Loading [MathJax]/jax/output/SVG/jax.js
Research article

Complex intuitionistic fuzzy soft SWARA - COPRAS approach: An application of ERP software selection

  • Received: 04 November 2021 Revised: 10 December 2021 Accepted: 03 January 2022 Published: 12 January 2022
  • MSC : 03E72, 68T35, 90B50, 62A86

  • In this manuscript, we propose an integrated framework based on COmplex PRoportional ASsessment and Step-wise Weight Assessment Ratio Analysis approach within the complex intuitionistic fuzzy soft (CIFS) context. This context is an ideal technique with complex fuzzy foundation that means to denote multi-dimensional data in a concise. In this framework, criteria weights are evaluated by the SWARA technique, and the ranking of alternatives is determined by the COPRAS method using CIFSs. Further, to illustrate the applicability of the presented technique, an empirical case study of ERP software selection problem is taken. A comparative study and sensitivity analysis is presented to verify the strength of the presented methodology.

    Citation: Harish Garg, J. Vimala, S. Rajareega, D. Preethi, Luis Perez-Dominguez. Complex intuitionistic fuzzy soft SWARA - COPRAS approach: An application of ERP software selection[J]. AIMS Mathematics, 2022, 7(4): 5895-5909. doi: 10.3934/math.2022327

    Related Papers:

    [1] Adel Lachouri, Mohammed S. Abdo, Abdelouaheb Ardjouni, Bahaaeldin Abdalla, Thabet Abdeljawad . On a class of differential inclusions in the frame of generalized Hilfer fractional derivative. AIMS Mathematics, 2022, 7(3): 3477-3493. doi: 10.3934/math.2022193
    [2] Bashir Ahmad, Manal Alnahdi, Sotiris K. Ntouyas, Ahmed Alsaedi . On a mixed nonlinear boundary value problem with the right Caputo fractional derivative and multipoint closed boundary conditions. AIMS Mathematics, 2023, 8(5): 11709-11726. doi: 10.3934/math.2023593
    [3] Weichun Bu, Tianqing An, Guoju Ye, Yating Guo . Nonlocal fractional p()-Kirchhoff systems with variable-order: Two and three solutions. AIMS Mathematics, 2021, 6(12): 13797-13823. doi: 10.3934/math.2021801
    [4] Rabah Khaldi, Assia Guezane-Lakoud . On a generalized Lyapunov inequality for a mixed fractional boundary value problem. AIMS Mathematics, 2019, 4(3): 506-515. doi: 10.3934/math.2019.3.506
    [5] Zhoujin Cui . Primary resonance and feedback control of the fractional Duffing-van der Pol oscillator with quintic nonlinear-restoring force. AIMS Mathematics, 2023, 8(10): 24929-24946. doi: 10.3934/math.20231271
    [6] Fátima Cruz, Ricardo Almeida, Natália Martins . A Pontryagin maximum principle for optimal control problems involving generalized distributional-order derivatives. AIMS Mathematics, 2025, 10(5): 11939-11956. doi: 10.3934/math.2025539
    [7] Subramanian Muthaiah, Dumitru Baleanu, Nandha Gopal Thangaraj . Existence and Hyers-Ulam type stability results for nonlinear coupled system of Caputo-Hadamard type fractional differential equations. AIMS Mathematics, 2021, 6(1): 168-194. doi: 10.3934/math.2021012
    [8] Kishor D. Kucche, Sagar T. Sutar, Kottakkaran Sooppy Nisar . Analysis of nonlinear implicit fractional differential equations with the Atangana-Baleanu derivative via measure of non-compactness. AIMS Mathematics, 2024, 9(10): 27058-27079. doi: 10.3934/math.20241316
    [9] Teng-Fei Shen, Jian-Gen Liu, Xiao-Hui Shen . Existence of solutions for Hadamard fractional nonlocal boundary value problems with mean curvature operator at resonance. AIMS Mathematics, 2024, 9(10): 28895-28905. doi: 10.3934/math.20241402
    [10] Lakhlifa Sadek, Tania A Lazǎr . On Hilfer cotangent fractional derivative and a particular class of fractional problems. AIMS Mathematics, 2023, 8(12): 28334-28352. doi: 10.3934/math.20231450
  • In this manuscript, we propose an integrated framework based on COmplex PRoportional ASsessment and Step-wise Weight Assessment Ratio Analysis approach within the complex intuitionistic fuzzy soft (CIFS) context. This context is an ideal technique with complex fuzzy foundation that means to denote multi-dimensional data in a concise. In this framework, criteria weights are evaluated by the SWARA technique, and the ranking of alternatives is determined by the COPRAS method using CIFSs. Further, to illustrate the applicability of the presented technique, an empirical case study of ERP software selection problem is taken. A comparative study and sensitivity analysis is presented to verify the strength of the presented methodology.



    The linear complexity and the k-error linear complexity are important cryptographic characteristics of stream cipher sequences. The linear complexity of an N-periodic sequence s={su}u=0, denoted by LC(s), is defined as the length of the shortest linear feedback shift register (LFSR) that generates it [1]. With the Berlekamp-Massey (B-M) algorithm [2], if LC(s)N/2, then s is regarded as a good sequence with respect to its linear complexity. For an integer k0, the k-error linear complexity LCk(s) is the smallest linear complexity that can be obtained by changing at most k terms of s in the first period and periodically continued [3]. The cryptographic background of the k-error linear complexity is that some key streams with large linear complexity can be approximated by some sequences with much lower linear complexity [2]. For a sequence to be cryptographically strong, its linear complexity should be large enough, and its k-error linear complexity should be close to the linear complexity.

    The relationship between the linear complexity and the DFT of the sequence was given by Blahut in [4]. Let m be the order of 2 modulo an odd number N. For a primitive N-th root βF2m of unity, the DFT of s is defined by

    ρi=N1u=0suβiu0iN1. (1.1)

    Then

    LC(s)=WH(ρ0,ρ1,,ρN1), (1.2)

    where WH(A) is the hamming weight of the sequence A. The polynomial

    G(X)=N1i=0ρiXiF2m[X] (1.3)

    is called the Mattson-Solomon polynomial (M-S polynomial) of s [5]. It can be deduced from Eqs (1.2)and (1.3) that the linear complexity of s is equal to the number of the nonzero terms of G(X), namely

    LC(s)=|G(X)|. (1.4)

    By the inverse DFT,

    su=N1i=0ρiβiu=G(βu)0uN1. (1.5)

    There are many studies about two-prime generators. In 1997–1998, Ding calculated the linear complexity and the autocorrelation values of binary Whiteman generalized cyclotomic sequences of order two [6,7]. In 2013, Li defined a new generalized cyclotomic sequence of order two of length pq, which is based on Whiteman generalized cyclotomic classes, and calculated its linear complexity [8]. In 2015, Wei determined the k-error linear complexity of Legendre sequences for k=1,2 [9]. In 2018, Hofer and Winterhof studied the 2-adic complexity of the two-prime generator of period pq [10]. Alecu and Sălăgean transformed the optimisation problem of finding the k-error linear complexity of a sequence into an optimisation problem in the DFT domain, by using Blahut's theorem in the same year [11]. In 2019, in terms of the DFT, Chen and Wu discussed the k-error linear complexity for Legendre, Ding-Helleseth-Lam, and Hall's sextic residue sequences of odd prime period p [12]. In 2020, Zhou and Liu presented a type of binary sequences based on a general two-prime generalized cyclotomy, and derived their minimal polynomial and linear complexity [13]. In 2021, the autocorrelation distribution and the 2-adic complexity of generalized cyclotomic binary sequences of order 2 with period pq were determined by Jing [14].

    This paper is organized as follows. Firstly, we present some preliminaries about Whiteman generalized cyclotomic classes and the linear complexity in Section 2. In Section 3, we give main results about the linear complexity of Whiteman generalized cyclotomic sequences of order two. In Section 4, we give the 1-error linear complexity of these sequences. At last, we conclude this paper in Section 5.

    Let p and q be two distinct odd primes with gcd(p1,q1)=2, and N=pq, e=(p1)(q1)/2. By the Chinese Remainder Theorem, there is a fixed common primitive root g of both p and q such that ordN(g)=e. Let x be an integer satisfying

    x=g(modp)x=1(modq).

    Then the set

    Di={gsximodN:s=0,1,,e1}

    for i=0,1 is called a Whiteman generalized cyclotomic class of order two [15].

    As pointed out in [14], the unit group of the ring ZN is

    ZN={a(mod N):gcd(a,N)=1}={ip+jq(mod N):1iq11jp1}.

    Let P={p,2p,,(q1)p}, Q={q,2q,,(p1)q} and R={0}. Then ZN=ZNPQR. The sequence s(a,b,c)={su}u=0 over F2 is defined by

    su={c,if u=0,a,if uP,b,if uQ,12(1(up)(uq)),if uZN,

    where () denotes the Legendre symbol and a,b,cF2 [14].

    Lemma 2.1. [7] 1D1, if |pq|/2 is odd; and 1D0, if |pq|/2 is even.

    Lemma 2.2. [6]

    (1)Ifp±1(mod8),q±1(mod8)orp±3(mod8),q±3(mod8),then2D0.(2)Ifp±1(mod8),q±3(mod8)orp±3(mod8),q±1(mod8),then2D1.

    Lemma 2.3. [6] (1) If aP, then aP=P and aQ=R.

    (2) If aQ, then aP=R and aQ=Q.

    (3) If aDi, then aP=P, aQ=Q, and aDj=D(i+j)mod2, where i,j=0,1.

    It was shown in [6] that, for a primitive N-th root βF2m of unity, we have

    iPβi=1,iQβi=1,

    and

    iD0βi+iD1βi+iPβi+iQβi=1. (2.1)

    Lemma 2.4. [6]

    uDjβiu={p12(mod2),ifiP,q12(mod2),ifiQ.

    Actually, if p1(mod8) or p3(mod8), then (p1)/2=1; if p1(mod8) or p3(mod8), then (p1)/2=0. By symmetry, if q1(mod8) or q3(mod8), then (q1)/2=1; if q1(mod8) or q3(mod8), then (q1)/2=0.

    Lemma 2.5. Define

    Di(X)=uDiXuF2[X],i=0,1.

    Then for β, we have D0(β)=0 and D1(β)=1 if 2D0; D0(β)=ω and D1(β)=1+ω if 2D1, where ωF4F2.

    Proof. (1) If 2D0, by Lemma 2.3 we have

    [Di(β)]2=Di(β2)=2uDiβ2u=Di(β)F2.

    (2) If 2D1, by Lemma 2.3 we have

    [Di(β)]2=Di(β2)=2uDi+1β2u=Di+1(β),[Di(β)]4=[Di(β)2]2=[Di+1(β)]2=Di+1(β2)=2uDiβ2u=Di(β).

    Hence Di(β)F4F2.

    And by Eq (2.1), we have D0(β)D1(β) and D0(β)+D1(β)=1. Assume that D0(β)=0, D1(β)=1 for 2D0, and D0(β)=ω, D1(β)=1+ω for 2D1, where ωF4F2.

    Let LC(s(a,b,c)) be the linear complexity of s(a,b,c), and the other symbols be the same as before.

    Theorem 3.1. Let pv(mod8) and qw(mod8), where v,w=±1,±3. Then the linear complexity of s(a,b,c) respect to different values of p and q is as shown as Table 1.

    Table 1.  The linear complexity of s(a,b,c).
    s(0,0,0) s(0,0,1) s(0,1,0) s(0,1,1) s(1,0,0) s(1,0,1) s(1,1,0)) s(1,1,1)
    (1,3) or (3,1) pqp pqq+1 pq1 pqpq+2 pqpq+1 pq pqq pqp+1
    (1,3) or (3,1) pq1 pqpq+2 pqp pqq+1 pqq pqp+1 pqpq+1 pq
    (1,1) or (3,3) pqp+q12 pq+pq+12 pq+p+q32 pqpq+32 pqpq+12 pq+p+q12 pq+pq12 pqp+q+12
    (1,1) or (3,3) pq+p+q32 pqpq+32 pqp+q12 pq+pq+12 pq+pq12 pqp+q+12 pqpq+12 pq+p+q12
    (3,1) or (1,3) pqq pqp+1 pqpq+1 pq pq1 pqpq+2 pqp pqq+1
    (1,1) or (3,3) pq+pq12 pqp+q+12 pqpq+12 pq+p+q12 pq+p+q32 pqpq+32 pqp+q12 pq+pq+12

     | Show Table
    DownLoad: CSV

    Proof. We provide the process of calculating LC(s(0,0,0)) when v=1 and w=3, and can prove other cases in a similar way.

    By Lemmas 2.1–2.3 and Eq (1.1), we have 1D1, 2D1, then

    ρi=N1u=0suβiu=uD1βiu=uD0βiu,

    and ρ0=0. By Eq (1.3), we have

    G(X)=N1i=0ρiXi=iD0ρiXi+iD1ρiXi+iPρiXi+iQρiXi+ρ0=iD0uD0βiuXi+iD1uD0βiuXi+iPuD0βiuXi+iQuD0βiuXi.

    Let t=iu. Then by Lemmas 2.3–2.5, we have

    G(X)=iD0tD0βtXi+iD1tD1βtXi+iPp12Xi+iQq12Xi=D0(β)D0(X)+D1(β)D1(X)+iPXi=ωD0(X)+(1+ω)D1(X)+iPXi.

    By Eq (1.4) we can get the linear complexity of s(0,0,0) as

    LC(s(0,0,0))=|G(X)|=pqp.

    Actually, the linear complexity of s(1,0,0) was studied by Ding in [6] with its minimal polynomial.

    Let LCk(s(a,b,c)) be the k-error linear complexity of s(a,b,c), ˜s={˜su}u=0 be the new sequence obtained by changing at most k terms of s, that ˜s=s+e, where e={eu}u=0 is an error sequence of period N. Ding has provided in [2] that, the k-error linear complexity of a sequence can be expressed as

    LCk(s)=minWH(e)k{LC(s+e)}. (4.1)

    It is clearly that LC0(s)=LC(s) and

    NLC0(s)LC1(s)LCl(s)=0,

    where l=WH(s).

    Let G(X), Gk(X) and ˜G(X) be the M-S polynomials of s, e and ˜s respectively. Note that

    G(X)=N1i=0ρiXi, Gk(X)=N1i=0ηiXi, ˜G(X)=N1i=0ξiXi, (4.2)

    where ρi, ηi and ξi are the DFTs of s, e and ˜s respectively. By Eqs (1.5), (4.1) and (4.2), we have ˜G(X)=G(X)+Gk(X), then

    ξi=ρi+ηi. (4.3)

    Assume that eu0=1 for 0u0N1 and eu=0 for uu0 in the first period of e. Then the DFT of e is

    ηi=N1u=0euβiu=βiu00iN1.

    Specially, if u0=0, then ηi=1 for all 0iN1; otherwise, η0=1 and the order of ηi is N for 1iN1.

    Theorem 4.1. Let pv(mod8) and qw(mod8), where v,w=±1,±3, and the other symbols be the same as before. Then the 1-error linear complexity of s(a,b,c) is as shown as Table 2.

    Table 2.  The 1-error linear complexity of s(a,b,c).
    s(0,0,0) and s(0,0,1) s(0,1,0) and s(0,1,1) s(1,0,0) and s(1,0,1) s(1,1,0)) and s(1,1,1)
    (1,3) or (3,1) (1) pqp, if p>q;
    (2) pqq+1, if p<q.
    pqpq+2 pqpq+1 (1) pqp+1, if p>q;
    (2) pqq, if p<q.
    (1,3) or (3,1) pqpq+2 (1) pqp, if p>q;
    (2) pqq+1, if p<q.
    (1) pqp+1, if p>q;
    (2) pqq, if p<q.
    pqpq+1
    (1,1) or (3,3) (1) pqp+q12, if p>q;
    (2) pq+pq+12, if p<q.
    pqpq+32 pqpq+12 (1) pqp+q+12, if p>q;
    (2) pq+pq12, if p<q.
    (1,1) or (3,3) pqpq+32 (1) pqp+q12, if p>q;
    (2) pq+pq+12, if p<q.
    (1) pqp+q+12, if p>q;
    (2) pq+pq12, if p<q.
    pqpq+12
    (3,1) or (1,3) (1) pqp+1, if p>q;
    (2) pqq, if p<q.
    pqpq+1 pqpq+2 (1) pqp, if p>q;
    (2) pqq+1, if p<q.
    (1,1) or (3,3) (1) pqp+q+12, if p>q;
    (2) pq+pq12, if p<q.
    pqpq+12 pqpq+32 (1) pqp+q12, if p>q;
    (2) pq+pq+12, if p<q.

     | Show Table
    DownLoad: CSV

    Proof. We consider the case v=1,w=3 for LC1(s(0,0,0)). By Lemmas 2.1–2.5 and Eq (1.1), we have 1D1, 2D1 and

    ξi=ρi+ηi=uD0βiu+βiu0={ω+βiu0,if iD0,1+ω+βiu0,if iD1,1+βiu0,if iP,βiu0,if iQ,1,if i=0.

    Then by Eq (4.2), we can get

    ˜G(X)=N1i=0ξiXi=iD0(ω+βiu0)Xi+iD1(1+ω+βiu0)Xi+iP(1+βiu0)Xi+iQβiu0Xi+1.

    According to Lemma 2.3, we can get the following results.

    (1) If u0=0, then

    ˜G(X)=iD0(ω+1)Xi+iD1ωXi+iQXi+1,|˜G(X)|=pqq+1.

    (2) If u0Q, then

    ˜G(X)=iD0(ω+βiu0)Xi+iD1(1+ω+βiu0)Xi+iQβiu0Xi+1,|˜G(X)|=pqq+1.

    (3) If u0D0 or u0D1 or u0P, then

    ˜G(X)=iD0(ω+βiu0)Xi+iD1(1+ω+βiu0)Xi+iP(1+βiu0)Xi+iQβiu0Xi+1,|˜G(X)|=pq.

    Compare the results of Cases (1)–(3) with LC(s(0,0,0))=pqp. If p>q, then pqp<pqq+1<pq; if p<q, then pqq+1<pqp<pq. Hence

    LC1(s(0,0,0))={pqp,if p>q,pqq+1,if p<q.

    Similarly we can prove the other cases for LC1(s(a,b,c)).

    All results of LC(s(a,b,c)) and LC1(s(a,b,c)) in Sections 3 and 4 have been tested by MAGMA program.

    The purpose of this paper is to determine the linear complexity and the 1-error linear complexity of s(a,b,c). In most of the cases, s(a,b,c) possesses high linear complexity, namely LC(s(a,b,c))>N/2, consequently has decent stability against 1-bit error. Notice that the linear complexity of some of the sequences above is close to N/2. Then the sequences can be selected to construct cyclic codes by their minimal generating polynomials with the method introduced by Ding [16].

    This work was supported by Fundamental Research Funds for the Central Universities (No. 20CX05012A), the Major Scientific and Technological Projects of CNPC under Grant (No. ZD2019-183-008), the National Natural Science Foundation of China (Nos. 61902429, 11775306) and Shandong Provincial Natural Science Foundation of China (ZR2019MF070).

    The authors declare that they have no conflicts of interest.



    [1] A. U. M. Alkouri, A. R. Salleh, Complex Intuitionistic Fuzzy Sets, AIP Conf. Proc., 1482 (2012), 464–470.
    [2] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3
    [3] J. J. Buckley, Fuzzy complex numbers, Fuzzy Sets Syst., 33 (1989), 333–345. https://doi.org/10.1016/0165-0114(89)90122-X doi: 10.1016/0165-0114(89)90122-X
    [4] D. E. Ighravwe, S. A. Oke, An integrated approach of SWARA and fuzzy COPRAS for maintenance technicians' selection factors ranking, Int. J. Syst. Assur. Eng. Manage., 10 (2019), 1615–1626. https://doi.org/10.1007/s13198-019-00912-8 doi: 10.1007/s13198-019-00912-8
    [5] F. Feng, Z. Wan, J. C. R. Alcantud, H. Garg, Three-way decision based on canonical soft sets of hesitant fuzzy sets, AIMS Math., 7 (2022), 2061–2083. https://doi.org/10.3934/math.2022118 doi: 10.3934/math.2022118
    [6] H. Garg, D. Rani, Some Generalized Complex Intuitionistic Fuzzy Aggregation Operators and Their Application to Multicriteria Decision-Making Process, Arabian J. Sci. Eng., 44 (2019), 2679–2698. https://doi.org/10.1007/s13369-018-3413-x doi: 10.1007/s13369-018-3413-x
    [7] H. Garg, R. Arora, Algorithms Based on COPRAS and Aggregation Operators with New Information Measures for Possibility Intuitionistic Fuzzy Soft Decision-Making, Math. Probl. Eng., 2020 (2020), 1563768. https://doi.org/10.1155/2020/1563768 doi: 10.1155/2020/1563768
    [8] H. Garg, Nancy, Algorithms for possibility linguistic single-valued neutrosophic decision-making based on COPRAS and aggregation operators with new information measures, Measurement, 138 (2019), 278–290. https://doi.org/10.1016/j.measurement.2019.02.031 doi: 10.1016/j.measurement.2019.02.031
    [9] H. Garg, D. Rani, New prioritized aggregation operators with priority degrees among priority orders for complex intuitionistic fuzzy information, J. Ambient Intell. Humanized Comput., 2021 (2021), 1–27. https://doi.org/10.1007/s12652-021-03164-2 doi: 10.1007/s12652-021-03164-2
    [10] M. Keil, A. Tiwana, Relative Importance of Evaluation Criteria for Enterprise Systems: A Conjoint Study, Inf. Syst. J., 16 (2006), 237–262. https://doi.org/10.1111/j.1365-2575.2006.00218.x doi: 10.1111/j.1365-2575.2006.00218.x
    [11] V. Kersuliene, E. Zavadskas, Z. Turskis, Selection of rational dispute resolution method by applying new step-wise weight assessment ratio analysis (SWARA), J. Bus. Econ. Manage., 11 (2010), 243–258. https://doi.org/10.3846/jbem.2010.12 doi: 10.3846/jbem.2010.12
    [12] Z. Kong, J. Zhao, L. Wang, J. Zhang, A new data filling approach based on probability analysis in incomplete soft sets, Expert Syst. Appl., 184 (2021), 115358. https://doi.org/10.1016/j.eswa.2021.115358 doi: 10.1016/j.eswa.2021.115358
    [13] T. Kumar, R. K. Bajaj, On complex intuitionistic fuzzy soft sets with distance measures and entropies, J. Math., 2014 (2014), 972198. https://doi.org/10.1155/2014/972198 doi: 10.1155/2014/972198
    [14] R. Kumari, A. R. Mishra, Multi-criteria COPRAS Method Based on Parametric Measures for Intuitionistic Fuzzy Sets: Application of Green Supplier Selection, Iran. J. Sci. Technol., Trans. Electr. Eng., 44 (2020), 1645–1662. https://doi.org/10.1007/s40998-020-00312-w doi: 10.1007/s40998-020-00312-w
    [15] J. Liu, L. Huaxiong, H. Bing, L. Yu, L. Dun, Convex combination-based consensus analysis for intuitionistic fuzzy three-way group decision, Inf. Sci., 574 (2021), 542–566. https://doi.org/10.1016/j.ins.2021.06.018 doi: 10.1016/j.ins.2021.06.018
    [16] J. Ma, L. Feng, J. Yang, Using complex fuzzy sets for strategic cost evaluation in supply chain downstream, 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2017, 1–6. https://doi.org/10.1109/FUZZ-IEEE.2017.8015452
    [17] X. Ma, J. Zhan, M. Khan, Complex fuzzy sets with applications in signals, Comput. Appl. Math., 38 (2019), 150. https://doi.org/10.1007/s40314-019-0925-2 doi: 10.1007/s40314-019-0925-2
    [18] P. K. Maji, R. Biswas, A. R. Roy, Intuitionistic fuzzy soft sets, J. Fuzzy Math., 9 (2001), 677–692.
    [19] T. Mahmood, Z. Ali, Prioritized Muirhead mean aggregation operators under the complex single-valued neutrosophic settings and their application in multi-attribute decision making, J. Comput. Cognit. Eng., (2021). https://doi.org/10.47852/bonviewJCCE2022010104 doi: 10.47852/bonviewJCCE2022010104
    [20] A. R. Mishra, R. K. Singh, D. Motwani, Multi-criteria assessment of cellular mobile telephone service providers using intuitionistic fuzzy WASPAS method with similarity measures, Granular Comput., 4 (2019), 511–529. https://doi.org/10.1007/s41066-018-0114-5 doi: 10.1007/s41066-018-0114-5
    [21] A. R. Mishra, P. Rani, K. Pandey, A. Mardani, J. Streimikis, D. Streimikiene, et al., Novel Multi-Criteria Intuitionistic Fuzzy SWARA-COPRAS Approach for Sustainability Evaluation of the Bioenergy Production Process, Sustainability, 12 (2020), 4155. https://doi.org/10.3390/su12104155 doi: 10.3390/su12104155
    [22] A. R. Mishra, P. Rani, A. Mardani, K. R. Pardasani, K. Govindan, M. Alrasheedi, Healthcare evaluation in hazardous waste recycling using novel interval-valued intuitionistic fuzzy information based on complex proportional assessment method, Comput. Ind. Eng., 139 (2020), 106140. https://doi.org/10.1016/j.cie.2019.106140 doi: 10.1016/j.cie.2019.106140
    [23] D. Molodtsov, Soft set theory - First result, Comput. Math. Appl., 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5
    [24] R. T. Ngan, L. H. Son, M. Ali, D. E. Tamir, N. D. Rishe, A. Kandel, Representing complex intuitionistic fuzzy set by quaternion numbers and applications to decision making, Appl. Soft Comput., 87 (2020). https://doi.org/10.1016/j.asoc.2019.105961 doi: 10.1016/j.asoc.2019.105961
    [25] S. Rajareega, J. Vimala, Operations on complex intuitionistic fuzzy soft lattice ordered group and CIFS-COPRAS method for equipment selection process, J. Intell. Fuzzy Syst., 41 (2021), 5709–5718. https://doi.org/10.3233/JIFS-189890 doi: 10.3233/JIFS-189890
    [26] S. Rajareega, J. Vimala, D. Preethi, Complex Intuitionistic Fuzzy Soft Lattice Ordered Group and Its Weighted Distance Measures, Mathematics, 8 (2020), 705. https://doi.org/10.3390/math8050705 doi: 10.3390/math8050705
    [27] S. Rajareega, J. Vimala, D. Preethi, The Role of (α,β) - Level set on Complex Intuitionistic Fuzzy Soft Lattice Ordered Groups, Int. J. Adv. Sci. Technol., 28 (2019), 116–123.
    [28] D. Ramot, R. Milo, M. Friedman, A. Kandel, Complex fuzzy sets, IEEE Trans. Fuzzy Syst., 10 (2002), 171–186. https://doi.org/10.1109/91.995119 doi: 10.1109/91.995119
    [29] D. Rani, H. Garg, Complex intuitionistic fuzzy power aggregation operators and their applications in multi-criteria decision-making, Expert Syst., 35 (2018), e12325. https://doi.org/10.1111/exsy.12325 doi: 10.1111/exsy.12325
    [30] P. Rani, A. R. Mishra, R. Krishankumar, A. Mardani, F. Cavallaro, K. S. Ravichandran, et al., Hesitant Fuzzy SWARA-Complex Proportional Assessment Approach for Sustainable Supplier Selection (HF-SWARA-COPRAS), Symmetry, 12 (2020), 1152. https://doi.org/10.3390/sym12071152 doi: 10.3390/sym12071152
    [31] M. Unver, M. Olgun, E. Turkarslan, Cosine and cotangent similarity measures based on Choquet integral for Spherical fuzzy sets and applications to pattern recognition, J. Comput. Cognit. Eng., (2021). https://doi.org/10.47852/bonviewJCCE2022010105 doi: 10.47852/bonviewJCCE2022010105
    [32] F. Xiao, CEQD: A complex mass function to predict interference effects, IEEE Trans. Cybern., 2021 (2021), 1–13. https://doi.org/10.1109/TCYB.2020.3040770 doi: 10.1109/TCYB.2020.3040770
    [33] F. Xiao, GIQ: A generalized intelligent quality-based approach for fusing multi-source information, IEEE Trans. Fuzzy Syst., 29 (2021), 2018–2031. https://doi.org/10.1109/TFUZZ.2020.2991296 doi: 10.1109/TFUZZ.2020.2991296
    [34] F. Xiao, Generalization of Dempster - Shafer theory: A complex mass function, Appl. Intell., 50 (2020), 3266–3275. https://doi.org/10.1007/s10489-019-01617-y doi: 10.1007/s10489-019-01617-y
    [35] F. Xiao, Generalized belief function in complex evidence theory, J. Intell. Fuzzy Syst., 38 (2020), 3665–3673. https://doi.org/10.3233/JIFS-179589 doi: 10.3233/JIFS-179589
    [36] J. Yang, Y. Yiyu, A three-way decision based construction of shadowed sets from Atanassov intuitionistic fuzzy sets, Inf. Sci., 577 (2021), 1–21. https://doi.org/10.1016/j.ins.2021.06.065 doi: 10.1016/j.ins.2021.06.065
    [37] J. Yang, Y. Yiyu, Z. Xianyong, A model of three-way approximation of intuitionistic fuzzy sets, Int. J. Mach. Learn. Cybern., 2021 (2021), 1–12. https://doi.org/10.1007/s13042-021-01380-y doi: 10.1007/s13042-021-01380-y
    [38] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [39] E. Zavadskas, A. Kaklauskas, V. Sarka, The new method of multi criteria complex proportional assessment of projects, Technol. Econ. Dev. Econ., 1 (1994), 131–139.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2786) PDF downloads(167) Cited by(26)

Figures and Tables

Figures(2)  /  Tables(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog