1186/s12918-017-0446-9
    [29] P. A. Naik, J. Zu, M. Naik, Stability analysis of a fractional-order cancer model with chaotic dynamics, Int. J. Biomath., 14 (2021), 2150046. https://doi.org/10.1142/S1793524521500467 doi: 10.1142/S1793524521500467
    [30] K. Owolabi, A. Shikongo, Fractal fractional operator method on HER2+ breast cancer dynamics, Int. J. Appl. Comput. Math., 7 (2021), 85. https://doi.org/10.1007/s40819-021-01030-5 doi: 10.1007/s40819-021-01030-5
    [31] P. A. Naik, J. Zu, K. M. Owolabi, Modeling the mechanics of viral kinetics under immune control during primary infection of HIV-1 with treatment in fractional order, Physica A, 545 (2020), 123816. https://doi.org/10.1016/j.physa.2019.123816 doi: 10.1016/j.physa.2019.123816
    [32] P. A. Naik, K. M. Owolabi, J. Zu, M. U. Din, NaikModeling the transmission dynamics of COVID-19 pandemic in Caputo type fractional derivative, J. Multiscale Model., 12 (2021), 2150006.
    [33] Z. Ali, F. Rabiei, K. Shah, T. Khodadadi, Fractal-fractional order dynamical behavior of an HIV/AIDS epidemic mathematical model, Eur. Phys. J. Plus, 136 (2021), 36. https://doi.org/10.1140/epjp/s13360-020-00994-5 doi: 10.1140/epjp/s13360-020-00994-5
    [34] Z. Ali, F. Rabiei, K. Shah, Z. M. MAJID, Dynamics of SIR mathematical model for COVID-19 outbreak in Pakistan under fractal-fractional derivative, Fractals, 29 (2021), 2150120. https://doi.org/10.1142/S0218348X21501206 doi: 10.1142/S0218348X21501206
    [35] Z. Ali, F. Rabiei, K. Shah, T. Khodadadi, Modeling and analysis of novel COVID-19 under fractal-fractional derivative with case study of Malaysia, Fractals, 29 (2021), 2150020. https://doi.org/10.1142/S0218348X21500201 doi: 10.1142/S0218348X21500201
    [36] Z. Ali, F. Rabiei, K. Shah, T. Khodadadi, Qualitative analysis of fractal-fractional order COVID-19 mathematical model with case study of Wuhan, Alex. Eng. J., 60 (2021), 477–489. https://doi.org/10.1016/j.aej.2020.09.020 doi: 10.1016/j.aej.2020.09.020
    [37] L. L. Feng, L. B. Xu, Q. Zheng, L. C. Liu, Fawang flow and heat transfer of generalized Maxwell fluid over a moving plate with distributed order time fractional constitutive models, Int. Commun. Heat Mass, 116 (2020), 104679.
    [38] S. Yang, L. Liu, Z. Long, L. Feng, Unsteady natural convection boundary layer flow and heat transfer past a vertical flat plate with novel constitution models, Appl. Math. Lett., 120 (2021), 107335. https://doi.org/10.1016/j.aml.2021.107335 doi: 10.1016/j.aml.2021.107335
    [39] Z. Long, L. Liu, S. Yang, L. Feng, L. Zheng, Analysis of Marangoni boundary layer flow and heat transfer with novel constitution relationships, Int. Commun. Heat Mass, 127 (2021), 105523.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2260) PDF downloads(139) Cited by(20)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog