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Abstract: The mainstream for dealing with pattern recognition problems is to develop new similarity 

measures, and then to compare outcomes among different measures. Along with a study trend 

focusing on developing new similarity measures for pattern recognition problems, this study tackles 

the issue of tuning weight functions of the existing measures. In this study, a detailed examination is 

executed to point out that a chosen weight function decides the pattern for a given example. The 

main contribution of the paper is to provide analytic derivations to explain the influence of weights 

for both discrete and continuous cases which supports our claims with mathematical foundations. 

With findings from this study, we expect a sensitivity analysis of the weights and exploring 

procedures in deciding a reasonable weight function for applications that can be set for future studies. 
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1. Introduction 

1.1. Background, related studies 

To apply distance or similarity measures for real-world problems, researchers developed many 

new distances and their corresponding similarity measures. For example, Yang [1] is a generalization 

of Hsieh [2] to extend the Graded Mean Integration Representation method to a weighted average 

operation. Following Szmidt and Kacprzyk [3], Hung [4] developed an enhanced entropy method to help 

physicians execute the examination of the preliminary diagnosis. Chao and Chu [5] is a generalized result 

for the following four papers, Zhang and Fu [6], Yusoff et al. [7], and Lin and Julian [8]. The new 

measure of Chao and Chu [5] is examined to hold the monotonic property. Tuan [9] studied a new 
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aggregation method with uncertain conditions to simplify the previously tedious algorithm proposed by 

Li [10] and Lin et al. [11]. Lin et al. [12] applied the both-side attainment index to extend Hop [13]. 

Chao et al. [14] provided two extended findings for interval-valued intuitionistic fuzzy sets. However, 

after their papers had been published, several authors pointed out their similarity measures 

containing severe questionable dilemmas that sometimes the proposed measure cannot help decision-

makers select the pattern for a given sample in a pattern recognition problem or decide the optimal 

location for a hydroelectric dam. Hence, many new similarity measures continuously had been 

constructed and then criticized by further studies by providing counter-examples to reveal their 

incapability. For example, Chou et al. [15] improved the solution method of Hop [16] for linear 

programming problems with randomness and fuzziness by attainment values. Chou et al. [17] 

showed that the solution procedure of Roy and Maiti [18] for fuzzy inventory models with storage 

space and budget constraints contained questionable results and then Chou et al. [17] presented the 

revised solution approach. Mitchell [19] developed a new similarity measure to improve Li and 

Cheng [20]. Julian et al. [21] tried to revise Mitchell [19] to verify the similarity values deriving by 

one-norm should be greater than two-norm and to construct a new similarity measure with a 

scattered property. Deng and Chao [22] pointed out the questionable proof of Julian et al. [21] and 

then Deng and Chao [22] provided the improved proof to compare one-norm and two-norm with 

weight functions. Hung and Tuan [23] challenged De et al. [24] to show that they arbitrarily applied the 

max-min operator to handle medical diagnosis issues that contained questionable findings. Chao [25] 

examined Park et al. [26] and Liang and Shi [27] to show that sometimes the pattern recognition 

problems cannot be solved by their similarity measures. Chuang et al. [28] showed that the similarity 

measures proposed by Xu [29] did not satisfy his assertion of the fourth axiom. Szmidt and Kacprzyk [30] 

constructed a new similarity measure to deal with the intuitionistic fuzzy set and its complement, and 

then Tung and Hopscotch [31] found a counterexample to indicate that their new similarity measure 

is unreasonable. Chuang et al. [32] demonstrated that the linguistic hybrid geometric averaging 

operator proposed by Xu [33] is influent by the relative weights. Yusoff et al. [7] criticized that the 

new similarity measure developed by Zhang and Fu [6] cannot solve a pattern recognition problem 

and then constructed a new similarity. Chao and Butler [34] proved that the new measure created by 

Yusoff et al. [7] did not satisfy the fourth axiom proposed by Mitchell [19]. Xu [35] amended Xu [36], 

however, Lin [37] further revised Xu [35] for his proof of the transitivity property. Tuan and Chao [38] 

examined theorem 2 of Gerstenkorn and Mańko [39] with correlation coefficient similarity measures 

and then provided a revision. Chu et al. [40] studied the similarity measure proposed by Xu [36] to 

simplify his redundant proof and then the criticism of Xu [36] concerning Szmidt and Kacprzyk [3] 

and Yang and Chiclana [41] are revised. Feng [42] showed that the inexact optimal solution 

approach with the fuzzy criterion proposed by Wang [43] contained questionable results. Yen [44] 

showed that the fuzzy operations proposed by Wang et al. [45] contained questionable results. 

1.2. Motivation 

On the other hand, Yen et al. [46] is the first paper to develop a comparison algorithm in which 

the steps are related to the number of elements in the universe of disclose. Yen et al. [46] had proven 

that they can solve any discrete pattern recognition problems without an unsolvable dilemma. Chu et 

al. [47] derived a new comparison algorithm for two similarity measures in which the size of their 

algorithm is proportional to the cardinal number of the universe of disclose. Chu et al. [47] also 
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verified that their lengthy algorithm can handle any discrete universe set of disclose. Hung et al. [48] 

constructed a new algorithm to solve the pattern recognition problems and then applied their 

algorithm to solve a radar target issue. However, Hung et al. [48] did not prove that their algorithm 

can solve every discrete pattern recognition problem. Chou [49] constructed a new comparison 

algorithm for pattern recognition problems to prove that his algorithm can solve problems under the 

discrete case of the universe of disclose. We present a discussion for Yen et al. [46] since their article 

is the first paper to create an algorithm in which steps are proportional to the size of the universe of 

disclose. If X = {x1, x2, … , xn} is the universe of disclose, then the pattern recognition algorithm in 

Yen et al. [46] will contain 6n + 6steps. Following Yen et al. [46], there are two consequent papers: 

Chu et al. [47] and Chou [49] in which algorithms contained 6n + 6 and 4n + 2steps in their pattern 

recognition algorithms, respectively. To construct similarity measures, Yen et al. [46] only referred 

to membership function and hesitation function. Chu et al. [47] considered membership, non-

membership, and hesitation function. On the other hand, Chou [49] used the membership and non-

membership functions. In the past, researchers paid attention to developing new similarity measures 

and constructing new algorithms to apply their similarity measures such that just a few papers 

focused on the weighted function or the relative weights for elements in the universe of disclose. The 

purpose of this paper is to provide a theoretical explanation to demonstrate that the outcome of 

pattern recognition problems is influent by the relative weight for elements in the universe of 

disclose. We will select a famous paper, Li and Cheng [20] to develop our explanation. After 

Mitchell [19] presented a counter-example to illustrate that the similarity measures constructed by Li 

and Cheng [20] contained questionable results, there are almost four hundred papers still cited Li and 

Cheng [20] in their references to show that Li and Cheng [20] is a very important paper in the 

academic history of intuitionistic fuzzy sets. Hence, we will use the numerical examples in Li and 

Cheng [20] as our foundation to derive our results.  

1.3. Main contributions 

This paper is organized as follows. In Section 2, two numerical examples are discussed for a 

discrete case and a continuous case for the universe of disclose, respectively. In Section 3, we 

develop different relative weights for the discrete case to show that sometimes, the sample can be 

assigned to patterns A1 or A2, besides the assertion of Li and Cheng [20], that is assigned to the 

pattern A3. In Section 4, for a continuous universe of disclose, we extend the weighted function to a 

general expression to reveal that the outcome of the comparison is determined by the weighted 

function. In Section 5, we present our revisions for Wang [52] and Yang et al. [70] and direction for 

future research. In section 6, we conclude our study. We analytically show the findings of pattern 

recognition problems with weighted similarity measures under intuitionistic fuzzy sets environment 

that is dominated by relative weights of elements in the universe of discourse for the discrete case 

and the weighted function for the continuous case. In the past, researchers focus on constructing new 

similarity measures or developing new algorithms applying their similarity measures. Hence, 

previous results depended on a special weight to decide the pattern of the sample that may be 

required further considerations. How to select a proper weight will be an important issue for 

researchers in the future when dealing with pattern recognition problems. Our consideration will 

offer a patchwork to enhance the operational development of similarity measures for pattern 

recognition under IFSs.  
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2. Review of previous results 

Let X be a fixed set that is usually denoted as the universe of disclose. An Intuitionistic Fuzzy 

Sets (IFS) A in X is an object having the form 𝐴 = {〈x, uA(x), v(x)〉: x ∈ X}  where the 

function  uA: X → [0,1]  and  vA: X → [0,1] define the degree of membership and degree of non-

membership, respectively, and for every element x in X, 0 ≤ u(x) + v(x) ≤ 1. The set of all IFSs in 

X is assumed to be IFSS(X). The order relation between two IFSs, A and B with 𝐴, 𝐵 ∈ IFSS(X), 

expressed as A ⊆ B that is assumed as uA(x) ≤ uB(x) and vA(x) ≥ vB(x) for every element x in X. 

For the pattern recognition problem, with a given sample B and a set of patterns, {A1, A2, … , Am}, the 

decision-maker wants to decide the pattern of the given sample through a similarity measure, 

denoted as Sim. If  

𝑆𝑖𝑚(Ai0
, B) = 𝑆𝑖𝑚(Ai, B)1≤i≤m

max ,      (2.1) 

based on the principle of the maximum degree of similarity among IFSs, researchers can decide that 

sample B should be assigned belonging to the pattern Ai0
. 

We will focus on the numerical examples discussed by Li and Cheng [20] to illustrate that the 

outcome comparison results is influent by the relative weights for the elements in the universe of 

disclose, where the weight of an element xi is denoted as wi, for i = 1,2, … , n that satisfies wi ≥ 0, 

for i = 1,2, … , n, and ∑ wi = 1n
i=1 .  

The universe of discourse is expressed as X = {x1, x2, … , xn}, we recall the similarity measure 

proposed by Li and Cheng [20] for two IFSs A and B, Sim as follows 

𝑆𝑖𝑚(𝐴, 𝐵) = 1 − √∑ wi|ρA(xi) − ρB(xi)|pn
i=1

p
   (2.2) 

with an auxiliary function, ρ(xi) or ρ(x) as follows 

ρA(xi) =
uA(xi)+1−vA(xi)

2
,        (2.3) 

for a discrete universe of disclose X = {x1, x2, … , xn}, and 

ρA(x) =
uA(x)+1−vA(x)

2
,         (2.4) 

for a continuous universe of disclose, X = {x: a ≤ x ≤ b}, where  uA  and vA  are membership and 

non-membership function of IFS A, and uB and vB are membership and non-membership function of 

IFS B. 

The first example 1 of Li and Cheng [20] is examined in the following. The universe of disclose 

is X = {x1, x2, x3} , and three patters {A1, A2, A3}  and one sample B are provided with A1 =

{〈1, 0〉, 〈0.8, 0〉, 〈0.7, 0.1〉},A2 = {〈0.8, 0.1〉, 〈1,0〉, 〈0.9, 0〉}, and A3 = {〈0.6, 0.2〉, 〈0.8, 0〉, 〈1, 0〉}, and 

𝐵 = {〈0.5, 0.3〉, 〈0.6, 0.2〉, 〈0.8, 0.1〉} such that uB(x1) = 0.5 and vB(x1) = 0.3. The decision-maker 

will decide which pattern should be assigned for sample B. First, we recall the results presented in Li 

and Cheng [20]. They assumed three possible combinations for weights and then applied the 

similarity measure of Eq (2.2). Their findings are listed in the following Table 1. 
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Table 1. Their results in Li and Cheng [20]. 

    𝑆𝑖𝑚(A1, B) 𝑆𝑖𝑚(A2, B) 𝑆𝑖𝑚(A3, B) 

x1 x2 x3 p    

1 3⁄  1 3⁄  1 3⁄  1 0.78 0.80 0.85 

1 3⁄  1 3⁄  1 3⁄  2 0.74 0.78 0.84 

0.5 0.3 0.2 2 0.696 0.779 0.853 

Owing to the findings in the above Table 1, 𝑆𝑖𝑚(A3, B) always bigger than 𝑆𝑖𝑚(A1, B)and 

𝑆𝑖𝑚(A2, B), Li and Cheng [20] implied that sample B should be assigned to the pattern A3. 

For the continuous example, under the universe of disclose, X = {x: a ≤ x ≤ b}, Li and Cheng [20] 

constructed the similarity measure for two IFSs A and B as follows 

Sim(A, B) = 1 − ∫ w(x)|ρA(x) − ρB(x)|dx
b

a
,    (2.5) 

with the weight function, ( )xw . Li and Cheng [20] adopted the uniform distribution for the weight 

function w(t): [a, b] → [0,1], that satisfies ∫ w(t) dt = 1
b

a
. Hence, they applied the weight function 

as w(t) = 1 (b − a)⁄ , for a ≤ t ≤ b. 

We recall the second example in Li and Cheng [20] for two patters {A1, A2} and one sample B 

such that their membership and non-membership functions are expressed in the following, 

uA1
(x) = {

4

5(x−1)
,     1 ≤ x < 2,

4(5−x)

15
, 2 ≤ x ≤ 5,

       (2.6) 

vA1
(x) = {

19−9x

19
,       1 ≤ x < 2,

3x−5

10
,       2 ≤ x ≤ 5,

       (2.7) 

uA2
(x) = {

x−1

5
,       1 ≤ x < 4,

3(5−x)

5
,       4 ≤ x ≤ 5,

       (2.8) 

vA2
(x) = {

13−3x

10
,       1 ≤ x < 4,

9x−35

10
,       4 ≤ x ≤ 5,

       (2.9) 

uB(x) = {

3(x−1)

10
,       1 ≤ x < 3,

3(5−x)

10
,       3 ≤ x ≤ 5,

       (2.10) 

and 

vB(x) = {

14−4x

10
,       1 ≤ x < 3,

4x−10

10
,       3 ≤ x ≤ 5.

       (2.11) 
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Li and Cheng [20] mentioned that Sim(A1, B) = 0.85 and Sim(A2, B) = 0.86. Therefore, Li and 

Cheng [20] decided that sample B should be assigned as the pattern A2. 

3. Our examination for example 1 in [20] 

Applying Eq (2.3), we find that  ρA1
= (1.0, 0.9, 0.8) ,  ρA2

= (0.85, 1.0, 0.95) , ρA3
=

(0.7, 0.9, 1.0) and ρB = (0.6, 0.7, 0.85)  to indicate that ρB(x1) = 0.6, ρB(x2) = 0.7  and ρB(x3) =
0.8 . We will compute the similarity measures in advance and then compare those Sim(A1, B) , 

Sim(A2, B), and Sim(A3, B) to select a proper combination of the relative weights w1, w2, and w3 

for elements x1, x2, and x3 in the universe of disclose, X = {x1, x2, x3}. With the assumption p = 1, 

we obtain that 

Sim(A1, B) = 1 − 0.4w1 − 0.2w2 − 0.05w3.    (3.1) 

Sim(A2, B) = 1 − 0.25w1 − 0.3w2 − 0.1w3.    (3.2) 

and 

Sim(A3, B) = 1 − 0.1w1 − 0.2w2 − 0.15w3.    (3.3) 

In Li and Cheng [20], they claimed that  

Sim(A3, B) = max{Sim(A1, B), Sim(A2, B), Sim(A3, B)}   (3.4) 

and then they concluded that sample B should be assigned to the pattern A3. Our purpose is to 

construct different relatives such that sample B will be assigned to other patterns. 

If we try to select relative weights w1, w2, and w3 such that  

Sim(A2, B) < 𝑆𝑖𝑚(A1, B),         (3.5) 

and 

Sim(A3, B) < 𝑆𝑖𝑚(A1, B).         (3.6) 

We refer to our findings of Eqs (3.1–3.3) to derive that 

3w1 < 2w2 + w3,         (3.7) 

and 

3w1 < w3.           (3.8) 

Based on our derivations of Eqs (3.7–3.8), we select w1 = 0.2, w2 = 0.1, and w3 = 0.7, then we 

obtain the wanted result, 

Sim(A2, B) = 0.85 < 𝑆𝑖𝑚(A3, B) = 0.855 < 𝑆𝑖𝑚(A1, B) = 0.865.  (3.9) 

Hence, we show that there is a combination of relative weights such that sample B should be 

assigned to the pattern A1. 

Next, we examine the conditions to obtain that  

Sim(A2, B) ≥ max{Sim(A1, B), Sim(A3, B)}.    (3.10) 

We recall Eqs (3.1–3.3) to derive that  
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3w1 ≥ 2w2 + w3,         (3.11) 

and 

3w1 + 2w2 ≤ w3.          (3.12) 

We combine Eqs (3.11–3.12) to imply that 

2w2 + w3 ≤ 3w1 ≤ w3 − 2w2,      (3.13) 

such that we derive that  

w2 = 0,           (3.14) 

and 

w3 = 3w1.          (3.15) 

Owing to ∑ wi = 13
i=1 , we find a combination as  

w1 = 0.25, w2 = 0, and w3 = 0.75,     (3.16) 

such that  

Sim(A2, B) = max{Sim(A1, B), Sim(A2, B), Sim(A3, B)}   (3.17) 

and then, we claim that sample B can be assigned to the pattern A2. 

Li and Cheng [20] mentioned that sample B can be assigned to the pattern A3 that is Eq (3.4). 

In the above demonstration, by Eq (3.9), sample B can be assigned to the pattern A1. 

Moreover, referring to Eq (3.17), sample B can be assigned to the pattern A2. 

Hence, we provide different combinations of relative weights to illustrate that the outcome of 

comparisons is influent by the choice of relative weights. 

4. Our discussion for example 2 of [20] 

Based on Eq (2.4), we evaluate the auxiliary function ρ(x) to yield that 

ρA1
(x) = {

17(x−1)

20
, 1 ≤ x < 2,

17(5−x)

60
, 2 ≤ x ≤ 5,

      (4.1) 

ρA2
(x) = {

x−1

4
, 1 ≤ x < 4,

3(5−x)

4
, 4 ≤ x ≤ 5,

       (4.2) 

and 

ρB(x) = {

7(x−1)

20
, 1 ≤ x < 3,

7(5−x)

20
, 3 ≤ x ≤ 5.

       (4.3) 

In Li and Cheng [20], they used the following weighted function,  
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w(x) =
1

4
,           (4.4) 

for1 ≤ x ≤ 5 that satisfies w(x) ≥ 0 for 1 ≤ x ≤ 5 and ∫ w(x)dx = 1
5

1
. 

We will abstractly treat their weighted function in a generalized expression, 

w(x) = {
a, 1 ≤ x ≤ 3,
b, 3 ≤ x ≤ 5,

       (4.5) 

that satisfies a ≥ 0, b ≥ 0, and 2a + 2b = 1. Therefore, the weighted function proposed by Li and 

Cheng [20] is a special case for our generalized expression, with a = b =
1

4
. 

Next, we begin to evaluate Sim(A1, B) and Sim(A2, B) and then we obtain that 

Sim(A1, B) = 1 − ∫ w(x)|ρA1
(x) − ρB(x)|dx

5

1
, 

= 1 − a ∫ |
17(x−1)

20
−

7(x−1)

20
| dx

2

1
− a ∫ |

17(5−x)

60
−

7(x−1)

20
| dx

3

2
, 

−b ∫ |
17(5−x)

60
−

7(5−x)

20
| dx

5

3
, 

= 1 −
a

2
∫ (x − 1)dx

2

1
−

a

30
∫ |53 − 19x|dx −

b

15
∫ (5 − x)dx

5

3

3

2
, 

= 1 −
a

2
∫ (x − 1)dx

2

1
−

a

30
∫ (53 − 19x)dx

53 19⁄

2
, 

−
a

30
∫ (19x − 53)dx

3

53 19⁄
−

b

15
∫ (5 − x)dx

5

3
, 

= 1 −
263a

570
−

2b

15
,            (4.6) 

and 

Sim(A2, B) = 1 − ∫ w(x)|ρA2
(x) − ρB(x)|dx

5

1
, 

= 1 − a ∫ |
x−1

4
−

7(x−1)

20
| dx − b ∫ |

x−1

4
−

7(5−x)

20
| dx − b ∫ |

3(5−x)

4
−

7(5−x)

20
| dx

5

4

4

3

3

1
, 

= 1 −
a

10
∫ (x − 1)dx −

b

5
∫ |3x − 10|dx −

2b

5
∫ (5 − x)dx

5

4

4

3

3

1
, 

= 1 −
a

10
∫ (x − 1)dx −

b

5
∫ (10 − 3x)dx −

b

5
∫ (3x − 10)dx −

2b

5
∫ (5 − x)dx

5

4

4

10 3⁄

10 3⁄

3

3

1
, 

= 1 −
a

5
−

11b

30
.   (4.7) 

Next, we compare our findings with that of Li and Cheng [20] with the condition a = b =
1

4
, and 

then we obtain that 

Sim(A1, B) = 0.851,         (4.8) 

and 

Sim(A2, B) = 0.858.         (4.9) 
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Our results are consistent with that of Li and Cheng [20] in which Sim(A1, B) = 0.85 and 

Sim(A2, B) = 0.86. 

We begin to examine the influence of the selection of a and b for the ordering of Sim(A1, B) and 

Sim(A2, B).  

We try to find the relation of a and b such that the following goal is achieved  

Sim(A1, B) >  𝑆𝑖𝑚(A2, B),        (4.10) 

that is equivalent to 

1 −
263a

570
−

2b

15
> 1 −

a

5
−

11b

30
.        (4.11) 

Under the condition, 2a + 2b = 1, we can simplify the inequality of Eq (4.11) as follows 

b > 0.264.           (4.12) 

Therefore, if we select a = 0.2 and b = 0.3, then we derive that 

Sim(A1, B) = 0.868,          (4.13) 

and 

Sim(A2, B) = 0.850.         (4.14) 

Hence, we construct a weighted function w(x) = 0.2, for 1 ≤ x ≤ 3, and w(x) = 0.3, for 3 ≤ x ≤ 5 

then sample B should be assigned to the pattern A1. We demonstrate that the assertion of Li and 

Cheng [20] mentioned sample B belonging to the pattern A2 is questionable that is influent by the 

weight function. 

5. The recent development for the relative weights and our comments 

The goal of multiple attribute group decision-making problems is to select the best alternative or 

provide an order for alternatives. How to decide weights for elements in the universe of discourse is 

an important issue for multiple attribute decision-making problems. In the traditional multiple 

attribute group decision-making, decision-makers adopted predefined weights for elements in the 

discourse of universe that has several drawbacks: (a) Weights are independent of data of alternatives, 

(b) A group of experts may have different universes of discourses, (c) The alternatives for experts 

may be heterogeneous. Wallenius et al. [50], and Durbach and Stewart [51] tried to solve multiple 

attribute decision-making problems with weights are related to information of alternatives. If an 

element in the universe of discourse has a smaller deviation value that indicates all alternatives have 

almost identical values with respect to this element such that this element will not help researchers 

decide which alternative is the best alternative or the ranking for alternatives. Hence, this element 

should be given a smaller weight. On the contrary, if an element has a larger deviation, then values 

corresponding to this element are varied to help researchers decide the best alternative or the ranking 

for alternatives, and then this element should be given a larger weight. Hence, many researchers 

applied the maximizing deviation method proposed by Wang [52] and then this approach has 

extended to heterogeneous settings. In Wang [52], for a group decision-making problem with the 

discourse of universe X = {x1, x2, … , xn}, alternatives {A1, A2, … , Am} and Ai(xj) is the evaluation of 
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alternative Ai  for element xj . Wang [52] constructed the following maximum problem to decide 

weights for X = {x1, x2, … , xn}: 

Max  ∑ ∑ ∑ wj
m
k=1

m
i=1

n
j=1 d (Ai(xj), Ak(xj)),    (5.1) 

s.t.wj ≥ 0, j = 1,2, … , n, ∑ wj
2 = 1n

j=1 , 

where d (Ai(xj), Ak(xj)) is the deviation of Ai(xj) with Ak(xj). 

We claim that there are many ways to evaluate d (Ai(xj), Ak(xj)). For example, if Ai(xj) is a crisp 

number, then we can apply one norm to define that 

d (Ai(xj), Ak(xj)) = |Ai(xj) − Ak(xj)|.    (5.2) 

If Ai(xj) is an intuitionistic fuzzy number, with Ai(xj) = 〈μi(xj), vi(xj)〉, then we can apply two-

norm to assume that 

d (Ai(xj), Ak(xj)) = √(μi(xj) − μk(xj))
2

+ (vi(xj) − vk(xj))
2

.   (5.3) 

Wang [52] did not offer us a detailed description of how to derive his findings. Instead, he directly 

claimed that  

wj =
∑ ∑ d(Ai(xj),Ak(xj))m

k=1
m
i=1

√∑ (∑ ∑ d(Ai(xj),Ak(xj))m
k=1

m
i=1 )

2
n
j=1

.      (5.4) 

The above solution did not satisfy the condition that ∑ wj = 1n
j=1  such that Wang [52] then 

normalized the results to find that 

wj =
∑ ∑ d(Ai(xj),Ak(xj))m

k=1
m
i=1

∑ (∑ ∑ d(Ai(xj),Ak(xj))m
k=1

m
i=1 )n

j=1

.       (5.5) 

Herrera-Viedmaet al. [53], and Hartmann et al. [54] divided the decision procedure into two 

stages: (i) The selection procedure; (ii) The consensus procedure. For each expert, he operated his 

selection procedure to obtain collective solutions based on his weights for the universe of discourse. 

The group of experts runs the consensus procedure to achieve maximum content among them over 

collective solutions. Wang et al. [55] established a set of discounted belief degrees by the basic 

probability assignment function to merge with analytical and evidential reasoning rules. Yang and 

Xu [56] developed a novel discounting approach to construct discount evidence concerning 

reliability and weight. Li and Wan [57,58] and Wan and Li [59,60] applied the linear programming 

technique to minimize the inconsistency measure for multidimensional analysis of preference to 

decide the weights for elements in the discourse of the universe. In Zhang et al. [61], they pointed 

out that for multiple criteria group decision-making problems, weights of several experts and 

elements in the discourse of universe occupied a significant character to decide the optimal 

alternative such that Zhang et al. [61] invited researchers to pay attention to this issue. Owing to 

experts with their different special backgrounds, it is very difficult for them to reach a consensus 
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agreement for the weights for elements in the universe of discourse. Zhang et al. [61] tried to 

construct algorithms with different criteria for diverse experts. They developed that every expert 

provided his weight to replace the traditional approach to find a global weight for all experts.  

We recall that based on the expression of Zhang et al. [61], if there are k elements in the 

universe of discourse, then the weighting vector for elements is expressed as 

v = (v1, v2, … , vk)         (5.6) 

that satisfies vj ≥ 0, for j=1,2,...,k, and ∑ vj
k
j=1 = 1. 

Zhang et al. [61] claimed that Kim and Ahn [62], Wang et al. [63], and Chen [64] developed five 

basic forms for weights: 

(1) A weak ranking: vi ≥ vj, for i ∈ ∆1 and j ∈ ∆2, where ∆1 and ∆2 are two disjoint subsets, with 

∆1 ∪ ∆2= {1,2, … , k}. 

(2) A strict ranking: L ≤ vs − vt ≤ U , for s ∈ ∆3  and t ∈ ∆4 , where ∆3  and ∆4  are two disjoint 

subsets, with ∆3 ∪ ∆4= {1,2, … , k}, where L and U are constraints to satisfy 0 < 𝐿 < 𝑈. 

(3) A ranking of differences: va − vb ≥ vc − vd, for a ∈ ∆5, b ∈ ∆6, c ∈ ∆7 and d ∈ ∆8, where ∆5, ∆6, 

∆7 and ∆8 are four disjoint subsets, with ∆5 ∪ ∆6 ∪ ∆7 ∪ ∆8= {1,2, … , k}. 

(4) A ranking with multiples: vi ≥ δvj, i ∈ ∆9 and j ∈ ∆10, where ∆9 and ∆10 are two disjoint subsets, 

with ∆9 ∪ ∆10= {1,2, … , k} and  is a constant with δ > 0. 

(5) An interval form: S ≤ vi ≤ T, for i ∈ ∆11, where S and T are two constants that satisfy 0 < 𝑆 < 𝑇 

and ∆11 is a subset of {1,2, … , k}. 

Zhang et al. [61] claimed that the expressions of weights usually contain several forms of above 

mentioned five basic forms that are varied by the conditions of problem settings and oriented 

applications. 

Zhang et al. [61] firstly developed a deviation modeling method to derive the optimal weights of 

elements in the universe of discourse. Secondly, Zhang et al. [61] constructed the following 

minimizing deviation model to decide the weights of v1, v2, … , vk, 

min    Z = ∑ ∑ vj|CIi
∗ − CIi

j
|k

j=1
m
i=1         (5.7) 

s.t.∑ vj = 1k
j=1 , vj ≥ 0, for j ∈ {1,2, … , k}. 

We can simplify the expression to rewrite the above problem as follows, 

min  Z = ∑ vjαj
k
j=1        (5.8) 

such that ∑ vj = 1k
j=1 , vj ≥ 0, for j ∈ {1,2, … , k}, and αj = ∑ |CIi

∗ − CIi
j
|m

i=1 . 

Without loss of generality, we assume that 

α1 = min{α1, α2, … , αk},        (5.9) 

then we derive that 

∑ vjαj
k
j=1 ≥ ∑ vjα1 = α1

k
j=1 .       (5.10) 

Hence, if we select v1 = 1 and vj = 0, for j ∈ {2,3, … , k}, then we attain the minimum. However, 

only focusing on one element in the universe of discourse is not a proper approach to derive the 
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optimal alternative such that we can claim that the minimizing deviation model proposed by Zhang 

et al. [61] contained severe questionable results. 

Dong et al. [65] mentioned that experts may come from different backgrounds and have various 

interests such that they may have diverse universes of discourses. In the recent development, 

researchers considered that (a) Different discourse of universe for individual expert; (b) Experts may 

net reach a uniform conclusion for the optimal alternative, but they can find a compromise 

alternative that is accepted by the majority of experts; (c) Discourses of universe and alternatives 

may change during the decision process. Dong et al. [65] applied the maximizing deviation method 

proposed by Wang [52] to derive weights for elements in the universe of discourse under 

heterogeneous environments. Xu et al. [66] pointed out that only considering the positive ideal 

solution to minimize the inconsistency that cannot guarantee to attain the maximum of the 

consistency measure concerning the negative ideal solution. Xu et al. [66] constructed a new 

approach not only to handle crisp values, intervals, fuzzy sets, and intuitionistic fuzzy sets but also to 

deal with hesitant fuzzy sets to solve multiple attribute decision-making problems in the real-world 

environment. Wan et al. [67] mentioned that if researchers adopted the uniform weights for elements 

in the universe of disclose, then it may imply contradicted results in the selection process. Hence, 

how to decide weights becomes a critical matter for decision-makers. Lin and Wang [68] adopted 

score functions to rank intuitionistic fuzzy sets. 

In Van et al. [69], for interval-valued intuitionistic fuzzy sets, they used Aj
+ =

〈[1,1], [0,0], [0,0]〉 as the positive ideal solution and Aj
− = 〈[0,0], [1,1], [1,1]〉 as the positive ideal 

solution for the alternative Aj. Hence, their positive and negative ideal solutions are predesigned that 

are independent of data information about alternatives. 

Van et al. [69] defined the closeness coefficient for alternative Aj as  

CCj =
dj

+

dj
++dj

−          (5.11) 

where dj
+ is the shortest distance for alternative Aj, and dj

− is the farthest distance for alternative Aj. 

We cite the results of Table 2 of Van et al. [69] in the following. 

Table 2. Reproduction of Table 7 for distance measurement of Van et al. [69]. 

Suppliers d+ d− 

A1 0.768 0.251 

A2 0.767 0.252 

A3 0.751 0.268 

A4 0.768 0.251 

For the closeness coefficient of suppliers, we cite their results in Table 3 of Van et al. [69] in the 

following table. 

Table 3. Reproduction of Table 8 for Closeness coefficient of Van et al. [69]. 

Suppliers Closeness coefficient Ranking 

A1 0.247 3 

A2 0.248 2 

A3 0.263 1 

A4 0.246 4 
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In the following, we present our comments for Van et al. [69].  

Based on Table 2, the values of d+ and d− for A1 and A4 are identical such that findings in 

Table 3 of Van et al. [69] for A1 and A4 are different which is questionable. We can say that Van et 

al. [69] should express their results to the fourth decimal place to show the difference between 

A1 and A4. 

Moreover, we can claim that Van et al. [69] adopted a pair of predesigned positive and negative 

ideal solutions that will result in computing findings for d+ and d− with respect to A1, A2,  A3 and A4 

are very close to each other. If they constructed their positive and negative ideal solutions depending 

on the data information of alternatives that will imply varies for d+ and d− and then the values of the 

"closeness coefficient" will be expressed separately. It will help researchers decide which alternative 

is the optimal choice. 

Yang et al. [70] claimed that if weights of elements in the universe of discourse are completely 

predesigned, then they can decide weights by applying the maximizing deviation method proposed 

by Wang [52]. We cite the third multiple-objective programming model of Yang et al. [70], A 

reasonable weight vector should make the deviation value as large as possible. Then we set up the 

following model 

(M-3)Max  ∑ ∑ ∑ wj
m
k=1

m
i=1

n
j=1 d(ȟi j, ȟk j)     (5.12) 

s.t.wj ≥ 0, j = 1,2, … , n, ∑ wj
2 = 1n

j=1 .” 

The whole derivation of Yang et al. [70] for their M-3 model is lengthy and contains questionable 

results such that we only mention their goal in Eq (5.12). We will provide our revisions in the next 

section. 

We remark that d(ȟi j, ȟk j)  is the deviation of ȟi j  with the evaluation of ȟk j . ȟi j maybe 

expressed in a crisp value, a fuzzy number, an intuitionistic fuzzy set, or interval-valued intuitionistic 

fuzzy set of the ith alternative for the jth attributive (the jth element in the universe of disclose). 

In the following, we briefly introduce the derivation procedure of Yang et al. [70]. 

Yang et al. [70] tried to solve the model (M-3) to define the Lagrange function L(w, ξ) as 

L(w, ξ) = ∑ ∑ ∑ wj
m
k=1

m
i=1

n
j=1 d(ȟi j, ȟk j) +

ξ

2
((∑ wj

2n
j=1 ) − 1),  (5.13) 

where ξ is the Lagrange multiplier variable. Yang et al. [70] took the partial derivatives with respect 

towandξ and then they solved the simultaneous system of 
∂L(w,ξ)

∂w
= 0 and 

∂L(w,ξ)

∂ξ
= 0 to derive that  

wj =
∑ ∑ d(ȟi j,ȟk j)m

k=1
m
i=1

√∑ (∑ ∑ d(ȟi j,ȟk j)m
k=1

m
i=1 )

2n
j=1

,       (5.14) 

for j = 1,2, … , n. 

The above solution did not satisfy the condition that ∑ wj = 1n
j=1  such that Yang et al. [70] 

normalized the results to find that 

wj =
∑ ∑ d(ȟi j,ȟk j)m

k=1
m
i=1

∑ (∑ ∑ d(ȟi j,ȟk j)m
k=1

m
i=1 )n

j=1

,       (5.15) 

for j = 1,2, … , n. 
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6. Our improvement for Wang [52] and Yang et al. [70] and direction for future research 

We point out that the Lagrange multiplier method only derives possible candidates for local 

minimum or local maximum points.  

Based on the solution approach of Yang et al. [70], they should try to solve the following different 

maximum problems by applying the Lagrange multiplier method,  

Max  ∑ ∑ ∑ wj
m
k=1

m
i=1

n
j=1 d(ȟi j, ȟk j)     (6.1) 

such that ∑ wj
2 = 1n

j=1 . 

We must point out that the maximum problem of Eq (6.1) is different from the maximum 

problem proposed by Yang et al. [70] of Eq (5.12) because the inequality constraints wj ≥ 0, j =

1,2, … , n, had been removed. 

We write the results for 
∂L(w,ξ)

∂w
= 0 and 

∂L(w,ξ)

∂ξ
= 0 in detail, 

∑ ∑ d(ȟi j, ȟk j) + ξwj
m
k=1

m
i=1 = 0,      (6.2) 

and 

1

2
((∑ wj

2n
j=1 ) − 1) = 0.         (6.3) 

Form Eq (6.2), we derive that 

wj = (
−1

ξ
) ∑ ∑ d(ȟi j, ȟk j)

m
k=1

m
i=1 ,       (6.4) 

for j = 1,2, … , n. 

We plug the findings of Eq (6.4) back to Eq (6.3) to find that  

ξ2 = ∑ (∑ ∑ d(ȟi j, ȟk j)
m
k=1

m
i=1 )

2n
j=1 ,    (6.5) 

such that  has two solutions: 

ξ = √∑ (∑ ∑ d(ȟi j, ȟk j)
m
k=1

m
i=1 )

2n
j=1 ,     (6.6) 

and 

ξ = −√∑ (∑ ∑ d(ȟi j, ȟk j)
m
k=1

m
i=1 )

2n
j=1 .     (6.7) 

Based on Eq (6.7), we derive results as that of Eq (5.14). 

On the other hand, based on Eq (6.6), we imply that  

wj =
− ∑ ∑ d(ȟi j,ȟk j)m

k=1
m
i=1

√∑ (∑ ∑ d(ȟi j,ȟk j)m
k=1

m
i=1 )

2n
j=1

,      (6.8) 

for j = 1,2, … , n. 
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Therefore, by the Lagrange multiplier method, we obtain the maximum solution of Eq (5.14) 

and the minimum solution of Eq (6.8) for our proposed problem of Eq (6.1) to support our claim that 

researchers can not directly say the findings is a maximum solution or a minimum solution. 

Therefore, we claim that the patchwork proposed by Yang et al. [70] for the maximum problem 

constructed by Wang [52] contained questionable results. 

Next, we provide our patchwork for Wang [52] and Yang et al. [70].  

We can abstractly handle maximum problems of Eq (5.1) of Wang [52] and Eq (5.12) of Yang 

et al. [70] simultaneously,  

Max  ∑ wj
n
j=1 βj        (6.9) 

such that wj ≥ 0, j = 1,2, … , n, and ∑ wj
2 = 1n

j=1 . 

When βj = ∑ ∑ d (Ai(xj), Ak(xj))m
k=1

m
i=1 , our proposed problem of Eq (6.9) converts to Eq (5.1). 

When βj = ∑ ∑ d(ȟi j, ȟk j)
m
k=1

m
i=1 , our proposed problem of Eq (6.9) converts to Eq (5.12) such that 

we can claim that our maximum problem of Eq (6.9) stands for Eq (5.1) of Wang [52] and Eq (5.12) 

of Yang et al. [70] at the same time. 

For A = (a1, a2, … , an) and B = (b1, b2, … , bn), we recall the Cauchy-Schwarz inequality to 

imply that 

−√∑ aj
2n

j=1 √∑ bj
2n

j=1 ≤ ∑ ajbj
n
j=1 ≤ √∑ aj

2n
j=1 √∑ bj

2n
j=1 ,    (6.10) 

and inequalities change to equalities when there is a number, k, satisfying 

aj = k bj,         (6.11) 

for j = 1,2, … , n. 

Based on our discussion of Eqs (6.10) and (6.11), owing to ∑ wj
2 = 1n

j=1 , we solve the problem of Eq 

(6.9) as 

−√∑ βj
2n

j=1 ≤ ∑ wj
n
j=1 βj ≤ √∑ βj

2n
j=1 ,    (6.12) 

and the maximum value attained when 

βj = k wj,         (6.13) 

for j = 1,2, … , n. 

Using Eq (6.13), we derive that 

∑ βj
2n

j=1 = ∑ k2wj
2n

j=1 .       (6.14) 

We recall ∑ wj
2 = 1n

j=1  obtaining 

k = √∑ βj
2n

j=1 ,        (6.15) 
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and 

wj =
βj

k
=

βj

√∑ βj
2n

j=1

.       (6.16) 

For the final step, we normalize the findings of Eq (6.16) to find that 

wj =
βj

∑ βj
n
j=1

.        (6.17) 

The present version of our paper was based on a definition of similarity of intuitionistic fuzzy 

sets in the literature to draw some conclusions through a specific example such that it does not have 

universal significance. In the future, we should observe the real world, for example, earth and 

cosmos, to find significant issues and then develop our results with real applications. Moreover, we 

are motivated by Hung et al. [71], to incorporate with the computer-based interface in the diagnosis 

system can accelerate the estimating process to save the precious time of physicians.  

7. Conclusions 

A similarity measure is a useful tool for determining the similarity of two objects. Based on the 

same numerical examples of Li and Cheng [20], we demonstrated that their proposed similarity 

measures are dominated by the relative weight of the domain for an IFS in pattern recognition 

problems. In the past, researchers focus on developing new similarities to replace previously 

established similarity measures, moreover, Yen et al. [46], Chu et al. [47], and Chou [49] constructed 

algorithms that are related to the size of the universe of discourse for the discrete cases to repeatedly 

applied their proposed similarity measures. However, Yen et al. [46], Chu et al. [47], and Chou [49] 

did not pay attention to how to decide relative weights for elements in the universe of discourse. 

Based on our discussion, we show that applying the same similarity measure with different relative 

weights will result in different findings for pattern recognition problems. Consequently, we point out 

their proposed measures to analyze the behavior of decision making that should be put more 

attention to the relative weight of the universe of disclose for an IFS. The study can be extended to 

picture fuzzy sets. For example, Ganie and Singh [72] is a very important lineage to future work. We 

may extend the paper to consider spherical fuzzy sets and their applications in selecting mega 

projects as Khan et al. [73]. 

Conflict of interest 

The author declares that there is no conflict of interest in this manuscript. 

References 

1. G. K. Yang, Discussion of arithmetic defuzzifications for fuzzy production inventory models, 

Afr. J. Bus. Manage., 5 (2011), 2336–2344. 

2. C. H. Hsieh, Optimization of fuzzy production inventory models, Inf. Sci., 146 (2002), 29−40. 

https://doi.org/10.1016/S0020-0255(02)00212-8 

https://doi.org/10.1016/S0020-0255(02)00212-8


6931 

AIMS Mathematics Volume 7, Issue 4, 6915–6935. 

3. E. Szmidt, J. Kacprzyk, Distances between intuitionistic fuzzy sets, Fuzzy Sets Syst., 114 (2000), 

505–518. https://doi.org/10.1016/S0165-0114(98)00244-9 

4. K. C. Hung, Medical Pattern Recognition: Applying an Improved Intuitionistic Fuzzy Cross-

Entropy Approach, Adv. Fuzzy Syst., 2012 (2012), 863549. https://doi.org/10.1155/2012/863549 

5. H. Chao, P. Chu, Further discussion for extended similarity measures, J. Discrete Math. Sci. 

Cryptography, 18 (2015), 403–408. https://doi.org/10.1080/09720529.2014.1001582 

6. C. Zhang, H. Fu, Similarity measures on three kinds of fuzzy sets, Pattern Recognit. Lett., 27 

(2006), 1307–1317. https://doi.org/10.1016/j.patrec.2005.11.020 

7. B. Yusoff, I. Taib, L. Abdullah, A. F. Wahab, A new similarity measure on intuitionistic fuzzy 

sets, Int J Comput Math Sci, 5 (2011), 70–74. 

8. C. J. Lin, P. Julian, An Extended Similarity measure for Intuitionistic Fuzzy Sets revisit, J. Discrete 

Math. Sci. Cryptography, 18 (2015), 139–145. https://doi.org/10.1080/09720529.2014.962850 

9. H. W. Tuan, An alternative method for multiple criteria decision-making models using 

intuitionistic fuzzy information, Int. J. Oper. Res., 12 (2015), 119−131. 

10. D. F. Li, Multiattribute decision making models and methods employing intuitionistic fuzzy sets, 

J. Comput. Syst. Sci., 70 (2005), 73–85. https://doi.org/10.1016/j.jcss.2004.06.002 

11. L. Lin, X. H. Yuan, Z. Q. Xia, Multicriteria fuzzy decision-making methods based on 

intuitionistic fuzzy sets, J. Comput. Syst. Sci., 73 (2007), 84–88. 

https://doi.org/10.1016/j.jcss.2006.03.004 

12. S. C. Lin, H. W. Tuan, P. Julian, An Improvement for Fuzzy Stochastic Goal Programming 

Problems, Math. Probl. Eng., 2017 (2017), 8605652. https://doi.org/10.1155/2017/8605652 

13. N. V. Hop, Fuzzy stochastic goal programming problems, Eur. J. Oper. Res., 176 (2007), 77–86. 

https://doi.org/10.1016/j.ejor.2005.09.023 

14. H. C. J. Chao, C. T. Tung, C. H. Chu, Extension theorems for interval-valued intuitionistic 

fuzzy sets, J. Discrete Math. Sci. Cryptography, 21 (2018), 707–712. 

https://doi.org/10.1080/09720529.2016.1247603 

15. S. Y. Chou, J. S. J. Lin, P. Julian, A note on “Solving linear programming problems under 

fuzziness and randomness environment using attainment values”, Inf. Sci., 179 (2009), 4083–

4088. https://doi.org/10.1016/j.ins.2009.08.013 

16. N. V. Hop, Solving linear programming problems under fuzziness and randomness environment 

using attainment values, Inf. Sci., 177 (2007), 2971–2984. 

https://doi.org/10.1016/j.ins.2007.01.032 

17. S. Y. Chou, P. C. Julian, K. C. Hung, A note on fuzzy inventory model with storage space and 

budget constraints, Appl. Math. Modell., 33 (2009), 4069–4077. 

https://doi.org/10.1016/j.apm.2009.02.001 

18. T. K. Roy, M. Maiti, A fuzzy EOQ model with demand-dependent unit cost under limited 

storage capacity, Eur. J. Oper. Res., 99 (1997), 425–432. https://doi.org/10.1016/S0377-

2217(96)00163-4 

19. H. B. Mitchell, On the Dengfend–Chuntian similarity measure and its application to pattern 

recognition, Pattern Recognit. Lett., 24 (2003), 3101–3104. https://doi.org/10.1016/S0167-

8655(03)00169-7 

20. D. F. Li, C. T. Cheng, New similarity measures of intuitionistic fuzzy sets and application to 

pattern recognitions, Pattern Recognit. Lett., 23 (2002), 221–225. 

https://doi.org/10.1016/S0167-8655(01)00110-6 

https://doi.org/10.1016/S0165-0114(98)00244-9
https://doi.org/10.1155/2012/863549
https://doi.org/10.1080/09720529.2014.1001582
https://doi.org/10.1016/j.patrec.2005.11.020
https://doi.org/10.1080/09720529.2014.962850
https://doi.org/10.1016/j.jcss.2004.06.002
https://doi.org/10.1016/j.jcss.2006.03.004
https://doi.org/10.1016/j.ejor.2005.09.023
https://doi.org/10.1080/09720529.2016.1247603
https://doi.org/10.1016/j.ins.2009.08.013
https://doi.org/10.1016/j.ins.2007.01.032
https://doi.org/10.1016/S0377-2217(96)00163-4
https://doi.org/10.1016/S0377-2217(96)00163-4
https://doi.org/10.1016/S0167-8655(03)00169-7
https://doi.org/10.1016/S0167-8655(03)00169-7
https://doi.org/10.1016/S0167-8655(01)00110-6


6932 

AIMS Mathematics Volume 7, Issue 4, 6915–6935. 

21. P. Julian, K. C. Hung, S. J. Lin, On the Mitchell similarity measure and its application to pattern 

recognition, Pattern Recognit. Lett., 33 (2012), 1219–1223. 

https://doi.org/10.1016/j.patrec.2012.01.008 

22. P. S. Deng, H. C. J. Chao, Analysis on comparison of distances derived by one-norm and two-

norm with weight functions, Appl. Math. Comput., 219 (2013), 9093–9098. 

https://doi.org/10.1016/j.amc.2013.03.080 

23. K. C. Hung, H. W. Tuan, Medical diagnosis based on intuitionistic fuzzy sets revisited, J. 

Interdiscip. Math., 16 (2013), 385–395. https://doi.org/10.1080/09720502.2013.841406 

24. S. K. De, R. Biswas, A. R. Roy, An application of intuitionistic fuzzy sets in medical diagnosis, 

Fuzzy Sets Syst., 117 (2001), 209−213. https://doi.org/10.1016/S0165-0114(98)00235-8 

25. H. C. J. Chao, A New Algorithm for Similarity Measures to Pattern Recognition, ARPN J. Sci. 

Technol., 4 (2014), 246–248.  

26. J. H. Park, J. S. Park, Y. C. Kwun, K. M. Lim, New similarity measures on intuitionistic fuzzy 

sets, Adv. Soft Comput., 40 (2007), 22–30. https://doi.org/10.1007/978-3-540-71441-5_3 

27. Z. Liang, P. Shi, Similarity measures on intuitionistic fuzzy sets, Pattern Recognit. Lett., 24 

(2003), 2687–2693. https://doi.org/10.1016/S0167-8655(03)00111-9 

28. P. C. Chuang, C. J. Chao, K. C. Hung, Discussion on Definitions for Similarity Measures of 

Intuitionistic Fuzzy Sets, J. Discrete Math. Sci. Cryptography, 17 (2014), 149–156. 

https://doi.org/10.1080/09720529.2013.841400 

29. Z. S. Xu, Some similarity measures of intuitionistic fuzzy sets and their applications to multiple 

attribute decision making, Fuzzy Optim. Decis. Making, 6 (2007), 109–121. 

https://doi.org/10.1007/s10700-007-9004-z 

30. E. Szmidt, J. Kacprzyk, A new concept of a similarity measure for intuitionistic fuzzy sets and 

its use in group decision making, Lect. Notes Comput. Sci., 3558 (2005), 272–282. 

https://doi.org/10.1007/11526018_27 

31. C. T. Tung, C. Hopscotch, Discussion on Similarity Measure of its Complement, J. Discrete 

Math. Sci. Cryptography, 18 (2015), 417–432. https://doi.org/10.1080/09720529.2015.1032657 

32. J. P. C. Chuang, S. S. C. Lin, P. Julian, Aggregation Weights for Linguistic Hybrid Geometric 

Averaging Operator, Int. J. Oper. Res., 14 (2017), 177−185. 

33. Z. S. Xu, A method based on linguistic aggregation operators for group decision making with 

linguistic preference relations, Inf. Sci., 166 (2004), 19–30. 

https://doi.org/10.1016/j.ins.2003.10.006 

34. H. C. J. Chao, J. Butler, Revision of pattern recognition problems, J. Discrete Math. Sci. 

Cryptography, 20 (2017), 673–680. https://doi.org/10.1080/09720529.2016.1187954 

35. C. Xu, Comment on “Improvement of the distance between intuitionistic fuzzy sets and its 

applications”, J. Intell. Fuzzy Syst., 35 (2018), 3909–3910. https://doi.org/10.3233/JIFS-18987 

36. C. Xu, Improvement of the distance between intuitionistic fuzzy sets and its applications, J. 

Intell. Fuzzy Syst., 33 (2017), 1563–1575. https://doi.org/10.3233/JIFS-17276 

37. Y. F. Lin, Revisions for Distance Measures of Xu, Int. J Sci. Eng. Res., 7 (2019), 10–13. 

38. H. W. Tuan, H. C. J. Chao, Non–fuzzy sets for intuitionistic fuzzy sets, J. Discrete Math. Sci. 

Cryptography, 21 (2018), 1509–1514. https://doi.org/10.1080/09720529.2017.1367467 

39. T. Gerstenkorn, T. Mańko, Correlation of intuitionistic fuzzy sets, Fuzzy Sets Syst., 44 (1991), 

39–43. https://doi.org/10.1016/0165-0114(91)90031-K 

https://doi.org/10.1016/j.patrec.2012.01.008
https://doi.org/10.1016/j.amc.2013.03.080
https://doi.org/10.1080/09720502.2013.841406
https://doi.org/10.1016/S0165-0114(98)00235-8
https://doi.org/10.1007/978-3-540-71441-5_3
https://doi.org/10.1016/S0167-8655(03)00111-9
https://doi.org/10.1080/09720529.2013.841400
https://doi.org/10.1007/s10700-007-9004-z
https://doi.org/10.1007/11526018_27
https://doi.org/10.1080/09720529.2015.1032657
https://doi.org/10.1016/j.ins.2003.10.006
https://doi.org/10.1080/09720529.2016.1187954
https://doi.org/10.3233/JIFS-18987
https://doi.org/10.3233/JIFS-17276
https://doi.org/10.1080/09720529.2017.1367467
https://doi.org/10.1016/0165-0114(91)90031-K


6933 

AIMS Mathematics Volume 7, Issue 4, 6915–6935. 

40. C. H. Chu, S. S. C. Lin, P. Julian, Extension and revisions for Xu’s proposed distance measure, 

J. Intell. Fuzzy Syst., 37 (2019), 657–667. https://doi.org/10.3233/JIFS-181003 

41. Y. Yang, F. Chiclana, Consistency of 2d and 3d distances of intuitionistic fuzzy sets, Expert Syst. 

Appl., 39 (2012), 8665–8670. https://doi.org/10.1016/j.eswa.2012.01.199 

42. P. C. Feng, Discussion on Inexact Optimal Solution under Fuzzy Environment, Int. J. Eng. Res. 

Sci., 5 (2019), 34–40.  

43. D. Wang, An inexact approach for linear programming problems with fuzzy objective and 

resources, Fuzzy Set Syst., 89 (1997), 61–68. https://doi.org/10.1016/S0165-0114(96)00090-5 

44. C. P. Yen, Compound Option Pricing under Fuzzy Environment Revisit, Int. J. Sci. Eng. Res., 7 

(2019), 89–94. 

45. X. D. Wang, J. M. He, S. Li, Compound option pricing under fuzzy environment, J. Appl. Math., 

2014 (2014), 875319. https://doi.org/10.1155/2014/875319 

46. P. C. P. Yen, K. C. Fan, H. C. J. Chao, A new method for similarity measures for pattern recognition, 

Appl. Math. Modell., 37 (2013), 5335–5342. https://doi.org/10.1016/j.apm.2012.10.043 

47. C. H. Chu, K. C. Hung, P. Julian, A complete pattern recognition approach under 

Atanassov’sintuitionistic fuzzy sets, Knowl.-Based Syst. 66 (2014), 36–45. 

https://doi.org/10.1016/j.knosys.2014.04.014 

48. K. C. Hung, J. Lin, P. Chu, An Extended Algorithm of Similarity Measures and Its Application 

to Radar Target Recognition Based on Intuitionistic Fuzzy Sets, J. Test. Eval., 43 (2015), 1–11. 

https://doi.org/10.1520/JTE20130290 

49. W. S. Chou, New Algorithm of Similarity Measures for Pattern-Recognition Problems, J. Test. 

Eval., 44 (2016), 1473–1484. https://doi.org/10.1520/JTE20140319 

50. J. Wallenius, J. S. Dyer, P. C. Fishburn, R. E. Steuer, S. Zionts, K. Deb, Multiple criteria 

decision making, multiattribute utility theory: Recent accomplishments and what lies ahead, 

Manage. Sci., 54 (2008), 1336–1349. https://doi.org/10.1287/mnsc.1070.0838 

51. I. N. Durbach, T. J. Stewart, Modeling uncertainty in multi-criteria decision analysis, Eur. J. 

Oper. Res., 223 (2012), 1–14. https://doi.org/10.1016/j.ejor.2012.04.038 

52. Y. M. Wang, Using the method of maximizing deviations to make decision for multi-indices, J. 

Syst. Eng. Electron., 8 (1997), 21–26. 

53. E. Herrera-Viedma, S. Alonso, F. Chiclana, F. Herrera, A consensus model for group decision 

making with incomplete fuzzy preference relations, IEEE Trans. Fuzzy Syst., 15 (2007), 863–

877. https://doi.org/10.1109/TFUZZ.2006.889952 

54. S. Hartmann, C. Martini, J. Sprenger, Consensual decision-making among epistemic peers, 

Episteme, 6 (2009), 110–129. https://doi.org/10.3366/E1742360009000598 

55. Y. Wang, J. Yang, D. Xu, K. Chin, The evidential reasoning approach for multiple attribute 

decision analysis using interval belief degrees, Eur. J. Oper. Res., 175 (2006), 35–66. 

https://doi.org/10.1016/j.ejor.2005.03.034 

56. J. Yang, D. Xu, Evidential reasoning rule for evidence combination, Artif. Intell., 205 (2013), 1–

29. https://doi.org/10.1016/j.artint.2013.09.003 

57. D. F. Li, S. P. Wan, Fuzzy linear approach to multiattribute decision making with multiple types 

of attribute values and incomplete weight information, Appl. Soft Comput., 13 (2013), 4333–

4348. https://doi.org/10.1016/j.asoc.2013.06.019 

https://doi.org/10.3233/JIFS-181003
https://doi.org/10.1016/j.eswa.2012.01.199
https://doi.org/10.1016/S0165-0114(96)00090-5
https://doi.org/10.1155/2014/875319
https://doi.org/10.1016/j.apm.2012.10.043
https://doi.org/10.1016/j.knosys.2014.04.014
https://doi.org/10.1520/JTE20130290
https://doi.org/10.1520/JTE20140319
https://doi.org/10.1287/mnsc.1070.0838
https://doi.org/10.1016/j.ejor.2012.04.038
https://doi.org/10.1109/TFUZZ.2006.889952
https://doi.org/10.3366/E1742360009000598
https://doi.org/10.1016/j.ejor.2005.03.034
https://doi.org/10.1016/j.artint.2013.09.003
https://doi.org/10.1016/j.asoc.2013.06.019


6934 

AIMS Mathematics Volume 7, Issue 4, 6915–6935. 

58. D. F. Li, S. P. Wan, Fuzzy heterogeneous multiattribute decision making method for 

outsourcing provider selection, Expert Syst. Appl., 41 (2014), 3047–3059. 

https://doi.org/10.1016/j.eswa.2013.10.036 

59. S. P. Wan, D. F. Li, Fuzzy LINMAP approach to heterogeneous MADM considering 

comparisons of alternatives with hesitation degrees, Omega, 41 (2013), 925–940. 

https://doi.org/10.1016/j.omega.2012.12.002 

60. S. P. Wan, D. F. Li, Atanassov’s intuitionistic fuzzy programming method for hybrid 

multiattribute group decision making with Atanassov’s intuitionistic fuzzy truth degrees, IEEE 

Trans. Fuzzy Syst., 22 (2014), 300–312. https://doi.org/10.1109/TFUZZ.2013.2253107 

61. X. Zhang, Z. Xu, H. Wang, Heterogeneous multiple criteria group decision making with 

incomplete weight information: A deviation modeling approach, Inf. Fusion, 25 (2015), 49–62. 

https://doi.org/10.1016/j.inffus.2014.10.006 

62. S. H. Kim, B. S. Ahn, Interactive group decision making procedure under incomplete 

information, Eur. J. Oper. Res., 116 (1999), 498–507. https://doi.org/10.1016/S0377-

2217(98)00040-X 

63. Z. Wang, K. W. Li, W. Wang, An approach to multiattribute decision making with interval-

valued intuitionistic fuzzy assessments and incomplete weights, Inf. Sci., 179 (2009), 3026–

3040. https://doi.org/10.1016/j.ins.2009.05.001 

64. T. Y. Chen, Interval-valued intuitionistic fuzzy qualiflex method with a likelihood-based 

comparison approach for multiple criteria decision analysis, Inf. Sci., 261 (2014), 149–169. 

https://doi.org/10.1016/j.ins.2013.08.054 

65. Y. Dong, H. Zhang, E. Herrera-Viedma, Consensus reaching model in the complex and dynamic 

MAGDM problem, Knowl.-Based Syst., 106 (2016), 206–219. 

https://doi.org/10.1016/j.knosys.2016.05.046 

66. G. L. Xu, S. P. Wan, J. Y. Dong, A Hesitant Fuzzy Programming Method for Hybrid MADM 

with Incomplete Attribute Weight Information, Informatica, 27 (2016), 863–892. 

https://doi.org/10.15388/Informatica.2016.115 

67. S. Wan, F. Wang, J. Dong, Additive consistent interval-valued Atanassov intuitionistic fuzzy 

preference relation and likelihood comparison algorithm based group decision making, Eur. J. 

Oper. Res., 263 (2017), 571–582. https://doi.org/10.1016/j.ejor.2017.05.022 

68. Y. Lin, Y. Wang, Group Decision Making With Consistency of Intuitionistic Fuzzy Preference 

Relations Under Uncertainty, IEEE/CAA J. Autom. Sin., 5 (2018), 741–748. 

https://doi.org/10.1109/JAS.2016.7510037 

69. L. H. Van, V. F. Yu, L. Q. Dat, C. C. Dung, S. Y. Chou, N. V. Loc, New Integrated Quality 

Function Deployment Approach Based on Interval Neutrosophic Set for Green Supplier 

Evaluation and Selection, Sustainability, 10 (2018), 838. https://doi.org/10.3390/su10030838 

70. W. Yang, Y. Pang, J. Shi, C. Wang, Linguistic hesitant intuitionistic fuzzy decision-making 

method based on VIKOR, Nat. Comput. Appl., 29 (2018), 613–626. 

https://doi.org/10.1007/s00521-016-2526-y 

71. K. C. Hung, Y. C. Tsai, K. P. Lin, P. Julian, A novel measured function for MCDM problem 

based on interval-valued intuitionistic fuzzy sets, IEICE Trans. Inf. Syst., E93.D (2010), 3059–

3065. https://doi.org/10.1587/transinf.E93.D.3059 

https://doi.org/10.1016/j.eswa.2013.10.036
https://doi.org/10.1016/j.omega.2012.12.002
https://doi.org/10.1109/TFUZZ.2013.2253107
https://doi.org/10.1016/j.inffus.2014.10.006
https://doi.org/10.1016/S0377-2217(98)00040-X
https://doi.org/10.1016/S0377-2217(98)00040-X
https://doi.org/10.1016/j.ins.2009.05.001
https://doi.org/10.1016/j.ins.2013.08.054
https://doi.org/10.1016/j.knosys.2016.05.046
https://doi.org/10.15388/Informatica.2016.115
https://doi.org/10.1016/j.ejor.2017.05.022
https://doi.org/10.1109/JAS.2016.7510037
https://doi.org/10.3390/su10030838
https://doi.org/10.1007/s00521-016-2526-y
https://doi.org/10.1587/transinf.E93.D.3059


6935 

AIMS Mathematics Volume 7, Issue 4, 6915–6935. 

72. A. H. Ganie, S. Singh, A picture fuzzy similarity measure based on direct operations and novel 

multi-attribute decision-making method, Neural Comput. Appl., 33 (2021), 9199–9219. 

https://doi.org/10.1007/s00521-020-05682-0 

73. M. J. Khan, P. Kumam, W. Deebani, W. Kumam, Z. Shah, Distance and similarity measures for 

spherical fuzzy sets and their applications in selecting mega projects, Mathematics, 8 (2020), 

519. https://doi.org/10.3390/math8040519 

© 2022 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (http://creativecommons.org/licenses/by/4.0) 

https://doi.org/10.1007/s00521-020-05682-0
https://doi.org/10.3390/math8040519

