Processing math: 72%
Research article

Influence of weight function for similarity measures

  • Received: 17 November 2021 Revised: 07 January 2022 Accepted: 18 January 2022 Published: 28 January 2022
  • MSC : 03E72, 90B50

  • The mainstream for dealing with pattern recognition problems is to develop new similarity measures, and then to compare outcomes among different measures. Along with a study trend focusing on developing new similarity measures for pattern recognition problems, this study tackles the issue of tuning weight functions of the existing measures. In this study, a detailed examination is executed to point out that a chosen weight function decides the pattern for a given example. The main contribution of the paper is to provide analytic derivations to explain the influence of weights for both discrete and continuous cases which supports our claims with mathematical foundations. With findings from this study, we expect a sensitivity analysis of the weights and exploring procedures in deciding a reasonable weight function for applications that can be set for future studies.

    Citation: Daniel Yi-Fong Lin. Influence of weight function for similarity measures[J]. AIMS Mathematics, 2022, 7(4): 6915-6935. doi: 10.3934/math.2022384

    Related Papers:

    [1] Amjad Ali, Muhammad Arshad, Awais Asif, Ekrem Savas, Choonkil Park, Dong Yun Shin . On multivalued maps for φ-contractions involving orbits with application. AIMS Mathematics, 2021, 6(7): 7532-7554. doi: 10.3934/math.2021440
    [2] Muhammad Nazam, Hijaz Ahmad, Muhammad Waheed, Sameh Askar . On the Perov's type (β,F)-contraction principle and an application to delay integro-differential problem. AIMS Mathematics, 2023, 8(10): 23871-23888. doi: 10.3934/math.20231217
    [3] Gunaseelan Mani, Arul Joseph Gnanaprakasam, Choonkil Park, Sungsik Yun . Orthogonal F-contractions on O-complete b-metric space. AIMS Mathematics, 2021, 6(8): 8315-8330. doi: 10.3934/math.2021481
    [4] Pragati Gautam, Vishnu Narayan Mishra, Rifaqat Ali, Swapnil Verma . Interpolative Chatterjea and cyclic Chatterjea contraction on quasi-partial b-metric space. AIMS Mathematics, 2021, 6(2): 1727-1742. doi: 10.3934/math.2021103
    [5] Abdullah Shoaib, Tahair Rasham, Giuseppe Marino, Jung Rye Lee, Choonkil Park . Fixed point results for dominated mappings in rectangular b-metric spaces with applications. AIMS Mathematics, 2020, 5(5): 5221-5229. doi: 10.3934/math.2020335
    [6] Budi Nurwahyu, Naimah Aris, Firman . Some results in function weighted b-metric spaces. AIMS Mathematics, 2023, 8(4): 8274-8293. doi: 10.3934/math.2023417
    [7] Shaoyuan Xu, Yan Han, Suzana Aleksić, Stojan Radenović . Fixed point results for nonlinear contractions of Perov type in abstract metric spaces with applications. AIMS Mathematics, 2022, 7(8): 14895-14921. doi: 10.3934/math.2022817
    [8] Hongyan Guan, Jinze Gou, Yan Hao . On some weak contractive mappings of integral type and fixed point results in b-metric spaces. AIMS Mathematics, 2024, 9(2): 4729-4748. doi: 10.3934/math.2024228
    [9] Yunpeng Zhao, Fei He, Shumin Lu . Several fixed-point theorems for generalized Ćirić-type contraction in Gb-metric spaces. AIMS Mathematics, 2024, 9(8): 22393-22413. doi: 10.3934/math.20241089
    [10] Yan Han, Shaoyuan Xu, Jin Chen, Huijuan Yang . Fixed point theorems for b-generalized contractive mappings with weak continuity conditions. AIMS Mathematics, 2024, 9(6): 15024-15039. doi: 10.3934/math.2024728
  • The mainstream for dealing with pattern recognition problems is to develop new similarity measures, and then to compare outcomes among different measures. Along with a study trend focusing on developing new similarity measures for pattern recognition problems, this study tackles the issue of tuning weight functions of the existing measures. In this study, a detailed examination is executed to point out that a chosen weight function decides the pattern for a given example. The main contribution of the paper is to provide analytic derivations to explain the influence of weights for both discrete and continuous cases which supports our claims with mathematical foundations. With findings from this study, we expect a sensitivity analysis of the weights and exploring procedures in deciding a reasonable weight function for applications that can be set for future studies.



    Schur complement of a matrix is widely used and has attracted the attention of many scholars. In 1979, the Schur complement question of a strictly diagonally dominant (SDD) matrix was studied by Carlson and Markham [1]. They certified the Schur complement of SDD matrix is also an SDD matrix. Before long, some renowned matrices such as doubly diagonally dominant matrices and Dashnic-Zusmanovich (DZ) matrices were researched, and the results were analogous [2,3,4,5]. In 2020, Li et al. proved that the Schur complements and the diagonal-Schur complements of Dashnic-Zusmanovich type (DZ-type) matrices are DZ-type matrices under certain conditions in [6]. In 2023, Song and Gao [7] proved that the Schur complements and the diagonal-Schur complements of CKV-type matrices are CKV-B-type matrices under certain conditions. Furthermore, there are many conclusions on Schur complements and diagonal-Schur complements for other classes of matrices, see [8,9,10,11,12,13,14,15].

    The upper bound of the inverse infinite norm of the non-singular matrix is widely used in mathematics, such as the convergence analysis of matrix splitting and matrix multiple splitting iterative method for solving linear equations. A traditional way to find the upper bound of an infinite norm for the inverse of a nonsingular matrix is to use the definition and properties of a given matrix class, see [16,17,18,19] for details. The first work was by Varah [19], who in 1975 gave the upper bound of the infinite norm of the inverse of the SDD matrix. However, in some cases, the bounds of Varah may yield larger values. In 2020, Li [20] obtained two upper bounds of the infinite norm of the inverse of the SDD matrix based on Schur complement, and in 2021, Sang [21] obtained two upper bounds for the infinity norm of DSDD matrices. In 2022, based on the Schur complement, Li and Wang obtained some upper bounds for the infinity norm of the inverse of GDSDD matrices [22].

    In this paper, n is a positive integer and N={1,2,...,n}. Let S be any nonempty subset of N, SN, ¯S:=NS for the complement of S. Cn×n denotes the set of complex matrices of all n×n. Rn×n denotes the set of all n×n real matrices. IRn×n is an identity matrix, A=[aij]Cn×n, |A|=[|aij|]Rn×n and

    ri(A)=ki,kN|aik|,rSi(A)=ki,kS|aik|,iN.

    The matrix A is known as the strictly diagonal dominance SDD matrix, abbreviated as A SDD, if

    |aii|>ri(A),iN.

    Definition 1. [23] Let S be an arbitrary nonempty proper subset of the index set. A=[aij]Cn×n,n2, is called an S-SOB (S-Sparse Ostrowski-Brauer) matrix if

    (i) |aii|>rSi(A) for all iS;

    (ii) |ajj|>r¯Sj(A) for all jS;

    (iii) For all iS and all jˉS such that aij0,

    [|aii|rSi(A)]|ajj|>r¯Si(A)rj(A); (1.1)

    (iv) For all iS and all jˉS such that aji0,

    [|ajj|r¯Sj(A)]|aii|>rSj(A)ri(A). (1.2)

    Definition 2. [24] A matrix A is called GDSDD matrix if J and there exists proper subsets N1,N2 of N such that N1N2=,N1N2=N and for any iN1 and jN2,

    [|aii|rN1i(A)][|ajj|rN2j(A)]>rN2i(A)rN1j(A),

    where J:={iN:|aii|>ri(A)}.

    Definition 3. [25] A matrix A is called an H-matrix, if its comparison matrix μ(A)=[μij] defined by

    μii=|aii|,μij=|aij|,i,jN,ij

    is an M-matrix, i.e., [μ(A)]10.

    It is shown in [1] that if A is an H-matrix, then,

    [μ(A)]1|A1|. (1.3)

    Let A be an M-matrix, then det(A)>0.

    In addition, it was shown that S-SOB, SDD and GDSDD matrices are nonsingular H-matrix in [23,26]. Varah [19] gave the following upper bound for the infinity norm of the inverse of SDD matrices:

    Theorem 1. [19] Let A=[aij] be an SDD matrix. Then,

    A1maxiN1|aii|ri(A). (1.4)

    Theorem 2. [27] Let A=[aij]Cn×n,n2, be an S-SOB matrix, where SN, 1|S|n1. Then,

    A1{maxiS:rˉSi(A)=01|aii|rSi(A),maxjˉS:rSj(A)=01|ajj|rˉSj(A),maxiS,jˉS:aij0fij(A,S),maxiS,jˉS:aji0fji(A,ˉS)}, (1.5)

    where

    fij(A,S)=|ajj|+rˉSi(A)[|aii|rSi(A)]|ajj|rˉSi(A)rj(A),iS,jˉS.

    Theorem 3. [28] Let A=[aij]Cn×n, n2, be an GDSDD matrix, where SN, 1|S|n1. Then,

    A1max{maxiN1,jN2|ajj|rN2j(A)+rN2i(A)[|aii|rN1i(A)][|ajj|rN2j(A)]rN2i(A)rN1j(A),maxiN1,jN2|aii|rN1i(A)+rN1j(A)[|aii|rN1i(A)][|ajj|rN2j(A)]>rN2i(A)rN1j(A)}. (1.6)

    In this paper, based on the Schur complement, we present some upper bounds for the infinity norm of the inverse of S-SOB matrices, and numerical examples are given to show the effectiveness of the obtained results. In addition, applying these new bounds, a lower bound for the smallest singular value of S-SOB matrices is obtained.

    Given a matrix A=(aij)Cn×n that is nonsingular, α={i1,i2,...,ik} is any nonempty proper subset of N, |α| is the cardinality of α (the number of elements in α, i.e., |α|=k), ˉα=Nα={j1,,jl} is the complement of α with respect to N, A(α,ˉα) is the submatrix of A lying in the rows indexed by α and the columns indexed by ˉα, A(α) is the leading submatrix of A whose row and column are both indexed by α, and the elements of α and of ˉα are both conventionally arranged in increasing order. If A(α) is not singular, the matrix A/α is called the Schur complement of A with respect to A(α). At this point

    A/α=A(ˉα)A(ˉα,α)[A(α)]1A(α,ˉα).

    Lemma 1. (Quotient formula [28,29]) Let A be a square matrix. Let B is a nonsingular principal submatrix of A and C is a nonsingular principal submatrix of B. Then, B/C is a nonsingular principal submatrix of A/C and A/B=(A/C)/(B/C), where B/C is the Schur complement of C in matrix B.

    Lemma 2. Let A=(aij)Cn×n be an S-SOB matrix, n2 and where αS or αˉS. Then, A(α) is an SDD matrix.

    Proof. When αS, since A is an S-SOB matrix and |aii|>rSi(A)rαi(A)=ki,kα|aik| for all iα, we have ri[A(α)]=ki,kα|aik|=rαi(A) and |aii|>ri[A(α)]. It is easy to obtain that A(α) is an SDD matrix. Homoplastically, so is αˉS.

    Lemma 3. Let A=(aij)Cn×n be an S-SOB matrix, n2 and α be a subset of N. Then, A(α) is an S-SOB matrix.

    Proof. If Sα, since A is an S-SOB matrix, then,

    (i) For all iS, |aii|>rSi(A)=rSi(A(α)),

    (ii) For all jˉSα, |ajj|>rˉSj(A)>rˉSαj(A)=rˉSαj(A(α)),

    (iii) For all iS,jˉSα such that aij0,

    [|aii|rSi(A(α))]|ajj|=[|aii|rSi(A)]|ajj|>rˉSi(A)rj(A)>rˉSi(A)rS(ˉSα)j(A)=rˉSi(A(α))rS(ˉSα)j(A(α)),

    (iv) For all iS,jˉSα such that aji0,

    [|ajj|rˉSαj(A(α))]|aii|=[|ajj|rˉSαj(A)]|aii|>rSj(A)ri(A)>rSj(A)rS(ˉSα)i(A)=rSj(A(α))rS(ˉSα)i(A(α)).

    Thus, A(α) is an S-SOB matrix and A(α)\{S-SOB}.

    In a similar way, if ˉSα, A(α) is an ˉS-SOB matrix. Meanwhile, when α is contained neither in S nor in ˉS, A(α) is an (Sα)-SOB matrix. Finally, A(α){S-SOB}.

    Lemma 4. Let A=(aij)Cn×n be an S-SOB matrix, n2 and let A be a matrix satisfying aij=0,aii>ri(A) and aji=0,ajj>rj(A) for iS,jˉS. If α={i1}S, denote

    B=(bij)=(|ai1i1|rSαi1(A)rˉSi1(A)|ajti1||ajtjt|rSαjt(A)rˉSjt(A)|ajsi1|rSαjs(A)|ajsjs|rˉSjs(A)), (2.1)

    where jt(Sα),jsˉS, then B{SGDD3}.

    Proof. Since A is an S-SOB matrix, if SB={1,2}, for all iSB, then,

    [|b11|rSB1(B)][|b33|rˉSB3(B)]=[|ai1i1|rSαi1(A)][|ajsjs|rˉSjs(A)]=[|ai1i1|rSi1(A)][|ajsjs|rˉSjs(A)].
    [|b22|rSB2(B)][|b33|rˉSB3(B)]=[|ajtjt|rSαjt(A)||ajti1|][|ajsjs|rˉSjs(A)]=[|ajtjt|rSjt(A)][|ajsjs|rˉSjs(A)].

    There exist four different cases.

    Case 1. When |ajsi1|0, |ai1js|0.

    (i) If |ajsjs|<rjs(A), from Definition 1, we have |ai1i1|ri1(A),

    [|b11|rSB1(B)][|b33|rˉSB3(B)]=[|ajsjs|rˉSjs(A)]|ai1i1|[|ajsjs|rˉSjs(A)]rSi1(A)>rSjs(A)ri1(A)rSjs(A)rSi1(A)=rSjs(A)rˉSi1(A)>rSαjs(A)rˉSi1(A)=rˉSB1(B)rSB3(B).

    (ii) If |ajsjs|>rjs(A), |ai1i1|ri1(A), we get

    [|b11|rSB1(B)][|b33|rˉSB3(B)]=[|ai1i1|rSi1(A)][|ajsjs|rˉSjs(A)]>rSjs(A)rˉSi1(A)>rSαjs(A)rˉSi1(A)=rˉSB1(B)rSB3(B).

    (iii) If |ajsjs|>rjs(A), |ai1i1|ri1(A), we obtain

    [|b11|rSB1(B)][|b33|rˉSB3(B)]=[|ai1i1|rSi1(A)]|ajsjs|[|ai1i1|rSi1(A)]rˉSjs(A)>rˉSi1(A)rjs(A)rˉSi1(A)rˉSjs(A)=rˉSi1(A)rSjs(A)>rSαjs(A)rˉSi1(A)=rˉSB1(B)rSB3(B).

    Case 2. When |ajsi1|0, |ai1js|=0, |ai1i1|ri1(A) the proof is analogous to (i) and (ii) in Case 1. We obtain

    [|b11|rSB1(B)][|b33|rˉSB3(B)]>rˉSB1(B)rSB3(B).

    Case 3. If |ajsi1|=0, |ai1js|0, then, |ajsjs|>rjs(A). By the same proof method as (ii) and (iii) in Case 1, we have

    [|b11|rSB1(B)][|b33|rˉSB3(B)]>rˉSB1(B)rSB3(B).

    Case 4. If |ajsi1|=0, |ai1js|=0, then, |ai1i1|>ri1(A), |ajsjs|>rjs(A), and

    [|b11|rSB1(B)][|b33|rˉSB3(B)]>rˉSB1(B)rSB3(B).

    To sum up, the inequality [|b11|rSB1(B)][|b33|rˉSB3(B)]>rˉSB1(B)rSB3(B) is held. In the same way, the inequality [|b22|rSB2(B)][|b33|rˉSB3(B)]>rˉSB2(B)rSB3(B) also holds. At last, we obtain B{GDSDD3} and B=μ(B) is an M-matrix. By Definition 3, we know that detB>0. The proof is completed.

    Theorem 4. Let A=(aij)Cn×n be an S-SOB matrix, n2 and let A be a matrix satisfying aij=0,aii>ri(A) and aji=0,ajj>rj(A) for iS,jˉS. Denote A/α=(ajtjs). If αS, then, A/α{ GDSDD(Sα),ˉSnk}.

    Proof. Note that α contains only one element. If α=i1S, for all jtSα, jsˉS, then we have

    [|ajtjt|rSαjt(A/α)][|ajsjs|rˉSjs(A/α)]rˉSjt(A/α)rSαjs(A/α)=[|ajtjt|jwSα,wt|ajtjw|][|ajsjs|jwˉS,ws|ajsjw|]jwˉS|ajtjw|jwSα|ajsjw|=[|ajtjtajti1ai1jtai1i1|jwSα,wt|ajtjwajti1ai1jwai1i1|]×[|ajsjsajsi1ai1jsai1i1|jwˉS,wt|ajsjwajsi1ai1jwai1i1|]jwˉS|ajtjwajti1ai1jwai1i1|jwSα|ajsjwajsi1ai1jwai1i1|[|ajtjt|rSαjt(A)|ajti1|rSαi1(A)|ai1i1|]×[|ajsjs|rˉSjs(A)|ajsi1|rˉSi1(A)|ai1i1|][rˉSjt(A)+|ajti1|rˉSi1(A)|ai1i1|]×[rSαjs(A)+|ajsi1|rSαi1(A)|ai1i1|]=det[B/{1}]=1|ai1i1|detB>0.

    We have A/{i1}{ GDSDD(S{i1}),ˉSn1} for any i1S. Consider that α contains more than one element. If i1α, by the quotient formula (in [9] Theorem 2 (ii)), we have A/α=(A/{i1})/((A(α)/i1){GDSDD(Sα),ˉSnk}. The proof is completed.

    Corollary 1. Let A=(aij)Cn×n be an S-SOB matrix, n2 and let A be a matrix satisfying aij=0,aii>ri(A) and aji=0,ajj>rj(A) for iS,jˉS. Denote A/α=(ajtjs). If αˉS, jtS,jsˉSα, then, A/α{GDSDDS,(ˉSα)nk}.

    Proof. The conclusion can be drawn by using the same proof method as Theorem 4.

    Corollary 2. Let A=(aij)Cn×n be an S-SOB matrix, n2 and let A be a matrix satisfying aij=0,aii>ri(A) and aji=0,ajj>rj(A) for iS,jˉS. Denote A/α=(ajtjs). If α is contained neither in S nor in ˉS, jtSα,jsˉSα, then A/α{GDSDD(Sα),(ˉSα)nk}.

    Proof. The proof is similar to ([9], Theorem 2 (iii)), so we get A/α=(A/(Sα))/((A(α)/(Sα)){GDSDD(Sα),(ˉSα)nk}.

    Theorem 5. Let A=(aij)Cn×n be an S-SOB matrix, n2 and denote A/α=(ajtjs). If α=S or α=ˉS, then A/α is an SDD matrix.

    Proof. If {i1}=α=S, for all jtˉα, then we have

    |ajtjt|rjt(A/α)=|ajtjt|jwˉα,wt|ajtjw|=|ajtjtajti1ai1jtai1i1|jwˉα,wt|ajtjwajti1ai1jwai1i1||ajtjt|rˉαjt(A)jwˉα|ajti1ai1jw||ai1i1|=|ajtjt|rˉαjt(A)|ajti1|rˉαi1(A)|ai1i1|=|ajtjt|rˉSjt(A)|ajti1|rˉSi1(A)|ai1i1|.

    If ajti1=0, then we get

    |ajtjt|rjt(A/α)|ajtjt|rˉSjt(A)0>0.

    If ajti10, then we obtain

    |ajtjt|rjt(A/α)rSjt(A)ri1(A)|ai1i1||ajti1|rˉSi1(A)|ai1i1|>0.

    Hence, for any {i1}=α=S, A/{i1} is an SDD matrix. Taking i1α=S and using the fact that A is SDD, we know its Schur complement is as well. At last, we have A/α=(A/{i1})/(A(α)/{i1}){SDD}. By the same argument, so is α=ˉS.

    Corollary 3. Let A=(aij)Cn×n be an S-SOB matrix, n2 and denote A/α=(ajtjs). If Sα or ˉSα, then A/α is an SDD matrix.

    Proof. From Theorem 5, A/S is an SDD matrix, consequently, A/α=[A/S]/[(A(α)/S]{SDD}. Similarly, if ˉSα, we have A/α=[A/ˉS]/[(A(α)/ˉS]{SDD}.

    Finally, making a summary of part of the content: if αS or αˉS, then A(α){SDD}, A/α{ GDSDD}; if Sα or ˉSα, then A(α){S-SOB}, A/α{SDD}; if S=α or ˉS=α, then A(α){SDD}, A/α{SDD}; if α is contained neither in S nor in ˉS, then A(α){S-SOB}, A/α{GDSDD}.

    In order to obtain the upper bound of the infinite norm of the inverse of the S-SOB matrix, we need to give the definition of a permutation matrix in which every row and every column of it has only one element of 1 and all the other elements are 0. It is easy to see from the definition that permutation matrices are also elementary matrices, so multiplication of any matrix only changes the position of the matrix elements, but does not change the size of the matrix elements.

    For a given nonempty proper subset α, there is a permutation matrix P such that

    PTAP=(A(α)A(α,ˉα)A(ˉα,α)A(ˉα)).

    We might as well assume that A(α) is nonsingular, let

    E(PTAP)F=(A(α)00A(ˉα)A(ˉα,α)A(α)1A(α,ˉα)), (3.1)

    under the circumstances

    E=(I10A(ˉα,α)A(α)1I2)

    and

    F=(I1A(α)1A(α,ˉα)0I2),

    where I1 (resp.I2) is the identity matrix of order l (resp.m). We know that if P is a permutation matrix, then PT is also a permutation matrix, and ||P||=1. From the above we can obtain

    ||A1||=||PF(EPTAPF)1EPT||,
    ||A1||||F||||(EPTAPF)1||||E||. (3.2)

    Therefore, if the upper bounds of ||F||, ||(EPTAPF)1||, and ||E|| can be obtained, the upper bounds of ||A1|| can also be obtained, that is, the product of the above three norm bounds needs to be calculated. It's not hard to figure out

    ||E||=1+||A(ˉα,α)A(α)1||, (3.3)
    ||F||=1+||A(α)1A(α,ˉα)||, (3.4)

    and

    ||(EPTAPF)1||=max{||A(α)1||,||(A/α)1||}. (3.5)

    In [20], Li gives an upper bound for ||E|| as follows:

    Lemma 5. [20] Let A=[aij]Cn×n be nonsingular with aii0, for iN, and αN. If A(α) is nonsingular and

    1>maxiαmaxjα,ji|aji||aii|(k1), (3.6)

    then,

    ||E||ζ(α)=1+kmaxiαmaxjˉα|aji||aii|(1maxiαmaxjα,ji|aji||aii|(k1))1. (3.7)

    Theorem 6. Let A=[aij]Cn×n be an S-SOB matrix and D=[dij]Cn×m. Then,

    A1Dmax{maxiS,jˉS:aij0|ajj|Ri(D)+rˉSi(A)Rj(D)[|aii|rSi(A)]|ajj|rˉSi(A)rj(A),maxiS,jˉS:aji0|aii|Rj(D)+rSj(A)Ri(D)[|ajj|rˉSj(A)]|aii|rSj(A)ri(A),maxiS:rˉSi(A)=0Ri(D)|aii|rSi(A),maxjˉS:rSj(A)=0Rj(D)|ajj|rˉSj(A)}, (3.8)

    where Ri(D)=kM|dik|.

    Proof. Since A=[aij]Cn×n is an S-SOB matrix, we know from [1] that A is an H-matrix, [μ(A)]1|A1|. Let

    φφ=|A1D|e=(φ1,φ2,...,φn)T,
    ψψ=(μ(A))1|D|e=(ψ1,ψ2,...,ψn)T,

    and e=(1,...,1)T be an m-dimensional vector, consequently,

    ψψ=μ(A)1|D|e|A1||D|e|A1D|e=φφ,andμ(A)ψψ=|D|e.

    Because of SN, ψp=maxkS{ψk},ψq=maxkˉS{ψk}, it implies that

    |aii|ψikN,ki|aik|ψk=kM|dik|,iN.

    If ψpψq, then,

    kM|dpk|=|app|ψpkN,kp|apk|ψk=|app|ψpkS,kp|apk|ψkkˉS,kp|apk|ψk|app|ψpkS,kp|apk|ψpkˉS,kp|apk|ψq=[|app|rSp(A)]ψprˉSp(A)ψq.

    That is to say, if ψpψq, rˉSp(A)=0, then,

    kM|dpk|[|app|rSp(A)]ψp,

    and

    ||A1D||=maxiNψiψpkM|dpk||app|rSp(A)maxiS:rˉSi(A)=0kM|dik||aii|rSi(A). (3.9)

    If ψpψq, rˉSp(A)0, then,

    kM|dpk|[|app|rSp(A)]ψprˉSp(A)ψq, (3.10)

    and

    kM|dqk|=|aqq|ψqkN,kq|aqk|ψk|aqq|ψqrq(A)ψp. (3.11)

    By Eq (3.10) ×|aqq| + Eq (3.11)×rˉSp(A), we have

    |aqq|kM|dpk|+rˉSp(A)kM|dqk|{|aqq|[|app|rSp(A)]rˉSp(A)rq(A)}ψp.

    Thus,

    ||A1D||=maxiNψiψp|aqq|kM|dpk|+rˉSp(A)kM|dqk||aqq|[|app|rSp(A)]rˉSp(A)rq(A)maxiS,jˉS:aij0|ajj|kM|dik|+rˉSi(A)kM|djk||ajj|[|aii|rSi(A)]rˉSi(A)rj(A). (3.12)

    If ψqψp, equally,

    kM|dqk|=|aqq|ψqkN,kq|aqk|ψk|aqq|ψqkˉS,kq|aqk|ψqkS,kq|aqk|ψp=[|aqq|rˉSq(A)]ψqrSq(A)ψp.

    When rSq(A)=0, kM|dqk|[|aqq|rˉSq(A)]ψq.

    ||A1D||=maxiNψiψqkM|dqk||aqq|rˉSq(A)maxiS:rSq(A)=0kM|djk||ajj|rˉSj(A). (3.13)

    When rSq(A)0, then

    kM|dpk||app|ψprp(A)ψq, (3.14)
    kM|dqk|[|aqq|rˉSq(A)]ψqrSq(A)ψp. (3.15)

    Eq (3.14) ×rSq(A) + Eq (3.15)×|app|, we have

    rSq(A)kM|dpk|+|app|kM|dqk|{|app|[|aqq|rˉSq(A)]rSq(A)rq(A)}ψq.

    Consequently,

    ||A1D||=maxiNψiψqrSq(A)kM|dpk|+|app|kM|dqk||app|[|aqq|rˉSq(A)]rSq(A)rq(A)maxiS,jˉS:aji0|aii|kM|djk|+rSj(A)kM|dik||aii|[|ajj|rˉSj(A)]rSj(A)ri(A). (3.16)

    The conclusion follows from inequalities Eqs (3.9), (3.12), (3.13) and (3.16).

    Replacing A and D in Theorem 6 with A(α) and A(α,ˉα), respectively, yields Corollary 4.

    Corollary 4. Let A=[aij]Cn×n be an S-SOB matrix and αN, then, ||F||1+max{maxiαRi[A(α,ˉα)]|aii|ri[A(α)],β(α),γ(α),λ(α)}, where

    β(α)=max{maxiS,j(ˉSα):aij0|ajj|Ri[A(α,ˉα)]+r(ˉSα)i[A(α)]Rj[A(α,ˉα)][|aii|rSi[A(α)]]|ajj|r(ˉSα)i[A(α)]rj[A(α)],maxiS,j(ˉSα):aji0|aii|Rj[A(α,ˉα)]+rSj[A(α)]Ri[A(α,ˉα)][|ajj|r(ˉSα)j[A(α)]]|aii|rSj[A(α)]ri[A(α)],maxiS:r(ˉSα)i[A(α)]=0Ri[A(α,ˉα)]|aii|rSi[A(α)],maxjˉSα:rSj[A(α)]=0Rj[A(α,ˉα)]|ajj|r(ˉSα)j[A(α)]},
    γ(α)=max{maxiˉS,j(Sα):aij0|ajj|Ri[A(α,ˉα)]+r(Sα)i[A(α)]Rj[A(α,ˉα)][|aii|rˉSi[A(α)]]|ajj|r(Sα)i[A(α)]rj[A(α)],maxiˉS,j(Sα):aji0|aii|Rj[A(α,ˉα)]+rˉSj[A(α)]Ri[A(α,ˉα)][|ajj|r(Sα)j[A(α)]]|aii|rˉSj[A(α)]ri[A(α)],maxiˉS:r(Sα)i[A(α)]=0Ri[A(α,ˉα)]|aii|rˉSi[A(α)],maxjS:rSj[A(α)]=0Rj[A(α,ˉα)]|ajj|r(Sα)j[A(α)]},
    λ(α)=max{maxi(Sα),j(ˉSα):aij0|ajj|Ri[A(α,ˉα)]+r(ˉSα)i[A(α)]Rj[A(α,ˉα)][|aii|r(Sα)i[A(α)]]|ajj|r(ˉSα)i[A(α)]rj[A(α)],maxi(Sα),j(ˉSα):aji0|aii|Rj[A(α,ˉα)]+r(Sα)j[A(α)]Ri[A(α,ˉα)][|ajj|r(ˉSα)j[A(α)]]|aii|r(Sα)j[A(α)]ri[A(α)],maxi(Sα):r(ˉSα)i[A(α)]=0Ri[A(α,ˉα)]|aii|r(Sα)i[A(α)],maxjˉSα:r(Sα)j[A(α)]=0Rj[A(α,ˉα)]|ajj|r(ˉSα)j[A(α)]}.

    Proof. Let αS or αˉS, A(α) be an SDD matrix (from Lemma 2). Thus,

    ||F||=1+||A(α)1A(α,ˉα)||1+maxiαRi[A(α,ˉα)]|aii|ri[A(α)].

    From Lemma 3, we have

    (1) if Sα, A(α) is an S-SOB matrix, then

    ||F||=1+||A(α)1A(α,ˉα)||1+max{maxiS,j(ˉSα):aij0|ajj|Ri[A(α,ˉα)]+r(ˉSα)i[A(α)]Rj[A(α,ˉα)][|aii|rSi[A(α)]]|ajj|r(ˉSα)i[A(α)]rj[A(α)],maxiS,j(ˉSα):aji0|aii|Rj[A(α,ˉα)]+rSj[A(α)]Ri[A(α,ˉα)][|ajj|r(ˉSα)j[A(α)]]|aii|rSj[A(α)]ri[A(α)],maxiS:r(ˉSα)i[A(α)]=0Ri[A(α,ˉα)]|aii|rSi[A(α)],maxjˉS:rSj[A(α)]=0Rj[A(α,ˉα)]|ajj|r(ˉSα)j[A(α)]}.

    Hence, ||F||1+β(α).

    (2) If ˉSα, A(α) is an ˉS-SOB matrix, then

    ||F||=1+||A(α)1A(α,ˉα)||1+max{maxiˉS,j(Sα):aij0|ajj|Ri[A(α,ˉα)]+r(Sα)i[A(α)]Rj[A(α,ˉα)][|aii|rˉSi[A(α)]]|ajj|r(Sα)i[A(α)]rj[A(α)],maxiˉS,j(Sα):aji0|aii|Rj[A(α,ˉα)]+rˉSj[A(α)]Ri[A(α,ˉα)][|ajj|r(Sα)j[A(α)]]|aii|rˉSj[A(α)]ri[A(α)],maxiˉS:r(Sα)i[A(α)]=0Ri[A(α,ˉα)]|aii|rˉSi[A(α)],maxjS:rSj[A(α)]=0Rj[A(α,ˉα)]|ajj|r(Sα)j[A(α)]}.

    Accordingly, ||F||1+γ(α).

    (3) If α is contained neither in S nor in ˉS, A(α) is an (Sα)-SOB matrix, then we have

    ||F||=1+||A(α)1A(α,ˉα)||1+max{maxi(Sα),j(ˉSα):aij0|ajj|Ri[A(α,ˉα)]+r(ˉSα)i[A(α)]Rj[A(α,ˉα)][|aii|r(Sα)i[A(α)]]|ajj|r(ˉSα)i[A(α)]rj[A(α)],maxi(Sα),j(ˉSα):aji0|aii|Rj[A(α,ˉα)]+r(Sα)j[A(α)]Ri[A(α,ˉα)][|ajj|r(ˉSα)j[A(α)]]|aii|r(Sα)j[A(α)]ri[A(α)],maxi(Sα):r(ˉSα)i[A(α)]=0Ri[A(α,ˉα)]|aii|r(Sα)i[A(α)],maxjˉSα:r(Sα)j[A(α)]=0Rj[A(α,ˉα)]|ajj|r(ˉSα)j[A(α)]}=λ(α).

    Hence, ||F||1+λ(α). The proof is completed.

    Lemma 6. Let A=[aij]Cn×n be an S-SOB matrix and x=[μ(A(α))]1yT, where αS, or αˉS. Let x=(x1,x2,,xk), y=(y1,y2,,yk), yk>0, xg=maxikαxk, then

    0xkmaxivαyv|aiviv|rαiv(A),ikα. (3.17)

    Proof. Note that x=[μ(A(α))]1yT, so [μ(A(α))]x=yT. For all αS, or αˉS, from Lemma 2, μ(A(α)) is an H-matrix, so [μ(A(α))]10 by Eq (1.3). Then

    yg=|aigig|xgivα|aigiv|xv|aigig|xgivα|aigiv|xg,

    which gives xgyg|aigig|ivα|aigiv|=yg|aigig|rαig(A). Consequently, 0xkmaxivαyv|aiviv|rαiv(A),ikα.

    Lemma 7. Let A=[aij]Cn×n be an S-SOB matrix, x,yT from Lemma 6, if α is contained neither in S nor in ˉS, xg=maxikαxk, then

    0xkπyT(α),ikα, (3.18)

    where

    πyT(α)=max{maxi(Sα),j(ˉSα)|ajj|yi+r(ˉSα)i[A(α)]yj[|aii|r(Sα)i[A(α)]]|ajj|r(ˉSα)i[A(α)]rj[A(α)],maxi(Sα),j(ˉSα)|aii|yj+r(Sα)j[A(α)]yi[|ajj|r(ˉSα)j[A(α)]]|aii|r(Sα)j[A(α)]ri[A(α)]}.

    Proof. When α is contained neither in S nor in ˉS, A(α) is an (Sα)-SOB matrix, so is μ(A(α)). Thus,

    ||[μ(A(α))]1yT||=||x||=maxikαxk.

    Replacing A and D in Theorem 6 with [μ(A(α))]1 and yT, respectively, yields

    ||[μ(A(α))]1yT||max{maxi(Sα),j(ˉSα)|ajj|yi+r(ˉSα)i[A(α)]yj[|aii|r(Sα)i[A(α)]]|ajj|r(ˉSα)i[A(α)]rj[A(α)],maxi(Sα),j(ˉSα)|aii|yj+r(Sα)j[A(α)]yi[|ajj|r(ˉSα)j[A(α)]]|aii|rSj[A(α)]ri[A(α)]}=max{maxi(Sα),j(ˉSα)|ajj|yi+r(ˉSα)i(A)yj[|aii|r(Sα)i(A)]|ajj|r(ˉSα)i(A)rαj(A),maxi(Sα),j(ˉSα)|aii|yj+r(Sα)j(A)yi[|ajj|r(ˉSα)j(A)]|aii|r(Sα)j(A)rαi(A)}=πyT(α).

    Which implies that: 0xkπyT(α)),ikα.

    For the sake of convenience, assume that the symbol of A/α in this part is the same as in the second part and denote:

    vjt=(ajti1,ajti2,,ajtik),wjs=(ai1js,ai2js,,aikjs)T,
    |vjt|=(|ajti1|,|ajti2|,,|ajtik|),|wjs|=(|ai1js|,|ai2js|,,|aikjs|)T.

    I=(1,1,,1)T is an k order column vector.

    Theorem 7. Let A=(aij)Cn×n be an S-SOB matrix, n2 and A is a matrix satisfying aij=0,aii>ri(A) and aji=0,ajj>rj(A) for iS,jˉS. Denote A/α=(ajtjs). If αS, then,

    ||A1||ζ(α)[1+maxiαRi[A(α,ˉα)]|aii|ri[A(α)]]θ1(α),

    where θ1(α)=max{maxiα1|aii|ri(A(α)),η1(α)},

    η1(α)=max{maxi(Sα),jˉS|ajj|rˉSj(A)+rˉSi(A)+maxvαrˉSv(A)|avv|rαv(A)[rαi(A)+rαj(A)]hi,j,maxi(Sα),jˉS|aii|r(Sα)i(A)+r(Sα)j(A)+maxvαr(Sα)v|avv|rαv(A)[rαi(A)+rαj(A)]hi,j}.
    hi,j=[|aii|r(Sα)i(A)|vi|[μ(A(α))]1k(Sα)|wk|]×[|ajj|rˉSj(A)|vj|[μ(A(α))]1kˉS|wk|][rˉSi(A)|vi|[μ(A(α))]1kˉS|wk|]×[rˉαj(A)+|vj|[μ(A(α))]1k(Sα)|wk|].

    Proof. By Lemma 2, we know A(α) is an SDD matrix. Applying Varah's bound to A(α), we get

    ||A(α)1||maxiα1|aii|ri(A(α)). (3.19)

    By Corollary 4, we have

    ||F||1+maxiαRi[A(α,ˉα)]|aii|ri[A(α)]. (3.20)

    By Theorem 4, it is easy to know A/α{ GDSDD(Sα),ˉSnk}. Therefore, from Theorem 3,

    ||(A/α)1||max{maxjt(Sα),jsˉS|ajsjs|rˉSjs(A/α)+rˉSjt(A/α)[|ajtjt|r(Sα)jt(A/α)][|ajsjs|rˉSjs(A/α)]rˉSjt(A/α)r(Sα)js(A/α),maxjt(Sα),jsˉS|ajtjt|r(Sα)jt(A/α)+r(Sα)js(A/α)[|ajtjt|r(Sα)jt(A/α)][|ajsjs|rˉSjs(A/α)]rˉSjt(A/α)r(Sα)js(A/α)}.

    And then

    [|ajtjt|r(Sα)jt(A/α)][|ajsjs|rˉSjs(A/α)]rˉSjt(A/α)r(Sα)js(A/α)[|ajtjt|r(Sα)jt(A)|vjt|[μ(A(α))]1jk(Sα)|wjk|]×[|ajsjs|rˉSjs(A)|vjs|[μ(A(α))]1jkˉS|wjk|][rˉSjt(A)+|vjt|[μ(A(α))]1jkˉS|wjk|]×[r(Sα)js(A)+|vjs|[μ(A(α))]1jk(Sα)|wjk|]>0.
    |ajsjs|rˉSjs(A/α)+rˉSjt(A/α)|ajsjs|rˉSjs(A)+rˉSjt(A)+|vjs|[μ(A(α))]1jkˉS|wjk|+|vjt|[μ(A(α))]1jkˉS|wjk|=|ajsjs|rˉSjs(A)+rˉSjt(A)+(|vjs|+|vjt|)[μ(A(α))]1jkˉS|wjk||ajsjs|rˉSjs(A)+rˉSjt(A)+(|vjs|+|vjt|)maxivαyv|aiviv|rαiv(A)I(by(3.17))=|ajsjs|rˉSjs(A)+rˉSjt(A)+maxivαrˉSiv(A)|aiviv|rαiv(A)[rαjt(A)+rαjs(A)]. (3.21)

    Similarly,

    |ajtjt|r(Sα)jt(A/α)+r(Sα)js(A/α)|ajtjt|r(Sα)jt(A)+r(Sα)js(A)+maxivαr(Sα)iv(A)|aiviv|rαiv(A)[rαjt(A)+rαjs(A)]. (3.22)

    Let

    hjt,js=[|ajtjt|r(Sα)jt(A)|vjt|[μ(A(α))]1jk(Sα)|wjk|]×[|ajsjs|rˉSjs(A)|vjs|[μ(A(α))]1jkˉS|wjk|][|vjt|[μ(A(α))]1jkˉS|wjk|]×[r(Sα)js(A)+|vjs|[μ(A(α))]1jk(Sα)|wjk|]>0. (3.23)

    Furthermore, by Eqs (3.21)–(3.23), we have

    ||(A/α)1||max{maxjt(Sα),jsˉS|ajsjs|rˉSjs(A)+rˉSjt(A)+maxivαrˉSiv(A)|aiviv|rαiv(A)[rαjt(A)+rαjs(A)]hjt,js,maxjt(Sα),jsˉS|ajtjt|r(Sα)jt(A)+r(Sα)js(A)+maxivαr(Sα)iv(A)|aiviv|rαiv(A)[rαjt(A)+rαjs(A)]hjt,js}=max{maxi(Sα),jˉS|ajj|rˉSj(A)+rˉSi(A)+maxvαrˉSv(A)|avv|rαv(A)[rαi(A)+rαj(A)]hi,j,maxi(Sα),jˉS|aii|r(Sα)i(A)+r(Sα)j(A)+maxvαr(Sα)v|avv|rαv(A)[rαi(A)+rαj(A)]hi,j}. (3.24)

    Finally, by Eqs (3.2), (3.3), (3.19), (3.20) and (3.24), the conclusion follows.

    The following inference can be naturally drawn from Theorem 7:

    Corollary 5. Let A=(aij)Cn×n be an S-SOB matrix, n2 and A be a matrix satisfying aij=0,aii>ri(A) and aji=0,ajj>rj(A) for iS,jˉS. Denote A/α=(ajtjs). If αˉS, then,

    ||A1||ζ(α)[1+maxiαRi[A(α,ˉα)]|aii|ri[A(α)]]θ2(α),

    where θ2(α)=max{maxiα1|aii|ri(A(α)),η2(α)},

    η2(α)=max{maxiS,j(ˉSα)|ajj|r(ˉSα)j(A)+r(ˉSα)i(A)+maxvαr(ˉSα)v(A)|avv|rαv(A)[rαi(A)+rαj(A)]zi,j,maxiS,j(ˉSα)|aii|rSi(A)+rSj(A)+maxvαrSv(A)|avv|rαv(A)[rαi(A)+rαj(A)]zi,j}.
    zi,j=[|aii|rSi(A)|vi|[μ(A(α))]1kS|wk|]×[|ajj|r(ˉSα)j(A)|vj|[μ(A(α))]1k(ˉSα)|wk|][r(ˉSα)i(A)|vi|[μ(A(α))]1k(ˉSα)|wk|]×[rˉαj(A)+|vj|[μ(A(α))]1kS|wk|].

    Theorem 8. Let A=(aij)Cn×n be an S-SOB matrix, n2 and A be a matrix satisfying aij=0,aii>ri(A) and aji=0,ajj>rj(A) for iS,jˉS. Denote A/α=(ajtjs). If α is contained neither in S nor in ˉS, then,

    ||A1||ζ(α)[1+λ(α)]θ3(α),

    where θ3(α)=max{δ1(α),η3(α)},

    δ1(α)=max{maxi(Sα),j(ˉSα)|ajj|+r(ˉSα)i(A(α))[|aii|r(Sα)i(A(α))]|ajj|r(ˉSα)i(A(α))rj(A(α)),maxi(Sα),j(ˉSα)|aii|+r(Sα)j[(A(α))][|ajj|r(ˉSα)j(A(α))]|aii|r(Sα)j(A(α))ri(A(α))}.
    η3(α)=max{maxi(Sα),j(ˉSα)|ajj|r(ˉSα)j(A)+rαi(A)+[rαi(A)+rαj(A)]πy1(α)fi,j,maxi(Sα),j(ˉSα)|aii|r(Sα)i(A)+r(Sα)j(A)+[rαi(A)+rαj(A)]πy2(α)fi,j}.
    fi,j=[|aii|r(Sα)i(A)|vi|[μ(A(α))]1k(Sα)|wk|]×[|ajj|r(ˉSα)j(A)|vj|[μ(A(α))]1k(ˉSα)|wk|][r(ˉSα)i(A)+|vi|[μ(A(α))]1k(ˉSα)|wk|]×[r(Sα)j(A)+|vj|[μ(A(α))]1k(Sα)|wk|].

    Proof. By Lemma 3, we know A(α) is an (Sα)-SOB matrix. Applying the bound of Theorem 2 to A(α), we get

    A(α)1max{maxi(Sα),j(ˉSα)|ajj|+r(ˉSα)i(A(α))[|aii|r(Sα)i(A(α))]|ajj|r(ˉSα)i(A(α))rj(A(α)),maxi(Sα),j(ˉSα)|aii|+r(Sα)j[(A(α))][|ajj|r(ˉSα)j(A(α))]|aii|r(Sα)j(A(α))ri(A(α))}=δ1(α). (3.25)

    By Corollary 4, we have

    ||F||1+λ(α). (3.26)

    By Corollary 2, we know A/α{ GDSDD(Sα),(ˉSα)nk}. Therefore,

    ||(A/α)1||max{maxjt(Sα),js(ˉSα)|ajsjs|r(ˉSα)js(A/α)+r(ˉSα)jt(A/α)[|ajtjt|r(Sα)jt(A/α)][|ajsjs|r(ˉSα)js(A/α)]r(ˉSα)jt(A/α)r(Sα)js(A/α),maxjt(Sα),js(ˉSα)|ajtjt|r(Sα)jt(A/α)+r(Sα)js(A/α)[|ajtjt|r(Sα)jt(A/α)][|ajsjs|r(ˉSα)js(A/α)]r(ˉSα)jt(A/α)r(Sα)js(A/α)}. (3.27)

    And then,

    [|ajtjt|r(Sα)jt(A/α)][|ajsjs|r(ˉSα)js(A/α)]r(ˉSα)jt(A/α)r(Sα)js(A/α)[|ajtjt|r(Sα)jt(A)|vjt|[μ(A(α))]1jk(Sα)|wjk|]×[|ajsjs|r(ˉSα)js(A)|vjs|[μ(A(α))]1jk(ˉSα)|wjk|][r(ˉSα)jt(A)+|vjt|[μ(A(α))]1jk(ˉSα)|wjk|]×[r(Sα)js(A)+|vjs|[μ(A(α))]1jk(Sα)|wjk|]>0.
    |ajsjs|r(ˉSα)js(A/α)+r(ˉSα)jt(A/α)|ajsjs|r(ˉSα)js(A)+r(ˉSα)jt(A)+|vjs|[μ(A(α))]1jk(ˉSα)|wjk|+|vjt|[μ(A(α))]1jk(ˉSα)|wjk|=|ajsjs|r(ˉSα)js(A)+r(ˉSα)jt(A)+(|vjs|+|vjt|)[μ(A(α))]1jk(ˉSα)|wjk|.

    Let yT=y1=jk(ˉSα)|wjk|, yT from Lemma 7, we get

    |ajsjs|r(ˉSα)js(A/α)+r(ˉSα)jt(A/α)|ajsjs|r(ˉSα)js(A)+r(ˉSα)jt(A)+(|vjs|+|vjt|)π(α)I=|ajsjs|r(ˉSα)js(A)+r(ˉSα)jt(A)+[rαjt(A)+rαjs(A)]πy1(α). (3.28)

    In like manner, let yT=y2=jk(Sα)|wjk|, yT from Lemma 7, we get

    |ajtjt|r(Sα)jt(A/α)+r(Sα)js(A/α)|ajtjt|r(Sα)jt(A)+r(Sα)js(A)+[rαjt(A)+rαjs(A)]πy2(α). (3.29)

    Let

    fjt,js=[|ajtjt|r(Sα)jt(A)|vjt|[μ(A(α))]1jk(Sα)|wjk|]×[|ajsjs|r(ˉSα)js(A)|vjs|[μ(A(α))]1jk(ˉSα)|wjk|][r(ˉSα)jt(A)+|vjt|[μ(A(α))]1jk(ˉSα)|wjk|]×[r(Sα)js(A)+|vjs|[μ(A(α))]1jk(Sα)|wjk|]. (3.30)

    Furthermore, by Eqs (3.28)–(3.30), we have

    ||(A/α)1||max{maxjt(Sα),js(ˉSα)|ajsjs|r(ˉSα)js(A)+rˉSαjt(A)+[rαjt(A)+rαjs(A)]πy1(α)fjt,js,maxjt(Sα),js(ˉSα)|ajtjt|r(Sα)jt(A)+r(Sα)js(A)+[rαjt(A)+rαjs(A)]πy2(α)fjt,js}=max{maxi(Sα),j(ˉSα)|ajj|r(ˉSα)j(A)+r(ˉSα)i(A)+[rαi(A)+rαj(A)]πy1(α)fi,j,maxi(Sα),j(ˉSα)|aii|r(Sα)i(A)+r(Sα)j(A)+[rαi(A)+rαj(A)]πy2(α)fi,j}. (3.31)

    Finally, by Eqs (3.2), (3.3), (3.25), (3.26) and (3.31), the conclusion follows.

    Theorem 9. Let A=[aij]Cn×n be an S-SOB matrix, ϕα=S. If Eq (3.7) holds, then,

    ||A1||ζ(α)[1+maxiαRi[A(α,ˉα)]|aii|ri[A(α)]]θ4(α),

    where θ4(α)=max{maxiα1|aii|ri(A(α)),η4(α)},

    η4(α)=maxjˉS1|ajj|rˉSj(A)|vj|[μ(A(α))]1kˉS|wk|.

    Expressly, when \phi\neq\alpha = S = \{i\} ,

    ||A^{-1}||_{\infty}\leq\left[1+\max\limits_{j\in \bar{S}}\frac{|a_{ji}|}{|a_{ii}|}\right]\left[1+\max\limits_{j\in \bar{S}}\frac{|a_{ji}|}{|a_{ii}|}\right]\theta_{4}'(\alpha).

    \theta_{4}'(\alpha) = \max\{\frac{1}{|a_{ii}|}, \; \eta_{4}'(\alpha)\},

    \begin{eqnarray*} &&\eta_{4}'(\alpha) = \max\limits_{j\in \bar{S}}\frac{1}{|{{a}_{jj}}|-r_{j}^{\bar{S}}(A)-\frac{|a_{ji}|r_{i}^{\bar{S}}(A)}{|a_{ii}|}}. \end{eqnarray*}

    Proof. By Lemma 2, we know A(\alpha) is an SDD matrix. ||A(\alpha)^{-1}||_{\infty} is the same as Eq (3.19), and ||F||_{\infty} is the same as Eq (3.20). By Theorem 5, knowing that A/\alpha is an SDD matrix. Therefore,

    \begin{eqnarray} &&||(A/\alpha)^{-1}||_{\infty}\leq \max\limits_{j_{t}\in \bar{\alpha}}\frac{1}{|{{a}^{'}_{j_{t}j_{t}}}|-r_{j_{t}}(A/\alpha)}\\ &&\leq\max\limits_{j_{t}\in \bar{\alpha}}\frac{1}{|{{a}_{j_{t}j_{t}}}|-r_{j_{t}}^{\bar{\alpha}}(A)-|v_{j_{t}}|[\mu(A(\alpha))]^{-1}\sum\limits_{j_{k}\in \bar{S}}|w_{j_{k}}|}\\ && = \max\limits_{j_{t}\in \bar{S}}\frac{1}{|{{a}_{j_{t}j_{t}}}|-r_{j_{t}}^{\bar{S}}(A)-|v_{j_{t}}|[\mu(A(\alpha))]^{-1}\sum\limits_{j_{k}\in \bar{S}}|w_{j_{k}}|}\\ && = \max\limits_{j\in \bar{S}}\frac{1}{|{{a}_{jj}}|-r_{j}^{\bar{S}}(A)-|v_{j}|[\mu(A(\alpha))]^{-1}\sum\limits_{k\in \bar{S}}|w_{k}|} = \eta_{4}. \end{eqnarray} (3.32)

    Finally, by Eqs (3.2), (3.3), (3.19), (3.20) and (3.32), the conclusion follows.

    A proof similar to Theorem 9 leads to the results.

    Corollary 6. Let A = \left[{{a}_{ij}} \right]\in {{{C}}^{n\times n}} be an S -SOB matrix, where \phi\neq\alpha = \bar{S} . If Eq (3.7) holds, then,

    ||A^{-1}||_{\infty}\leq\zeta(\alpha)\left[1+\max\limits_{i\in\alpha}\frac{r_{i}[A(\alpha, \bar{\alpha})]}{|a_{ii}|-r_{i}[A(\alpha)]}\right]\theta_{5}(\alpha),

    where \theta_{5}(\alpha) = \max\{\max\limits_{i\in\alpha}\frac{1}{|a_{ii}|-r_{i}(A(\alpha))}, \; \eta_{5}(\alpha)\},

    \begin{eqnarray*} &&\eta_{5}(\alpha) = \max\limits_{i\in S}\frac{1}{|{{a}_{ii}}|-r_{i}^{S}(A)-|v_{i}|[\mu(A(\alpha))]^{-1}\sum\limits_{k\in S}|w_{k}|}. \end{eqnarray*}

    Distinguishingly, when \phi\neq\alpha = \bar{S} = \{i\} ,

    ||A^{-1}||_{\infty}\leq\left[1+\max\limits_{j\in S}\frac{|a_{ji}|}{|a_{ii}|}\right]\left[1+\max\limits_{j\in S}\frac{|a_{ji}|}{|a_{ii}|}\right]\theta_{5}'(\alpha).

    \theta_{5}'(\alpha) = \max\{\frac{1}{|a_{ii}|}, \; \eta_{5}'(\alpha)\},

    \begin{eqnarray*} &&\eta_{5}'(\alpha) = \max\limits_{j\in S}\frac{1}{|{{a}_{jj}}|-r_{j}^{S}(A)-\frac{|a_{ji}|r_{i}^{S}(A)}{|a_{ii}|}}. \end{eqnarray*}

    Theorem 10. Let A = \left[{{a}_{ij}} \right]\in {{{C}}^{n\times n}} be an S -SOB matrix, where S\subset\alpha . If Eq (3.7) holds, then,

    ||A^{-1}||_{\infty}\leq\zeta(\alpha)[1+\beta(\alpha)]\theta_{6}(\alpha),

    where \theta_{6}(\alpha) = \max\{\delta_{2}(\alpha), \; \eta_{6}(\alpha)\},

    \begin{eqnarray*} \delta_{2}(\alpha) = \max\{\max\limits_{i\in S, j\in(\bar{S}\cap\alpha), \atop :a_{ij}\neq0}\frac{|{{a}_{jj}}|+r_{i}^{(\bar{S}\cap\alpha)}(A(\alpha))}{[|{{a}_{ii}}|-r_{i}^{S}(A(\alpha))] |{{a}_{jj}}|-r_{i}^{(\bar{S}\cap\alpha)}(A(\alpha)) r_{j}(A(\alpha))}, &\nonumber\\ \max\limits_{i\in S, j\in(\bar{S}\cap\alpha), \atop :a_{ji}\neq0}\frac{|{{a}_{ii}}|+r_{j}^{(S\cap\alpha)}[(A(\alpha))]}{[|{{a}_{jj}}| -r_{j}^{(\bar{S}\cap\alpha)}(A(\alpha))]|{{a}_{ii}}|-r_{j}^{S}(A(\alpha))r_{i}(A(\alpha))}, &\nonumber\\ \max\limits_{i\in S, j\in(\bar{S}\cap\alpha)\atop r_{i}^{(\bar{S}\cap\alpha)}(A(\alpha)) = 0}\frac{1}{|{{a}_{ii}}|-r_{i}^{S}(A(\alpha))}, \max\limits_{i\in S, j\in(\bar{S}\cap\alpha)\atop:r_{j}^{S}(A(\alpha)) = 0 }\frac{1}{|{{a}_{jj}}| -r_{j}^{(\bar{S}\cap\alpha)}(A(\alpha)) } \}. \end{eqnarray*}
    \begin{eqnarray*} &&\eta_{6}(\alpha) = \max\limits_{{i\in(\bar{S}\setminus\alpha) }}\frac{1} {|{{a}_{ii}}|-r_{i}^{(\bar{S}\setminus\alpha)}(A) -|v_{i}|[\mu(A(\alpha))]^{-1}\sum\limits_{k\in (\bar{S}\setminus\alpha)}|w_{k}|}. \end{eqnarray*}

    Proof. A(\alpha) is an S -SOB matrix (by Lemma 3). Thus,

    \begin{eqnarray} \|A(\alpha)^{-1}\|_{\infty}\leq\max\{\max\limits_{i\in S, j\in(\bar{S}\cap\alpha), \atop :a_{ij}\neq0}\frac{|{{a}_{jj}}|+r_{i}^{(\bar{S}\cap\alpha)}(A(\alpha))}{[|{{a}_{ii}}|-r_{i}^{S}(A(\alpha))] |{{a}_{jj}}|-r_{i}^{(\bar{S}\cap\alpha)}(A(\alpha)) r_{j}(A(\alpha))}, &\\ \max\limits_{i\in S, j\in(\bar{S}\cap\alpha), \atop :a_{ji}\neq0}\frac{|{{a}_{ii}}|+r_{j}^{(S\cap\alpha)}[(A(\alpha))]}{[|{{a}_{jj}}| -r_{j}^{(\bar{S}\cap\alpha)}(A(\alpha))]|{{a}_{ii}}|-r_{j}^{S}(A(\alpha))r_{i}(A(\alpha))}, &\\ \max\limits_{i\in S , j\in(\bar{S}\cap\alpha)\atop r_{i}^{(\bar{S}\cap\alpha)}(A(\alpha)) = 0}\frac{1}{|{{a}_{ii}}|-r_{i}^{S}(A(\alpha))}, \max\limits_{i\in S, j\in(\bar{S}\cap\alpha)\atop:r_{j}^{S}(A(\alpha)) = 0 }\frac{1}{|{{a}_{jj}}| -r_{j}^{(\bar{S}\cap\alpha)}(A(\alpha)) } \} = \delta_{2}(\alpha). \end{eqnarray} (3.33)

    From Corollary 4, we know

    \begin{eqnarray} ||F||_{\infty}\leq1+\beta(\alpha). \end{eqnarray} (3.34)

    By Corollary 3, we obtain A/\alpha is an SDD matrix. Therefore,

    \begin{eqnarray} &&||(A/\alpha)^{-1}||_{\infty}\leq \max\limits_{j_{t}\in (\bar{S}\setminus\alpha)}\frac{1} {|{{a}_{j_{t}j_{t}}}|-r_{j_{t}}^{(\bar{S}\setminus\alpha)}(A) -|v_{j_{t}}|[\mu(A(\alpha))]^{-1}\sum\limits_{j_{k}\in (\bar{S}\setminus\alpha)}|w_{j_{k}}|}\\ && = \max\limits_{{i\in(\bar{S}\setminus\alpha) }}\frac{1} {|{{a}_{ii}}|-r_{i}^{(\bar{S}\setminus\alpha)}(A) -|v_{i}|[\mu(A(\alpha))]^{-1}\sum\limits_{k\in (\bar{S}\setminus\alpha)}|w_{k}|}. \end{eqnarray} (3.35)

    Finally, by Eqs (3.2), (3.3), (3.33), (3.34) and (3.35), the conclusion follows.

    According to Theorem 10, the following result will come out naturally.

    Corollary 7. Let A = \left[{{a}_{ij}} \right]\in {{{C}}^{n\times n}} be an S -SOB matrix, \bar{S}\subset\alpha . If Eq (3.7) holds, then

    ||A^{-1}||_{\infty}\leq\zeta(\alpha)[1+\gamma(\alpha)]\theta_{7}(\alpha),

    where \theta_{7}(\alpha) = \max\{\delta_{3}(\alpha), \; \eta_{7}(\alpha)\},

    \begin{eqnarray*} \delta_{3}(\alpha) = \max\{\max\limits_{i\in (S\cap\alpha) , \atop j\in\bar{S}}\frac{|{{a}_{jj}}|+r_{i}^{\bar{S}}(A(\alpha))}{[|{{a}_{ii}}|-r_{i}^{(S\cap\alpha)}(A(\alpha))] |{{a}_{jj}}|-r_{i}^{\bar{S}}(A(\alpha)) r_{j}(A(\alpha))}, &\nonumber\\ \max\limits_{i\in (S\cap\alpha), \atop j\in\bar{S}}\frac{|{{a}_{ii}}|+r_{j}^{(S\cap\alpha)}[(A(\alpha))]}{[|{{a}_{jj}}| -r_{j}^{\bar{S}}(A(\alpha))]|{{a}_{ii}}|-r_{j}^{(S\cap\alpha)}(A(\alpha))r_{i}(A(\alpha))}, &\nonumber\\ \max\limits_{i\in (S\cap\alpha) , \atop j\in\bar{S}}\frac{1}{|{{a}_{ii}}|-r_{i}^{(S\cap\alpha)}(A(\alpha))}, \max\limits_{i\in (S\cap\alpha) , \atop j\in\bar{S}}\frac{1}{|{{a}_{jj}}| -r_{j}^{\bar{S}}(A(\alpha)) } \}. \end{eqnarray*}

    \eta_{7}(\alpha) = \max\limits_{{i\in(S\setminus\alpha) }}\frac{1} {|{{a}_{ii}}|-r_{i}^{(S\setminus\alpha)}(A) -|v_{i}|[\mu(A(\alpha))]^{-1}\sum\limits_{k\in (S\setminus\alpha)}|w_{k}|}.

    Theorem 11. Let A = ({{a}_{ij}})\in {{C}^{n\times n}} be an S -SOB matrix, n\ge 3 and let A satisfy that when {{a}_{ij}} = 0, {{a}_{ii}} > r_{i}(A) and {{a}_{ji}} = 0, {{a}_{jj}} > r_{j}(A) for i\in S, j\in \bar{S}. Denote A/\alpha = (a^{'}_{j_{t}j_{s}}) , then,

    ||A^{-1}||_{\infty}\leq\Gamma(A) = \min\limits_{i\in N}\Gamma_{i}(A).

    where \Gamma_{i}(A) = (1+\frac{\max\limits_{j\in N, \atop j\neq i}|a_{ji}|}{|a_{ii}|})(1+\frac{\max\limits_{j\in N, \atop j\neq i}|a_{ij}|}{|a_{ii}|})\tilde{\Gamma}_{i}(A),

    \begin{eqnarray*} &&\tilde{\Gamma}_{i}(A) = \max\{\frac{1}{|a_{ii}|}, \Gamma^{'}(A)\}. \end{eqnarray*}
    \begin{eqnarray*} &&\Gamma^{'}(A) = \max\{\max\limits_{j\in (S\setminus \{i\}), \atop k\in(\bar{S}\setminus \{i\})}\frac{|{{c}_{kk}}|-\sum\limits_{p\in\bar{S}, \atop p\neq k, i}|c_{kp}|+\sum\limits_{p\in\bar{S}, \atop p\neq i}|c_{jp}|} {(|{{c}_{jj}}|-\sum\limits_{p\in S, \atop p\neq j, i}|c_{jp}|)(|{{c}_{kk}}|-\sum\limits_{p\in\bar{S}, \atop p\neq k, i}|c_{kp}|)-\sum\limits_{p\in S, \atop p\neq i}|c_{kp}|\sum\limits_{p\in\bar{S}, \atop p\neq i}|c_{jp}|}, \nonumber\\ &&\max\limits_{j\in(S\setminus \{i\}), \atop k\in(\bar{S}\setminus \{i\})}\frac{|{{c}_{jj}}|-\sum\limits_{p\in S, \atop p\neq j, i}|c_{jp}|+\sum\limits_{p\in S, \atop p\neq i}|c_{kp}|} {(|{{c}_{jj}}|-\sum\limits_{p\in S, \atop p\neq j, i}|c_{jp}|)(|{{c}_{kk}}|-\sum\limits_{p\in\bar{S}, \atop p\neq k, i}|c_{kp}|)-\sum\limits_{p\in S, \atop p\neq i}|c_{kp}|\sum\limits_{p\in\bar{S}, \atop p\neq i}|c_{jp}|} \}, \end{eqnarray*}

    and c_{jk} = a_{jk}-\frac{a_{ji}a_{ik}}{a_{ii}}.

    Proof. Since A is an S -SOB matrix, by Lemma 2 and Theorem 5, we know A(\alpha) and A/\alpha are nonsingular. Therefore, taking \alpha = \{i\} , then A(\alpha) = a_{ii} , \bar{\alpha} = N-\{i\} , and

    \begin{eqnarray} \|A(\alpha)^{-1}\|_{\infty}\leq\frac{1}{|a_{ii}|}. \end{eqnarray} (3.36)
    \begin{eqnarray} \|E\|_{\infty} = 1+\frac{\max\limits_{j_{s}\in \bar{\alpha}}|a_{j_{s}i}|}{|a_{ii}|} = 1+\frac{\max\limits_{j\in N, \atop j\neq i}|a_{ji}|}{|a_{ii}|}. \end{eqnarray} (3.37)
    \begin{eqnarray} \|F\|_{\infty} = 1+\frac{\max\limits_{j_{s}\in \bar{\alpha}}|a_{i j_{s}}|}{|a_{ii}|} = 1+\frac{\max\limits_{j\in N, \atop j\neq i}|a_{ij}|}{|a_{ii}|}. \end{eqnarray} (3.38)

    Because A/\alpha = (a^{'}_{j_{t}j_{s}}) , let |a^{'}_{j_{t}j_{s}}| = |a_{j_{t}j_{s}}-\frac{a_{j_{t}i}a_{ij_{s}}}{a_{ii}}| = |c_{j_{t}j_{s}}|(j_{t}, j_{s}\in (N\setminus \{i\})) . By calculation, we obtain for j_{t}\in (S\setminus \{i\}), j_{s}\in (\bar{S}\setminus \{i\}) ,

    r_{j_{t}}^{(S\setminus\{i\})}(A/\alpha) = \sum\limits_{j_{p}\in (S\setminus \{i\}), \atop j_{p}\neq j_{t}}|c_{j_{t}j_{p}}| = \sum\limits_{j_{p}\in S, \atop j_{p}\neq j_{t}, i}|c_{j_{t}j_{p}}|,
    r_{j_{t}}^{(\bar{S}\setminus\{i\})}(A/\alpha) = \sum\limits_{j_{p}\in (\bar{S}\setminus \{i\})}|c_{j_{t}j_{p}}| = \sum\limits_{j_{p}\in \bar{S}, \atop j_{p}\neq i}|c_{j_{t}j_{p}}|,
    r_{j_{s}}^{(\bar{S}\setminus\{i\})}(A/\alpha) = \sum\limits_{j_{p}\in (\bar{S}\setminus \{i\}), \atop j_{p}\neq j_{s}}|c_{j_{s}j_{p}}| = \sum\limits_{j_{p}\in \bar{S}, \atop j_{p}\neq i}|c_{j_{s}j_{p}}|,
    r_{j_{s}}^{(S\setminus\{i\})}(A/\alpha) = \sum\limits_{j_{p}\in (S\setminus \{i\})}|c_{j_{s}j_{p}}| = \sum\limits_{j_{p}\in S, \atop j_{p}\neq i}|c_{j_{s}j_{p}}|.

    By Eq (3.27), we have

    \begin{eqnarray} &&||(A/\alpha)^{-1}||_{\infty}\leq \max\{\max\limits_{j\in (S\setminus \{i\}), \atop k\in(\bar{S}\setminus \{i\})}\frac{|{{c}_{kk}}|-\sum\limits_{p\in\bar{S}, \atop p\neq k, i}|c_{kp}|+\sum\limits_{p\in\bar{S}, \atop p\neq i}|c_{jp}|} {(|{{c}_{jj}}|-\sum\limits_{p\in S, \atop p\neq j, i}|c_{jp}|)(|{{c}_{kk}}|-\sum\limits_{p\in\bar{S}, \atop p\neq k, i}|c_{kp}|)-\sum\limits_{p\in S, \atop p\neq i}|c_{kp}|\sum\limits_{p\in\bar{S}, \atop p\neq i}|c_{jp}|}, \\ &&\max\limits_{j\in(S\setminus \{i\}) , \atop k\in(\bar{S}\setminus \{i\})}\frac{|{{c}_{jj}}|-\sum\limits_{p\in S, \atop p\neq j, i}|c_{jp}|+\sum\limits_{p\in S, \atop p\neq i}|c_{kp}|} {(|{{c}_{jj}}|-\sum\limits_{p\in S, \atop p\neq j, i}|c_{jp}|)(|{{c}_{kk}}|-\sum\limits_{p\in\bar{S}, \atop p\neq k, i}|c_{kp}|)-\sum\limits_{p\in S, \atop p\neq i}|c_{kp}|\sum\limits_{p\in\bar{S}, \atop p\neq i}|c_{jp}|} \}. \end{eqnarray} (3.39)

    Finally, by Eqs (3.36), (3.37), (3.38) and (3.39) the conclusion follows.

    We illustrate our results by the following examples:

    Example 1. Consider matrix A as a tri-diagonal n\times n matrix

    A = \left[ \begin{matrix} &n+|sin(1)| &bcos(2) &\cdots &bcos(n-1) &bcos(n) \\ &sin(2) &n+|sin(2)| &\cdots &bcos(n-1) &bcos(n) \\ &\vdots &\ddots &\ddots &\ddots &\vdots \\ & sin(n-1) &\cdots &sin(n-1) &n+|sin(n-1)| &bcos(n) \\ &sin(n) &\cdots &sin(n) &sin(n) &n+|sin(n)| \\ \end{matrix} \right]_{n\times n}.

    Let b = 1.5, \; n = 10000 . We get that matrix A is an SDD matrix. It is easy to verify matrix A is an SDD matrix, so it is also a S -SOB, DSDD , GDSDD and DZ matrix. Therefore, from Theorem 1, we put the result in Table 1.

    Table 1.  Upper bounds of matrix A in Example 1.
    b=1.5 n=10000
    \text {Bound in Theorem 1} 0.2786
    \text {Bound in Theorem 2} 0.2685
    \text {Bound in Theorem 3} 0.2485
    \text {Bound in [20, Theorem 3]} 0.3954
    \text {Bound in [31, Corollary 1]} 0.2786
    \text {Bound in [21, Theorem 1.2]} 0.2731
    \text {Bound in [21, Corollary 2.6]} 0.1937
    \text {Bound in Theorem 11} 0.1904

     | Show Table
    DownLoad: CSV

    Actually, \|A^{-1}\|_{\infty} = 0.0002 . This example shows that the boundary in Theorem 11 is superior to other theorems in some cases.

    Example 2. Consider matrix

    A = \left[ \begin{matrix} 16.81 &0.15 &0.65 &0.7 &0.43 &0.27 &0.75 &0.84 &0.35 &0.07 \\ 1.9 &8 &0.03 &0.03 &3.38 &0.67 &0.25 &2.25 &0.83 &1.05 \\ 0.12 &0.95 &11.84 &0.27 &0.76 &0.65 &0.5 &0.81 &0.58 &0.53 \\ 0.91 &0.48 &0.93 &12.04 &0.79 &0.16 &0.69 &0.24 &0.54 &0.77\\ 0.63 &0.8 &0.67 &0.09 &9.18 &1.11 &0.89 &6.92 &0.91 &0.93\\ 0.09 &0.14 &0.75 &0.82 &0.48 &15.49 &0.95 &0.35 &0.28 &0.12\\ 0.27 &0.42 &0.74 &0.69 &0.44 &0.95 &12.54 &0.19 &0.75 &0.56\\ 0.54 &0.91 &0.39 &0.31 &0.64 &0.34 &0.13 &11.25 &0.75 &0.46\\ 0.95 &0.79 &0.65 &0.95 &0.70 &0.58 &0.14 &0.61 &10.38 &0.01\\ 0.96 &0.95 &0.17 &0.03 &0.75 &0.22 &0.25 &0.47 &0.56 &17.33\\ \end{matrix} \right].

    By computation, the matrix A is an S -SOB matrix and S = \{2, 3, 5\} . According to Theorem 2, we obtain

    ||{{A}^{-1}}|{{|}_{\infty }}\le 1.7202.

    According to Theorem 11, it is easy to get

    ||{{A}^{-1}}|{{|}_{\infty }}\le 0.5061.

    In practice, ||{{A}^{-1}}|{{|}_{\infty }} = 0.2155 . Obviously, the boundary in Theorem 11 is superior to Theorem 2 in some cases.

    Example 3. Consider matrix

    A = \left[ \begin{matrix} 38 &1 &3 &3 &-4 &2 &5 &-1 \\ 1 &40 &5 &4 &1 &3 &1 &-2 \\ 2 &1 &36 &1 &2 &1 &-4 &-3 \\ 1 &3 &2 &28 &3 &5 &1 &2\\ 4 &1.5 &-1 &2 &31 &-1 &-4 &4\\ -8 &6 &3 &5 &2 &49 &2 &7\\ 7 &9 &1 &-1 &-1 &7 &50 &5\\ 1 &13 &2 &3 &6 &1 &1 &44\\ \end{matrix} \right].

    Obviously, the matrix A is an SDD matrix, and it's also an S -SOB matrix and S = \{2, 3, 4, 5, 8\} . According to Theorem 1, we can obtain

    ||{{A}^{-1}}|{{|}_{\infty }}\le 0.0909.

    According to Theorem 2, we can obtain

    ||{{A}^{-1}}|{{|}_{\infty }}\le 0.0860.

    According to Theorem 11, we can obtain

    ||{{A}^{-1}}|{{|}_{\infty }}\le 0.0842.

    In fact, ||{{A}^{-1}}|{{|}_{\infty }} = 0.0497. This example shows that the boundary in Theorem 11 is superior to Theorems 1 and 2 in some cases.

    In this section, we will apply the result in Section 3 to the linear complementarity problems (LCPs), to obtain two kinds of error bounds for LCPs of S -SOB matrices. We first need to give some lemmas that would be used in the following theorems:

    Lemma 8. [29] Let \gamma > 0 and \eta\geq 0 , for any x\in [0, 1] ,

    \frac{1}{1-x+\gamma x}\leq\frac{1}{min\{\gamma, 1\}}, \; \frac{\eta x}{1-x+\gamma x}\leq\frac{\eta}{\gamma}.

    Lemma 9. Suppose that M = (m_{ij})\in \mathbb{R}^{n\times n} is an S-SOB matrix with positive diagonal entries, let

    \begin{eqnarray} \tilde{M} = I-D+DM = (\tilde{m}_{ij}), \end{eqnarray} (4.1)

    then, \tilde{M} is also a real S-SOB matrix with positive diagonal entries, where D = diag(d_{1}, \cdots, d_{n}) , d_{i}\in[0, 1] .

    Proof. Note that

    \tilde{m}_{ij} = \left\{\begin{array}{cc} 1-d_{i}+d_{i}m_{ij}, & i = j, \\\\ d_{i}m_{ij}, &i\neq j. \end{array} \right.

    Hence, for each i\in S , j\in \bar{S} ,

    |\tilde{m}_{ii}| = 1-d_{i}+d_{i}m_{ii}\geq d_{i}m_{ii} > d_{i}r_{i}^{S}(M) = r_{i}^{S}(\tilde{M}),
    |\tilde{m}_{jj}| = 1-d_{j}+d_{j}m_{jj}\geq d_{i}m_{ii} > d_{i}r_{i}^{\bar{S}}(M) = r_{j}^{\bar{S}}(\tilde{M}).

    Then, for any i\in S , j\in\bar{S} , d_{i}\in(0, 1) , we have

    \begin{eqnarray} (|\tilde{m}_{ii}|-r_{i}^{S}(\tilde{M}))|\tilde{m}_{jj}|& = & (d_{i}|m_{ii}|-d_{i}r_{i}^{S}(M))d_{j}|m_{jj}| \\ & = & d_{i}d_{j}(|m_{ii}|-r_{i}^{S}(M))|m_{jj}|\\ & > & d_{i}d_{j}r_{i}^{\bar{S}}(M)r_{j}(M) = r_{i}^{\bar{S}}(\tilde{M})r_{j}(\tilde{M}). \end{eqnarray}

    For any i\in S , j\in\bar{S} , we get

    \begin{eqnarray} (|\tilde{m}_{jj}|-r_{j}^{\bar{S}}(\tilde{M}))|\tilde{m}_{ii}| & = & (d_{j}|m_{jj}|-d_{j}r_{j}^{\bar{S}}(M)) d_{i}|m_{ii}|\\ & = &d_{i}d_{j}(|m_{jj}|-r_{j}^{\bar{S}}(M))|m_{ii}|\\ & > & d_{i}d_{j}r_{j}^{S}(M)r_{i}(M) = r_{j}^{S}(\tilde{M})r_{i}(\tilde{M}). \end{eqnarray}

    When d_{i} = 0 , \tilde{m}_{ii} = 1-d_{i}+d_{i}m_{ii} = 1 , we obtain

    (|\tilde{m}_{ii}|-r_{i}^{S}(\tilde{M})))|\tilde{m}_{jj}| = 1 > 0 = r_{j}^{\bar{S}}(\tilde{M})r_{i}(\tilde{M}),
    (|\tilde{m}_{jj}|-r_{j}^{\bar{S}}(\tilde{M}))|\tilde{m}_{ii}| = 1 > 0 = r_{i}^{S}(\tilde{M})r_{j}(\tilde{M}).

    When d_{i} = 1 , \tilde{m}_{ij} = 1-d_{i}+d_{i}m_{ij} = m_{ij} , then

    (|\tilde{m}_{ii}|-r_{i}^{S}(\tilde{M}))|\tilde{m}_{jj}| = (|m_{ii}|-r_{i}^{S}(M))|m_{jj}| > r_{j}^{\bar{S}}(M)r_{i}(M) = r_{j}^{\bar{S}}(\tilde{M})r_{i}(\tilde{M}),
    (|\tilde{m}_{jj}|-r_{j}^{\bar{S}}(\tilde{M}))|\tilde{m}_{ii}| = (|m_{jj}|-r_{j}^{\bar{S}}(M))|m_{ii}| > r_{i}^{S}(M)r_{j}(M) = r_{i}^{S}(\tilde{M})r_{j}(\tilde{M}).

    As d_{i}\in[0, 1] , conditions (i)–(iv) in Definition 1 are fulfilled for all i\in S and j\in \bar{S} . So the conclusion follows.

    Lemma 9 indicates that \tilde{M} is an S -SOB matrix when M is an S -SOB matrix. We will present an error bound for the linear complementarity problem of S -SOB matrices. The following theorem is one of our main results, which gives an upper bound on the condition constant \max_{d\in[0, 1]^{n}}\|(I-D+DA)^{-1}\|_{\infty} when A is an S -SOB matrix.

    Theorem 12. Let A = (a_{ij})\in\mathbb{R}^{n\times n} be an S-SOB matrix with positive diagonal entries, and \tilde{A} = [\tilde{a_{ij}}] = I-D+DA , where D = diag(d_{i}) with 0\leq d_{i}\leq 1 . Then

    \begin{eqnarray*} \max\limits_{d\in [0, 1]^{n}}\|(I-D+DA)^{-1}\|_{\infty}\leq \min\limits_{i\in N}{(1+\max\limits_{j\in N, \atop j\neq i}\{\frac{|d_{j}a_{ji}|}{a_{ii}}, d_{j}a_{ji})(1+\max\limits_{j\in N, \atop j\neq i}\{\frac{d_{i}a_{ij}}{a_{ii}}, d_{i}a_{ij}\})}\max\{\frac{1}{a_{ii}}, 1, \Delta(A), \Delta^{'}(A)\} \end{eqnarray*}

    where

    \begin{eqnarray*} & &\frac{1+\frac{a_{ki}a_{ij}}{a_{ii}a_{kk}}+\sum _{p\in\bar{S}, \atop p\neq i} \frac{a_{jp}}{a_{jj}}+\frac{a_{jp}a_{ji}}{a_{ii}a_{jj}}}{\varsigma_{j}^{S}(A)\varsigma_{j}^{\bar{S}}(A)-(\sum\frac{a_{kp}}{a_{kk}}+\sum\frac{a_{ki}a_{ip}}{a_{ii}a_{kk}})(\frac{a_{jp}}{a_{jj}}+ \sum\frac{a_{ji}a_{ip}}{a_{ii}a_{jj}})}\nonumber\\& = &\Delta(A), \end{eqnarray*}
    \begin{eqnarray*} & &\frac{1+\frac{a_{ji}a_{ik}}{a_{ii}a_{jj}}+\sum \frac{a_{kp}}{a_{kk}}+\frac{a_{kp}a_{ki}}{a_{ii}a_{kk}}}{\varsigma_{k}^{S}(A)\varsigma_{k}^{\bar{S}}(A)-(\sum\frac{a_{kp}}{a_{kk}}+\sum\frac{a_{ki}a_{ip}}{a_{ii}a_{kk}})(\frac{a_{jp}}{a_{jj}}+ \sum\frac{a_{ji}a_{ip}}{a_{ii}a_{jj}})}\nonumber\\ & = &\Delta^{'}(A), \end{eqnarray*}

    and \varsigma_{j}^{S}(A) = \frac{1-d_{j}+d_{j}a_{jj}}{1-d_{t}+d_{t}a_{tt}}-\frac{a_{ji}a_{ij}}{a_{ii}a_{jj}}-\sum\limits_{p\in S, \atop p\neq j, i} \frac{a_{jk}}{a_{jj}}-\sum\limits_{p\in S, \atop p\neq j, i}\frac{a_{ji}a_{ik}}{a_{ii}a_{jj}} .

    Proof. Because \tilde{A} = (\tilde{a_{ij}}) = (I-D+DA) , we know \tilde{A} is an S - SOB matrix with positive diagonal entries from Lemma 9. By Theorem 11, the following inequality holds

    \|\tilde{A}\|_{\infty}\leq\max\Gamma(\tilde{A}) = \min\limits_{i\in N}\Gamma_{i}(\tilde{A}),

    where \Gamma_{i}(\tilde{A}) = (1+\frac{\max\limits_{j\in N, \atop j\neq i}|\tilde{a_{ji}}|}{|\tilde{a_{ii}}|})(1+\frac{\max\limits_{j\in N, \atop j\neq i}|\tilde{a_{ij}}|}{|\tilde{a_{ii}}|})\tilde{\Gamma}_{i}(\tilde{A}),

    \begin{eqnarray*} &&\tilde{\Gamma}_{i}(\tilde{A}) = \max\{\frac{1}{|\tilde{a_{ii}}|}, \Gamma^{'}(\tilde{A})\}. \end{eqnarray*}
    \begin{eqnarray*} &&\Gamma^{'}(\tilde{A}) = \max\{\max\limits_{j\in (S\setminus \{i\}), \atop k\in(\bar{S}\setminus \{i\})}\frac{|{\tilde{{c}_{kk}}}|-\sum\limits_{p\in\bar{S}, \atop p\neq k, i}|\tilde{c_{kp}}|+\sum\limits_{p\in\bar{S}, \atop p\neq i}|\tilde{c_{jp}}|} {(|{\tilde{{c}_{jj}}}|-\sum\limits_{p\in S, \atop p\neq j, i}|\tilde{c_{jp}}|)(|{\tilde{{c}_{kk}}}|-\sum\limits_{p\in\bar{S}, \atop p\neq k, i}|\tilde{c_{kp}}|)-\sum\limits_{p\in S, \atop p\neq i}|\tilde{c_{kp}}|\sum\limits_{p\in\bar{S}, \atop p\neq i}|\tilde{c_{jp}}|}, \nonumber\\ &&\max\limits_{j\in(S\setminus \{i\}) , \atop k\in(\bar{S}\setminus \{i\})}\frac{|{\tilde{{c}_{jj}}}|-\sum\limits_{p\in S, \atop p\neq j, i}|\tilde{c_{jp}}|+\sum\limits_{p\in S, \atop p\neq i}|c_{kp}|} {(|{\tilde{{c}_{jj}}}|-\sum\limits_{p\in S, \atop p\neq j, i}|\tilde{c_{jp}}|)(|{\tilde{{c}_{kk}}}|-\sum\limits_{p\in\bar{S}, \atop p\neq k, i}|\tilde{c_{kp}}|)-\sum\limits_{p\in S, \atop p\neq i}|\tilde{c_{kp}}|\sum\limits_{p\in\bar{S}, \atop p\neq i}|\tilde{c_{jp}}|} \}, \end{eqnarray*}

    and \tilde{c_{jk}} = \tilde{a_{jk}}-\frac{\tilde{a_{ji}}\tilde{a_{ik}}}{\tilde{a_{ii}}}.

    Since \tilde{A} is a S -SOB matrix, we have \tilde{a_{ii}} = 1-d_{i}+d_{i}a_{ii} and \tilde{a_{ij}} = d_{i}a_{ij} for all i, j\in N .

    \begin{eqnarray} & &1+\frac{\max\limits_{j\in N, \atop j\neq i}|\tilde{a_{ji}}|}{|\tilde{a_{ii}}|} = 1+\frac{\max\limits_{j\in N, \atop j\neq i}|d_{j}a_{ji}|}{1-d_{i}+d_{i}a_{ii}} \leq 1+\frac{\max\limits_{j\in N, \atop j\neq i}|d_{j}a_{ji}|}{\min\{a_{ii}, 1\}}\; \; (By\; \; Lemma\; \; 8)\\ & = & 1+\max\limits_{j\in N, \atop j\neq i}\{\frac{|d_{j}a_{ji}|}{a_{ii}}, d_{j}a_{ji}\}. \end{eqnarray} (4.2)

    Similarly, we have

    \begin{eqnarray} 1+\frac{\max\limits_{j\in N, \atop j\neq i}|\tilde{a_{ij}}|}{|\tilde{a_{ii}}|}\leq 1+\max\{\frac{d_{i}a_{ij}}{a_{ii}}, d_{i}a_{ij}\}. \end{eqnarray} (4.3)

    By Lemma 8, it is easy to get

    \begin{eqnarray} \frac{1}{\tilde{a_{ii}}} = \frac{1}{1-d_{i}+d_{i}a_{ii}}\leq \max\{\frac{1}{a_{ii}}, 1\}. \end{eqnarray} (4.4)

    Denote 1-d_{t}+d_{t}a_{tt} = \max_{i\in N}\{1-d_{i}+d_{i}a_{ii}\} . From Lemmas 8 and 9, we get

    \begin{eqnarray} & &\frac{|{\tilde{{c}_{kk}}}|-\sum\limits_{p\in\bar{S}, \atop p\neq k, i}|\tilde{c_{kp}}|+\sum\limits_{p\in\bar{S}, \atop p\neq i}|\tilde{c_{jp}}|} {(|{\tilde{{c}_{jj}}}|-\sum\limits_{p\in S, \atop p\neq j, i}|\tilde{c_{jp}}|)(|{\tilde{{c}_{kk}}}|-\sum\limits_{p\in\bar{S}, \atop p\neq k, i}|\tilde{c_{kp}}|)-\sum\limits_{p\in S, \atop p\neq i}|\tilde{c_{kp}}|\sum\limits_{p\in\bar{S}, \atop p\neq i}|\tilde{c_{jp}}|}\\ &\leq &\frac{1+\frac{a_{ki}a_{ij}}{a_{ii}a_{kk}}+\sum\limits_{p\in\bar{S}, \atop p\neq i} \frac{a_{jp}}{a_{jj}}+\sum\limits_{p\in\bar{S}, \atop p\neq i}\frac{a_{jp}a_{ji}}{a_{ii}a_{jj}}}{\varsigma_{j}^{S}(A)\varsigma_{j}^{\bar{S}}-(\sum\limits_{p\in S, \atop p\neq i}\frac{a_{kp}}{a_{kk}}+\sum\limits_{p\in S, \atop p\neq i}\frac{a_{ki}a_{ip}}{a_{ii}a_{kk}})(\sum\limits_{p\in\bar{S}, \atop p\neq i}\frac{a_{jp}}{a_{jj}}+ \sum\limits_{p\in\bar{S}, \atop p\neq i}\frac{a_{ji}a_{ip}}{a_{ii}a_{jj}})}\\& = &\Delta(A), \end{eqnarray} (4.5)

    where \varsigma_{j}^{S}(A) = \frac{1-d_{j}+d_{j}a_{jj}}{1-d_{t}+d_{t}a_{tt}}-\frac{a_{ji}a_{ij}}{a_{ii}a_{jj}}-\sum\limits_{p\in S, \atop p\neq j, i} \frac{a_{jk}}{a_{jj}}-\sum\limits_{p\in S, \atop p\neq j, i}\frac{a_{ji}a_{ik}}{a_{ii}a_{jj}} . In similar way, we know

    \begin{eqnarray} & &\frac{|{\tilde{{c}_{jj}}}|-\sum\limits_{p\in\bar{S}, \atop p\neq k, i}|\tilde{c_{jp}}|+\sum\limits_{p\in\bar{S}, \atop p\neq i}|\tilde{c_{kp}}|} {(|{\tilde{{c}_{jj}}}|-\sum\limits_{p\in S, \atop p\neq j, i}|\tilde{c_{jp}}|)(|{\tilde{{c}_{kk}}}|-\sum\limits_{p\in\bar{S}, \atop p\neq k, i}|\tilde{c_{kp}}|)-\sum\limits_{p\in S, \atop p\neq i}|\tilde{c_{kp}}|\sum\limits_{p\in\bar{S}, \atop p\neq i}|\tilde{c_{jp}}|}\\ &\leq &\frac{1+\frac{a_{ji}a_{ik}}{a_{ii}a_{jj}}+\sum\limits_{p\in\bar{S}, \atop p\neq k, i} \sum\limits_{p\in\bar{S}, \atop p\neq k, i} \frac{a_{kp}}{a_{kk}}+\frac{a_{kp}a_{ki}}{a_{ii}a_{kk}}}{\varsigma_{k}^{S}\varsigma_{k}^{\bar{S}}-(\sum\limits_{p\in S, \atop p\neq i}\frac{a_{kp}}{a_{kk}}+\sum\limits_{p\in S, \atop p\neq i}\frac{a_{ki}a_{ip}}{a_{ii}a_{kk}})(\sum\limits_{p\in\bar{S}, \atop p\neq i}\frac{a_{jp}}{a_{jj}}+ \sum\limits_{p\in\bar{S}, \atop p\neq i}\frac{a_{ji}a_{ip}}{a_{ii}a_{jj}})}\\ & = &\Delta^{'}(A). \end{eqnarray} (4.6)

    So, from Eqs (4.2)–(4.6) the conclusion follows. This proof is completed.

    Based on the fact that the Schur complement of the S -SOB matrix is a GDSDD matrix, we give an infinity norm bound for the inverse of the S -SOB matrix based on the Schur complement. By using the infinity norm bound for the inverse of the S -SOB matrix, an error bound is given for the linear complementarity problem of the S -SOB matrix.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported by the Natural Science Research Project of Department of Education of Guizhou Province (Grant No. QJJ2022015) and the Natural Science Research Project of Department of Education of Guizhou Province (Grant No. QJJ2022047). The Natural Science Research Project of Department of Education of Guizhou Province (Grant Nos. QJJ2023012, QJJ2023061, QJJ2023062).

    The authors declare no conflict of interest.



    [1] G. K. Yang, Discussion of arithmetic defuzzifications for fuzzy production inventory models, Afr. J. Bus. Manage., 5 (2011), 2336–2344.
    [2] C. H. Hsieh, Optimization of fuzzy production inventory models, Inf. Sci., 146 (2002), 29-40. https://doi.org/10.1016/S0020-0255(02)00212-8 doi: 10.1016/S0020-0255(02)00212-8
    [3] E. Szmidt, J. Kacprzyk, Distances between intuitionistic fuzzy sets, Fuzzy Sets Syst., 114 (2000), 505–518. https://doi.org/10.1016/S0165-0114(98)00244-9 doi: 10.1016/S0165-0114(98)00244-9
    [4] K. C. Hung, Medical Pattern Recognition: Applying an Improved Intuitionistic Fuzzy Cross-Entropy Approach, Adv. Fuzzy Syst., 2012 (2012), 863549. https://doi.org/10.1155/2012/863549 doi: 10.1155/2012/863549
    [5] H. Chao, P. Chu, Further discussion for extended similarity measures, J. Discrete Math. Sci. Cryptography, 18 (2015), 403–408. https://doi.org/10.1080/09720529.2014.1001582 doi: 10.1080/09720529.2014.1001582
    [6] C. Zhang, H. Fu, Similarity measures on three kinds of fuzzy sets, Pattern Recognit. Lett., 27 (2006), 1307–1317. https://doi.org/10.1016/j.patrec.2005.11.020 doi: 10.1016/j.patrec.2005.11.020
    [7] B. Yusoff, I. Taib, L. Abdullah, A. F. Wahab, A new similarity measure on intuitionistic fuzzy sets, Int J Comput Math Sci, 5 (2011), 70–74.
    [8] C. J. Lin, P. Julian, An Extended Similarity measure for Intuitionistic Fuzzy Sets revisit, J. Discrete Math. Sci. Cryptography, 18 (2015), 139–145. https://doi.org/10.1080/09720529.2014.962850 doi: 10.1080/09720529.2014.962850
    [9] H. W. Tuan, An alternative method for multiple criteria decision-making models using intuitionistic fuzzy information, Int. J. Oper. Res., 12 (2015), 119-131.
    [10] D. F. Li, Multiattribute decision making models and methods employing intuitionistic fuzzy sets, J. Comput. Syst. Sci., 70 (2005), 73–85. https://doi.org/10.1016/j.jcss.2004.06.002 doi: 10.1016/j.jcss.2004.06.002
    [11] L. Lin, X. H. Yuan, Z. Q. Xia, Multicriteria fuzzy decision-making methods based on intuitionistic fuzzy sets, J. Comput. Syst. Sci., 73 (2007), 84–88. https://doi.org/10.1016/j.jcss.2006.03.004 doi: 10.1016/j.jcss.2006.03.004
    [12] S. C. Lin, H. W. Tuan, P. Julian, An Improvement for Fuzzy Stochastic Goal Programming Problems, Math. Probl. Eng., 2017 (2017), 8605652. https://doi.org/10.1155/2017/8605652 doi: 10.1155/2017/8605652
    [13] N. V. Hop, Fuzzy stochastic goal programming problems, Eur. J. Oper. Res., 176 (2007), 77–86. https://doi.org/10.1016/j.ejor.2005.09.023 doi: 10.1016/j.ejor.2005.09.023
    [14] H. C. J. Chao, C. T. Tung, C. H. Chu, Extension theorems for interval-valued intuitionistic fuzzy sets, J. Discrete Math. Sci. Cryptography, 21 (2018), 707–712. https://doi.org/10.1080/09720529.2016.1247603 doi: 10.1080/09720529.2016.1247603
    [15] S. Y. Chou, J. S. J. Lin, P. Julian, A note on "Solving linear programming problems under fuzziness and randomness environment using attainment values", Inf. Sci., 179 (2009), 4083–4088. https://doi.org/10.1016/j.ins.2009.08.013 doi: 10.1016/j.ins.2009.08.013
    [16] N. V. Hop, Solving linear programming problems under fuzziness and randomness environment using attainment values, Inf. Sci., 177 (2007), 2971–2984. https://doi.org/10.1016/j.ins.2007.01.032 doi: 10.1016/j.ins.2007.01.032
    [17] S. Y. Chou, P. C. Julian, K. C. Hung, A note on fuzzy inventory model with storage space and budget constraints, Appl. Math. Modell., 33 (2009), 4069–4077. https://doi.org/10.1016/j.apm.2009.02.001 doi: 10.1016/j.apm.2009.02.001
    [18] T. K. Roy, M. Maiti, A fuzzy EOQ model with demand-dependent unit cost under limited storage capacity, Eur. J. Oper. Res., 99 (1997), 425–432. https://doi.org/10.1016/S0377-2217(96)00163-4 doi: 10.1016/S0377-2217(96)00163-4
    [19] H. B. Mitchell, On the Dengfend–Chuntian similarity measure and its application to pattern recognition, Pattern Recognit. Lett., 24 (2003), 3101–3104. https://doi.org/10.1016/S0167-8655(03)00169-7 doi: 10.1016/S0167-8655(03)00169-7
    [20] D. F. Li, C. T. Cheng, New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions, Pattern Recognit. Lett., 23 (2002), 221–225. https://doi.org/10.1016/S0167-8655(01)00110-6 doi: 10.1016/S0167-8655(01)00110-6
    [21] P. Julian, K. C. Hung, S. J. Lin, On the Mitchell similarity measure and its application to pattern recognition, Pattern Recognit. Lett., 33 (2012), 1219–1223. https://doi.org/10.1016/j.patrec.2012.01.008 doi: 10.1016/j.patrec.2012.01.008
    [22] P. S. Deng, H. C. J. Chao, Analysis on comparison of distances derived by one-norm and two-norm with weight functions, Appl. Math. Comput., 219 (2013), 9093–9098. https://doi.org/10.1016/j.amc.2013.03.080 doi: 10.1016/j.amc.2013.03.080
    [23] K. C. Hung, H. W. Tuan, Medical diagnosis based on intuitionistic fuzzy sets revisited, J. Interdiscip. Math., 16 (2013), 385–395. https://doi.org/10.1080/09720502.2013.841406 doi: 10.1080/09720502.2013.841406
    [24] S. K. De, R. Biswas, A. R. Roy, An application of intuitionistic fuzzy sets in medical diagnosis, Fuzzy Sets Syst., 117 (2001), 209-213. https://doi.org/10.1016/S0165-0114(98)00235-8 doi: 10.1016/S0165-0114(98)00235-8
    [25] H. C. J. Chao, A New Algorithm for Similarity Measures to Pattern Recognition, ARPN J. Sci. Technol., 4 (2014), 246–248.
    [26] J. H. Park, J. S. Park, Y. C. Kwun, K. M. Lim, New similarity measures on intuitionistic fuzzy sets, Adv. Soft Comput., 40 (2007), 22–30. https://doi.org/10.1007/978-3-540-71441-5_3 doi: 10.1007/978-3-540-71441-5_3
    [27] Z. Liang, P. Shi, Similarity measures on intuitionistic fuzzy sets, Pattern Recognit. Lett., 24 (2003), 2687–2693. https://doi.org/10.1016/S0167-8655(03)00111-9 doi: 10.1016/S0167-8655(03)00111-9
    [28] P. C. Chuang, C. J. Chao, K. C. Hung, Discussion on Definitions for Similarity Measures of Intuitionistic Fuzzy Sets, J. Discrete Math. Sci. Cryptography, 17 (2014), 149–156. https://doi.org/10.1080/09720529.2013.841400 doi: 10.1080/09720529.2013.841400
    [29] Z. S. Xu, Some similarity measures of intuitionistic fuzzy sets and their applications to multiple attribute decision making, Fuzzy Optim. Decis. Making, 6 (2007), 109–121. https://doi.org/10.1007/s10700-007-9004-z doi: 10.1007/s10700-007-9004-z
    [30] E. Szmidt, J. Kacprzyk, A new concept of a similarity measure for intuitionistic fuzzy sets and its use in group decision making, Lect. Notes Comput. Sci., 3558 (2005), 272–282. https://doi.org/10.1007/11526018_27 doi: 10.1007/11526018_27
    [31] C. T. Tung, C. Hopscotch, Discussion on Similarity Measure of its Complement, J. Discrete Math. Sci. Cryptography, 18 (2015), 417–432. https://doi.org/10.1080/09720529.2015.1032657 doi: 10.1080/09720529.2015.1032657
    [32] J. P. C. Chuang, S. S. C. Lin, P. Julian, Aggregation Weights for Linguistic Hybrid Geometric Averaging Operator, Int. J. Oper. Res., 14 (2017), 177-185.
    [33] Z. S. Xu, A method based on linguistic aggregation operators for group decision making with linguistic preference relations, Inf. Sci., 166 (2004), 19–30. https://doi.org/10.1016/j.ins.2003.10.006 doi: 10.1016/j.ins.2003.10.006
    [34] H. C. J. Chao, J. Butler, Revision of pattern recognition problems, J. Discrete Math. Sci. Cryptography, 20 (2017), 673–680. https://doi.org/10.1080/09720529.2016.1187954 doi: 10.1080/09720529.2016.1187954
    [35] C. Xu, Comment on "Improvement of the distance between intuitionistic fuzzy sets and its applications", J. Intell. Fuzzy Syst., 35 (2018), 3909–3910. https://doi.org/10.3233/JIFS-18987 doi: 10.3233/JIFS-18987
    [36] C. Xu, Improvement of the distance between intuitionistic fuzzy sets and its applications, J. Intell. Fuzzy Syst., 33 (2017), 1563–1575. https://doi.org/10.3233/JIFS-17276 doi: 10.3233/JIFS-17276
    [37] Y. F. Lin, Revisions for Distance Measures of Xu, Int. J Sci. Eng. Res., 7 (2019), 10–13.
    [38] H. W. Tuan, H. C. J. Chao, Non–fuzzy sets for intuitionistic fuzzy sets, J. Discrete Math. Sci. Cryptography, 21 (2018), 1509–1514. https://doi.org/10.1080/09720529.2017.1367467 doi: 10.1080/09720529.2017.1367467
    [39] T. Gerstenkorn, T. Mańko, Correlation of intuitionistic fuzzy sets, Fuzzy Sets Syst., 44 (1991), 39–43. https://doi.org/10.1016/0165-0114(91)90031-K doi: 10.1016/0165-0114(91)90031-K
    [40] C. H. Chu, S. S. C. Lin, P. Julian, Extension and revisions for Xu's proposed distance measure, J. Intell. Fuzzy Syst., 37 (2019), 657–667. https://doi.org/10.3233/JIFS-181003 doi: 10.3233/JIFS-181003
    [41] Y. Yang, F. Chiclana, Consistency of 2d and 3d distances of intuitionistic fuzzy sets, Expert Syst. Appl., 39 (2012), 8665–8670. https://doi.org/10.1016/j.eswa.2012.01.199 doi: 10.1016/j.eswa.2012.01.199
    [42] P. C. Feng, Discussion on Inexact Optimal Solution under Fuzzy Environment, Int. J. Eng. Res. Sci., 5 (2019), 34–40.
    [43] D. Wang, An inexact approach for linear programming problems with fuzzy objective and resources, Fuzzy Set Syst., 89 (1997), 61–68. https://doi.org/10.1016/S0165-0114(96)00090-5 doi: 10.1016/S0165-0114(96)00090-5
    [44] C. P. Yen, Compound Option Pricing under Fuzzy Environment Revisit, Int. J. Sci. Eng. Res., 7 (2019), 89–94.
    [45] X. D. Wang, J. M. He, S. Li, Compound option pricing under fuzzy environment, J. Appl. Math., 2014 (2014), 875319. https://doi.org/10.1155/2014/875319 doi: 10.1155/2014/875319
    [46] P. C. P. Yen, K. C. Fan, H. C. J. Chao, A new method for similarity measures for pattern recognition, Appl. Math. Modell., 37 (2013), 5335–5342. https://doi.org/10.1016/j.apm.2012.10.043 doi: 10.1016/j.apm.2012.10.043
    [47] C. H. Chu, K. C. Hung, P. Julian, A complete pattern recognition approach under Atanassov'sintuitionistic fuzzy sets, Knowl.-Based Syst. 66 (2014), 36–45. https://doi.org/10.1016/j.knosys.2014.04.014 doi: 10.1016/j.knosys.2014.04.014
    [48] K. C. Hung, J. Lin, P. Chu, An Extended Algorithm of Similarity Measures and Its Application to Radar Target Recognition Based on Intuitionistic Fuzzy Sets, J. Test. Eval., 43 (2015), 1–11. https://doi.org/10.1520/JTE20130290 doi: 10.1520/JTE20130290
    [49] W. S. Chou, New Algorithm of Similarity Measures for Pattern-Recognition Problems, J. Test. Eval., 44 (2016), 1473–1484. https://doi.org/10.1520/JTE20140319 doi: 10.1520/JTE20140319
    [50] J. Wallenius, J. S. Dyer, P. C. Fishburn, R. E. Steuer, S. Zionts, K. Deb, Multiple criteria decision making, multiattribute utility theory: Recent accomplishments and what lies ahead, Manage. Sci., 54 (2008), 1336–1349. https://doi.org/10.1287/mnsc.1070.0838 doi: 10.1287/mnsc.1070.0838
    [51] I. N. Durbach, T. J. Stewart, Modeling uncertainty in multi-criteria decision analysis, Eur. J. Oper. Res., 223 (2012), 1–14. https://doi.org/10.1016/j.ejor.2012.04.038 doi: 10.1016/j.ejor.2012.04.038
    [52] Y. M. Wang, Using the method of maximizing deviations to make decision for multi-indices, J. Syst. Eng. Electron., 8 (1997), 21–26.
    [53] E. Herrera-Viedma, S. Alonso, F. Chiclana, F. Herrera, A consensus model for group decision making with incomplete fuzzy preference relations, IEEE Trans. Fuzzy Syst., 15 (2007), 863–877. https://doi.org/10.1109/TFUZZ.2006.889952 doi: 10.1109/TFUZZ.2006.889952
    [54] S. Hartmann, C. Martini, J. Sprenger, Consensual decision-making among epistemic peers, Episteme, 6 (2009), 110–129. https://doi.org/10.3366/E1742360009000598 doi: 10.3366/E1742360009000598
    [55] Y. Wang, J. Yang, D. Xu, K. Chin, The evidential reasoning approach for multiple attribute decision analysis using interval belief degrees, Eur. J. Oper. Res., 175 (2006), 35–66. https://doi.org/10.1016/j.ejor.2005.03.034 doi: 10.1016/j.ejor.2005.03.034
    [56] J. Yang, D. Xu, Evidential reasoning rule for evidence combination, Artif. Intell., 205 (2013), 1–29. https://doi.org/10.1016/j.artint.2013.09.003 doi: 10.1016/j.artint.2013.09.003
    [57] D. F. Li, S. P. Wan, Fuzzy linear approach to multiattribute decision making with multiple types of attribute values and incomplete weight information, Appl. Soft Comput., 13 (2013), 4333–4348. https://doi.org/10.1016/j.asoc.2013.06.019 doi: 10.1016/j.asoc.2013.06.019
    [58] D. F. Li, S. P. Wan, Fuzzy heterogeneous multiattribute decision making method for outsourcing provider selection, Expert Syst. Appl., 41 (2014), 3047–3059. https://doi.org/10.1016/j.eswa.2013.10.036 doi: 10.1016/j.eswa.2013.10.036
    [59] S. P. Wan, D. F. Li, Fuzzy LINMAP approach to heterogeneous MADM considering comparisons of alternatives with hesitation degrees, Omega, 41 (2013), 925–940. https://doi.org/10.1016/j.omega.2012.12.002 doi: 10.1016/j.omega.2012.12.002
    [60] S. P. Wan, D. F. Li, Atanassov's intuitionistic fuzzy programming method for hybrid multiattribute group decision making with Atanassov's intuitionistic fuzzy truth degrees, IEEE Trans. Fuzzy Syst., 22 (2014), 300–312. https://doi.org/10.1109/TFUZZ.2013.2253107 doi: 10.1109/TFUZZ.2013.2253107
    [61] X. Zhang, Z. Xu, H. Wang, Heterogeneous multiple criteria group decision making with incomplete weight information: A deviation modeling approach, Inf. Fusion, 25 (2015), 49–62. https://doi.org/10.1016/j.inffus.2014.10.006 doi: 10.1016/j.inffus.2014.10.006
    [62] S. H. Kim, B. S. Ahn, Interactive group decision making procedure under incomplete information, Eur. J. Oper. Res., 116 (1999), 498–507. https://doi.org/10.1016/S0377-2217(98)00040-X doi: 10.1016/S0377-2217(98)00040-X
    [63] Z. Wang, K. W. Li, W. Wang, An approach to multiattribute decision making with interval-valued intuitionistic fuzzy assessments and incomplete weights, Inf. Sci., 179 (2009), 3026–3040. https://doi.org/10.1016/j.ins.2009.05.001 doi: 10.1016/j.ins.2009.05.001
    [64] T. Y. Chen, Interval-valued intuitionistic fuzzy qualiflex method with a likelihood-based comparison approach for multiple criteria decision analysis, Inf. Sci., 261 (2014), 149–169. https://doi.org/10.1016/j.ins.2013.08.054 doi: 10.1016/j.ins.2013.08.054
    [65] Y. Dong, H. Zhang, E. Herrera-Viedma, Consensus reaching model in the complex and dynamic MAGDM problem, Knowl.-Based Syst., 106 (2016), 206–219. https://doi.org/10.1016/j.knosys.2016.05.046 doi: 10.1016/j.knosys.2016.05.046
    [66] G. L. Xu, S. P. Wan, J. Y. Dong, A Hesitant Fuzzy Programming Method for Hybrid MADM with Incomplete Attribute Weight Information, Informatica, 27 (2016), 863–892. https://doi.org/10.15388/Informatica.2016.115 doi: 10.15388/Informatica.2016.115
    [67] S. Wan, F. Wang, J. Dong, Additive consistent interval-valued Atanassov intuitionistic fuzzy preference relation and likelihood comparison algorithm based group decision making, Eur. J. Oper. Res., 263 (2017), 571–582. https://doi.org/10.1016/j.ejor.2017.05.022 doi: 10.1016/j.ejor.2017.05.022
    [68] Y. Lin, Y. Wang, Group Decision Making With Consistency of Intuitionistic Fuzzy Preference Relations Under Uncertainty, IEEE/CAA J. Autom. Sin., 5 (2018), 741–748. https://doi.org/10.1109/JAS.2016.7510037 doi: 10.1109/JAS.2016.7510037
    [69] L. H. Van, V. F. Yu, L. Q. Dat, C. C. Dung, S. Y. Chou, N. V. Loc, New Integrated Quality Function Deployment Approach Based on Interval Neutrosophic Set for Green Supplier Evaluation and Selection, Sustainability, 10 (2018), 838. https://doi.org/10.3390/su10030838 doi: 10.3390/su10030838
    [70] W. Yang, Y. Pang, J. Shi, C. Wang, Linguistic hesitant intuitionistic fuzzy decision-making method based on VIKOR, Nat. Comput. Appl., 29 (2018), 613–626. https://doi.org/10.1007/s00521-016-2526-y doi: 10.1007/s00521-016-2526-y
    [71] K. C. Hung, Y. C. Tsai, K. P. Lin, P. Julian, A novel measured function for MCDM problem based on interval-valued intuitionistic fuzzy sets, IEICE Trans. Inf. Syst., E93.D (2010), 3059–3065. https://doi.org/10.1587/transinf.E93.D.3059 doi: 10.1587/transinf.E93.D.3059
    [72] A. H. Ganie, S. Singh, A picture fuzzy similarity measure based on direct operations and novel multi-attribute decision-making method, Neural Comput. Appl., 33 (2021), 9199–9219. https://doi.org/10.1007/s00521-020-05682-0 doi: 10.1007/s00521-020-05682-0
    [73] M. J. Khan, P. Kumam, W. Deebani, W. Kumam, Z. Shah, Distance and similarity measures for spherical fuzzy sets and their applications in selecting mega projects, Mathematics, 8 (2020), 519.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2096) PDF downloads(61) Cited by(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog