Research article Special Issues

Numerical solution of non-linear Bratu-type boundary value problems via quintic B-spline collocation method

  • Received: 10 December 2021 Revised: 19 January 2022 Accepted: 21 January 2022 Published: 10 February 2022
  • MSC : 34A34, 65L10

  • This study presents a quintic B-spline collocation method (QBSCM) for finding the numerical solution of non-linear Bratu-type boundary value problems (BVPs). The error analysis of the QBSCM is studied, and it provides fourth-order convergence results. QBSCM is applied on two numerical examples to exhibit the proficiency and order of convergence. Obtain results of the QBSCM are compared with other existing methods available in the literature.

    Citation: Ram Kishun Lodhi, Saud Fahad Aldosary, Kottakkaran Sooppy Nisar, Ateq Alsaadi. Numerical solution of non-linear Bratu-type boundary value problems via quintic B-spline collocation method[J]. AIMS Mathematics, 2022, 7(4): 7257-7273. doi: 10.3934/math.2022405

    Related Papers:

  • This study presents a quintic B-spline collocation method (QBSCM) for finding the numerical solution of non-linear Bratu-type boundary value problems (BVPs). The error analysis of the QBSCM is studied, and it provides fourth-order convergence results. QBSCM is applied on two numerical examples to exhibit the proficiency and order of convergence. Obtain results of the QBSCM are compared with other existing methods available in the literature.



    加载中


    [1] J. Jacobsen, K. Schmitt, The Liouville–Bratu–Gelfand problem for radial operators, J. Differ. Equ., 184 (2002), 283–298. https://doi.org/10.1006/jdeq.2001.4151 doi: 10.1006/jdeq.2001.4151
    [2] R. Jalilian, Non-polynomial spline method for solving Bratu's problem, Comput. Phys. Commun., 181 (2010), 1868–1872. https://doi.org/10.1016/j.cpc.2010.08.004 doi: 10.1016/j.cpc.2010.08.004
    [3] J. S. McGough, Numerical continuation and the Gelfand problem, Appl. Math. Comput., 89 (1998), 225–239. https://doi.org/10.1016/S0096-3003(97)81660-8 doi: 10.1016/S0096-3003(97)81660-8
    [4] Y. Q. Wan, Q. Guo, N. Pan, Thermo-electro-hydrodynamic model for electrospinning process, Int. J. Nonlin. Sci. Num., 5 (2004), 5–8. https://doi.org/10.1515/IJNSNS.2004.5.1.5 doi: 10.1515/IJNSNS.2004.5.1.5
    [5] R. Buckmire, Application of a Mickens finite-difference scheme to the cylindrical Bratu-Gelfand problem, Numer. Method. Part. Differ. Equ., 20 (2004), 327–337. https://doi.org/10.1002/num.10093 doi: 10.1002/num.10093
    [6] S. Chandrasekhar, An introduction to the study of stellar structure, New York: Dover, 2010. Available from: https://www.goldenlabbookshop.com/book/9780486604138.
    [7] D. A. Frank-Kamenetskii, Diffusion and heat exchange in chemical kinetics, Princeton: Princeton University Press, 1955. https://doi.org/10.1515/9781400877195
    [8] J. H. He, H. Y. Kong, R. X. Chen, M. S. Hu, Q. L. Chen, Variational iteration method for Bratu-like equation arising in electrospinning, Carbohyd. Polym., 105 (2014), 229–230. https://doi.org/10.1016/j.carbpol.2014.01.044 doi: 10.1016/j.carbpol.2014.01.044
    [9] S. Li, S. J. Liao, An analytic approach to solve multiple solutions of a strongly nonlinear problem, Appl. Math. Comput., 169 (2005), 854–865. https://doi.org/10.1016/j.amc.2004.09.066 doi: 10.1016/j.amc.2004.09.066
    [10] V. P. Dubey, R. Kumar, D. Kumar, Analytical study of fractional Bratu-type equation arising in electro-spun organic nanofibers elaboration, Physica A, 521 (2019), 762–772. https://doi.org/10.1016/j.physa.2019.01.094 doi: 10.1016/j.physa.2019.01.094
    [11] A. M. Wazwaz, Adomian decomposition method for a reliable treatment of the Bratu-type equations, Appl. Math. Comput., 166 (2005), 652–663. https://doi.org/10.1016/j.amc.2004.06.059 doi: 10.1016/j.amc.2004.06.059
    [12] H. Caglar, N. Caglar, M. Ozer, A. Valarstos, A. N. Anagnostopoulos, B-spline method for solving Bratu's problem, Int. J. Comput. Math., 87 (2010), 1885–1891. https://doi.org/10.1080/00207160802545882 doi: 10.1080/00207160802545882
    [13] P. Roul, K. Thula, A fourth order B-spline collocation method and its error analysis for Bratu-type and Lane-Emden problems, Int. J. Comput. Math., 96 (2019), 85–104. https://doi.org/10.1080/00207160.2017.1417592 doi: 10.1080/00207160.2017.1417592
    [14] X. Feng, Y. He, J. Meng, Application of homotopy perturbation method to the Bratu-type equations, Topol. Method. Nonlinear Anal., 31 (2008), 243–252.
    [15] B. Batiha, Numerical solution of bratu-type equations by the variational iteration method, Hacet. J. Math. Stat., 39 (2010), 23–29.
    [16] Y. Aksoy, M. Pakdemirli, New perturbation iteration solutions for Bratu-type equations, Comput. Math. Appl., 59 (2010), 2802–2808. https://doi.org/10.1016/j.camwa.2010.01.050 doi: 10.1016/j.camwa.2010.01.050
    [17] S. G. Venkatesh, S. K. Ayyaswamy, G. Hariharan, Haar wavelet method for solving initial and boundary value problems of Bratu-type, Int. J. Comput. Math. Sci., 67 (2010), 286–289.
    [18] M. Abukhaled, S. Khuri, A. Sayfy, Spline-based numerical treatments of Bratu-type equations, Palestine J. Math., 1 (2012), 63–70.
    [19] M. A. Z. Raja, S. Ahmad, Numerical treatment for solving one-dimensional Bratu problem using neural networks, Neural Comput. Appl., 24 (2014), 549–561. https://doi.org/10.1007/s00521-012-1261-2 doi: 10.1007/s00521-012-1261-2
    [20] A. Mohsen, A simple solution of Bratu problem, Comput. Math. Appl., 67 (2014), 26–33. https://doi.org/10.1016/j.camwa.2013.10.003 doi: 10.1016/j.camwa.2013.10.003
    [21] B. Ghazanfari, A. Sepahvandzadeh, Adomian decomposition method for solving fractional Bratu-type equations, J. Math. Comput. Sci., 8 (2014), 236–244. http://doi.org/10.22436/jmcs.08.03.06 doi: 10.22436/jmcs.08.03.06
    [22] M. A. Darwish, B. S. Kashkari, Numerical solutions of second order initial value problems of Bratu-type via optimal Homotopy asymptotic method, Amer. J. Comput. Math., 4 (2014), 47–54.
    [23] W. M. Abd-Elhameed, Y. H. Youssri, E. H. Doha, A novel operational matrix method based on shifted Legendre polynomials for solving second-order boundary value problems involving singular, singularly perturbed and Bratu-type equations, Math. Sci., 9 (2015), 93–102. https://doi.org/10.1007/s40096-015-0155-8 doi: 10.1007/s40096-015-0155-8
    [24] E. Babolian, S. Javadi, E. Moradi, RKM for solving Bratu-type differential equations of fractional order, Math. Method. Appl. Sci., 39 (2016), 1548–1557. https://doi.org/10.1002/mma.3588 doi: 10.1002/mma.3588
    [25] A. M. Wazwaz, The successive differentiation method for solving Bratu equation and Bratu-type equations, Rom. Journ. Phys., 61 (2016), 774–783.
    [26] M. A. Z. Raja, R. Samar, E. S. Alaidarous, E. Shivanian, Bio-inspired computing platform for reliable solution of Bratu-type equations arising in the modeling of electrically conducting solids, Appl. Math. Model., 40 (2016), 5964–5977. https://doi.org/10.1016/j.apm.2016.01.034 doi: 10.1016/j.apm.2016.01.034
    [27] Z. Masood, K. Majeed, R. Samar, M. A. Z. Raja, Design of mexican hat wavelet neural networks for solving Bratu type nonlinear systems, Neurocomputing, 221 (2017), 1–14. https://doi.org/10.1016/j.neucom.2016.08.079 doi: 10.1016/j.neucom.2016.08.079
    [28] M. Grover, A. K. Tomer, Numerical approach to differential equations of fractional order Bratu-type equations by differential transform method, Glob. J. Pure Appl. Math., 13 (2017), 5813–5826.
    [29] E. Keshavarz, Y. Ordokhani, M. Razzaghi, The Taylor wavelets method for solving the initial and boundary value problems of Bratu-type equations, Appl. Numer. Math., 128 (2018), 205–216. https://doi.org/10.1016/j.apnum.2018.02.001 doi: 10.1016/j.apnum.2018.02.001
    [30] M. G. Sakar, O. Saldır, A. Akgül, Numerical solution of fractional Bratu-type equations with Legendre reproducing kernel method, Int. J. Appl. Comput. Math., 4 (2018), 126. https://doi.org/10.1007/s40819-018-0562-2 doi: 10.1007/s40819-018-0562-2
    [31] S. Tomar, R. K. Pandey, An efficient iterative method for solving Bratu-type equations, J. Comput. Appl. Math., 357 (2019), 71–84. https://doi.org/10.1016/j.cam.2019.02.025 doi: 10.1016/j.cam.2019.02.025
    [32] A. Başhan, Y. Uçar, N. Murat Yağmurlu, A. Esen, A new perspective for quintic B-spline based Crank-Nicolson-differential quadrature method algorithm for numerical solutions of the nonlinear Schrö dinger equation, Eur. Phys. J. Plus, 133 (2018), 12. https://doi.org/10.1140/epjp/i2018-11843-1 doi: 10.1140/epjp/i2018-11843-1
    [33] A. Başhan, Y. Uçar, N. Murat Yağmurlu, A. Esen, Numerical solution of the complex modified Korteweg-de vries equation by DQM, J. Phys.: Conf. Ser., 766 (2016), 012028. https://doi.org/10.1088/1742-6596/766/1/012028 doi: 10.1088/1742-6596/766/1/012028
    [34] N. M. Yağmurlu, Y. Uçar, A. Bashan, Numerical approximation of the combined kdv-mkdv equation via the quintic B-spline differential quadrature method, Adıyaman Univ. J. Sci., 9 (2019), 386–403. https://doi.org/10.37094/adyujsci.526264 doi: 10.37094/adyujsci.526264
    [35] A. Başhan, N. M. Yağmurlu, Y. Uçar, A. Esen, A new perspective for the numerical solution of the modified equal width wave equation, Math. Method. Appl. Sci., 44 (2021), 8925–8939. https://doi.org/10.1002/mma.7322 doi: 10.1002/mma.7322
    [36] A. Başhan, Highly efficient approach to numerical solutions of two different forms of the modified Kawahara equation via contribution of two effective methods, Math. Comput. Simulat., 179 (2021), 111–125. https://doi.org/10.1016/j.matcom.2020.08.005 doi: 10.1016/j.matcom.2020.08.005
    [37] A. Başhan, A novel approach via mixed Crank–Nicolson scheme and differential quadrature method for numerical solutions of solitons of mKdV equation, Pramana–J. Phys., 92 (2019), 84. https://doi.org/10.1007/s12043-019-1751-1 doi: 10.1007/s12043-019-1751-1
    [38] A. Başhan, An effective approximation to the dispersive soliton solutions of the coupled KdV equation via combination of two efficient methods, Comput. Appl. Math., 39 (2020), 80. https://doi.org/10.1007/s40314-020-1109-9 doi: 10.1007/s40314-020-1109-9
    [39] F. Mirzaee, S. Alipour, Bicubic B-spline functions to solve linear two-dimensional weakly singular stochastic integral equation, Iran. J. Sci. Technol. Trans. Sci., 45 (2021), 965–972. https://doi.org/10.1007/s40995-021-01109-0 doi: 10.1007/s40995-021-01109-0
    [40] F. Mirzaee, S. Alipour, Quintic B-spline collocation method to solve n-dimensional stochastic Itô-Volterra integral equations, J. Comput. Appl. Math., 384 (2021), 113153. https://doi.org/10.1016/j.cam.2020.113153 doi: 10.1016/j.cam.2020.113153
    [41] F. Mirzaee, S. Alipour, Cubic B-spline approximation for linear stochastic integro-differential equation of fractional order, J. Comput. Appl. Math., 366 (2020), 112440. https://doi.org/10.1016/j.cam.2019.112440 doi: 10.1016/j.cam.2019.112440
    [42] F. Mirzaee, S. Alipour, An efficient cubic B-spline and bicubic B-spline collocation method for numerical solutions of multidimensional nonlinear stochastic quadratic integral equations, Math. Method. Appl. Sci., 43 (2020), 384–397. https://doi.org/10.1002/mma.5890 doi: 10.1002/mma.5890
    [43] S. Alipour, F. Mirzaee, An iterative algorithm for solving two dimensional nonlinear stochastic integral equations: A combined successive approximations method with bilinear spline interpolation, Appl. Math. Comput., 371 (2020), 124947. https://doi.org/10.1016/j.amc.2019.124947 doi: 10.1016/j.amc.2019.124947
    [44] F. Mirzaee, S. Alipour, Fractional-order orthogonal Bernstein polynomials for numerical solution of nonlinear fractional partial volterra integro-differential equations, Math. Method. Appl. Sci., 42 (2019), 1870–1893. https://doi.org/10.1002/mma.5481 doi: 10.1002/mma.5481
    [45] C. Deboor, A practical guide to Splines, New York: Springer-Verlag, 1978.
    [46] I. J. Schoenberg, Contribution to the problem of approximation of equidistant data by analytic functions, Quart. Appl. Math., 4 (1946), 45–99. https://doi.org/10.1090/qam/15914 doi: 10.1090/qam/15914
    [47] P. M. Prenter, Splines and variational methods, New York: Wiley, 1975.
    [48] X. P. Xu, F. G. Lang, Quintic B-spline method for function reconstruction from integral values of successive subintervals, Numer. Algor., 66 (2014), 223–240. https://doi.org/10.1007/s11075-013-9731-x doi: 10.1007/s11075-013-9731-x
    [49] T. R. Lucas, Error bound for interpolating cubic spline under various end conditions, SIAM J. Numer. Anal., 11 (1974), 569–584. https://doi.org/10.1137/0711049 doi: 10.1137/0711049
    [50] J. Stoer, R. Bulirsch, Introduction to numerical analysis, New York: Springer-Verlag, 1993.
    [51] E. Suli, D. F. Mayers, An introduction to numerical analysis, Cambridge: Cambridge University Press, 2003. https://doi.org/10.1017/CBO9780511801181
    [52] A. Quarteroni, R. Sacco, F. Saleri, Numerical mathematics, 2 Eds, Berlin: Springer, 2007. https://doi.org/10.1007/b98885
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1769) PDF downloads(170) Cited by(2)

Article outline

Figures and Tables

Figures(2)  /  Tables(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog